
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment

Version 3.5

Campus NIDS in focus

Rusma Mulyadi
09/20/2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
This paper starts with an IDS design that utilizes the EtherChannel
loadbalancing algorithm of Cisco Catalyst 6500. It is then followed by a
discussion of three network detects: Misc. Tiny Fragments, Large ICMP and
My Doom M/O. The paper concludes with an ‘Analyze This’ section that
discuss the findings and recommendations for MY.EDU network based on my
analysis on a 5-days log files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Content

Abstract ... 2
Table of Content ... 3
Part 1 - IDS Design ... 4

Product Specifications .. 4
Border IDS.. 4
On-campus IDS... 5

Network Diagram.. 6
IDS Management .. 6

Border IDS.. 6
Monitored Traffic.. 7

On-campus IDS... 8
Alert Management and Reporting... 10

Part2 – Network Detect... 11
Detect 1: Misc. Tiny Fragments.. 11

Source of Trace:.. 11
Detect was generated by: .. 15
Probability the source address was spoofed: .. 19
Description of attack:.. 19
Attack mechanism:.. 20
Correlations:.. 24
Evidence of active targeting: .. 25
Defensive recommendation: ... 26
Multiple choice test question: ... 26

Detect 2: Large ICMP... 28
Source of Trace:.. 28
Description of attack:.. 31

Detect 3: My Doom M/O.. 40
Source of Trace:.. 40
Description of attack and Attack Mechanism:.. 42

Part 3 – Analyze This.. 45
Executive Summary .. 45

Count of Alert by Signature.. 47
Top Signatures (Alert Counts > 5000).. 48

Scans Logs .. 62
Phatbot/Agobot Worm propagation attempts ... 64
P2P applications.. 65
Other Scans Activities... 66
OOS Top Talker - 68.54.84.49 ... 69
OOS Null TCP Packet .. 69
Top External Attackers ... 72
Registration Information of External Source Addresses .. 73

Reference (Part 2 & 3) .. 74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1 - IDS Design

The network described in this paper is a university network with approximately
37,000 enrolled students and 1,700 faculty members. The whole network is
spread over more than 500 buildings and cover almost 1000 different
departments. Similar to any other university, providing a secure computing
environment is always a challenge, especially due to its decentralized and open
nature. In addition, budget is another limiting factor.

This paper, especially the on-campus IDS architecture, is mainly designed to
allow effective use of IDS sensors, especially in an environment where the
distribution network layer consists of multiple switches of which the network
traffic varies quite significantly. Thus, placing an IDS sensor on each distribution
switch is an inefficient and quite expensive solution. This design will try to
accommodate these issues.

Product Specifications

Border IDS1
The Cisco Intrusion Detection Service Module 2 is used as the border IDS, with
the specification below:

 Cisco IDSM-2 Ver.4.1
 Platform: WS-SVC-IDSM2-BUN
 Pentium P3 1.13 GHz on main board with 232MHz IXP 32 bit StrongARM
 100G hard drive (20G used)
 2G RAM, 4G Event Storage, 64MB Flash
 Performance: 600 Mbps with 450-byte packets; up to 4000 TCP connections

per second; up to 500,000 concurrent connections

The IDSM-2 is installed on a Cisco Catalyst 6500 together with a Firewall Service
Module (FWSM). This combination allows the IDSM-2 to send shunning/blocking
requests to the Firewall whenever certain signatures are triggered.
Since there is only 1 IDSM-2 is implemented on the network, it is still
recommended to use the Command Line Interface (CLI) for configuration
management. In addition, the IDSM-2 also includes Cisco IDS Device Manager
(IDM), a web browser interface to the configuration management. Note:
Although CLI is still my preferred management option, there are certain tasks
related to shunning/blocking through the FWSM currently can be performed
properly though the IDM/ IDS MC. IDS MC (IDS Management Center) is another

1
http://www.cisco.com/en/US/customer/products/hw/modules/ps2706/products_data_sheet09186a00801e55
dd.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

management option that needs to be purchased separately. Unless, we are
adding more IDSM-2 to the network in the future, IDS MC is not necessary.

On-campus IDS2
As for the on-campus IDSs, the Sourcefire Network Sensors and Real-time
Network Awareness (RNA) sensors are used. The specifications are as follow:

2 units of NS3000 Ver3.2

 2G RAM
 Speed: 1 Gigabit
 Disk space: 30GB

2 units of RA3000 Ver3.2

 Host licenses: 4 x 8192 = 32,768 hosts
 2GB RAM
 Disk space: 30GB

A management console unit (MC3000) with the following specification is used to
manage these 4 sensors:

 4GB RAM
 Disk space: 300 GB

2 www.sourcefire.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Diagram

Security Information
Management
192.168.4.5

VPN

Core Layer

Internet

Firewall

Border NIDS

Border Router A

Core Router B

Distribution Layer

Access Layer

Remote Users

Internal NIDSs
192.168.4.10-11

VPN
Concentrator

Aggregation
Switch

Dist.
Switch 1

Dist.
Switch 2

Dist.
Switch 3

Dist.
Switch 4

Dist.
Switch 5

Network
Awareness

Sensors

192.168.4.2

MC
192.168.4.15

192.168.4.13-14

an
al

ys
t

vlan100
vlan200
vlan300
vlan400
vlan500

vlan111

vlan222

etherchannels

span

vacl capture

L2 L2 L2 L2 L2

Access Switches

IDS Management

Border IDS
The IDSM-2 configuration management is performed through:
1. Command Line Interface/CLI, accessible via:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a. Direct SSH connections from specific subnets to the management
interface, i.e. 192.168.4.2 in this case.

b. Console port of the Cisco Catalyst 6500 (IOS) using the session slot
command

2. IDS Device Manager, accessible through HTTPS connections from specific
subnets.

Signature and software updates are still downloaded manually from Cisco’s
website and then pulled from the sensors via the upgrade command from the
sensor’s CLI.

IDSM-2 utilized a communications protocol called Remote Data Exchange
Protocol (RDEP) that allow alerts being pulled from the sensor instead of being
pushed by the sensor. In addition, the data being exchanged is in XML format
and comply to IDIOM (Intrusion Detection Interchange and Operations
Messages), which is “a data format standard that defines the event messages
that are reported by the IDS as well as the operational messages that are used to
configure and control the IDS”3.

An in-house RDEP client is developed to pull data from the sensor and parse the
XML log files into a MySQL database. The database schema is also designed
in-house based on the Cisco’s RDEP documentation.

On-campus IDS

The configuration management for these Network Sensor and RNA sensors are
performed through the Management Console (MC) web interface (MC’s
management IP: 192.168.4.15) that is accessible via HTTPS from specific
subnets. Furthermore, all system and events monitoring and administration are
also performed via the MC, including downloads of rules updates from Sourcefire
website.

Monitored Traffic

Border IDS

The border IDS is configured to capture traffic off the inside interface of the
border firewall, which is vlan222 in this case.

enable idsm module to capture on vlan222
intrusion-detection module 4 data-port 1 capture
intrusion-detection module 4 data-port 1 capture allowed-vlan 222

create an access map to capture traffic that match the gcia-vacl

3 Cisco IDIOM Documentation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vlan access-map gcia-vacl-map 10
 match ip address gcia-vacl
 action forward capture
!
apply the access map to vlan 222
vlan filter gcia-vacl-map vlan-list 222

define the vacl
ip access-list extended gcia-vacl
 permit ip any any

On-campus IDS

In order to monitor all on-campus traffic without having to put a network sensor
on each distribution switch, a layer-2 aggregation switch is used. All traffic are
spanned from each distribution switches to different vlans on the aggregation
switch. Using the EtherChannel algorithm on the aggregation switch, all traffics
are loadbalanced and forwarded to the sensors. VACL capture is used to
aggregate and forward the traffic to the EtherChannels. We need two
EtherChannel in this particular case because all captured traffic need to be
forward to both the network sensors and RNA sensors.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

L3 - Vlan 110
MSFC

Dist. Switch 1

L2 - Vlan 110

span

L3 - Vlan 310
MSFC

Dist. Switch 3

L2 - Vlan 310

L3 - Vlan 210
MSFC

Dist. Switch 2

L2 - Vlan 210

L3 - Vlan 110
MSFC

Dist. Switch 4

L2 - Vlan 410

L3 - Vlan 510
MSFC

Dist. Switch 5

L2 - Vlan 510

span

span

sp
an

sp
an

vlan 100

vlan 200

vlan 300

vlan 400

vlan 500

Layer 2 Aggregation Switch
Network
Sensor 1

Network
Sensor 1

RNA1

RNA2

VACL
Capture

3/1

3/2

3/3

3/4

Figure 1 On campus IDS traffic flow

Sample configuration on the aggregation switch:
Enable trunking an the capture ports: 3/1-4 in this case
set trunk 3/1 on dot1q
set trunk 3/2 on dot1q
set trunk 3/3 on dot1q
set trunk 3/4 on dot1q

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

specify the capture ports that will receive traffic from the VACL
set security acl capture-ports 3/1-2
set security acl capture-ports 3/3-4

configure the VLAN ACL:
set security acl ip gcia permit arp
set security acl ip gcia deny udp any any eq 1985
set security acl ip gcia deny pim any any
set security acl ip gcia deny eigrp any any
set security acl ip gcia deny ip 224.0.0.0 15.255.255.255 any
set security acl ip gcia deny ip any 224.0.0.0 15.255.255.255
set security acl ip gcia deny ip host 224.0.0.1 any
set security acl ip gcia deny ip any host 224.0.0.1
set security acl ip gcia permit ip any any capture

commit the VACL
commit security acl all

enable spantree bpdu filter to avoid conflicts
set spantree bpdu-filter 2/1-6 enable

map the VACL to desired vlans
set security acl map gcia 100-500

configure the EtherChannel between the aggregation switch and the
sensors
set port channel 3/1-2 mode on
set port channel 3/3-4 mode on

Alert Management and Reporting

As showed in the network diagram, all alerts from firewall, border IDS, VPN
concentrator are stored into different databases on a database server
(192.168.4.5). Currently, there is an on-site hot backup of the database server.
Furthermore, the alerts from on-campus IDSs and RNA sensors, they are
handled by the Sourcefire MC.

In the next future, there are needs to look and test both open source and
commercial tools that will perform the security information management such
OSSIM and Protego.

We do produce daily reports from both the border and on-campus IDSs.
Depending on the state of the network, we also produce adhoc reporting (hourly
to 4-hourly) to identify certain worm propagation activities.

Reference:
http://www.cisco.com/en/US/customer/products/hw/modules/ps2706/products_data_sheet09186a00801e55
dd.html
www.sourcefire.com
Cisco IDIOM Documentation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part2 – Network Detect

Detect 1: Misc. Tiny Fragments

Source of Trace:

The source of this detect is obtained from http://isc.sans.org/logs/Raw/2002.6.1 -
2002.6.18 and dated from 06/30/02 to 07/18/02.

Several key points to keep in mind throughout this network detect:4

 Only packets that violate the Snort rule set appear in these log files
 The logs have been sanitized:

a. The IP addresses of the protected network space have been “munged”
b. The checksums have also been modified
c. Certain keywords have been modified
d. All ICMP, DNS, SMTP and web traffic has been removed

These log raw log files are then combined into a single file called 2002.6.all using
pcapmerge5, downloaded as part of tcpreplay package6.

pcapmerge –o 2002.6.all 2002.6.*

-o <file>: used to specify the name of the combined output file.

The next section discusses the network layout of this detect based on the
tcpdump7 command and its sample output below.

tcpdump –ennqr <filename>

-e prints the link-level header, containing physical/MAC addresses
-nn disables the host name and port translations
-q quick output with less protocol information
-r reads in the merged raw log file

17:31:16.304488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 60: 211.152.3.40.80 >
46.5.15.174.80: tcp 0

The fields of the above tcpdump output format – delimited by spaces/blanks –
that will be analyzed further in this section are:
Field# Description

2 Source MAC Address
3 Destination MAC Address
5 Source IP Address and Port
7 Destination IP Address and Port

4 http://isc.sans.org/logs/Raw/README
5 http://tcpreplay.sourceforge.net/pcapmerge.html
6 http://www.sourceforge.net/projects/tcpreplay/
7 http://tcpdump.org/tcpdump_man.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To obtain the unique source MAC addresses, the second field of the sample
output above is uniquely sorted. The resulted source MAC addresses are printed
together with their number of occurrences in the entire log:

tcpdump -ennqr 2002.6.all | awk '{print $2}' | sort | uniq -c
 32479 0:0:c:4:b2:33
 6406 0:3:e3:d9:26:c0

The third field of the output file identifies the destination MAC addresses and is
printed below:

tcpdump -ennqr 2002.6.all | awk '{print $3}' | sort | uniq -c
 6406 0:0:c:4:b2:33
 32479 0:3:e3:d9:26:c0

In addition to the fact that the counts of both MAC addresses as the source and
destination addresses are exactly reversed, both MAC addresses are also
registered to Cisco Systems according to the information shown below from the
IEEE OUI Registration database8. Therefore, these logs are generated by an
intrusion detection system (sniffer) that sits between two Cisco devices.

00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.
 170 WEST TASMAN DRIVE
 SAN JOSE CA 95134-1706

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose CA 95134
 UNITED STATES

To further understand the location of these devices within the network:

1. The distinct source IP addresses (field #5) coming from 0:0:c:4:b2:33

tcpdump -ennqr 2002.6.all 'ether src 0:0:c:4:b2:33' | awk '{print
 $5}' | awk -F \. {'print $1 "." $2 "." $3 "." $4'} | sort |
 uniq -c | sort -rn
 32434 46.5.180.250
 45 46.5.180.133

2. The distinct destination IP addresses (field #7) coming from 0:0:c:4:b2:33

tcpdump -ennqr 2002.6.all 'ether src 0:0:c:4:b2:33' | awk '{print
 $7}' | awk -F \. {'print $1 "." $2 "." $3 "." $4'} | sort |

8 http://standards.ieee.org/regauth/oui/oui.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 uniq –c | sort -rn
 16700 64.154.80.51
 6339 66.128.224.70
 686 64.154.80.50
 522 208.45.133.13

<snip>
 1 12.216.161.118
 1 12.150.245.163
 1 12.111.145.134

At this point, it seems that 0:0:c:4:b2:33 is a Cisco device that sits in front of a
Class C internal network (46.5.180.0/24) at this point.

3. The distinct source IP addresses (field #5) coming from 0:3:e3:d9:26:c0

tcpdump -ennqr 2002.6.all 'ether src 0:3:e3:d9:26:c0' | awk
 '{print $5}' | awk -F \. {'print $1 "." $2 "." $3 "." $4'} | sort
 | uniq -c | sort –rn

 683 255.255.255.255
 297 66.220.44.31
 180 203.122.47.137
 169 62.153.209.202

<snip>
 1 12.150.54.250
 1 12.107.51.109
 1 12.105.86.5

Based on the variety of IP addresses sourced from 0:3:e3:d9:26:c0, we can
conclude that it is most likely a ‘border’ router that is located between the Internet
and the network in this particular trace.

4. The distinct destination IP addresses (field #7) coming from 0:3:e3:d9:26:c0

tcpdump -ennqr 2002.6.all 'ether src 0:3:e3:d9:26:c0' | awk
 '{print $7}' | awk -F \. {'print $1 "." $2 "." $3 "." $4'} | sort
 | uniq -c | sort -rn | more

 1714 46.5.180.250
 908 46.5.180.133
 381 46.5.80.149
 36 46.5.218.182
 28 46.5.130.100
 26 46.5.180.135
 <snip>
 1 46.5.0.16
 1 46.5.0.139
 1 46.5.0.130
 1 46.5.0.10

From this last output, we discover that the internal network is much bigger than a
Class C network. Instead, it looks more like a Class B network (46.5.0.0/16).

The network layout of this trace can then be summarized as:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Intrusion Detection Systems
 |
 |
Internet --- Cisco Device 1 -----+------ Cisco Device 2 --- Internal

 0:3:e3:d9:26:c0 0:0:c:4:b2:33 46.5.0.0/16

5. The distinct destination ports coming from 0:0:c:4:b2:33

Total unique destination ports coming from 0:0:c:4:b2:33
tcpdump -ennqr 2002.6.all 'ether src 0:0:c:4:b2:33' | awk '{print
 $7}' | awk -F \. {'print $5'} | sort | uniq -c | sort -rn | wc -l

248

 ### List of unique destination ports coming from 0:0:c:4:b2:33
tcpdump -ennqr 2002.6.all 'ether src 0:0:c:4:b2:33' | awk '{print
 $7}' | awk -F \. {'print $5'} | sort | uniq -c | sort -rn
 29487 80:
 851 6347:
 552 1863:
 410 6348:
 95 5555:
 <snip>
 1 10508:
 1 10450:
 1 10222:
 1 100:

The existence of 248 unique destination ports of the outgoing traffic in the
entire log file indicates a loose egress filtering. However, it seems that there
are filters for the well-known Microsoft Windows ports (135, 137-139, and 445)
because none of them are found in these 248 destination ports. The top 4
outgoing traffic corresponds to http (port 80), gnutella (port 6347 and 6348),
MSN messenger (1863) and Napster (port 5555).9 This is assuming that
these ports are used by their normal applications.

6. The distinct destination ports coming from 0:3:e3:d9:26:c0

Total unique destination ports coming from 0:3:e3:d9:26:c0
tcpdump -ennqr 2002.6.all 'ether src 0:3:e3:d9:26:c0' | awk
 '{print $7}' | awk -F \. {'print $5'} | sort | uniq -c | sort -rn
 | wc -l

717

List of unique destination ports coming from 0:3:e3:d9:26:c0
tcpdump -ennqr 2002.6.all 'ether src 0:3:e3:d9:26:c0' | awk
 '{print $7}' | awk -F \. {'print $5'} | sort | uniq -c | sort -rn
 1704 80:
 705 21:
 683 515:
 591 53:

9 http://www.neohapsis.com/neolabs/neo-ports/neo-ports.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 416 6346:
 <snip>

 4 137:
 <snip>
 1 61002:
 1 6000:
 1 41992:
 1 40195:

 1 3514:

The existence of 717 unique destination ports in the incoming traffic that
includes a Windows NetBIOS port 137 in the entire log file also indicates a
loose ingress filtering. Although it seems that the egress filtering includes a
block for well-known Windows ports, it does not appear to be the case with
regard to the ingress filtering. The top 3 incoming traffic corresponds to http
(port 80), ftp (port 21), printer (port 515), domain name (port 53), and gnutella
(port 6346).9 Again, this is assuming that these ports are used by their
normal applications.

The limited ingress and egress filtering applied on this network is an indication of
a very loose network security policy implementation and it fits the profile of
typical .edu network.

Detect was generated by:

This detect is generated using Snort Version 2.2.0 with all the rules enabled.
The latest rules are The snort.conf is modified to include as the home network.
The following command is used:

snort -r 2002.6.all -c ../snort/etc/snort.conf -A full
 -l alert612ALL/ -dey -k none

-r <filename> read and process a tcpdump file
-c <cfgfile> use rules specified in the configuration file
-A <mode> alert mode (fast, full, console or none)
-l <log dir> specify the log directory
-d print the application layer information
-e display the 2nd layer header info
-y include year in timestamp of alert and log files
-k <mode> checksum mode (all, noip, notcp, noudp, noicmp, none)

SnortSnarf v021111.110 is then used to facilitate the alert analysis process.

./snortsnarf –d alert612view/ alert612ALL/alert

-d <dir> specify the output directory

10 http://www.snort.org/dl/contrib/data_analysis/snortsnarf/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This detect will focus on the Misc Tiny Fragments signature alerts as
summarized in Figure 2 below.

Figure 2 Misc Tiny Fragments Alerts Summary

An alert on this signature is generated when a fragment packet (with More
Fragment – M flag set) with a payload size (dsize) of less than 25 bytes is
received from the external network. Below is the corresponding Snort rule11.

alert ip $EXTERaNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments";
dsize:< 25; fragbits:M; classtype:bad-unknown; sid:522; rev:2;)

The 5 alerts of interest are:

[**] [1:522:2] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]

11 http://www.snort.org/snort-db/?sid=522

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

07/10/02-01:06:04.854488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
64.26.170.95 -> 46.5.80.149 TCP TTL:237 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x1FCB Frag Size: 0x0014
[**] [1:522:2] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
07/10/02-20:41:23.524488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
80.136.103.85 -> 46.5.80.149 TCP TTL:241 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x1E17 Frag Size: 0x0014
[**] [1:522:2] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
07/10/02-22:48:25.114488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
64.105.26.118 -> 46.5.80.149 TCP TTL:237 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x1ED3 Frag Size: 0x0014
[**] [1:522:2] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
07/11/02-16:38:45.424488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
64.105.26.164 -> 46.5.80.149 TCP TTL:237 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x1ED3 Frag Size: 0x0014
[**] [1:522:2] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
07/15/02-21:26:14.184488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
217.83.201.131 -> 46.5.80.149 TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x1EB2 Frag Size: 0x0014

Using the last alert above as a sample, a Snort alert format contains:

[**] [1:522:2] MISC Tiny Fragments [**]

 [**] [Generator ID: Signature ID: Revision Number] Signature Message [**]

[Classification: Potentially Bad Traffic] [Priority: 2]

 [Classification: Classification Type’s Short Name] [Priority: Priority level]

07/15/02-21:26:14.184488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C

 Timestamp Source MAC Address -> Destination MAC Address
 type: encapsulation protocol (0x800 = IP)
 len: length of the frame (0x3C = 60)

217.83.201.131 -> 46.5.80.149 TCP TTL:242 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x1EB2 Frag Size: 0x0014

 Source IP Address -> Destination IP Address
 Protocol ID
 TTL: time to live
 TOS: type of service
 ID: IP / Fragment ID
 DgmLen: total length of datagram
 IP Flag: IP flags (reserved bit| Don’t Fragment | More Fragment)
 Frag Offset: fragment offset
 Frag Size: fragment size

To confirm these Snort generated alerts, the log file is passed through tcpdump
with bpf filters to include packets with:
1. More Fragment flag set (ip[6] & 0x20 != 0)
2. total payload less than 25 bytes (ip[3]-((ip[0] & 0x0f)*4) < 25).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tcpdump -Xxvnns 1514 -r 2002.6.all '(ip[6] & 0x20 != 0) and (ip[6] &
 0x80 ==0) and (ip[3]-((ip[0] & 0x0f)*4) < 25)'

Packet 1: ip[6] == 0x6f --> fragbits:DM
17:50:45.374488 64.244.110.164 > 46.5.212.116: tcp (frag 0:20@30904+)
(ttl 237, len 40, bad cksum b1ae!)
0x0000 4500 0028 0000 6f17 ed06 b1ae 40f4 6ea4 E..(..o.....@.n.
0x0010 2e05 d474 8105 0050 0400 ff56 0400 ff56 ...t...P...V...V
0x0020 5004 0000 7ad3 0000 0000 0000 0000 P...z.........

Packet 2: ip[6] == 0x3e --> fragbits:M
21:26:14.184488 217.83.201.131 > 46.5.80.149: tcp (frag 0:20@62864+)
(ttl 242, len 40, bad cksum 70b1!)
0x0000 4500 0028 0000 3eb2 f206 70b1 d953 c983 E..(..>...p..S..
0x0010 2e05 5095 8389 18ca 0e11 7516 0e11 7516 ..P.......u...u.
0x0020 5004 0000 f3d1 0000 0000 0000 0000 P.............

Packet 3: ip[6] == 0x3e --> fragbits:M
20:41:23.524488 80.136.103.85 > 46.5.80.149: tcp (frag 0:20@61624+)
(ttl 241, len 40, bad cksum 5d46!)
0x0000 4500 0028 0000 3e17 f106 5d46 5088 6755 E..(..>...]FP.gU
0x0010 2e05 5095 8206 18ca 0935 7f24 0935 7f24 ..P......5.$.5.$
0x0020 5004 0000 d5ea 0000 0000 0000 0000 P.............

Packet 4: ip[6] == 0x3e --> fragbits:M
22:48:25.114488 64.105.26.118 > 46.5.80.149: tcp (frag 0:20@63128+)
(ttl 237, len 40, bad cksum bd88!)
0x0000 4500 0028 0000 3ed3 ed06 bd88 4069 1a76 E..(..>.....@i.v
0x0010 2e05 5095 8039 18ca 9d55 7d9e 9d55 7d9e ..P..9...U}..U}.
0x0020 5004 0000 0f81 0000 0000 0000 0000 P.............

Packet 5: ip[6] == 0x3e --> fragbits:M
16:38:45.424488 64.105.26.164 > 46.5.80.149: tcp (frag 0:20@63128+)
(ttl 237, len 40, bad cksum bd5a!)
0x0000 4500 0028 0000 3ed3 ed06 bd5a 4069 1aa4 E..(..>....Z@i..
0x0010 2e05 5095 82ff 18ca a129 6dae a129 6dae ..P......)m..)m.
0x0020 5004 0000 24c5 0000 0000 0000 0000 P...$.........

Packet 6: ip[6] == 0x3f --> fragbits:M
01:06:04.854488 64.26.170.95 > 46.5.80.149: tcp (frag 0:20@65112+) (ttl
237, len 40, bad cksum 2cf6!)
0x0000 4500 0028 0000 3fcb ed06 2cf6 401a aa5f E..(..?...,.@.._
0x0010 2e05 5095 8047 18ca 4107 12d2 4107 12d2 ..P..G..A...A...
0x0020 5004 0000 0e0e 0000 0000 0000 0000 P.............

Packet 7: ip[6] == 0x64 --> fragbits:DM
08:00:17.944488 61.205.39.211 > 46.5.80.149: tcp (frag 0:20@9368+) (ttl
236, len 40, bad cksum 8e07!)
0x0000 4500 0028 0000 6493 ec06 8e07 3dcd 27d3 E..(..d.....=.'.
0x0010 2e05 5095 81d1 18ca 1c07 fa00 1c07 fa00 ..P.............
0x0020 5004 0000 0d00 0000 0000 0000 0000 P.............

The tcpdump command results in two additional packets, i.e. Packet 1 and 7.
This is because these two packets also have the Don’t Fragment flag set in
addition to the More Fragment flag. The corresponding snort rule fires when

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

only the More Fragment is set. The bpf filter is then modified to fit this restriction
(ip[6] & 0x60 == 0x20). Below is the modified tcpdump command and only
packet 2 – 5 are returned this time.

tcpdump -Xxvnns 1514 -r 2002.6.all '(ip[6] & 0x60 == 0x20) and
(ip[3]-((ip[0] & 0x0f)*4) < 25)'

Probability the source address was spoofed:

As will be further described in the next two sections, I believe that the packets in
this trace are corrupted RST packets from real Gnutella traffic. Therefore, the
possibility that the source addresses are spoofed is very small.

The TTL (time to live) values also appear to be consistent with the source IP
classes, i.e. the one sourced from the same Class A (64.x.x.x) seems to have
similar TTL values. Searching these 5 source addresses in Geektools12 returns
three different Internet Service Provider companies, i.e.: Magma Communication/
Canada, Covad/ US, Deutsche Telekom AG.

Also, performing nslookup on these machines shows that they are alive.

Name: pD953C983.dip.t-dialin.net
Address: 217.83.201.131

Name: h-64-105-26-164.lsanca54.dynamic.covad.net
Address: 64.105.26.164

Name: h-64-105-26-118.lsanca54.dynamic.covad.net
Address: 64.105.26.118

Name: p50886755.dip0.t-ipconnect.de
Address: 80.136.103.85

Name: ottawa-hs-64-26-170-95.d-ip.magma.ca
Address: 64.26.170.95

Thus, these 5 source addresses are mostly likely regular Gnutella servents.

In addition, RST packets are usually sent either in responses to connection
requests to non-existence services, to abort existing connections, or to OS
fingerprint systems in the target network. In this particular detect, I tend to
believe that the corrupted RST packets are generated to abort existing Gnutella
connections, and therefore, the source addresses are not spoofed.

Description of attack:

Tiny fragments are often to bypass the intrusion detection systems and firewalls
that fail to perform proper fragments reassembly. The common fragmentation

12 http://www.geektools.com/whois.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attacks include fragmentation overlap, fragmentation overwrite, and
fragmentation time-outs.13 Although most of the current intrusion detection
systems (e.g. Snort’s frag2 preprocessor) and firewalls are capable of
maintaining states and perform fragmentation reassembly, these devices are still
susceptible to denial of service attacks while not configured properly. In addition,
some systems may crash or severely disrupted when receiving a lot of
malformed fragmented packets.14

In this particular tiny fragments detect, there are two possible explanations:

1. These packets are part of a larger tiny fragment attacks described above.
The facts that the frag id and the data length are always 0 and 20 might
indicate that these are crafted packets. However, there is not enough
information available to support this conclusion, especially with only 1
fragment of the entire fragments train is available in the packet trace.

2. These are corrupted packets and based on further description in the next
section, they are corrupted RST packets sent by a Gnutella servent to
end a connection. I incline towards this second scenario.

Attack mechanism:

There are several interesting similarities among the packets in this detect:

1. The 4th and 5th bytes offset of IP header – IP/fragment ID = 0
2. The More Fragment flag – found in the 3 high-order bits of the 6th bytes

offset of IP header – is always set. The 6th bytes offset of IP headers
(ip[6]) of this detect are either 0x3e or 0x3f. Using the IP header template:

Hex => Decimal => IP Flags | Fragment Offset (portion)
 xDM
0x3e => 62 => 001 | 11110
0x3f => 63 => 001 | 11111

IP Flags:
x – reserved, set to 0; D – Don’t Fragment; M – More Fragment

3. The 9th byte offset of the IP header – Protocol = 0x06 (i.e. TCP)
4. The 2nd and 3rd bytes offset of the payload (since the MF flag is set in the

IP header) = 0x18ca or decimal 6346
5. The values of the 4th to 7th bytes offset of the payload is always the same

as those of the 8th to 11th bytes offset
6. The 12th and 13th bytes offset of the payload = 0x5004

13 http://www.securityfocus.com/infocus/1577
14http://www.securiteam.com/windowsntfocus/Patch_Available_for_the__IP_Fragment_Reassembly__Vul
nerability.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If I ignore the fact that these packets are fragments and consider the payload as
TCP header instead of fragment payload, point 4 – 6 above can be translated
into:

4. Destination port = 6346 (Gnutella)
5. Sequence number = ACK number
6. TCP header length = 20 bytes; TCP RST flag is set

Hex => Offset | Reserved | Flags
 | | UAPRSF
0x5004 => 0101 | 0000 00 | 000100

TCP Flags:
U – Urgent; A – Ack; P – Push; R – Reset; S – Syn; F - Fin

To support my suspicion that these packets are corrupted Gnutella RST packets,
I use tcpdump to filter all traffic sourced from / destined to 46.5.80.149 in the raw
log file. (Notice that all of these alerts destined to the same ip address, i.e.
46.5.80.149)

tcpdump -nnr 2002.6.all 'dst host 46.5.80.149' | wc
 399 3536 35076
tcpdump -nnr 2002.6.all 'src host 46.5.80.149' | wc
 0 0 0

While none of the logged traffics sourced from 46.5.80.149, there are 399
packets destined to it. Among these 399 packets: 15

 380 destined to TCP port 6346 - registered to Gnutella.
 18 fragmented packets – without destination ports
 1 destined to TCP 3514 – registered to MUST Peer to Peer

tcpdump -nnr 2002.6.all 'dst host 46.5.80.149' | awk '{print $4}'
 | awk -F \. {'print $5'} | sort | uniq -c |more
 18
 1 3514:

380 6346:

In addition, it appears that there are no packets sourced from the five different
source IP addresses in this detect other than the ones triggering these Misc Tiny
Fragment alerts.

tcpdump -nnr 2002.6.all 'host 64.26.170.95 or host 64.105.26.118
 or host 64.105.26.164 or 217.83.201.131 or 80.136.103.85' |wc
 5 35 340

At this point, I can conclude that 46.5.80.149 is a Gnutella servent. Below is a
sample of the packets:

15 http://www.iana.org/assignments/port-numbers

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18:21:45.164488 148.63.247.123.3536 > 46.5.80.149.6346: P
2391248906:2391249078(172) win 8192 (DF)
0x0000 4500 00d4 9dcf 4000 6e06 6c04 943f f77b E.....@.n.l..?.{
0x0010 2e05 5095 0dd0 18ca 8e87 900a 0000 0000 ..P.............
0x0020 5e08 2000 48d3 0000 474e 5554 454c 4c41 ^...H...GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4265 6172 5368 er-Agent:.BearSh
0x0050 6172 6520 322e 362e 330d 0a4d 6163 6869 are.2.6.3..Machi
0x0060 6e65 3a20 312c 3133 2c31 3930 2c31 2c34 ne:.1,13,190,1,4
0x0070 3938 0d0a 506f 6e67 2d43 6163 6869 6e67 98..Pong-Caching
0x0080 3a20 302e 310d 0a48 6f70 732d 466c 6f77 :.0.1..Hops-Flow
0x0090 3a20 312e 300d 0a4c 6973 7465 6e2d 4950 :.1.0..Listen-IP
0x00a0 3a20 3134 382e 3633 2e32 3437 2e31 3233 :.148.63.247.123
0x00b0 3a36 3334 360d 0a52 656d 6f74 652d 4950 :6346..Remote-IP
0x00c0 3a20 3137 302e 3132 392e 3230 342e 3139 :.170.129.204.19
0x00d0 0d0a 0d0a

Gnutella is a peer-to-peer protocol for distributed search and digital distribution /
file sharing. Each participant is called a servent and acts as both a client and a
server.16 A description on the protocol can be found on the link below:

http://rfc-gnutella.sourceforge.net/developer/index.html

From my online research, I was not able to obtain much information regarding
TCP RST packets to end Gnutella connections. I then decide to capture some
live Gnutella (port 6346) traffic on our campus network to learn more on its
behavior. From the captured traffic, I try to find RST packets with the same
sequence (tcp[4:4]) and ACK numbers (tcp[8:4]).

capture live Gnutella (port 6346) traffic
tcpdump -i bond0 -xnns 1514 ‘port 6346’

filter RST packets with sequence # = ACK #
tcpdump -r gnu -xnns 1514 ‘tcp[13] = 0x04 and tcp[4:4] = tcp[8:4] and
dst port 6346'

I do find quite a lot of these packets. Below are some samples (checksums and
source IPs are removed):

16:40:22.417450 x.x.x.x.4834 > 68.162.158.172.6346: R 4231098138:42
31098138(0) win 0
 4500 0028 a541 0000 7f06 xxxx xxxx xxxx
 44a2 9eac 12e2 18ca fc31 6f1a fc31 6f1a
 5004 0000 f492 0000 0000 0000 0000
16:40:22.459180 x.x.x.x.4839 > 69.177.14.249.6346: R 4232152131:423
2152131(0) win 0
 4500 0028 a545 0000 7f06 xxxx xxxx xxxx
 45b1 0ef9 12e7 18ca fc41 8443 fc41 8443
 5004 0000 58c0 0000 0000 0000 0000
16:40:22.622202 x.x.x.x.4837 > 24.51.185.190.6346: R 4231561837:423
1561837(0) win 0

16 http://rfc-gnutella.sourceforge.net/developer/share/intro.html#Background

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 4500 0028 a551 0000 7f06 xxxx xxxx xxxx
 1833 b9be 12e5 18ca fc38 826d fc38 826d
 5004 0000 df38 0000 0000 0000 0000

Although RST packets are usually sent either as responses to connection
requests to closed ports or as ways to abort existing connections based the RFC
79317, I notice that Gnutella servents often send both FIN (normal way to
terminate connections) and RST packets when closing a connection unless the
remote servents respond immediately with FIN ACK packets. This duplication is
particularly true when a busy message (“There are too many active upload, and
no space in the queues”) is received from a remote servent. It seems that this is
intended by design to avoid a lot of TCP half-close connections and to tear down
the connections right away.

Since not all of these live captured RST packets have the same sequence and
ACK numbers, I perform OS fingerprinting (using nmap) on two of these
machines and they are identified as Windows systems as showed below.

Remote operating system guess: Windows Millennium Edition (Me), Win
2000, or Win XP
Remote OS guesses: Windows NT 5 Beta2 or Beta3, Windows Millennium
Edition (Me), Win 2000, or WinXP, MS Windows2000 Professional RC1/W2K
Advance Server Beta3

In addition, p0f’s RST+ signatures18 describes that “while the ACK value should
be zeroed, it is not strictly against the RFC, and some systems either leak
memory there or set it to the value of SEQ. The latter variant, with non-zero ACK,
is particularly common on Windows”.

Thus, if the packets are really corrupted RST Gnutella packets, I can be pretty
confident that the source IPs are Windows machines.

The next question is how do these RST packets turn into fragments?
Comparing a sample of the real RST packets and the ones in this detect, there is
an obvious different is on the 4th – 7th bytes offset of the IP header. It seems that
the values of the first two bytes (4th and 5th – 0x0000) are somehow swapped
with those of the last two (6th and 7th – 0x3fcb) in this detect. Since the 4th & 5th
bytes offset of IP header are the IP/Fragment ID and the 6th & 7th bytes offset
are IP Flags and Fragment Offset, swapping them around can definitely turn a
non-fragment packet into a fragment.

Real Gnutella RST packet
4500 0028 a551 0000 7f06 xxxx xxxx xxxx
1833 b9be 12e5 18ca fc38 826d fc38 826d
5004 0000 df38 0000 0000 0000 0000

17 http://www.faqs.org/rfcs/rfc793.html
18 http://www.stearns.org/p0f/p0fr.fp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Last packet in this detect (Packet 6)
4500 0028 0000 3fcb ed06 2cf6 401a aa5f
2e05 5095 8047 18ca 4107 12d2 4107 12d2
5004 0000 0e0e 0000 0000 0000 0000

To support this swapping theory, I notice that my earlier tcpdump filter on tiny
fragment packets (less than 25 bytes payload and MF flag set) returned two
additional packets that have both MF (More Fragment) and DF (Don’t Fragment)
flags set. These two flags identify 2 opposing traits of a packet and should not
exist together in a packet when the RFC is followed. Thus, I am pretty sure that
these two packets are also corrupted by the same technique.

Correlations:

There are several postings regarding ‘MISC Tiny Fragments’ detect on the
intrusions list:

 Richard Haynal analyzed a different traffic trace in
www.incidents.org/logs/Raw/2002.9.22 and also concluded that the packets
in his detect are corrupted. The original posting is available at:
http://www.dshield.org/pipermail/intrusions/2003-April/007375.php

 Lesa Ludwig analyzed another traffic trace in
http://www.incidents.org/logs/Raw/2002.10.11. Several categories of
fragmentation attacks are presented as part of the analysis. The original
posting is available at: http://www.dshield.org/pipermail/intrusions/2003-
January/006463.php

Considering that the tiny fragments in this detect are corrupted packets, there are
no related CVE entries.

Although I am reluctant to believe that this detect is part of a tiny fragmentation
attack, below are several articles on the fragmentation attacks:

 IDS Evasion Techniques and Tactics, by Kevin Timm, May 7, 2002,
http://www.securityfocus.com/infocus/1577

 Protection Against a Variant of the Tiny Fragment Attack, June 2001,
http://rfc.net/rfc3128.html

 An Analysis of Fragmentation Attacks, by Jason Anderson, March 15,
2001, http://www.inet-sec.org/docs/DoS/fragma.html

 Cisco PIX and CBAC Fragmentation Attack, September 11, 1998,
http://www.cisco.com/warp/public/770/nifrag.shtml

 Security Considerations for IP Fragment Filtering, October 1995,
http://rfc.net/rfc1858.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Only one of the five source IP addresses in this detect has an entry in
myNetWatchman incident database19, i.e. 217.83.201.131 (Incident ID:
112675479). However, this particular event is relatively new and related to
Microsoft SMB/CIFS/Sasser/Agobot/Generic Bot, which is not relevant to this
detect. No incident entry is found on dshield.org for these five source IPs.

Evidence of active targeting:

Should this detect be classified as a real attack, I can be relatively positive that
there is an active targeting because all alerts in this detect are directed to the
destination IP. However, this detect is not a real attack, but some corrupted
packets. Thus, there is no evidence of active targeting in this particular detect.

Severity: -1
severity = (criticality + lethality) - (system countermeasures + network
 countermeasures)
 = (2+1) – (2+2) = 3 – 4 = -1

Criticality: 2

Although there is no information regarding the criticality of this target system, the
fact that traffic destined to it is mostly peer-to-peer related (as discussed earlier)
lead me to conclude that it’s an end-user workstation. Also, since this particular
network fits the profile of an .edu network, an end-user workstation with Gnutella
client program can be anyone’s computer (student/faculty/staff). Although the
criticality level may vary depending on the owner of the systems, I assign the
criticality value of 2 here.

Lethality: 1

There is no real attack in this particular detect. I believe that these tiny fragments
are corrupted Gnutella RST packets. Thus, the level of damage caused is very
low.

System countermeasures: 2

There is no information regarding the system-level defenses on the target
machine and I can only assume based on the fact that it is running a Gnutella
client program. Since the security awareness level of average end users in
an .edu environment is usually relatively low, I assign the system
countermeasures a value of 2.

Network countermeasures: 2

19 http://www.mynetwatchman.com/ListIncidentsbyIP.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Based on the information in the first section of this detect, I conclude that the
existing network countermeasures seem to include loose egress & ingress
filterings and an intrusion detection system. Although it seems that there are
blocks for well-known Windows ports as part of the egress filtering, the same
blocks do not appear to be applied in the ingress filtering. I therefore assign the
network countermeasures a value of 2.

Defensive recommendation:

Although this detect does not include real fragmentation attacks, network–level
defenses can still be put in place to prevent them and to further improve the
current state of network security:

 Implement stateful firewall that is capable of maintaining inter-fragment state
and dropping illegal and tiny fragments. If the size of the initial fragment is
not large enough to fit all necessary header information, it should be
dropped.20 Any non-initial fragments should also be discarded unless the
corresponding initial fragment has passed the firewall.21 The amount of
memory assigned to maintain the fragmentation state should also be limited
to reduce the possibility of denial of service attacks against the firewall itself.

 Most of today’s IDSs are capable of performing fragmentation reassembly,
including Snort. Assuming Snort is used in this network, the frag2
preprocessor need to be enabled.

 Applying more rigid ingress filtering by gradually moving from ‘permit all,
deny specifics’ to ‘permit specifics, deny all’. This might not be a easy
option especially if this is an actual .edu network.

As for the host-level defenses:

 Fragmentation attacks may also cause certain un-patched systems to crash.
Thus, it is required to keep each host up-to-date on its security patches.

 Assuming that the traffic categorization from the log file is a decent
representation of the actual traffic on the network, peer-to-peer traffic is one
of the most popular traffic coming into and leaving the network. As peer-to-
peer programs usually come with spyware/ adware, the dangerous of these
‘add-on’ programs should be brought up to end users’ attention. This is
especially important when applying a more rigid ingress filtering is not a viable
option.

Multiple choice test question:

20 http://www.inet-sec.org/docs/DoS/fragma.html
21 http://www.cisco.com/warp/public/770/nifrag.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

‘tcp[13] = 0x04 and tcp[4:4] = tcp[8:4] and dst port 6346'

What kind of traffic does the above bpf filter look for?

A) TCP traffic with SYN and ACK flags set, the same source and destination
ports, destination port = 6346
B) TCP traffic with RST flag set, the same source and destination ports,
destination port = 6346
C) TCP traffic with SYN and ACK flags set, the same SEQ and ACK numbers,
destination port = 6346
D) TCP traffic with RST flag set, the same SEQ and ACK numbers, destination
port = 6346

Answer: D

This practical was posted twice to intrusions@incidents.org on August 31, 2004
and September 13, 2004 without any feedback responses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect 2: Large ICMP

Source of Trace:

This trace is obtained from both the border and on-campus IDS of an .edu
network as showed in Figure 3 below.

Figure 3. Network Diagram – Detect 2

As in most .edu network, the ingress and egress filtering at the border router and
firewall are fairly loose. In this case, only certain popular backdoor and worm
activity ports are blocked, including the NetBIOS ports. In addition, the border
IDS is configured to issue temporal blocks requests to the border firewall when
certain signature alerts are triggered.

Detect was generated by:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This detect is generated by both the border IDS (Cisco Secure Intrusion
Detection System Version.4) and on-campus IDS (Snort 2.2.0). It first attracts
my attention when it showed up in the border IDS daily top attacker/victim report.
Below is an excerpt of this custom report, where X.X.X.X (an internal source
address) is the attacker IP address with a total of 5903 daily alerts that consist of
four different signatures.

 Attacker IP Hits Hostname
 X.X.X.X 5903 X.edu
 Signature Sub-Signature Hits Severity Signature Description
 2151 0 5867 0 Large ICMP
 6901 0 12 0 NET FLOOD Icmp Reply
 6903 0 12 0 NET FLOOD Icmp Any
 6902 0 12 0 NET FLOOD Icmp Request

A sample of the raw event alerts, before being parsed into a database, is
represented by the evAlert XML element below:

 <evAlert eventId="1088064581975106010" severity="informational">
 <originator>
 <hostId>IDS-XXX</hostId>
 <appName>sensorApp</appName>
 <appInstanceId>1193</appInstanceId>
 </originator>
 <time offset="0" timeZone="UTC">1092066963081400000</time>
 <interfaceGroup>0</interfaceGroup>
 <vlan>XXX</vlan>
 <signature sigId="2151" subSigId="0" sigName="Large ICMP"
version="1.0"/>
 <participants>
 <attack>
 <attacker">
 <addr locality="IN">X.X.X.X</addr>
 </attacker>
 <victim>
 <addr locality="OUT">64.91.255.158</addr>
 </victim>
 </attack>
 </participants>
 </evAlert>

The evAlert element contains:

 evAlert attributes:
 eventId: unique identifier
 severity: risk level (info/low/med/high

 originator element: application instance that generates the alert,
has 3 child elements, i.e.:
 hostId: unique identifier for the host
 appName: name of the application
 appInstanceId: process identifier

 time element: event timestamp, i.e. the number of non-leap seconds
that have elapsed since 00:00:00 January 1, 1970 UTC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 offset: time offset from UTC
 timeZone: time zone

 interfaceGroup: network interface group of the alert’s traffic
 vlan: vlan number for the alert’s traffic
 signature

 sigId: signature identifier
 subSigId: sub classification identifier of the signature
 sigName: signature name
 version: signature version

 participants element: consists of attack element that contains both
the attacker and victim information, i.e. the IP address (addr
element) and its position (locality attribute, whether inside or
outside the network)

According to Cisco Secure Encyclopedia, this signature fires when an ICMP
datagram that has a size of greater than 1024 bytes is detected on the network.

Although I can’t find the same alert on the on-campus IDS (snort 2.2.0), I do find
the same alert with reversing source and destination IPs within a very close
timestamp. This turns out to be a large echo reply packet. Below is the
corresponding Snort alert.

[**] [1:499:4] ICMP Large ICMP Packet [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/09/04-08:56:03.891020 0:D0:0:2C:CF:F5 -> 8:0:7:AF:AA:4B
type:0x8100 len:0x5EE
64.91.255.158 -> X.X.X.X ICMP TTL:50 TOS:0x0 ID:32535 IpLen:20
DgmLen:1500
Type:0 Code:0 ID:39612 Seq:57072 ECHO REPLY
[Xref => http://www.whitehats.com/info/IDS246]

A Snort alert contains:

[**] [1:499:4] ICMP Large ICMP Packet [**]

 [**] [Generator ID: Signature ID: Revision Number] Signature Message [**]

[Classification: Potentially Bad Traffic] [Priority: 2]

 [Classification: Classification Type’s Short Name] [Priority: Priority level]

08/09/04-08:56:03.891020 0:D0:0:2C:CF:F5 -> 8:0:7:AF:AA:4B type:0x8100
len:0x5EE

 Timestamp Source MAC Address -> Destination MAC Address
 type: encapsulation protocol (0x8100 = IEEE 802.1 Q VLAN tagging)
 len: length of the frame (0x5EE = 1280 + 224 + 14 = 1518)

64.91.255.158 -> X.X.X.X ICMP TTL:50 TOS:0x0 ID:32535 IpLen:20 DgmLen:1500

 Source IP Address -> Destination IP Address
 Protocol ID
 TTL: time to live
 TOS: type of service

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 ID: IP
 IpLen: length of IP header
 DgmLen: total length of datagram

Type:0 Code:0 ID:39612 Seq:57072 ECHO REPLY

 Type: ICMP type (because this is an ICMP packet)
 Code: ICMP code
 ID: ICMP identifier
 Sequence: ICMP Sequence Number
 ICMP packet name

[Xref => http://www.whitehats.com/info/IDS246]

 Reference information

As shown in the above sample alert, all traffic in the network is encapsulated
within IEEE 802.1q frame and thus,all packets in this detect contains VLAN tag.
When viewing with tcpdump, the IP header is preceded with Vlan ID (ox0006
for Vlan #6) and frame type (0x0800 for IP frame).

According to Snort documentation22, a Large ICMP signature alerts when a
packet with payload size (dsize) greater than 800 bytes is received from the
external network. Because the packet that triggers alert on the border IDS is
sourced from the internal network, it does not fire this snort rule. Instead, an alert
is generated on the reply packet of the same ICMP packet. Below is the
corresponding snort rule.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Large ICMP
Packet"; dsize:>800; reference:arachnids,246; classtype:bad-unknown;
sid:499; rev:4;)

Probability the source address was spoofed

I believe that the probability the source address, i.e. X.X.X.X was spoofed is zero.

As will be discussed in the next section, these large ICMP (echo request)
packets are normal packets that come from a live web server on campus.
Furthermore, it has an open proxy that is abused by many attackers around the
world. Since these large ICMP packets precede each outbound http connections
that are initiated by the open proxy users, I am sure that this source address is
not spoofed.

Description of attack:

Large ICMP packets are often used in denial of service (DOS) attacks. A popular
example is Ping o’ Death: Many operating system either crash, freeze, or reboot
when receiving oversized IP packets (larger than 65,535 bytes). The existence
of these packets is possible because of the IP fragmentation concept. Packets

22 http://www.snort.org/snort-db/sid.html?sid=499

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

that are larger than the Maximum Transfer Unit (MTU) size (e.g. 1500 bytes for
Ethernet) are transmitted in smaller packets called fragments that are then
reassembled by the receiver. All fragments in a fragment train share the same
fragment ID, use the fragment offset value to determine its relative position within
the train, have a fragment length to indicate the length of data payload it contains,
and specify whether there are more fragments following it. An attacker can craft
the last fragment of a fragment train such that (offset + size) > 65535.23 A
variation of Ping o’ Death includes Jolt.

Additionally, large ICMP packets also frequently serve as covert channels in
DDOS attacks, such as Stacheldraht. This DDOS attack has a 3-tier network
architecture that consists of attacker, masters/handlers/controllers, and
agents. An attacker usually has several handlers that control a large set of
agents. The large ICMP packets are used for communication between the
masters/handlers and their agents either to check each other’s status or for the
masters to commands the agents.24

The CVE numbers related to these large ICMP attacks are CVE-1999-012825
(Ping o’ Death) and CAN-1999-034526 (Jolt ICMP).

However, large ICMP packets are not always evil. There are cases where they
appear as part of normal traffic that comes from systems, such as HP-UX
systems with PMTU discovery configured, Windows 2000 systems for
determining the speed of the link when utilizing domain controllers, and several
load balancing application in determining the most efficient route.22 Furthermore,
Mac OS X also appears to send these large ICMP packets in its normal
behavior.27

As the payload of the large ICMP packets in this detect consists of 0x00 – do not
contain any useful data – with the Don’t Fragment (DF) flag set and no fragment
offset value (thus, not a fragment), I can pretty sure that they are not evil packets.
This is because most of the large ICMP attacks above utilize either IP
fragmentation technique (requires fragments) or non-zero payload (contains
commands or certain strings for covert channel communication).

Below is a sample of the large ICMP packets in this detect (viewed with tcpdump).

08:56:03.814070 802.1Q vlan#6 P0 150.135.28.50 > 64.91.255.158: icmp:
echo request (DF)

0x0000 0006 0800 4500 05dc 4401 4000 ff01 XXXX
0x0010 XXXX XXXX 405b ff9e (0800 7e52 9abc def0)
0x0020 0000 0000 0000 0000 0000 0000 0000 0000

23 http://www.insecure.org/sploits/ping-o-death.html
24 https://www.sans.org/resources/malwarefaq/stacheldraht.php
25 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0128
26 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0345
27 http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00062.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0030 0000 0000 0000 0000 0000 0000 0000 0000
<snip>
0x05c0 0000 0000 0000 0000 0000 0000 0000 0000
0x05d0 0000 0000 0000 0000 0000 0000

7. As mentioned earlier, the IP header is preceded with the VLAN ID,
i.e. vlan#6 (0x0006) and frame type of IP (0x0800)

8. Total packet length (2nd – 3rd offset) = 0x05dc = 1500 bytes
9. The 4th and 5th bytes offset of IP header – IP ID = 0x4401 = 17409
10. The Don’t Fragment flag – found in the 3 high-order bits of the

6th bytes offset of IP header – is set. The fragment offset value is
zero, obtained by combining the rest of the 6th byte offset (exclude
the IP flags) and the 7th byte offset.

Hex => Decimal => IP Flags | Fragment Offset
 6th offset | 7th offset
 xDM |
0x4000 => 64 => 010 | 00000 00000000

IP Flags:
x – reserved, set to 0; D – Don’t Fragment; M – More Fragment

11. The 9th byte offset of the IP header – Protocol = 0x01 (i.e. ICMP)

ICMP Header – (0800 7e52 9abc def0)

1. Type = 0x08 = Echo request
2. Code = 0x00
3. Checksum = 9abc def0

If these are not evil packets, what are they? I then decide to passively fingerprint
the X.X.X.X using nmap.

nmap –sS –O X.X.X.X
Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on X.edu (X.X.X.X):
(The 65529 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
80/tcp open http
407/tcp open timbuktu
1080/tcp open socks
6667/tcp filtered irc
8000/tcp open unknown
Remote operating system guess: HP9000 Model 804 K450 running HP/UX
11.00

Nmap guesses that X.X.X.X is an HP-UX machine. If this is true, then those
large ICMP packets are most likely Path MTU discovery packets. However,
communication with the owner of the machine determines that X.X.X.X is a Mac
OS 9 system. Based on existing postings that large ICMP packets are normal for
Mac OS X, I assume that they also apply to Mac OS 9.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Furthermore, the fact that these Large ICMP packets make to the top 10 of our
daily border IDS report attract my attention to research more on this detect
although these large ICMP packets look normal. I capture all inbound and
outbound traffic of X.X.X.X for approximately 1 minute and obtain a total of 849
packets. There are 28 large ICMP packets among those 849 packets.

Count the number of icmp packets that have total length > 800 bytes
tcpdump -nn -r largeicmp 'vlan and icmp and ip[2:2] > 800' |wc –l
 28

It seems that X.X.X.X sends a ICMP echo request packet before initiating an
http connection. As previously reported27, the http connection is started without
waiting for the echo reply.

08:55:10.739617 802.1Q vlan#6 P0 X.X.X.X > 66.28.56.192: icmp: echo request (DF)
08:55:10.739618 802.1Q vlan#6 P0 X.X.X.X.60286 > 66.28.56.192.80: S
486205932:486205932(0) win 32768 <mss 1460,wscale 0,nop>
08:55:10.815193 802.1Q vlan#6 P0 66.28.56.192.80 > X.X.X.X.60286: S
2966128602:2966128602(0) ack 486205933 win 1460 <mss 1460,nop,wscale 0> (DF)
08:55:10.828310 802.1Q vlan#6 P0 X.X.X.X.60286 > 66.28.56.192.80: . ack 1 win
32768
08:55:10.834184 802.1Q vlan#6 P0 X.X.X.X.60286 > 66.28.56.192.80: P 1:544(543)
ack 1 win 32768
08:55:10.910386 802.1Q vlan#6 P0 66.28.56.192.80 > X.X.X.X.60286: . ack 544 win
6516 (DF)
08:55:10.914884 802.1Q vlan#6 P0 66.28.56.192.80 > X.X.X.X.60286: F 295:295(0)
ack 544 win 6516 (DF)
08:55:10.914887 802.1Q vlan#6 P0 66.28.56.192.80 > X.X.X.X.60286: P 1:295(294)
ack 544 win 6516 (DF)
08:55:10.968102 802.1Q vlan#6 P0 X.X.X.X.60286 > 66.28.56.192.80: . ack 295 win
32768
08:55:11.427569 802.1Q vlan#6 P0 66.28.56.192.80 > X.X.X.X.60286: F 295:295(0)
ack 544 win 6516 (DF)
08:55:11.429194 802.1Q vlan#6 P0 X.X.X.X.60286 > 66.28.56.192.80: . ack 296 win
32768
08:55:11.431946 802.1Q vlan#6 P0 X.X.X.X.60286 > 66.28.56.192.80: F 544:544(0)
ack 296 win 0
08:55:11.506524 802.1Q vlan#6 P0 66.28.56.192.80 > X.X.X.X.60286: . ack 545 win
6516 (DF)

As reported by the nmap result earlier, X.X.X.X is most probably a web server
(listening on TCP 80). This is confirmed by being able to browse to
http://X.X.X.X, which appears to be an official website of a course and is using
WebSTAR/4.1 as the web server.

$ telnet X.X.X.X 80
Trying X.X.X.X...
Connected to X.X.X.X.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: WebSTAR/4.1 ID/72833
Connection: Close
Date: Tue, 17 Aug 2004 02:57:17 GMT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Content-Type: text/html
Content-Length: 3941
Last-Modified: Wed, 14 Apr 2004 15:59:16 GMT

Unless this web server also acts as a proxy server, it is seems very rare for a
web server to initiate so many outgoing http connections. As TCP 8000 also
appears to be listening (in the above nmap result) and it’s known as WebSTAR’s
default proxy port, I am pretty sure that X.X.X.X is also a proxy server. The proxy
traffic that occurred right before the above ICMP echo request and http
connections is showed as follows.

08:55:09.903502 802.1Q vlan#6 P0 80.185.226.226.2168 > X.X.X.X.8000: S
4223262774:4223262774(0) win 16384 <mss 1414,nop,nop,sackOK> (DF)
08:55:09.906879 802.1Q vlan#6 P0 X.X.X.X.8000 > 80.185.226.226.2168: S
485869740:485869740(0) ack 4223262775 win 32768 <mss 1414>

The next question is whether this is a legitimate web proxy server or an open
web proxy. Based on the variety of addresses (23 addresses from all over the
world) connecting to this proxy server from the 1 minutes packet dump and the
existence of 1054 unique destination addresses of the large ICMP packets from
X.X.X.X on that particular day (based on query result from our border IDS
database), I tend to believe it’s an open proxy.

List all IP addresses that try to / use X.X.X.X’s web proxy
tcpdump -nn -r largeicmp 'vlan and dst port 8000 and dst host X.X.X.X’ | awk
 {'print $5'} | awk -F \. {'print $1 "." $2 "." $3 "." $4'} | sort | uniq -c |
 sort -rn
 18 221.219.71.209 -> China Network Communications Group Corporation
 16 218.11.234.204 -> CNCGROUP Hebei province network -China
 14 218.62.75.62 -> CNCGROUP jilin province network
 6 81.220.247.0 -> Nantes 1 – DHCP - France
 5 83.90.237.150 -> TDC Bredbaand Professional users - Denmark
 5 80.185.226.226
 5 80.116.69.123
 5 68.233.66.182
 5 63.194.24.37
 5 218.22.141.163
 5 203.181.3.250
 4 69.150.134.95
 4 61.149.133.116
 4 211.158.124.12
 3 84.65.34.135
 3 67.68.137.172
 2 68.156.175.13
 2 67.33.171.192
 2 66.139.40.168
 1 68.194.194.40
 1 218.230.41.11
 1 217.224.244.45
 1 172.165.180.58

Query Border IDS database on count of unique destination addresses
mysql> select count(distinct victim_addr) as ct from 09_Attack, 09_EventAlert,
Sigs, 09_Victim where 09_Attack.event_id = 09_EventAlert.event_id AND
09_EventAlert.sensor_id = 09_Attack.sensor_id and 09_EventAlert.SIGID =
Sigs.SIGID and 09_Victim.AttackId = 09_Attack.AttackId and 09_EventAlert.SIGID
= 2151 and inet_ntoa(attacker_addr) = X.X.X.X' ;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

+------+
| ct |
+------+
| 1054 |
+------+
1 row in set (0.11 sec)

Thus, although the large ICMPs in this detect are normal packets, it leads to a
detection of an open proxy. A vulnerability note that is related to this issue is
VU#150227.28

Attack mechanism:

As quoted from Joe Sauver;s presentation titled “The Open Proxy Problem”29, an
open proxy is a computer that accepts connections from anyone, anywhere, and
forwards the traffic from those connections as if it had originated locally from that
host”. Open proxy servers are usually available because of misconfiguration,
inherent protocol/ application deficiencies, or conscious decision of running open
proxy. The reasons that these proxies are widely ‘wanted’ by attacker include
hiding the real source address of an attack, initiating attack from numerous odd
locations, and accessing illegal materials and recreational web sites.

Knowing that X.X.X.X is an open web proxy, the machine owner is contacted to
ensure that he is aware of the problem. Below is the response I receive and
some sensitive and inappropriate wordings are not included.

> >I checked my server where I run the website for XXX course. Turns
> > out the proxy port was open and someone was running tons of junk
> >through it.....looked like lots of XXX and XXX stuff from the
> >address data in the proxy log.
> >
> >Thanks for alerting me. They basically overloaded my primary
> >web site. The hard drive was spinning like a top!

In this particular case, it appears that the proxy server becomes open and prone
to abuses due to misconfiguration/ lack of configuration by the administrator as
installation/ upgrade of the older versions of WebSTAR (3 and 4) include proxy
component that is open by default.

To fix the problem, the machine owner immediately closes the proxy service.
However, a total rebuilt of the machine using the newer operating system (Mac
OS X instead of Mac OS 9) and web server (WebSTAR V instead of WebSTAR 3
or 4) is strongly recommended considering the limited number of information we
have regarding what have been done to the open proxy server by anyone that
knows about its existence. Any trojan/backdoor might have been installed on it.

28 http://www.kb.cert.org/vuls/id/150227
29 http://www.uoregon.edu/~joe/proxies/open-proxy-problem.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It seems however, that the machine has been used to download materials from
some recreational web sites.

Correlations:

Mihai (Mike) Cojocea describes detect on Large ICMP alerts on Mac OS and
concludes that they are normal behavior of Mac OS based on the posting below:
http://archives.neohapsis.com/archives/snort/2002-11/0161.html

The actual posting of his detect is available from:
http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00062.html

Although this detect does not involve Large ICMP attacks, below are links to two
popular attacks described briefly in this detect:
Ping Of Death, http://www.insecure.org/sploits/ping-o-death.html
Stacheldraht, https://www.sans.org/resources/malwarefaq/stacheldraht.php

A quite detailed discussion on general open proxy problem is written by Joe
Souver and available from:
http://www.uoregon.edu/~joe/proxies/open-proxy-problem.pdf

A good source specific to open proxy problem in Mac OS is reported by Chuck
Goolsbee in his article titled “Classic Mac OS Servers Exploited by Spammers
” available from:
http://www.mail-archive.com/tidbits-talk@tidbits.com/msg00071.html

Evidence of active targeting:

In case of the large ICMP packets, there is no evidence of active targeting
considering a total of 1054 different destination addresses as showed earlier in
this detect.

As X.X.X.X is an open proxy resulted from system misconfiguration and there are
connections from 23 different IP address around the world to it within 1 minutes
as discussed earlier, I believe that there is an evidence of active targeting on
X.X.X.X’s open proxy service.

Severity:
The focus of this severity section is on X.X.X.X’s open proxy service.

severity = (criticality + lethality)-(system countermeasures + network
countermeasures)
 = (4+5) – (1+3) = 9 – 4 = 5

Criticality: 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In this detect, X.X.X.X is an official web server of a course. With the limited
information on data that are actually stored on the system, I assign a criticality
level of 4 to this system.

Lethality: 5

The system has been successfully used as an open proxy for accessing
recreational web sites and probably downloading illegal materials. As there are
other damages that can be done through open proxy service such as utilizing to
initiate attacks to other machines, the lethality of the open proxy service
existence on this system is assigned to 5.

System countermeasures: 1

Without full information on the system security of this machine, I assume that it is
quite low especially when the web server is left on its default configuration. In
addition, the system is using an older OS version (Mac OS 9) and web server
(WebSTAR 4). I therefore assign a value of 1 for system countermeasures.

Network countermeasures: 3

In this .edu network, the existing network countermeasures include border
firewall, border and on-campus intrusion detection system, and a relatively loose
ingress and egress filtering at the border (permit all and deny specific ports such
as the NetBIOS and worm-related ports) and distribution routers as mentioned in
the first section of this detect. Thus, I assign a value of 3 for network
countermeasures.

Defensive recommendation:

There are several steps that can be taken to detect open proxy from the network
level:
a. Apply more rigid ingress filtering by gradually moving from ‘permit all, deny

specifics’ to ‘permit specifics, deny all’.
b. Implement distribution level firewalls or reflexive access lists to prevent

uninvited inbound traffic from outside the local area network. This way, the
exposure of a certain department’s network is greatly reduced.

c. Regular audit for possibility of open proxy services within the local area
network by the departmental network managers as they know better
regarding their local network. This can be performed by simple NMAP scan
for popular proxy ports such as TCP 3128, 8080, 6588, 80, 81, 4480 for web
open proxy. More specific tools are also available, for example: proxy hunter
and proxy sniper.29

d. Close monitoring of network traffic utilization and abnormal network activities
may help determine the existence of open proxy, as described in this
particular detect.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As for the system level prevention and detection:
e. Use the latest operating system and software version and apply all patches /

updates especially those are have security implications. As usual, test them
before using them in the production environment and always perform backup
before performing these upgrades/updates when they relate to critical
systems/applications.

f. When proxy server is required, implement access controls to restrict the proxy
service to those that need it.

g. Review the default web server and proxy configuration to ensure only
necessary services are enabled with controlled exposures.

h. Monitor the web and proxy log closely for abnormal or suspicious activities.

Multiple choice test question:

Which of the following OS is known as causing false positive on Large ICMP
alerts?
A) HP-UX
B) Windows 2000
C) Mac OS
D) All true
Answer: D

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect 3: My Doom M/O

Source of Trace:

This trace is obtained from the on-campus IDS of an .edu network. The
network diagram for this network is included in Detect 2.

As in most .edu network, the ingress and egress filtering at the border router and
firewall are fairly loose. In this case, only certain popular backdoor and worm
activity ports are blocked, including the NetBIOS ports. In addition, the border
IDS is configured to issue temporal blocks requests to the border firewall when
certain signature alerts are triggered.

Detect was generated by:

This detect is generated by the on-campus IDS (a commercial version of Snort)
as it showed up as one of the top 5 signatures in the hourly report. This is
particularly interesting because we have not had many of these infections in the
last month, or least the one that attracted attention. While Figure 4 provides a
summary of source and destination addresses contributing to the MyDoom M/O
alerts within the last hour, Figure 5 shows a sample event view.

Figure 4 On-campus IDS: Alerts Summary - MyDoom M/O events

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 5 On-campus IDS: Event View - MyDoom M/O event

Since there are 887 alerts generated within the last hour, it means that this
particular host performs approximately 15 “mailto domain search on
google.com” attempts per minute, which does not seem to be a normal behavior.

The query result from the border IDS database – for all alarms sourced from this
particular on-campus address in the last hour – appears to confirm that the
anomalous activities from X.X.X.X.

Attacker
Address

SIGID

Signature
Name

Count

 X.X.X.X 3135 MyDoom Virus Activity 55
 X.X.X.X 3110 SMTP Suspicious Attachment 14

Table 1 Border IDS – Alerts Summary – Attacker: XXX.XXX.31.249

This signature in this detect is obtained from Lurhq’s Analysis on Zindos worm,
a backdoor left by MyDoom.M/O infections.30

alert tcp any any -> any 80 (content:"GET /search?hl=en&ie=UTF-
8&oe=UTF-8&q=mailto+"; nocase:; depth:45; content:"Host|3a|
www.google.com"; nocase:; reference:url,www.lurhq.com/zindos.html;
msg:"Mailto domain search \(possible MyDoom.M/O\)"; classtype:trojan-
activity; sid:1000004; rev:1;)

This signature alerts when a packet contains:

“GET /search?hl=en&ie=UTF-8&oe=UTF-8&q=mailto+” within the 45 bytes of
the payload and followed by "Host|3a| www.google.com"

30 www.lurhq.com/zindos.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In addition, the content checking is case-insensitive.

Probability the source address was spoofed

I believe that the probability the source address, i.e. X.X.X.X was spoofed is zero.

As will be discussed in the next section, this is an email worm that collects
domain names from user files and uses them to querying various search engines
for valid email addresses within these domains. Therefore, this type of attack
requires established connections with the search engines to gather the email
addresses information. Therefore, I am convinced that the source address is not
spoofed.

In addition the destination addresses belong to Google Inc. as showed in the
Geektools output below:

NetRange: 66.102.0.0 - 66.102.15.255
CIDR: 66.102.0.0/20
OrgName: Google Inc.
OrgID: GOGL
Address: 2400 E. Bayshore Parkway
City: Mountain View
StateProv: CA
PostalCode: 94043
Country: US

Description of attack and Attack Mechanism:

MyDoom.M/O is a variant of the mass-mailinglist MyDoom that introduces a new
means of collecting email addresses via various well-known search engines:
Google, Lycos, AltaVista and Yahoo. Once infected, MyDoom.M/O opens a
backdoor known as Zindos that listens on TCP port 1034 for remote connections.
It then gathers email addresses from user files that have certain extensions and
also use the collected domain names to harvest additional email addresses from
search.lycos.com, search.yahoo.com, www.altavista.com,
www.google.com.

Even though this signature is only triggered by those domain searches targeted
to google.com, I notice that X.X.X.X also tries to use search.yahoo.com in some
of the packets I captured around that timeframe. However, none of these
attempts to yahoo seems to be successful as they are all redirected to the Yahoo!
Gone page as showed in the 2nd packet dump below.

18:10:10.238831 802.1Q vlan#6 P0 X.X.X.X.2567 > 216.109.117.133.80: P
1:333(332) ack 1 win 17520 (DF)
0x0000 0006 0800 4500 0174 0646 4000 8006 XXXX E..t.F@.....
0x0010 XXXX XXXX d86d 7585 0a07 0050 5471 5df2 xx....PTq].
0x0020 49a5 8fcb 5018 4470 779e 0000 4745 5420 I...P.Dpw...GET.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0030 2f73 6561 7263 683f 703d 6d61 696c 746f /search?p=mailto
0x0040 2b6e 6472 6972 6573 6f75 7263 652e 6f72 +ndriresource.or
0x0050 6726 6569 3d55 5446 2d38 2666 723d 6670 g&ei=UTF-8&fr=fp
<snip>
0x0100 0d0a 486f 7374 3a20 7365 6172 6368 2e79 ..Host:.search.y
0x0110 6168 6f6f 2e63 6f6d 0d0a 436f 6e6e 6563 ahoo.com..Connec

18:10:10.351009 802.1Q vlan#6 P0 216.109.117.133.80 > X.X.X.X.2567: P
1:1152(1151) ack 333 win 65535 (DF)
0x0000 0006 0800 4500 04a7 10d7 4000 3306 XXXX E.....@.3...
0x0010 XXXX XXXX 9687 1ff9 0050 0a07 49a5 8fcb .xx......P..I...
0x0020 5471 5f3e 5018 ffff 512f 0000 4854 5450 Tq_>P...Q/..HTTP
0x0030 2f31 2e31 2034 3130 2047 6f6e 650d 0a44 /1.1.410.Gone..D
<snip>
0x00c0 0d0a 3364 3920 2020 200d 0a3c 6874 6d6c ..3d9......<html
0x00d0 3e3c 6865 6164 3e3c 7469 746c 653e 5961 ><head><title>Ya
0x00e0 686f 6f21 202d 0a34 3130 2047 6f6e 653c hoo!.-.410.Gone<
0x00f0 2f74 6974 6c65 3e3c 2f68 6561 643e 3c62 /title></head><b

While I do not have information on whether any attempts to other search engines
are successful, I can be pretty sure based on the alerts fired on our border IDS
regarding MyDoom Activity and SMTP suspicious attachment that is a real
infected machine. In addition, the system appears to be down when I try to scan
for open port TCP 1034.

Correlations:

A detail analysis of MyDoom M/O and its backdoor can be found at:
http://www.lurhq.com/zindos.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.mydoom.m@mm.
html

Evidence of active targeting:

There is an evidence of active targeting since the “mailto domain search”
requests are only sent to: search.lycos.com, search.yahoo.com,
www.altavista.com, www.google.com. There are also several online postings
regarding the effect of this particular worm on the performance of these search
engines when it first showed up in wild last July.31

Severity:
severity = (criticality + lethality)-(system countermeasures + network
countermeasures)
 = (1+3) – (1+3) = 0

Criticality: 1

31 http://news.com.com/Google%2C+other+engines+hit+by+worm+variant/2100-1023_3-5283750.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In this detect, X.X.X.X is an end-user workstation, therefore the criticality of the
system only concerns a single user. I assign a criticality level of 1 to this system.

Lethality: 3

The system has been successfully used as an infected by MyDoom M/O.
Although infection of other hosts still requires user contact on opening the
malicious email attachment, I assign the lethality level to 3 considering the
relatively low user awareness on risks associated with opening unknown emails.

System countermeasures: 1

Without full information on the system security of this machine, I assume that it is
quite low especially because it does not seem to run the latest anti-virus update
that should be able to detect and disinfect MyDoom M/O. I therefore assign a
value of 1 for system countermeasures.

Network countermeasures: 3

In this .edu network, the existing network countermeasures include border
firewall, border and on-campus intrusion detection system, and a relatively loose
ingress and egress filtering at the border (permit all and deny specific ports such
as the NetBIOS and worm-related ports) and distribution routers as mentioned in
the first section of this detect. Thus, I assign a value of 3 for network
countermeasures.

Defensive recommendation:

Network level defenses:
 Regularly review the IDS logs to identify infected systems

As for the system level prevention and detection:

 Have the anti-virus software installed with remote/live update capabilities
enabled

 User education on the dangerous of opening unknown email attachments

Multiple choice test question:

Which of the following is not the target search engine for MyDoom.M/O?
A) Google
B) Altavista
C) AskJeeves
D) Yahoo

Answer: C

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3 – Analyze This

Executive Summary

As one of the efforts to achieve a more secure campus network, MY.EDU has
put in place Snort Intrusion Detection Systems (IDS) on its network perimeter to
monitor both the incoming and outgoing traffic for suspicious, malicious, and bad
traffic. Due to the nature of university networks that tend to be relatively open
and highly distributed, it is very common to encounter a lot of false alarms from
the IDS sensor. During this analysis, several configuration changes are noted
and recommended. This will hopefully reduce the number of false alarms that
need to be reviewed by the university’s IDS analysts. In addition, a list of hosts
that are possibly infected by the Phatbot/Agobot worm is also provided for further
investigation by the system owner or administrator.

While ‘closing the border’ might sound like a ‘too good to be true’ idea, the
university should consider putting together an action plan toward this objective in
the long term. This should include the creation of security policy and procedure
and end-user awareness programs in addition to building layers of security
defenses. Furthermore, the University should also reconsider its existing policy
regarding P2P traffic due to the increased amount of bandwidth it consumes and
its security and legal risks.

Despite the high number of false alarms and a list of possible worms infected
hosts, the University does appears to maintain adequate protection on its critical
resources. One example is the use of current version of Sendmail on the
campus main mail servers.

Although detail recommendations are provided at the end of each analysis
section, below is a quick list of the recommendations:

Snort Configurations

1. Several Snort custom signatures, especially MY.NET.30.3 activity and
MY.NET.30.4 activity, are too generic in nature and require modifications to
reduce the number of false alarms.

2. It appears that an old Snort fragmentation preprocessor is still used and
triggers false alarms. The old defrag preprocessor should be replaced with
frag2.

3. Exclude the campus DNS servers from triggering port-scan alerts.

Perimeter Protections

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Consider modifying the egress and ingress filtering at the perimeter
router/firewall to:
1. Block any incoming and outgoing traffic destined to Windows NetBIOS ports:

UDP and TCP 135-139,445
2. Drop any incoming and outgoing traffic related to the ‘local link’ IP ranges

(169.254.0.0/16)

Others

1. Regular audit of the campus network for vulnerable systems.
2. Implement a network access control mechanism to ensure that only patched

and clean systems can be connected to the network. This especially applies
to Microsoft Windows systems.

3. Consider using packet shaper devices to manage the amount of P2P traffic.
4. Improve end-user awareness on computer security matters through campus

security awareness campaign.

Suspicious internal machines

Below is a list of internal machines that require immediate attentions. If possible,
disconnect them from the network and contact the system owners for worm
disinfections.

Possible Agobot Infection
MY.NET.153.174 MY.NET.97.57 MY.NET.97.78 MY.NET.98.53
MY.NET.153.195 MY.NET.97.124 MY.NET.97.49 MY.NET.81.59
 MY.NET.111.51 MY.NET.97.103 MY.NET.97.235 MY.NET.84.235
 MY.NET.97.169 MY.NET.97.43 MY.NET.97.92 MY.NET.153.90
 MY.NET.97.25 MY.NET.97.30 MY.NET.190.92 MY.NET.70.96
 MY.NET.98.65 MY.NET.97.159 MY.NET.97.129 MY.NET.71.235
 MY.NET.97.12 MY.NET.97.126 MY.NET.97.108 MY.NET.153.99

Possible Opaserv Infection
MY.NET.150.44 MY.NET.150.198

Table 2 below lists all logs analyzed in this report.

Alert logs Scan Logs OOS Logs
alert.040327 scans.040327 oos_report_040327
alert.040328 scans.040328 oos_report_040328
alert.040329 scans.040329 oos_report_040329
alert.040330 scans.040330 oos_report_040330
alert.040331 scans.040331 oos_report_040331

Count
Alert Scan OOS

Raw records 922977 22581005 3996
Analyzed 53482 (mysql db)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

records 777150 (txt file) 22580794 3994

Table 2. Log Files Summary

Count of Alert by Signature
 Alert Counts

Alert name Total
Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound

I
to
I

E
to
E

MY.NET.30.3 activity 28203 198 1 28203

MY.NET.30.4 activity 21295 284 1 21295
High port 65535 tcp - possible Red
Worm - traffic 13421 69 34 34 103 7025 6396

EXPLOIT x86 NOOP 9343 796 618 9343
Incomplete Packet Fragments
Discarded 5357 83 88 5357

SMB Name Wildcard 5164 156 613 5164

Null scan! 1304 199 109 1304
High port 65535 udp - possible Red
Worm - traffic 1239 44 21 8 19 676 563
TFTP - Internal UDP connection to
external tftp server 1157 5 6 1 3 1153 4

Traffic from port 53 to port 123 1154 2 2 1154

NMAP TCP ping! 931 173 81 931
[UMBC NIDS IRC Alert] IRC user
/kill detected - possible trojan. 616 51 62 616
[UMBC NIDS IRC Alert] Possible
sdbot floodnet detected attempting
to IRC 479 27 2 479

Possible trojan server activity 352 31 17 14 34 159 193

SUNRPC highport access! 339 25 21 339
TFTP - Internal TCP connection to
external tftp server 232 2 2 1 1 174 58
Tiny Fragments - Possible Hostile
Activity 205 12 11 1 1 159 46
TFTP - External TCP connection to
internal tftp server 171 4 49 30 4 95 76

TCP SRC and DST outside network 157 39 80 157

FTP passwd attempt 133 106 1 133

[UMBC NIDS] External MiMail alert 133 17 1 133

TCP SMTP Source Port traffic 128 4 1 128

External RPC call 108 2 97 108

SMB C access 93 18 5 93
IDS552/web-iis_IIS ISAPI Overflow
ida INTERNAL nosize 89 2 52 89

ICMP SRC and DST outside network 67 22 67 67

IRC evil - running XDCC 57 6 6 57
[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC 52 2 2 52
NIMDA - Attempt to execute cmd from
campus host 50 5 39 50

FTP DoS ftpd globbing 41 8 1 41

EXPLOIT x86 setuid 0 37 29 23 37

Attempted Sun RPC high port access 35 11 15 35

RFB - Possible WinVNC - 010708-1 35 3 6 12 5 15 20

DDOS shaft client to handler 25 4 2 25

EXPLOIT x86 setgid 0 24 18 17 24

EXPLOIT NTPDX buffer overflow 20 12 9 20

EXPLOIT x86 stealth noop 13 10 7 13

connect to 515 from outside 11 1 2 11

SYN-FIN scan! 11 4 5 11

[UMBC NIDS IRC Alert] Possible 11 1 3 11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

drone command detected.

Probable NMAP fingerprint attempt 10 7 7 10
[UMBC NIDS IRC Alert] Possible
Incoming XDCC Send Request
Detected. 10 4 4 10
[UMBC NIDS IRC Alert] User joining
XDCC channel detected. Possible
XDCC bot 9 4 6 9

DDOS mstream client to handler 5 3 3 5
External FTP to HelpDesk
MY.NET.53.29 5 3 1 5
External FTP to HelpDesk
MY.NET.70.50 3 3 1 3

EXPLOIT x86 NOPS 2 2 2 2
External FTP to HelpDesk
MY.NET.70.49 2 2 1 2
NIMDA - Attempt to execute root
from campus host 2 2 2 2

[UMBC NIDS] Internal MiMail alert 2 2 2 2

NETBIOS NT NULL session 1 1 1 1
[UMBC NIDS IRC Alert] K:lined user
detected\ 1 1 1 1
[UMBC NIDS IRC Alert] User joining
Warez channel detected. Possible
XDCC bot 1 1 1 1

Totals: 92345 2318 1345 303 1036 78869 13251 225

Table 3. Alert Logs: Alerts Summary

TOP 10 Attack Participants

External Attacker Internal Attackers Internal Victims
IP Address Count IP Address Count IP Address Count
68.55.174.94 7590 MY.NET.97.82 5022 MY.NET.30.3 28204
67.31.152.200 6585 MY.NET.11.7 1659 MY.NET.30.4 21295
80.181.112.186 5459 MY.NET.53.111 847 MY.NET.97.82 5460
68.55.178.168 3127 MY.NET.150.44 621 MY.NET.153.176 5179
140.142.8.73 3074 MY.NET.150.198 515 MY.NET.1.3 2858
69.136.228.63 2988 MY.NET.110.72 488 MY.NET.53.111 1239
68.57.90.146 2593 MY.NET.75.13 419 MY.NET.17.4 826
65.107.99.68 2301 MY.NET.190.92 344 MY.NET.12.6 526
69.240.222.54 2201 MY.NET.5.34 159 MY.NET.110.72 451
138.88.183.54 2151 MY.NET.29.30 150 MY.NET.17.3 343

Table 4. Alert Logs: Top 10 Attack Participants

Top Signatures (Alert Counts > 5000)

1. MY.NET.30.3 activity

Total

External
Src IP
(Unique)

Internal
Dst IP
(Unique)

Internal
Src IP
(Unique)

External
Dst IP
(Unique)

In-
bound

Out-
bound

I
to
I

E
to
E

28203 198 1 28203

Unique Source Ports Unique Destination Ports

1719 1344
Top Ports Count Top ports Count

1078 5486 524 17513

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1033 2109 3019 6730
1077 1244 80 288
1034 848 6129 20
60017 809 4899 15
60019 778 21 11
1035 773 4000 11

Table 5. Alert Logs: Top Ports Summary – MY.NET.30.3 activity

This signature seems to alert on any traffic destined to MY.NET.30.3.
Most of the traffic is destined to port 524 and 3019 which are reserved and non-
adjustable ports used by the NetWare Core Protocol (NCP) and Novell
Distributed Print Services Resource Management Server (NDPS RMS)
applications respectively on a Novell NetWare 6 server.32 Both Michael Meacle33
and Peter Storm34 also concluded in their GCIA practicals that MY.NET.30.3 is a
NetWare system. As MY.NET.30.3 itself seems to be alive, accessing it from the
Internet returns the default Netware 6’s Enterprise Server installation page. The
Novell iPrint (an extension of NDPS that allows Internet printing) service
appears to be installed and available via Novell iManager authentication.

Due to the nature of this signature, it will generate a lot of alerts for events that
might not be harmful. Among the list of top attackers, mostly Comcast users, for
this particular signature listed in Table 6 , 67.31.152.200 also shows up in the
Scans log as the source address of 97% SYN scans (Table 7) that are directed
to MY.NET.30.3 within those 5 days and specifically on March 27, 2004 between
11:58:21 and 12:00:52. These scans are destined to 1327 unique TCP ports
that range from 2/TCP to 65000/TCP.

Top Attackers Count
 Source IP Hostname
 68.55.174.94 pcp05133469pcs.elkrdg01.md.comcast.net 7559
67.31.152.200 dialup-67.31.152.200.Dial1.Denver1.Level3.net 3560
68.55.178.168 pcp233959pcs.elictc01.md.comcast.net 2998
 68.57.90.146 pcp912734pcs.brndml01.va.comcast.net 2446
69.240.222.54 pcp0010273370pcs.bbridg01.fl.comcast.net 1997
131.92.177.18 aeclt-cf00a4.apgea.army.mil 1966
64.134.68.238 dhcp64-134-68-238.wmc.chi.wayport.net 1383
 216.56.88.95 wisc-ip95.mpw.net 1121

Table 6. Alert Logs: Top Attackers – MY.NET.30.3 activity

Attacker IP Count
67.31.152.200 2092
Other 53 Attacker IPs 65
Total 2157
Scan types SYN

32 http://support.novell.com/cgi-bin/search/searchtid.cgi?/10065719.htm
33 http://www.giac.org/practical/GCIA/Michael_Meacle_GCIA.pdf
34 http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table 7. Scan Logs: Port & Scan Type Summary – Victim: MY.NET.30.3

Although there are also four instances of completed port scan alerts
(spp_portscan) from 67.31.152.200 as part of the Alerts log, their timestamps
do not correspond to the ones mentioned earlier. Since 67.31.152.200 is also
the 2nd top off-campus attacker, there are definitely other alerts generated by this
particular host as discussed later in this paper.

Conclusions:
MY.NET.30.3 activity is a very generic signature and tends to generate a lot of
false positives. This will require an IDS analyst to spend additional time
identifying the false positives.

Recommendations:
1. Tune the signature:

a. Review the objective of this signature to determine more specific rule
parameters.

b. Modify the event thresholding and event suppression parameters to
reduce the number of alerts generated.

2. The fact that a signature is created to observe all traffic to MY.NET.30.3
indicates that it is a critical system that requires close monitoring. Therefore,
a periodic system-level security audit on the system is recommended to
ensure adequate protection (e.g. up-to-date security patches, proper system
logging and monitoring, identification and removal of unnecessary services,
password policy, etc.) is in place.

3. In addition to HTTPS (HTTP with Secure Socket Layer) protocol in the Novell
iManager authentication page, a valid username/password combination is
required. Therefore, a strong password policy is critical to survive brute force
attempts.

4. Unless it needs to be accessible by everyone on the Internet, use router
access-list or firewall rules to restrict access to those that need it.

2. MY.NET.30.4 activity

Total

External
Src IP
(Unique)

Internal
Dst IP
(Unique)

Internal
Src IP
(Unique)

External
Dst IP
(Unique)

In-
bound

Out-
bound

I
to
I

E
to
E

21295 284 1 21295

Unique Source Ports Unique Destination Ports

3718 1323
Top Ports Count Top ports Count

42100 403 51443 13582
 1339 365 524 3619
 1318 352 80 1039
 3221 332 6129 23

 3201 314 4899 17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 1062 257 21 12
 2834 196 4000 12
 3223 122 20168 10
 3979 111 17300 7
 3416 71 1080 7

Table 8. Alert Logs: Top Ports Summary – MY.NET.30.4 activity

Similar to the MY.NET.30.3 activity signature discussed earlier, only this
signature alerts on all traffic destined to MY.NET.30.4. The three top destination
ports for this signature are 51443, 524, and 80, which are consistent with the
previous reports by Michael Meacle33 and Pete Storm34.
Again, visiting the actual MY.NET.30.4 system via browser reveals that it is the
campus’ Novell NetStorage introduction page. It appears that NetStorage is
used to provide web access to the NetWare network shares through port 51443,
which is the default Apache Web Server’s HTTPS port when NetWare Enterprise
Server is installed and NetStorage requires this same Apache port35.

Attacker IP Count
IP Address Hostname

69.136.228.63 pcp08652049pcs.towson01.md.comcast.net 2988
67.31.152.200 dialup-

67.31.152.200.Dial1.Denver1.Level3.net
 2967

138.88.183.54 pool-138-88-183-54.res.east.verizon.net 2151
68.55.191.197 pcp05510211pcs.owngsm01.md.comcast.net 1876
68.55.86.79 pcp04598795pcs.elictc01.md.comcast.net 1459
68.50.102.64 bgp01546912bgs.longhl01.md.comcast.net 1458
134.192.65.152 hshsl152.umaryland.edu 1333

Table 9 . Alert Logs: Top Attackers – MY.NET.30.4 activity

Most of the top attacker addresses above are also local ISP (e.g. Comcast) users,
which are consistent with most attacker addresses for the MY.NET.30.3 activity
alerts and with Peter Storm’s finding for the same signature in his practical34.
From these addresses, only 67.31.152.200 – the 2nd top off-campus attacker –
can be found in the Scans log. This is the same attacker that triggers a lot of
MY.NET.30.4 activity alerts discussed earlier and appears to be responsible for
96.6% of the SYN scanning traffic destined to MY.NET.30.4 as showed in Table
10. All these scanning activities occur on March 27, 2004 between 12:00:51 and
12:03:22, this means that these activities follow the scans directed to
MY.NET.30.4 almost immediately.

Attacker IP Count
67.31.152.200 1892
Other 53 Attacker IPs 67
Total 1959
Scan types SYN

Table 10 . Scan Logs: Port and Scan Type Summary – Victim: MY.NET.30.4

35 http://www.leu.bw.schule.de/netze/novell/ml2/patches/nw6sp3.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusions:
MY.NET.30.4 activity is another very generic signature that requires tuning.

Recommendations:
In addition to recommendations stated earlier for the MY.NET.30.3 activity
signature alerts, both the MY.NET.30.3 activity and the MY.NET.30.4 activity
signatures might be combined to create a more specific signature.

3. High port 65535 tcp - possible Red Worm - traffic

Total

External
Src IP
(Unique)

Internal
Dst IP
(Unique)

Internal
Src IP
(Unique)

External
Dst IP
(Unique)

In-
bound

Out-
bound

I
to
I

E
to
E

13421 69 34 34 103 7025 6396

Unique Source Ports Unique Destination Ports

17 15
Top Ports Count Top ports Count
65535 7195 65535 6226
1122 5022 1122 5459
3658 847 3658 1228
25 110 25 268
80 84 80 92
110 66 110 50
2757 35 113 36
443 22 443 23
113 16 2757 14
5677 9 4662 10
4662 8 5677 10
143 2 143 2
38057 1 38057 1
10182 1 6346 1
10183 1 94 1
6346 1
94 1

Table 11 . Alert Logs: Ports Summary – High port 65535 tcp - possible Red Worm - traffic

This is another custom signature that is configured to trigger on incoming traffic
that destines to or is sourced from TCP port 65535. This is confirmed by adding
the number of alerts that have TCP 65535 as either the source or destination port
that returns this signature’s total alerts: 13421. As suggested by its alert
message, this signature is intended to detect Red Worm/ Adore Worm infection.
Infected machines open a backdoor on TCP 65535 after receiving a ping packet
with a correct size36 and scan randomly generated Class B subnets for
vulnerable systems on port 53/bind, 111/statdx, and 515/lpmg. I therefore
compare the IP addresses of the Alerts and Scans logs to obtain Red Worm

36 http://www.f-secure.com/v-descs/adore.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

infected hosts that might also be scanning on either of these ports.
210.139.118.246 appears to be the only matching address and it exists in the
Scans log as sending one UDP packet with destination port 53 to MY.NET.1.3
(confirmed as MY.NET’s name server based on Geektools search output). Thus,
I can not any active scanning evidence on any of those 3 ports coming from
addresses related to these signature alerts.

Furthermore, this worm also tries to mail the infected system’s IP address to
adore9000@21cn.com & adore9000@sina.com or adore9001@21cn.com
& adore9001@sina.com.37

Because TCP 65535 is within the legitimate ephemeral ports range (1024-65535)
that can be randomly picked by client programs to connect to the servers, this
signature can trigger false alarms quite easily, especially those involving well-
known/ server ports (1-1023) such as port 25 (smtp), 80 (http), 110 (pop3),
143(imap), and 443(https)38 listed in Table 11. In addition, alerts related the p2p
ports (4662/edonkey & 6346/gnutella) are most likely also false positives.

Source IP Source
Port

Destination IP Destination
Port

Count

80.181.112.186 65535 MY.NET.97.82 1122 5459
 MY.NET.97.82 1122 80.181.112.186 65535 5022
66.118.165.120 65535 MY.NET.53.111 3658 1228
 MY.NET.53.111 3658 66.118.165.120 65535 847
 MY.NET.60.17 110 68.55.62.110 65535 66
<snip>
202.33.252.164 65535 MY.NET.97.82 113 1

Table 12 . Alert Logs: Top Participants Summary – High port 65535 tcp - possible Red
Worm - traffic

As TCP 113 (identd trojan/auth) has been used a lot recently by various worms
including variants of Korgo39 and Rbot40, any on-campus Windows machines that
listen on this port should be investigated, i.e. MY.NET.97.82 in this case because
it appears in one of this signature’s alerts as a target host with target port TCP
113. Although there are 94 alerts in the Scans log sourced from this IP, none of
the destination ports seems to be related to the latest *Bot worm activities.
Therefore, this is most probably another false alarm.

Although most of the other ports are registered to various services and there are
no known vulnerabilities related to these ports from dshield.org port reports, it’s
hard to determine whether they do provide legitimate services without better
host-level information. This is particularly because they are not as common
services as the ones listed above

37 http://www.giac.org/practical/gsec/Anthony_Dell_GSEC.pdf
38 http://www.iana.org/assignments/port-numbers
39 http://securityresponse.symantec.com/avcenter/venc/data/w32.korgo.f.html
40 http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=39437

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP 1122 (availant-mgr Availant Manager)
 TCP 3658 (ps-ams PlayStation AMS (Secure))

Should this is a legitimate service, the destination address of 66.118.165.120
is actually registered to Sago Networks that provides “fully managed
preconfigured game servers”.41

 TCP 2757 (cnrp Common Name Resolution Protocol)
 TCP 94 (objcall Tivoli Object Dispatcher)
 TCP 5677,38057, 10182, 10183

I notice two source addresses (MY.NET.12.6 and MY.NET.12.4) of this signature
also appear as source addresses in the OOS Logs. Although the timestamps do
not seem to match, they share the same source ports, i.e. TCP 25 and 143
respectively. Connecting to these machines on the corresponding port confirms
that that they have either Sendmail (MY.NET.12.6) or imap services
(MY.NET.12.4) installed.

Conclusion:
This signature does not function effectively in detecting the Red Worm activities.

Recommendations:
 Further research on alerts that are related to other epheremal ports,

especially on the 2 top ports: TCP 1122 and 3658.
 Always keep up with the latest security updates/patches.
 Scan campus to identify vulnerable version of BIND, rpc.statd, LPRng, and

wu-ftp
 Encourage owners of mail servers, block and log attempts from machines that

send emails to adore9000@21cn.com, adore9000@sina.com,
adore9001@21cn.com, and adore 9001@sina.com.37

 Log and block access to the go.163.com domain37
 Consult http://www.sans.org/y2k/adore.htm on Adore/Red Worm detection

and removal how-to
 Use more specific signature (http://whitehats.com/info/IDS457)

alert TCP $EXTERNAL any -> $INTERNAL 515 (msg: "IDS457/lpr_LPRng-
redhat7-overflow-security.is"; flags: A+; content: "|31DB 31C9 31C0
B046 CD80 89E5 31D2 B266 89D0 31C9 89CB|"; nocase; classtype:
system-attempt; reference: arachnids,457;)AF19 FA27 2F94 998D FDB5
DE3D F8B5 06E4 A169 4E46

4. EXPLOIT x86 NOOP

Total

External
Src IP
(Unique)

Internal
Dst IP
(Unique)

Internal
Src IP
(Unique)

External
Dst IP
(Unique)

In-
bound

Out-
bound

I
to
I

E
to
E

9343 796 618 9343

Unique Source Ports Unique Destination Ports

41 http://www.sagonet.com/servers/gaming.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1349 69
Top Ports Count Top ports Count

 2247 133 80 8216
 1777 127 1025 550
 4674 125 135 278
 4954 124 119 108
 4669 122 8881 60
 4671 122 445 14
 4522 120 6129 13
 4672 119 2032 12
 3767 117 3338 10
 4756 116 3315 8

Table 13. Alert Logs: Ports Summary – Exploit x86 NOOP

While there is no exact matching Snort signature for EXPLOIT x86 NOOP, it
appears to be closely related to Snort’s SID 64842 (SHELLCODE x86 NOOP)
that detects a series of Intel’s x86 NOP instructions. Buffer overflow attacks
utilize these instructions – that perform null instructions – to pad the front of the
overflow buffer and thus, increase the chances of successful attacks. An Intel’s
NOP instruction is translated to 0x90.43 This signature is known as generating
many false alarms because the x86 NOP is often found in large file such as
image transfer traffic.

Based on the top destination ports summarized in Table 13, port 80 (http) is the
target port for 88% of the total alerts. Due to the increased number of file
transfer through web browser, I tend to believe that these are false positives.

As for the 2nd top targeted port, 1025, Table 14 and Table 15 list its registered
services and known vulnerabilities. Since this port is related to several known
Trojans and a LSASS buffer overflow vulnerability, further analysis on the on-
campus victims by correlating to the Scans log is necessary to determine
possible compromised hosts. This LSSAS vulnerability is addressed by
Microsoft with Security Bulletin MS04-011 and has been wildly exploited through
numerous worms including Phatbot/Agobot, Korgo, and Sasser. The
machines infected by variants of these worms will actively scan the network for
other vulnerable machines on various TCP ports including 80, 135, 139, 445,
1025, 1434, 2745, 3127, 3410, 5000, 6129.44 This topic will be discussed more
in the Scans Log section.

Protocol Service Name
tcp blackjack network blackjack
tcp FraggleRock [trojan] Fraggle Rock
tcp listen listener RFS remote_file_sharing
tcp md5Backdoor [trojan] md5 Backdoor
tcp NetSpy [trojan] NetSpy
tcp RemoteStorm [trojan] Remote Storm

42 http://www.snort.org/snort-db/sid.html?sid=648
43 http://www.insecure.org/stf/smashstack.txt
44 http://isc.sans.org/diary.php?date=2004-04-30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

udp blackjack network blackjack
udp RemoteStorm [trojan] Remote Storm

Table 14 Dshield Port Report: Port 1025 Services45

CVE
ID

Pro-
toco
l

Src
Port

Target
Port

Description

CAN-
2003
-
0533

tcp any 1025 Buffer overflow in certain Active
Directory service functions in LSASRV.DLL
of the Local Security Authority Subsystem
Service (LSASS) in Microsoft Windows NT
4.0 SP6a, 2000 SP2 through SP4, XP SP1,
Server 2003, NetMeeting, Windows 98, and
Windows ME, allows remote attackers to
execute arbitrary code by causing long
debug entries to be generated for the
DCPROMO.LOG log file, as exploited by the
Sasser worm.

 Table 15 Dshield Port Report: Port 1025 Vulnerabilities45

Table 16 and Table 17 list the registered services and known vulnerabilities for
the 3rd top targeted port: 135. Further correlation with information in the Scans
Log is again necessary to determine possible compromised hosts and will be
discussed in the Scans Log section.

Protocol Service Name
tcp epmap DCE endpoint

resolution
tcp loc-srv NCS local

location broker
udp epmap DCE endpoint

resolution
udp loc-srv Location Service

Table 16 Dshield Port Report: Port 135 Services46

CVE
ID

Pro-
tocol

Src
Port

Target
port

Description

CAN-
2003-
0715

tcp any 135 Heap-based buffer overflow in the
Distributed Component Object Model (DCOM)
interface in the RPCSS Service allows
remote attackers to execute arbitrary
code via a malformed DCERPC DCOM object
activation request packet with modified
length fields, a different vulnerability
than CAN-2003-0352 (Blaster/Nachi) and
CAN-2003-0528.

45 http://www.dshield.org/port_report.php?port=1025

46 http://www.dshield.org/port_report.php?port=135

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CAN-
2003-
0605

tcp any 135 The RPC DCOM interface in Windows 2000
SP3 and SP4 allows remote attackers to
cause a denial of service (crash), and
local attackers to use the DoS to hijack
the epmapper pipe to gain privileges, via
certain messages to the
__RemoteGetClassObject interface that
cause a NULL pointer to be passed to the
PerformScmStage function.

CAN-
2003-
0533

udp any 135 Buffer overflow in certain Active
Directory service functions in LSASRV.DLL
of the Local Security Authority Subsystem
Service (LSASS) in Microsoft Windows NT
4.0 SP6a, 2000 SP2 through SP4, XP SP1,
Server 2003, NetMeeting, Windows 98, and
Windows ME, allows remote attackers to
execute arbitrary code by causing long
debug entries to be generated for the
DCPROMO.LOG log file.

CAN-
2003-
0528

tcp any 135 Heap-based buffer overflow in the
Distributed Component Object Model (DCOM)
interface in the RPCSS Service allows
remote attackers to execute arbitrary
code via a malformed RPC request with a
long filename parameter, a different
vulnerability than CAN-2003-0352
(Blaster/Nachi) and CAN-2003-0715.

CAN-
2003-
0352

6 any 135 Buffer overflow in a certain DCOM
interface for RPC in Microsoft Windows NT
4.0, 2000, XP, and Server 2003 allows
remote attackers to execute arbitrary
code via a malformed message, as
exploited by the Blaster/MSblast/LovSAN
and Nachi/Welchia worms.

Table 17 Dshield Port Report: Port 135 Vulnerabilities45

The 4th top targeted port is 119, which is also reported previously by Greg
Bassett.47 As showed in Table 18, this port is registered to the Network News
Transfer Protocol and the Happy99 trojan. Since this Happy99 propagates
through email/Usenet attachments utilizing a modified WSOCKS32.DLL instead
of through buffer overflow exploitation, these alerts are most likely false alarms
that trigger on normal Network News Transfer Traffic (NNTP) traffic, especially
since MY.NET.24.8 - the only destination address – resolves to news.MY.NET.48

Protocol Service Name
tcp nntp Network News

Transfer Protocol
udp nntp Network News

Transfer Protocol

47 http://www.giac.org/practical/GCIA/Greg_Bassett_GCIA.pdf

48 http://www.cert.org/incident_notes/IN-99-02.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tcp Happy99 [trojan] Happy 99
tcp Happy99 [trojan] Happy99

Table 18 Dshield Port Report: Port 119 Services49

Conclusion:
This signature has a tendency to generate a lot of false positives. Further tuning
of the signature is necessary to reduce the noise.

Recommendations:
 Amongst the top targeted port summary (Table 13), further research on alerts

that are related to 1025, 135, 445, and 6129 is necessary to determine
possible compromised machines as these ports are well known ports related
MS04-011 that includes numerous buffer overflow vulnerabilities.

 In addition, alerts destined to the ephemeral ports that are not registered to
known services also need further investigation.

 Consider filtering port 80 from triggering this signature to reduce false alarms.

5. Incomplete Packet Fragments Discarded

Total

External
Src IP
(Unique)

Internal
Dst IP
(Unique)

Internal
Src IP
(Unique)

External
Dst IP
(Unique)

In-
bound

Out-
bound

I
to
I

E
to
E

5357 83 88 5357

Unique Source Ports Unique Destination Ports

1 1
Top Ports Count Top ports Count

 0 5357 0 5357

Table 19 . Alert Logs: Ports Summary – Incomplete Packet Fragments Discarded

Source IP Destination IP Count
OTHER.NET.8.73 MY.NET.153.176 3074
OTHER.NET.8.71 MY.NET.153.176 2078

 OTHER.NET.8.72 MY.NET.153.176 17

Table 20 . Alert Logs: Top Participants Summary – Incomplete Packet Fragments
Discarded

These alerts are triggered when the old defrag preprocessor – known to have
some quite serious failure modes – is used instead of the newer frag2
preprocessor that was introduced in Snort 1.8.50. Furthermore, these alerts are
mostly originated from 3 IP addresses at other.edu (media-wm-
[1|2|3].cac.OTHER.NET) to a single IP address (libstkpc30.libpub.MY.EDU) on
MY.NET network as showed on Table 20.

49 http://www.dshield.org/port_report.php?port=119
50 http://www.mcabee.org/lists/snort-users/Nov-01/msg00820.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Deducing from their hostnames, I suspect that these are false alarms generated
by from media streaming traffic which usually created a lot of fragmentations. An
observation by Mayur Palankar demonstrates that “streaming data (53%) [MS
Media Player 52%] and tunneled traffic are the dominant cause of IP packet
fragmentation.”51 In addition, there are 63 SYN scan alerts directed to
MY.NET.153.76 within the 5 days period, but not of them are coming from these
same source addresses.

Conclusion:
The old defrag preprocessor is still being used while its replacement – frag2 –
that is more memory efficient has been introduced since Snort 1.8.

Recommendations:
 Replace the defrag preprocessor with frag2.

6. SMB Name Wildcard

Total

External
Src IP
(Unique)

Internal
Dst IP
(Unique)

Internal
Src IP
(Unique)

External
Dst IP
(Unique)

In-
bound

Out-
bound

I
to
I

E
to
E

5164 156 613 5164

Unique Source Ports Unique Destination Ports

15 1
Top Ports Count Top ports Count

137 4192 137 5164
1055 184
1061 155
1083 142
1093 91

Table 21 . Alert Logs: Top Ports Summary – SMB Name Wildcard

This signature is closely related to archNIDS’s IDS177 (NetBIOS-Name-
Query)52 that looks for “standard NetBIOS name table retrieval”53 queries
based on a known IP address that can be easily generated by “NBTSTAT –A
<target ip>” command. One noticeable difference is while IDS5177 alerts on
traffic sourced from $EXTERNAL network and destines to $INTERNAL network,
this signature, particularly in these 5 days Alerts logs, is triggered by outgoing
traffic (from $INTERNAL to $EXTERNAL networks). Since some of the previous
practicals reported this signature does also alert on incoming traffic (from
$EXTERNAL to $INTERNAL)54,47, I suspect that this SMB Name Wildcard
signature has been customized to alert on any UDP traffic destined to port 137.

51 http://www.cs.nmsu.edu/~amiya/cs584/slides/mayur.pdf
52 http://archives.neohapsis.com/archives/snort/2000-01/0222.html
53 http://www.whitehats.com/info/IDS177
54 http://www.giac.org/practical/GCIA/Ian_Eaton_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Though the legitimate and malicious nbtstat requests are indistinguishable, there
are usually no real reasons to have this traffic crossing the network perimeter
especially when a Virtual Private Network/ VPN solution is available for remote
users. Table 22 and Table 23 include the services and vulnerabilities related to
UDP 137.

Protocol Service Name
udp netbios-

ns
NETBIOS Name
Service

udp Msinit [trojan]
Msinit

Table 22 Dshield Port Report: Port 137/UDP Services55

CVE
ID

Pro-
tocol

Src
Port

Target
port

Description

CVE-
2001-
1162

udp any 137 Directory traversal vulnerability in
the %m macro in the smb.conf
configuration file in Samba before
2.2.0a allows remote attackers to
overwrite certain files via a .. in a
NETBIOS name, which is used as the
name for a .log file.

CVE-
2000-
0347

udp any 137 Windows 95 and Windows 98 allow a
remote attacker to cause a denial of
service via a NetBIOS session request
packet with a NULL source name.

CAN-
2003-
0533

udp any 137 Buffer overflow in certain Active
Directory service functions in
LSASRV.DLL of the Local Security
Authority Subsystem Service (LSASS) in
Microsoft Windows NT 4.0 SP6a, 2000
SP2 through SP4, XP SP1, Server 2003,
NetMeeting, Windows 98, and Windows
ME, allows remote attackers to execute
arbitrary code by causing long debug
entries to be generated for the
DCPROMO.LOG log file.

Table 23 Dshield Port Report: Port 137/UDP Vulnerabilities55

Source IP Source
Port

Destination
IP

Dest.
Port

Count

MY.NET.11.7 137 169.254.25.129 137 1654
 MY.NET.5.34 137 199.239.137.216 137 136
 MY.NET.29.30 137 199.239.137.216 137 135
MY.NET.111.228 137 209.2.144.10 137 117
 MY.NET.153.85 137 216.145.5.196 137 59
 MY.NET.75.13 137 216.74.144.15 137 34

Table 24 . Alert Logs: Top Participants Summary – SMB Name Wildcard

55 http://www.dshield.org/port_report.php?port=137

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Amongst the top participants in Table 24, the most targeted IP is 169.254.25.129,
which falls within the “link local” block (169.254.0.0/16) as quoted from
RFC3330 below:56

“169.254.0.0/16 - This is the "link local" block. It is allocated for
communication between hosts on a single link. Hosts obtain these
addresses by auto-configuration, such as when a DHCP server may not be
found.”

When searching for the all SMB Name Wildcard alerts targeted to the link local
block (169.254.0.0/16 instead of 169.254.25.129), there is a total of 2510 alerts
with 4 distinct destination addresses. Both the source and destination ports are
137 with MY.NET.11.7 as the main source addresses (1654 of 2510). As
reported by Patrik Sternudd57, MY.NET.11.7 might be a Windows domain
controller, especially when nslookup resolves it to dc2.ad.MY.NET. Therefore,
having NetBIOS name session traffic coming out from this host can be
considered normal. However, these destination addresses that are within the
link local block do raise the need for further investigation.

Destination IP Count
 169.254.25.129 1654
 169.254.45.176 853
 169.254.138.208 2
 169.254.90.17 1

Table 25 . Alert Logs: ‘Local Link’ Destination IPs – SMB Name Wildcard

Furthermore, there are two on-campus source addresses that trigger this
signature with source ports range from 1052 to 1119 and 257 unique destination
addresses. Considering the similarity of their behavior with the one described by
Ken58, these source addresses are most likely infected with the Opaserv worm59.

Source IP Count
 MY.NET.150.44 535
 MY.NET.150.198 437

Table 26 . Alert Logs: Source IPs w/ srcport != 137 – SMB Name Wildcard

Conclusion:
This signature generally creates a lot of false positive especially when both the
traffic is sourced and destined from internal network or when the traffic is sourced
from inside to outside network. However, it sometimes can be useful for
detecting mis-configured systems or possible infected machines.

Recommendations:

56 http://www.faqs.org/rfcs/rfc3330.html
57 http://www.giac.org/practical/GCIA/Patrik_Sternudd_GCIA.pdf
58 http://isc.sans.org//show_comment.php?id=85
59 http://vil.nai.com/vil/content/v_99729.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Further investigation on:
o Alerts sourced from MY.NET.11.7 and destined to the local link

addresses (169.254.0.0/16).
o Possible Opaserv worm infected machines: MY.NET.150.44 &

MY.NET.150.198.
 Tune the signature, below are several alternatives:

o Alert only on traffic that comes from $EXTERNAL to $INTERNAL
network. Other compensating signatures can be used to detect worm
specific activities.

o When choosing not to alert only on incoming traffic from $EXTERNAL
network, modify the signature to fire when the source port is not 137.

 Consider modifying the egress and ingress filtering when they are not
currently in place:

o Block outgoing and incoming Windows NetBIOS ports (UDP and TCP
135-139 and 445) at the border firewall/ router

o Block traffic destined the ‘local link’ IP ranges from leaving the
network perimeter.

Scans Logs

Scan Type Summary Top 10 Destination Ports
 From Internal From External

Scan Type Count Port Count Port Count
 SYN 16,976,176 135 5863846
 UDP 5,568,793 445 5625138
 FIN 27,700 53 4536988
 INVALIDACK 3,671 2745 1013177
 UNKNOWN 2,205 1025 682935
 NULL 898 80 597235
 NOACK 874 3127 494037
 VECNA 271 6129 419539
 XMAS 59 139 326591
 SPAU 50 25 311070
 FULLXMAS 44
 SYNFIN 29
 NMAPID 24

Table 27 . Scans Logs: Scan Alerts Summary

Source IP Alert

Count
Unique
DstIP
Count

Unique
DstPort
Count

Top DstPort Value

 MY.NET.190.92 10198630 2414793 128 135(50%),445(49.7%),5000,1
39,6667,161,137,53,80,8080

 MY.NET.111.51 3895364 565546 31 2745(21.7%),135(17.7%),102
5(14.6%),445(12.5%),
3127(10.6%),6129(9%),139(7
.5%),80(6.3%),411,6666

 MY.NET.1.3 3811608 123024 1,916 53(99.6%),123,10123,45190,
1170,60008,60238,60261,183
41,60369

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 MY.NET.1.4 752087 54786 748 53(98.6%),123,45197,1170,1
0123,60008,60261,60238,600
33,18330

 MY.NET.84.235 472085 141190 13,852 4672(45%),4673(14%),4662(1
0%),4665,4246,80,5672,4671
,4661,21065

 MY.NET.34.14 215360 3260 2 25(98%),113
 MY.NET.110.72 203517 17483 9,833 32785,32794,32777,12109,32

836,1938,32770,12108,32776
3014

MY.NET.153.174 188460 17850 10 2745(16%),135(15%),1025(13
%),445(12%),3127(11%),6129
(10.8%),139(10%),80(9%),21
,29033

 MY.NET.97.108 133676 71698 7 2745(39.5%),1025(23.3%),31
27(15.5%),6129(12.7%),80(8
.8%),6666,443

 MY.NET.97.103 87731 37836 30 80(89%),2745(3%),1025(2.7%
),3127(2.2%),6129(2.1%),35
31,2626,2090,2266,1263

Table 28 . Scans Logs: Top 10 Attackers - Internal

Source IP Alert

Count
Unique
DstIP
Count

Unique
DstPort
Count

Top DstPort Value

213.180.193.68 71034 2:
MY.NET.25.10
MY.NET.25.68

61446 47203,9765,36448,35097
,7237,59162,31332 ,291
73,28380,3757

210.139.118.246 59315 2:
MY.NET.1.3

MY.NET.190.92

48773 5368,19084,11117,31852
,35441,32342,26568,118
1,63001,3777

 67.31.152.200 59146 41 1328 80,731,1497,82,373,200
8,344,510,382,1815

 66.212.217.203 53067 15683 1 17300
 68.66.247.59 36051 12592 4 3128(33.4%),1080(33.3%

),10080(33.2%),3127
 80.203.201.148 34085 12634 1 80
 211.78.176.3 30114 12896 1 6129
 211.43.90.104 27949 15540 1 443
 218.55.179.190 27365 15453 1 6129
 68.71.57.193 27343 15473 1 4000

Table 29 . Scans Logs: Top 10 Attackers - External

Victim IP

Alert
Count

Unique
SrcIP
Count

Unique
DstPort
Count

Top
Destination

Ports
 MY.NET.25.68 71164 98 61452 6129,113,4899,4000,80,20168,

36448,35097 ,59162,7237
 MY.NET.190.92 63602 2269 201 135,1433,6129,4899,2803,1771

,4000,20168 ,2215,4751
 MY.NET.97.202 9878 620 21 6346(99.3%),6129,80,4000,201

68,4751,4899,17300 ,3306,557
0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 MY.NET.97.15 7957 479 25 6346(99%),6129,4000,4899,80,
17300,20168,21,4751,113

 MY.NET.97.125 6438 595 21 6346(98.7%),6129,20168,80,40
00,4751,4899,17300,1257,21

 MY.NET.97.84 5983 446 22 6346(98.6%),6129,80,4000,489
9,20168,21,4751,17300,1257

 MY.NET.190.97 4494 176 1373 4444,135,1433,137,80,6129,13
9,4899,4000,20168

 MY.NET.34.11 4285 107 1345 80,6129,4899,4000,21,20168,5
900,710,488 ,381

 MY.NET.12.6 4190 419 1229 25(66.9%),0,6129,21,80,4899,
20168,4000,389 ,17300

 MY.NET.97.83 3663 54 22 6346(97.8%),6129,80 ,4899,40
00,21,4751,20168,17300,443

Table 30 . Scans Logs: Top 10 Victims - Internal

Phatbot/Agobot Worm propagation attempts

Amongst the top on-campus ‘scanners’, there are five hosts (MY.NET.190.92,
MY.NET.111.51, MY.NET.153.174, MY.NET.97.108, MY.NET.97.103) that
demonstrate symptoms of Agobot/Gaobot60. Variants of this worm are known to
perform scans on port:61

 “135 for MS03-039 "DCOM2" vulnerability
 139 for MS03-049 Workstation vulnerability
 1433 for weak MSSQL administrator passwords
 2082 for CPanel vulnerability (OSVDB ID: 4205)
 2745 for backdoor left by the Bagle Virus
 3127 for MyDoom.A backdoor
 5000 for MS01-059 UPnP vulnerability
 6129 for Dameware vulnerability (OSVDB ID: 3042)
 80 for MS03-007 WebDav vulnerability
 135, 445 and 1025 for MS03-032 vulnerability
 139 and 445 for weak NetBIOS passwords”

On-campus ‘scanners’ that scan on at least two of the above ports can be found
on Table 31.

 Source IP Unique Port Count
 MY.NET.153.174 80, 135, 139, 445, 1025, 2745, 3127, 6129
 MY.NET.153.195 80, 135, 139, 445, 1025, 2745, 3127, 6129
 MY.NET.111.51 80, 135, 139, 445, 1025, 2745, 3127, 6129
 MY.NET.97.169 80, 1025, 2745, 3127, 6129
 MY.NET.97.25 80, 1025, 2745, 3127, 6129
 MY.NET.98.65 80, 1025, 2745, 3127, 6129

60 http://www.lurhq.com/phatbot.html
61 http://seclists.org/lists/incidents/2004/Apr/0063.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 MY.NET.97.12 80, 1025, 2745, 3127, 6129
 MY.NET.97.57 80, 1025, 2745, 3127, 6129
 MY.NET.97.124 80, 1025, 2745, 3127, 6129
 MY.NET.97.103 80, 1025, 2745, 3127, 6129
 MY.NET.97.43 80, 1025, 2745, 3127, 6129
 MY.NET.97.30 80, 1025, 2745, 3127, 6129
 MY.NET.97.159 80, 1025, 2745, 3127, 6129
 MY.NET.97.126 80, 1025, 2745, 3127, 6129
 MY.NET.97.78 80, 1025, 2745, 3127, 6129
 MY.NET.97.49 80, 1025, 2745, 3127, 6129
 MY.NET.97.235 80, 1025, 2745, 3127, 6129
 MY.NET.97.92 80, 1025, 2745, 3127, 6129
 MY.NET.190.92 80, 1025, 2745, 3127, 6129
 MY.NET.97.129 80, 1025, 2745, 3127, 6129
 MY.NET.97.108 80, 1025, 2745, 3127, 6129
 MY.NET.98.53 80, 1025, 2745, 3127, 6129
 MY.NET.81.59 80, 135, 445
 MY.NET.84.235 80, 135, 1025, 1433, 2745, 5000
 MY.NET.153.90 80, 1433, 2082, 2745, 3127
 MY.NET.70.96 80, 135
 MY.NET.71.235 80, 445
 MY.NET.153.99 80, 139, 5000

Table 31 . Scans Logs: Possible Agobot Infected Hosts- Internal

Recommendations:

1. Disconnect the systems listed on Table 31, especially those that are scanning

on more than 3 different Agobot related ports and have the systems owner
perform virus scanning and disinfections. The MY.NET.97.0/24 subnet
seems to be highly infected.

2. Require the following on each Microsoft Windows systems connected to the
campus network through a network access control mechanism:

 Enable automatic windows updates or have other means in ensure that
machines are keep current on their security patches

 Require strong user passwords and disable null sessions / anonymous
logons

 Require up-to-date anti-virus software
3. Have policy and procedure in place to disconnect any infected systems from

the network as soon as possible
4. Consider modifying the egress and ingress filtering to block outgoing and

incoming Windows NetBIOS ports (UDP and TCP 135-139 and 445) at the
border firewall/ router.

P2P applications

Five of the hosts (grey shaded) listed in the Top Internal Victims on Table 30 are
involved in Gnutella Peer to Peer file sharing network as they are consistently

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

scanned by other Gnutella servents on port 6346. In addition, MY.NET.84.235
(from Table 28) seems to be using the eDonkey (TCP 4662) and eMule (UDP
4672) P2P programs.

Recommendations:
Due to the amount of traffic that can be consumed and the increased risks (from
both security and legal perspective) associated with P2P applications, consider
reviewing the current policy regarding P2P and the use of packet shaper devices
to control the amount of P2P traffic.

Other Scans Activities
1. Two of MY.NET’s DNS servers (MY.NET.1.3 and MY.NET.1.4) appear in

Table 28 as the top talkers for port scanning that are sourced on-campus.
These are mostly like false alarms and it’s recommended to add the DNS
server addresses to the Snort’s portscan-ignorehosts variable62 to reduce
these noises.

2. There are several machines off-campus that are scanning for MY.NET
addresses space for specific ports such as 80 (http), 6129 (Dameware), 443
(https), 400063, 17300 (Kuang2TheVirus). Checking the Alert logs, there are
2 on-campus machines (MY.NET.150.44 and MY.NET.150.198) that
consistently respond to these probes indicated by the name queries alerts
from the two on-campus addresses to these off-campus addresses generated
almost the same timestamps are the originating probes. Further investigation
is needed on these two machines to determine the real impact, especially
because they are also suspects for Opaserv worm infection in the SMB Name
Wildcard alerts section.

In addition, these two hosts are also reported by Peter Storm in his practical
as responding to proxy scans. He also noted that “personal firewalls, server
log tools, and similar tools may respond with SMB name queries”.34 A link
diagram on describes the relationships among these hosts. I

Attacker IP Destination Port
66.212.217.203 17300
80.203.201.148 80
211.78.176.3 6129
211.43.90.104 443
218.55.179.190 6129
68.71.57.193 4000

62 http://lists.jammed.com/incidents/2001/05/0239.html
63 http://www.dshield.org/port_report.php?port=4000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.150.44 MY.NET.150.198

66.212.217.203

80.203.201.148
218.55.179.190

211.78.176.3
211.43.90.104

68.71.57.193

SYN Scan

PortScan DstPort: 80

PortScan
DstPort: 17300

PortScan
DstPort: 443

PortScan
DstPort: 4000

PortScan
DstPort: 6129

SMB Name Wildcard

Figure 6. Link Diagram – Port Scans to MY.NET.150.44 & MY.NET.150.198

3. One of the top external attackers (68.66.247.59) seems to be targeting the

proxy ports, i.e. 3128 (squid proxy), 1080 (socks proxy) and 10080
(Amanda – open-source backup).

4. There are two scanning activities that appears to target specific on-campus
address:

 213.180.193.68 - SYN scanning MY.NET.25.10 and MY.NET.25.68
 210.139.118.246 – SYN scanning MY.NET.1.3 and MY.NET.190.92

The owners of these on-campus machines should be made aware of these
probing and possible compromised when appropriate host-based security is
not in place.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OOS Logs

Source IP Unique Dst IP
Count

Alerts
Count

68.54.84.49 1 1115
66.225.198.20 1 130
4.62.160.223 1 111
68.48.163.221 3 98
203.172.97.150 6 90

4.13.172.39 3 89
67.114.19.186 1 72
68.7.123.221 1 65
68.121.194.43 1 56
207.87.144.68 2 53

Table 32 . OOS Logs: Top 10 Talkers

 TCP Flags Count
 12****S* 2976
 ******** 520
 U*** 33
 **U*P*SF 22
 ****P*** 21
 12UAPRSF 19
 *2U*PRSF 19
 *2UA**SF 13
 **U*PRSF 13
 12UAPR*F 11

Table 33 . OOS Logs: Top 10 TCP Flags

As mentioned by Peter Storm in his practical34, these Out of Specification (OOS)
alerts are generated by Snort when TCP options or flags anomalies are detected.
Based on Table 33, 74.5% of the alerts in OOS Logs has are SYN packets with
both TCP reserved bits set. Currently, these reserved bits are known as ECN
bits and thus, they can be set only when the Explicit Congestion Notification
(ECN) protocol – RFC 3168 – is employed. Since different operating systems
respond differently to packets that have these reserved bits, tools such as Queso
and nmap utilize this ‘feature’ to perform operating system finger printing. 64

CWR ECN

echo
URG ACK PSH RST SYN FIN

In addition, 13% of the OOS alerts are related to null TCP packets, i.e. TCP
packets without any TCP flags. The rest of the alerts – 12.5% – are spread
among the other 111 different TCP flags combinations.

64 GCIA Material – Part 3.2 and 3.3, page 5-19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OOS Top Talker - 68.54.84.49

The top talker in the OOS Log – 68.54.84.49 – appears to target MY.NET.6.7 on
port 110 (pop3) with 1115 SYN packets that have both TCP reserved bits set.

68.54.84.49: pcp01741335pcs.howard01.md.comcast.net

03/31-00:21:59.910595 68.54.84.49:35362 -> MY.NET.6.7:110
TCP TTL:51 TOS:0x0 ID:18221 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x46CD73CD Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 811545824 0 NOP WS: 0

In addition, there are 3259 alerts found in the Scans Log sourced from
68.54.84.49 to MY.NET.6.7 on the same port (pop3), which is a legitimate
service provided by MY.NET.6.7 and is currently using pop3 server v2001.78.
While there is not enough information to conclude these OOS and Scans as
malicious, it is recommended to modify the pop3 login banner to exclude the
software version.

OOS Null TCP Packet
Source IP Count

 203.172.97.150 90
 68.121.194.43 56
 68.7.123.221 43
 4.62.160.223 38
 4.13.172.39 24
 MY.NET.70.37 20
 68.164.89.241 15
 68.5.204.185 12

 165.134.62.223 11
 165.134.48.220 11

Table 34 . OOS Logs: Top 10 Sources – Null TCP Packets

Top Attacker - 203.172.97.150

03/31-02:57:13.005315 203.172.97.150:113 -> MY.NET.25.68:54439
TCP TTL:179 TOS:0x0 ID:34611 IpLen:20 DgmLen:40
******** Seq: 0x6228F20A Ack: 0xDBAAD32F Win: 0x0 TcpLen: 20

All of the null packets from 203.172.97.150 are sourced from port 113 and
directed to 6 different on-campus addresses within MY.NET.25.0/24 subnet, i.e.:

Source
Port

Destination IP Destination
Port

Count

 113 MY.NET.25.67 38094 2
 113 MY.NET.25.67 41463 3
 113 MY.NET.25.67 42207 3
 113 MY.NET.25.67 42544 3
 113 MY.NET.25.68 34811 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 113 MY.NET.25.68 35221 3
 113 MY.NET.25.68 54439 7
 113 MY.NET.25.68 60802 3
 113 MY.NET.25.68 63442 3
 113 MY.NET.25.68 64339 5
 113 MY.NET.25.69 37404 2
 113 MY.NET.25.69 53488 3
 113 MY.NET.25.69 54984 7
 113 MY.NET.25.69 55395 2
 113 MY.NET.25.70 39209 5
 113 MY.NET.25.70 40863 3
 113 MY.NET.25.70 41599 2
 113 MY.NET.25.71 53535 3
 113 MY.NET.25.71 55303 6
 113 MY.NET.25.73 33067 7
 113 MY.NET.25.73 41822 2
 113 MY.NET.25.73 60573 3
 113 MY.NET.25.73 65438 9

Table 35 . OOS Logs: Destination Addresses – Null TCP Packets from 203.172.97.150

Both the Scans and Alerts Logs also show similar information there are null
scans coming from 203.172.97.150 to various machines on MY.NET.25.0/24
subnet, i.e. hosts in Table 35 and MY.NET.25.66.

Looking at both the Alerts and Scans Logs for interesting events (Table 36) that
come from these 6 on-campus addresses, I notice the following that they are also
the source addresses for:

 186 High port 65535 tcp - possible Red Worm – traffic alerts with two
unique destination ports, i.e.: 2565and 11366.

 118191 SYN scans alerts that are also destined to port 25 and 113.

Alerts Logs Scans Logs
Source IP SrcPort Count DstPort Count

MY.NET.25.66 65535 6 25
113

8102
2367

MY.NET.25.67 65535 44 25
113

10080
2627

MY.NET.25.68 65535 19 25
113

5082
1714

MY.NET.25.69 65535 21 25
113

21194
7694

MY.NET.25.70 65535 37 25
113

21733
7773

MY.NET.25.71 65535 30 25
113

15514
5921

MY.NET.25.73 65535 29 25
113

6533
1857

Table 36 . Alerts Logs: Alerts from MY.NET.25.66-73

65 http://www.dshield.org/port_report.php?port=113
66 http://www.dshield.org/port_report.php?port=25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

While these 6 addresses appear to be MY.NET’s mail servers that are Sendmail
8.13.1 (the latest version that is available since 2004-07-31), it is still
recommended to review the mail servers’ syslog files to ensure the system-level
integrity.

The following are some quite old links related to sendmail – Identd attacks:

 Posting by Guido Stevens:
http://archives.neohapsis.com/archives/incidents/2000-04/0008.html

 CVE-1999-0204: Sendmail 8.6.9 allows remote attackers to execute root
commands, using ident.

 CVE-1999-0204: Sendmail 8.6.9 allows remote attackers to execute root
commands, using ident.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Other analysis

Top External Attackers

67.31.152.200

Signature Count
MY.NET.30.3 activity 3560
MY.NET.30.4 activity 2967
TFTP - External TCP connection to internal tftp server 58

Table 37. Alert Summary – 2nd Top Off-campus Attacker IP: 67.31.152.200

This section focuses only on the last signature alerts because the first two have
been discussed in earlier sections. 67.31.152.200 targets 32 different on-
campus hosts on the “TFTP - External TCP connection to internal tftp server”
signature; each with a maximum of 3 attempts. This signature is also a custom
signature; it seems to look for traffic that either sourced from or destined to TCP
port 69. This is concluded from the existence of 32 other ports in addition to port
69 (default TFTP port) for this signature alerts as showed in Table 38. Based on
the records from the Scans log, all records sourced from 67.31.152.200 only
have the SYN flag set, and thus these are most likely SYN scans for port 69.

Alerts Count TCP 69 TCP !69
As source port 76 95
As destination port 95 76

Table 38. Ports Summary: External TCP connection to internal tftp server

From these 32 on-campus victim addresses, there are 22 systems – including
MY.NET.30.3 and MY.NET.30.4 – that responded to 67.31.152.200’s SYN scans.
Since the Alert log does not provide any information regarding the TCP flags sets
on these response packets, it’s hard to determine the ones what do listen on
TCP 69. Assuming that there is no alert/record loss during the data clean up
process (which is unlikely), it’s possible to guess by comparing the number of
SYN scans sent by 67.31.152.200 to the victims (S), the number of TFTP -
External TCP connection to internal tftp server alerts sourced from
67.31.152.200 (A) and destined to it from the victims (V). I can assume that
none of the targeted systems are vulnerable when the following condition is met.

A == S and (V == S or V == 0)

This means that only SYN scan packets ever sent to the victims and the victims
either respond with RST packet or do not reply at all. However, the attacker
might still be able to use this information for OS/ network fingerprinting.

Recommendations:
1. Although Trivial File Transfer Protocol/ TFTP is not a secure file transfer

protocol, it remains a popular service used to transfer configuration files and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

software updates to and from network devices. Therefore, appropriate
access controls should be put in place to secure them when being used as to
keep the configurations of network and security devices.

2. Restrict access for TFTP server of network devices from certain places.
Remote access should require VPN.

3. Periodically audit the network for unnecessary TFTP servers.

Registration Information of External Source Addresses

These addresses are chosen as they showed up as the Top External Scanners
that appear to target on certain on-campus hosts or certain trojan/backdoor
services.

External IP Registration Info Contact Info

213.180.193.68

proxychecker.ya
ndex.net

inetnum: 213.180.192.0 - 213.180.193.255
netname: COMPTEK-NET1
descr: CompTek International/Yandex LLC
descr: 3, Gubkina str., Moscow, 117809
country: RU

Contact:
Yandex LLC Network
Operations

Address:
Yandex LLC
40A Vavilova st.
117333, Moscow, Russia

Phone: +7 095 9743555
Fax-no: +7 095 9743565
E-mail: noc@yandex.net

210.139.118.246

pl502.nas922.n-
yokohama.nttpc.
ne.jp

inetnum: 210.139.0.0 - 210.139.127.0
netname: INFOSPHERE
descr: InfoSphere
descr: NTTPC Communications, Inc.
country: JP

Administrative Contact:
HH1558JP
Technical Contact:
RK448JP
Technical Contact:
HK8557JP
E-mail:
ip@sphere.ad.jp
tech-contact@sphere.ad.jp
staff@db.nic.ad.jp

66.212.217.203

dhcp-66-212-
217-
203.myeastern.c
om

inetnum: 66.212.192.0 - 66.212.223.255
Inetnum: 66.212.216.0 - 66.212.219.255
CustName: myeastern.com
Address: 61 Myrock Ave
Address: Waterford, CT 06385
City: Plainfield
StateProv: CT
PostalCode: 06374
Country: US

Tech Contact:
OH46-ARIN
O'Brien, Hugh
hughobrien@myeastern.com

OrgAbuseHandle
ABUSE148-ARIN
Abuse@myeastern.com

OrgTechHandle
OTP-ARIN
Parsons, Owen T.
owenparsons@myeastern.com

Phone: +1-860-442-5616

 211.78.176.3

adsl-211-78-
176-
3.HCON.sparqnet
.net

inetnum: 211.78.160.0 - 211.78.191.255
netname: NCICNET-TW
descr: New Centry InfoComm Tech. Co., Ltd.
descr: 12F, No. 468, Rueguang Rd. Taipei
descr: Taiwan 114
country: TW

Contact:
Claire Chang
PC Home
8Fl., No. 378,
Fushing N. Rd.,
Jungshan Chiu
Taipei Taiwan, TW

Phone: +886-2-7700-8888
E-mail:
clairechang@ncic.com.tw

 68.71.57.193 inetnum: 68.71.48.0 - 68.71.63.255 Tech Contact:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

descry: Adelphia
Address: 1 North Main Street
City: Coudersport
StateProv: PA
PostalCode: 16915
Country: US
RegDate: 2002-10-22
Updated: 2002-10-22

AH102-ARIN
Adelphia Hostmaster
+1-814-274-0638
ipadmin@adelphia.net

OrgAbuseHandle:
IPE-ARIN
Internet Policy
Enforcement
+1-866-473-2909
abuse@adelphia.net

OrgTechHandle:
CKI8-ARIN
Kio, Carolyn
+1-888-512-5111

Table 39 . Scans Logs: Top 10 Attackers - External

Analysis Process:

1. Combine the 15 log files (5 of each type) into three files (1 of each type).
2. Experiment with data analysis tools such as SnortSnorf and Snortalog to

process the data. Unfortunately, the log files seems to be too large and
contains numerous invalid records.

3. Decide to use the parsing and database creation scripts obtained from the
practical reports of Samuel Adams67 and Les Gordon68 after some
customizations

4. Clean up the data, especially the scans logs. This can take quite some
time.

5. Create the database (mysql) and upload the data.
6. Add indexes to the scans log table to speed up the query processing
7. Use mysqldump to backup the whole database. This is particularly

important considering the amount of time that has been spent to upload
and clean up the data.

8. Start analyzing the data using SQL queries.

Reference (Part 2 & 3)
http://isc.sans.org/logs/Raw/README
http://tcpreplay.sourceforge.net/pcapmerge.html
http://www.sourceforge.net/projects/tcpreplay/
http://tcpdump.org/tcpdump_man.html
http://standards.ieee.org/regauth/oui/oui.txt
http://www.neohapsis.com/neolabs/neo-ports/neo-ports.html
http://www.snort.org/dl/contrib/data_analysis/snortsnarf/
http://www.snort.org/snort-db/?sid=522
http://www.geektools.com/whois.php
http://www.securityfocus.com/infocus/1577
http://www.securiteam.com/windowsntfocus/Patch_Available_for_the__IP_Fragment_Reassembly__Vuln
erability.html
http://www.iana.org/assignments/port-numbers

67 http://www.giac.org/practical/GCIA/Samuel_Adams_GCIA.pdf
68 http://www.giac.org/practical/GCIA/Samuel_Adams_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://rfc-gnutella.sourceforge.net/developer/share/intro.html#Background
http://www.faqs.org/rfcs/rfc793.html
http://www.stearns.org/p0f/p0fr.fp
http://www.mynetwatchman.com/ListIncidentsbyIP.asp
http://www.inet-sec.org/docs/DoS/fragma.html
http://www.cisco.com/warp/public/770/nifrag.shtml
http://www.snort.org/snort-db/sid.html?sid=499
http://www.insecure.org/sploits/ping-o-death.html
https://www.sans.org/resources/malwarefaq/stacheldraht.php
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0128
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0345
http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00062.html
http://www.kb.cert.org/vuls/id/150227
http://www.uoregon.edu/~joe/proxies/open-proxy-problem.pdf
www.lurhq.com/zindos.html
http://news.com.com/Google%2C+other+engines+hit+by+worm+variant/2100-1023_3-5283750.html
http://support.novell.com/cgi-bin/search/searchtid.cgi?/10065719.htm
http://www.giac.org/practical/GCIA/Michael_Meacle_GCIA.pdf
http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf
http://www.leu.bw.schule.de/netze/novell/ml2/patches/nw6sp3.txt
http://www.f-secure.com/v-descs/adore.shtml
http://www.giac.org/practical/gsec/Anthony_Dell_GSEC.pdf
http://www.iana.org/assignments/port-numbers
http://securityresponse.symantec.com/avcenter/venc/data/w32.korgo.f.html
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=39437
http://www.sagonet.com/servers/gaming.php
http://www.snort.org/snort-db/sid.html?sid=648
http://www.insecure.org/stf/smashstack.txt
http://isc.sans.org/diary.php?date=2004-04-30
http://www.dshield.org/port_report.php?port=1025
http://www.dshield.org/port_report.php?port=135
http://www.giac.org/practical/GCIA/Greg_Bassett_GCIA.pdf
http://www.cert.org/incident_notes/IN-99-02.html
http://www.dshield.org/port_report.php?port=119
http://www.mcabee.org/lists/snort-users/Nov-01/msg00820.html
http://www.cs.nmsu.edu/~amiya/cs584/slides/mayur.pdf
http://archives.neohapsis.com/archives/snort/2000-01/0222.html
http://www.whitehats.com/info/IDS177
http://www.giac.org/practical/GCIA/Ian_Eaton_GCIA.pdf
http://www.dshield.org/port_report.php?port=137
http://www.faqs.org/rfcs/rfc3330.html
http://www.giac.org/practical/GCIA/Patrik_Sternudd_GCIA.pdf
http://isc.sans.org//show_comment.php?id=85
http://vil.nai.com/vil/content/v_99729.htm
http://www.lurhq.com/phatbot.html
http://seclists.org/lists/incidents/2004/Apr/0063.html
http://lists.jammed.com/incidents/2001/05/0239.html
http://www.dshield.org/port_report.php?port=4000
GCIA Material – Part 3.2 and 3.3, page 5-19
http://www.dshield.org/port_report.php?port=113
http://www.dshield.org/port_report.php?port=25
http://www.giac.org/practical/GCIA/Samuel_Adams_GCIA.pdf

