
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.5

Jeremy Scott
SANS Rocky Mountain 2004

Denver, CO, USA
Submitted: Sept. 20, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents

Assignment #1: Describe the State of Intrusion Detection4

Using ManHunt on High-Speed Networks...4
Introduction..4
Vulnerable?..4
What method do I use?..5
The solution, possibly? ..6
Conclusion ...9

References..9
Assignment #2 – Network Detects ..11

Network Detect 1: Backdoor Q access...11
1. Source of Trace: ..11
2. Detect was generated by: ...11
3. Probability the source address was spoofed:..12
4. Description of attack: ..13
5. Attack mechanism: ...13
6. Correlation: ..14
7. Evidence of active targeting:...14
8. Severity: 0...14
9. Defensive recommendations: ..15
10. Multiple choice test question:..15

Network Detect 2: Proxy scan ..15
1. Source of Trace: ...16
2. Detect was generated by: ...16
3. Probability the source address was spoofed:..17
4. Description of attack: ..18
5. Attack mechanism: ...19
6. Correlations: ...19
7. Evidence of active targeting:...19
8. Severity: 1...19
9. Defensive Recommendations: ..20
10. Multiple choice test question:..20

Network Detect 3: DNS named version attempt ..22
1. Source of Trace: ...23
2. Detect was generated by: ...23
3. Probability the source address was spoofed:..24
4. Description of the attack: ..24
5. Attack Mechanism: ...24
6. Correlations: ...24
7. Evidence of active targeting:...25
8. Severity: 2...25
9. Defensive Recommendations: ..26
10. Multiple choice test question:..26

Assignment #3 – Analyze This...26
Executive Summary ..26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

Suspicious Internal Hosts..27
Defensive Recommendations ...27

Log files Analyzed..29
Alerts ...29

Top Ten Alert Summary...29
Top 10 External Talkers...29
Top 10 Internal Talkers..29
EXPLOIT x86 NOOP ...30
MY.NET.30.4 activity ...31
High port 65535 tcp – possible Red Worm – traffic......................................34
MY.NET.30.3 activity ...36
SMB Name Wildcard ...38
Tiny Fragments – Possible Hostile Activity ..41
RFB – Possible WinVNC – 010708 – 1 ...43

Scans ..45
Scan Summary ..45
SYN Scans ..45
UDP Scans ..46
Out of Spec (OOS) Log ...47

Analysis Process ...47
Equipment Used..48
References (Assignment #2) ...48
References (Assignment #3) ...50
Appendix A..54
Appendix B..65

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

Assignment #1: Describe the State of Intrusion Detection

Using ManHunt on High-Speed Networks

Introduction

Network intrusion detection systems (NIDS) are a means to gather network traffic
and compare it to a set of signatures to determine if an intrusion has taken place.
In today’s networks, NIDS is now commonplace to detect malicious activity.
NIDS are particularly needed in the corporate realm of networks that make up
much of the Internet today. However, with the ever-changing pace of today’s
technology, intrusion detection is having a hard time keeping up. One can look
at the modern network of today and see that it is changing rapidly and along with
it the speed is increasing. 100Mbps is no longer the standard for enterprise
networks. 1Gbps and faster are quickly replacing the older 100Mbps standard.
The vulnerability within the network and to NIDS exists with the increase in the
number of bits traveling across a network at any given time. Not only is keeping
up with the speed a problem, but the increased amount of traffic capable of being
transmitted at this speed creates an increase in the amount of data that a NIDS
must process in order to determine if an attack has happened. Place into the
equation that most networks today are switched creates another problem in itself.
It is said well by Jim Hurst in an article posted at SANS, “As networks evolve,
NIDS vendors must offer relevant solutions or be left behind.”1

Vulnerable?

There are many possible solutions to the Gigabit problem that is now crippling
the management of NIDS on the network, but the solution is unique to each
individual one. One must weigh the costs of implementing the protection that is
needed on their network. Are you vulnerable? What risk can your organization
take if your intrusion detection is not up to par with the rest of your network? If
your company is like mine, the risk that can be taken is minimal or none at all.
Vulnerability management is one approach to associate the risks of your network.
This approach is not just the method of attaching vulnerability scanners to your
network to see what systems are vulnerable but assessing as to the real and
perceived threats that your network may have.2 Vulnerability management is
beyond the scope of this paper, but should be taken in to account when deciding
the vulnerability of the assets that need to be protected with intrusion detection
systems. An article in Information Security Magazine titled “Feeling Vulnerable?”
explains the concept and key questions you should ask yourself to assess the
risks.3

1 Hurst, Jim
2 Balayan, Misael
3 Berg, Al

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

What method do I use?

In looking at a possible solution, the detection methods utilized by the various
products now available for intrusion detection must be reviewed. At one time, it
was easy to determine the best possible methods because most all NIDS used
what is called pattern matching based on a set of known signatures. Now, the
choice is a lot harder because many companies that provide NIDS solutions are
using various techniques such as: protocol decoding, heuristic and anomaly-
based analysis or a mixture of them all.

Let’s review the different methods of detection available provided by NSS, an
independent organization that does network and security testing:4

• Pattern Matching – The most basic form of analysis. Each individual
packet is analyzed against a predefined signature to base detection.
While this method will allow you to tune the signatures to reduce the
inspection that needs to be done, it can also be to specific resulting in
numerous false positives.

• Stateful Pattern Matching – This is an enhanced form of pattern matching.

Stateful means that it will take in the TCP stream to match patterns rather
than to the individual packet. This method is good for evasive techniques
such as fragmented packets but requires more resources to track open
sessions and reassemble the streams.

• Protocol Decode – Protocol Decode is an approach comparing how the

protocol should behave according to how the protocol is defined by the
RFC. If a protocol is well defined and properly adhered to, of course, then
detection could require less inspection of the packet for detection. This is
also known as Protocol Anomaly Detection.

• Heuristic Analysis – This approach uses algorithms to base detection. For

example, a ping sweep could be detected by a set threshold number of
SYN packets destined for a specific port. The algorithm would have to be
tailored for each unique network based on the network’s traffic, and could
possibly result in numerous false positives.

• Anomaly Analysis – This method analyzes the traffic on a network to

determine what is to be considered “normal”. Once the NIDS determines
what “normal” should look like, detection is based on what is outside
“normal” traffic. Changes in traffic could potentially be seen as an
intrusion resulting in false positives or worse, “normal” traffic could be a
constant flow of malicious traffic on the network.

4 NSS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

Determining which method to use is not an easy task. One must look at the
network that they are employed to protect and decide what risks can be taken.
As I said about my network, minimal risk or none at all, we have looked at the
solution of using some of the different methods discussed in our transition to a
more modern detection approach.

The solution, possibly?

Let’s look at a possibility that we have considered within my own company. The
Gigabit solution we have looked at and are currently in the process of
implementing is the Symantec ManHunt™ 3.0 R2. The ManHunt™ node is
connected to the network by a Gigabit network tap to maximize bandwidth and
reduce the possibility that an attack could go un-noticed by the use of a span
port, as addressed in a paper by Brian Laing.5

Symantec states that:

“ManHunt provides high-speed, network intrusion detection, real-time
analysis and correlation, and proactive prevention and response to protect
enterprise networks against internal and external intrusions and denial-of-
service attacks. The ability to detect unknown threats, using protocol
anomaly detection, helps eliminates network exposure and the
vulnerability inherent in signature-based intrusion detection products.
Symantec ManHunt™ traffic rate monitoring capability allows for detection
of stealth scans and denial-of-service attacks that can cripple even the
most sophisticated networks.”6

Symantec ManHunt™ provides reliable intrusion detection through a hybrid
detection architecture known as “Hybrid Mode.” ManHunt uses an array of
detection methodologies to enhance attack identification and to collect evidence
about malicious activities. This is done by the use of signature detection,
protocol anomaly detection, traffic rate monitoring, protocol state tracking, and IP
packet re-assembly.

Symantec ManHunt™ combines network intrusion detection and incident or
event management capabilities in one product. Symantec calls this a “three-
pronged approach” that includes:

• Detection – ManHunt detects a variety of threats by using a layered detection

model. This model includes traffic protocol anomaly and stateful and custom
signature detection and recognition.

o Protocol anomaly detection – ManHunt inspects network traffic and
compares it to structured protocols. ManHunt compares and notes
deviations in network protocol exchanges. ManHunt covers numerous
common protocols that are used on the network.

5 Laing, Brian
6 Symantec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

o Stateful and custom signature detection – ManHunt can detect a
combination of signatures providing a powerful detection capability with
the protocol anomaly detection. The stateful signatures are provided
by updates from Symantec. The custom signatures allow the user to
create signatures to detect traffic according to rules defined by the
user.

o Traffic Monitoring – ManHunt provides high-speed monitoring to detect
malicious traffic flow and then tracking that traffic back to the source.
Traffic that it detects is DoS attacks and Scan attempts.

o External Event Dispatch Protocol (EDP) – ManHunt has the ability to
use third-party sources such as firewalls, IDS sensors and host-based
IDS devices to further correlate data for an attack. The data collected
by these sources will be converted and transmitted to the ManHunt
node.

• Analysis – ManHunt provides basic provides basic event grouping based on

heuristic functions to judge similarities in events by several criteria such as
time, type, location, source, and destination.

o Aggregation – ManHunt reduces traffic load by noting but not logging
every packet in an identical attack. For example, if a DDoS attack
occurs, ManHunt may aggregate the multiple DDoS packets into one
event and show an aggregate packet count.

o Correlation – ManHunt correlates events to form incidents. Correlation
can be based on time, source/destination IP address, or other
matching criteria.

• Response – Response policies are a collection of rules and the specific

actions taken in response to the events. The response policies can be
configured to respond automatically to contain and respond to an intrusion.

o Policy application – ManHunt compares each event against
configurable match parameters. If a match occurs, ManHunt executes
the specified action. One rule is processed at a time. ManHunt can be
configured to chain parameters or stop after the first match.

o Automated response – ManHunt uses an automated policy-based
response system that includes alerting, session traffic recording, flow
tracing, session resetting, and QoS ACL suggestion. ManHunt can be
configured for multiple responses to one event and the order in which
to respond based on multiple criteria.

Without going into great detail about the technical aspects of the way ManHunt
handles detection, ManHunt has proven to be a reliable solution based on
performance testing. NSS recently conducted testing on several different Gigabit
solutions that are available commercially in the Gigabit IDS Group Test. Results
indicated, ManHunt was able to detect “real-world” traffic at a maximum of
400,000 packets per second at 1000Mbps at 100% with zero packet loss and at
100% CPU utilization was still able to provide 620Mbps throughput, this occurred

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

while ManHunt was running in “Hybrid Mode” with approximately 85 custom
signatures loaded.7

An intrusion detection solution should not be solely based on the capability to
provide reliable Gigabit speed detection, although, it should be the most
important part. However, a solution should also provide the user with ease of
installation and administration.

Symantec ManHunt™ is relatively easy to install with the provided
documentation and a little Linux background. Symantec ManHunt™ 3.0 R2
currently supports Solaris 8 and 9 and Redhat Enterprise Linux 3.0 operating
systems. The install on an Intel server consists of a default install of Redhat
Enterprise Linux. The configuration changes that need to be done at the time of
the Redhat install is to disable telnet and rlogin. The documentation also says to
install SSH, but open-source sshd is done by default. After the OS has been
installed, ManHunt™ can be installed simply by entering ./install.sh and
following the provided documentation. Hardening of the operating system should
be done after ManHunt™ has been installed.

Although the installation is relatively easy, a complete and reliable knowledge of
the network is recommended. During the configuration of the ManHunt node,
several top-level objects are needed to ensure that traffic is effectively monitored.
These top-level objects include:

• Locations – Any physical or logical grouping of network segments.
• Network devices – Any device in the network such as routers, switches,

hubs, and interfaces (monitoring and monitored).
• Symantec ManHunt™ nodes – All nodes placed on the network.
• External sensors – ManHunt can accept input from several third-party

external sensors and various other Symantec products.
• Network borders – The autonomous system that connects your network.
• Managed network segments – ManHunt can automatically create a

managed network segment object for each unique subnet.

Once the ManHunt node has been set up, then it is time to install the ManHunt
console. The console can be run on a Solaris 8 or 9, Redhat Enterprise Linux, or
Windows 2000/XP workstation. The only requirement to run the console is that
the workstation have Java Runtime Environment (JRE) 1.4 installed. The
installation will provide the correct version of JRE if it needed. The ManHunt
console provides centralized management interface of all existing nodes. It is
used to administer all updates and user and system configurations, as well as the
ability to monitor all activity being logged by any of the nodes on the network.8

7 NSS
8 WhiteHat, Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

The Symantec ManHunt™ console enables encrypted and authenticated
communication over a propriety protocol and maintains a secure SSH session. It
contains two main tabs that provide a view of Monitored Devices and Incidents.
The Monitored Devices tab provides a tree-oriented view of the network topology,
with a detail summary for each device. The Incident tab provides detailed
descriptions of incidents and events taking place in the monitored network, and
includes a drilled-down environment for multiple detail levels. In this drilled-down
environment, you are not able to see the actual signature like so many of the
vendor solutions but you can see what the event actually triggered on.

The console includes reporting using dynamic chart and graph generation, again,
with drill-down and data retrieval. Several pre-defined reports include view and
print options and can be saved in PDF or HTML format to send through email.
The reporting feature can be defined through report scheduling to automatically
generate selected reports on a pre-determined time.

The Symantec ManHunt™ solution is so feature rich that a paper could be
written to address each different element of this solution in great detail; however,
the intent of this paper is to provide a possible solution for intrusion detection on
high-speed networks. What we are looking at is one possible solution, out of
several. The Symantec ManHunt™ Intrusion Detection System that can be used
by itself or along side any other possible solution. Within my company, we have
looked at utilizing the signature-based solution of Snort™ with ManHunt to take
some of the signature-based pattern-matching load off of the ManHunt node.

Conclusion

While Symantec ManHunt™ proves to be a viable solution for intrusion detection;
it is not the only one and may not fit everyone’s needs or budget. Intrusion
detection on high-speed networks is not cheap or easy, but it can be done.
Regardless of the solution that you choose, careful thought should go into the
decision making process. Take into account the vulnerabilities that exist and the
risks associated with each one. Determine what method or methods are best for
your environment. There are several solutions available and each should be
considered on an individual basis according to your needs. Plan out the network
and proper placement of each sensor so that monitoring and reliable detection
can be achieved. If you over do it or think it may be overkill, don’t worry about it.
You can never be too safe.

References

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

Bayalan, Miseal. “Intrusion Management.” SANS.org. URL:
http://www.giac.org/practical/GCIA/Misael_Balayan_GCIA.pdf. (Feb. 28, 2003)

Berg, Al. “Feeling Vulnerable?” Information Security Magazine. Feb. 2002. URL:
http://infosecuritymag.techtarget.com/2002/feb/features_vulnerable.shtml.

Hurst, Jim. “What are some emerging options for NIDS?” SANS.org. URL:
http://www.sans.org/resources/idfaq/emerg_nids.php.

Laing, Brian. “How do you implement IDS (network based) in a heavily switched
environment?” SANS.org. URL:
http://www.sans.org/resources/idfaq/switched.php.

NSS. “Gigabit IDS Group Test – Edition 2.” Aug. 2003. URL:
http://www.nss.co.uk/download_form.htm. (Aug. 15, 2003)

Symantec Enterprise Solutions. “Symantec ManHunt.” URL:
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=156.

Symantec Security Services. “Symantec ManHunt 3.0 Setup, Application, and
Maintenance.” Student Guide. Symantec Education. August 4, 2003.

WhiteHat, Inc. “Symantec ManHunt.” URL:
http://www.whitehatinc.com/symantec/manhunt/.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

Assignment #2 – Network Detects

Network Detect 1: Backdoor Q access

=+

[**] BACKDOOR Q access [**]
10/24/02-18:34:41.216507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
255.255.255.255:31337 -> 32.245.249.236:515 TCP TTL:15 TOS:0x0 ID:0 IpLen:20
DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
63 6B 6F cko

=+

[**] BACKDOOR Q access [**]
10/24/02-18:48:23.276507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
255.255.255.255:31337 -> 32.245.133.244:515 TCP TTL:15 TOS:0x0 ID:0 IpLen:20
DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
63 6B 6F cko

=+

1. Source of Trace:

The raw log was taken from the GIAC Certification Practical logs at random:
http://www.incidents.org/logs/RAW/2002.9.30. The IDS is on the 32.245.0.0/16
network. The true IP addresses are obviously obscured because of the bad
checksums in the IP and TCP headers.

2. Detect was generated by:

This detect was generated by myself. I was actually just setting up a computer to
run tcpdump and snort for testing purposes and ran this log through tcpdump in
standard dump format to look at the packets and determine the host IP address.

tcpdump –r ../logs/2002.9.24 –nevXS

I saw several packets coming from the IP address 255.255.255.255, all
attempting to access port 515. Noticing that the packet also used the hacker’s
31337 port as the source port, I decided to run the log back through using a filter
to extract only the data I wanted to see.

tcpdump –r ../logs/2002.9.24 –nevXS ‘src host 255.255.255.255 and dst
port 515’

Now, let’s look at an example of the packets that I thought were suspicious.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

18:34:41.216507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
60: IP (tos 0x0, ttl 15, id 0, offset 0, flags [none], length: 43, bad cksum
7bd4 (->90ec)!) 255.255.255.255.31337 > 32.245.249.236.515: R [bad tcp cksum
30fc (->4614)!] 0:3(3) ack 0 win 0 [RST cko]
0x0000 4500 002b 0000 0000 0f06 7bd4 ffff ffff E..+......{.....
0x0010 20f5 f9ec 7a69 0203 0000 0000 0000 0000 zi..........
0x0020 5014 0000 30fc 0000 636b 6f00 0000 P...0...cko...

18:48:23.276507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
60: IP (tos 0x0, ttl 15, id 0, offset 0, flags [none], length: 43, bad cksum
efcc (->4e5)!) 255.255.255.255.31337 > 32.245.133.244.515: R [bad tcp cksum
a4f4 (->ba0c)!] 0:3(3) ack 0 win 0 [RST cko]
0x0000 4500 002b 0000 0000 0f06 efcc ffff ffff E..+............
0x0010 20f5 85f4 7a69 0203 0000 0000 0000 0000 zi..........
0x0020 5014 0000 a4f4 0000 636b 6f00 0000 P.......cko...

To alleviate my suspicion, I then ran the log back through Snort to see what
alerts were detected using the following command:

snort –c ../etc/snort.conf –r ../logs/2002.9.24 –h 32.245.0.0/16 –k
none –deyv

3. Probability the source address was spoofed:

The source address in this series of packets is most likely spoofed. There are
several reasons for the assumption. Let’s look at a sample packet again for
analysis.

18:34:41.216507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
60: IP (tos 0x0, ttl 15, id 0, offset 0, flags [none], length: 43, bad cksum
7bd4 (->90ec)!) 255.255.255.255.31337 > 32.245.249.236.515: R [bad tcp cksum
30fc (->4614)!] 0:3(3) ack 0 win 0 [RST cko]
0x0000 4500 002b 0000 0000 0f06 7bd4 ffff ffff E..+......{.....
0x0010 20f5 f9ec 7a69 0203 0000 0000 0000 0000 zi..........
0x0020 5014 0000 30fc 0000 636b 6f00 0000 P...0...cko...

18:48:23.276507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
60: IP (tos 0x0, ttl 15, id 0, offset 0, flags [none], length: 43, bad cksum
efcc (->4e5)!) 255.255.255.255.31337 > 32.245.133.244.515: R [bad tcp cksum
a4f4 (->ba0c)!] 0:3(3) ack 0 win 0 [RST cko]
0x0000 4500 002b 0000 0000 0f06 efcc ffff ffff E..+............
0x0010 20f5 85f4 7a69 0203 0000 0000 0000 0000 zi..........
0x0020 5014 0000 a4f4 0000 636b 6f00 0000 P.......cko...

Source Address – The source address is 255.255.255.255, which is the
broadcast address normally used to send broadcast messages to all listening
devices on the Internet. 255.255.255.255 is normally the destination address
within a packet and not the source. This address was most likely chosen to
obscure the true source address and return any response back to broadcast
where the true source would be listening.

Source port – 31337. After seeing that traffic was coming from broadcast, I
noticed the “eleet” hacker port. While there is chance that an ephemeral port of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

31337 could be negotiated, however, several attempts to connect to port 515
from 31337 is somewhat “fishy.”

TTL – Without a true source address the time to live is hard to determine,
however, all of the packets in this series had the same TTL value of 15.

IP ID – The IP ID is set to 0. Generally, the IP ID is set to a value between 1 and
65,535. All of the packets have an IP ID of 0 and unless they were
retransmissions the IP ID should change. This is a sign that the packets were
crafted.

TCP Flags – The RST and ACK flags are set. The RST in itself is not suspicious
but it is most often the response in an established session. The proper response
to the RST/ACK would be an ACK back to the source address acknowledging the
receipt of the RST. This is quite possibly the purpose behind crafting the
broadcast address as the source.

4. Description of attack:

On the Network Associates web site http://vil.nai.com/vil/content/v_100468.htm is
a posting for Backdoor Q.

There are several variants of this trojan. Filenames used by this trojan can vary between
versions. This description is based on one of the later versions. This threat, as with most
remote access trojans, consists of 2 components: the client and server. Once the server
is running on the victim machine, the hacker is able to connect (and administer that
machine) using the client component.9

This attack seems to be a scan in attempt to elicit some type of response to
determine if there are listening hosts on the network.

5. Attack mechanism:

The intent of this scan seems to be to elicit a response from the destination host.
Theoretically, the attacker is probably looking for an ACK back from the sent
packet containing the RST and ACK flag set.

This scan to me seems to be crafted, however, I would say poorly. The response
to an unsolicited RST/ACK should be no response at all. The intent may have
been to elicit a response from poorly configured systems with the assumption
that if an ACK was returned that the systems are not maintained and vulnerable.

9 NAI

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

6. Correlation:

I found a discussion on the same type of traffic at the following link:
http://www.shmoo.com/mail/firewalls/jun01/msg00006.shtml

CERT has advisories posted regarding some of the vulnerabilities in the Line
Printer Daemon (LPD) at the following links:
http://www.cert.org/advisories/CA-2001-30.html
http://www.cert.org/advisories/CA-2001-32.html

There have been quite a few postings in practicals regarding this same type of
scan. One of particular interest was one posted by Trenton Riddell
(http://www.giac.org/practical/Trenton_Riddell_GCIA.doc). Unlike myself, he
captured the same traffic outside his network that alerted snort as “Backdoor Q
access.”

7. Evidence of active targeting:

I do not feel that this was active targeting. The scans are using addresses
throughout the network in an attempt to find a listening host. The way the tool
was crafted is probably the reason for the specific port the scan was looking for.

8. Severity: 0

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)
Each value is ranked on a scale from 1 (lowest) to 5 (highest).

Criticality: 1

The scan was targeting the LPD with a RST/ACK that should elicit no response.

Lethality: 3

If this scan would have responded with the intended response, the attacker could
exploit the LPD with a specially crafted packet to allow the attacker to gain
access to the system and traverse the network.10

System countermeasures: 2

Since this is an older vulnerability, if systems that run the Line Printer Daemon
are present it should have been patched with the available patch.

10 CERT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

Network countermeasures: 2

The ranking seems a little high but the fact that we saw traffic from
255.255.255.255 into the network makes me think that the network is poorly
secured. My company network denies broadcast traffic at the border and is
again defined on the firewall.

9. Defensive recommendations:

If the network owns the border router, it should configure the ACLs to deny all
traffic incoming with the source address of 255.255.255.255 to start with.
Blocking ports at the router is also good practice for services that are not utilized.
The targeted port 515, definitely, should be blocked at the router. There should
not be any legitimate traffic from the external network coming in directly to a
printer daemon.

If vulnerable systems are located on the network, they should be analyzed to
determine if a compromise has occurred.

10. Multiple choice test question:

 What should the response be to an unsolicited RST/ACK?

a. ACK
b. RST
c. FIN/ACK
d. None of the above

Answer: c
An unsolicited RST/ACK should not elicit a response according to RFC 793
Transmission Control Protocol.11

Network Detect 2: Proxy scan

Jun 20 00:00:00 tcp 216.232.9.229(1422) xxx.xxx.xxx.231(3127),
denied
Jun 20 00:00:06 tcp 220.99.138.166(4867) xxx.xxx.xxx.35(3127),
denied
Jun 20 00:00:08 tcp 220.99.138.166(4738) xxx.xxx.xxx.37(3127),
denied

11 IETF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

Jun 20 00:00:08 icmp 217.88.124.253 xxx.xxx.xxx.221
denied
Jun 20 00:00:14 tcp 220.99.138.166(3208) xxx.xxx.xxx.35(3128),
denied
Jun 20 00:00:16 tcp 216.232.9.229(1690) xxx.xxx.xxx.231(1080),
denied

1. Source of Trace:

This was taken from the external router log produced on my company network.
Our intrusion detection is inside of the external router and the attack did not
reach anything that would log; therefore, no other logs are available to correlate
the data. The internal IP addresses have been obfuscated for security reasons.

2. Detect was generated by:

Self observation of the external router logs pulled on a daily basis. Looking at
the logs for signs of malicious behavior by hand can be tedious but there can
also be a wealth of knowledge in what is happening just outside your border.
Here is a compiled example of the scan:

Access Attempts logged By MY_ROUTER
Mon Day Time Type Source Address (Port) Destination Address (Port)
--- --
Jun 20 00:00:06 tcp 220.99.138.166(4867) xxx.xxx.xxx.35(3127),
denied
Jun 20 00:00:06 tcp 220.99.138.166(4867) xxx.xxx.xxx.35(3127),
denied
Jun 20 00:00:06 tcp 220.99.138.166(4867) xxx.xxx.xxx.35(3127),
denied
Jun 20 00:00:22 tcp 220.99.138.166(3486) xxx.xxx.xxx.35(1080),
denied
Jun 20 00:00:40 tcp 220.99.138.166(4068) xxx.xxx.xxx.36(3128),
denied
Jun 20 00:01:01 tcp 220.99.138.166(4738) xxx.xxx.xxx.37(3127),
denied
Jun 20 00:01:28 tcp 220.99.138.166(3825) xxx.xxx.xxx.40(3128),
denied
Jun 20 00:01:36 tcp 220.99.138.166(4105) xxx.xxx.xxx.40(1080),
denied
Jun 20 00:01:44 tcp 220.99.138.166(4382) xxx.xxx.xxx.41(3127),
denied
Jun 20 00:01:52 tcp 220.99.138.166(4869) xxx.xxx.xxx.41(3128),
denied
Jun 20 00:01:58 tcp 220.99.138.166(3825) xxx.xxx.xxx.40(3128),
denied
Jun 20 00:02:04 tcp 220.99.138.166(4105) xxx.xxx.xxx.40(1080),
denied
Jun 20 00:02:24 tcp 220.99.138.166(3209) xxx.xxx.xxx.41(1080),
denied
Jun 20 00:02:40 tcp 220.99.138.166(3507) xxx.xxx.xxx.42(3127),
denied

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

Jun 20 00:02:53 tcp 220.99.138.166(4053) xxx.xxx.xxx.42(1080),
denied
Jun 20 00:03:02 tcp 220.99.138.166(4326) xxx.xxx.xxx.43(3127),
denied
Jun 20 00:03:04 tcp 220.99.138.166(3698) xxx.xxx.xxx.44(3128),
denied
Jun 20 00:03:11 tcp 220.99.138.166(4727) xxx.xxx.xxx.43(3128),
denied
Jun 20 00:03:16 tcp 220.99.138.166(3427) xxx.xxx.xxx.44(3127),
denied
Jun 20 00:03:28 tcp 220.99.138.166(3698) xxx.xxx.xxx.44(3128),
denied
Jun 20 00:03:33 tcp 220.99.138.166(3970) xxx.xxx.xxx.44(1080),
denied
Jun 20 00:03:52 tcp 220.99.138.166(4247) xxx.xxx.xxx.45(3127),
denied
Jun 20 00:04:00 tcp 220.99.138.166(4629) xxx.xxx.xxx.45(3128),
denied
Jun 20 00:04:17 tcp 220.99.138.166(3345) xxx.xxx.xxx.46(3127),
denied
Jun 20 00:04:30 tcp 220.99.138.166(3902) xxx.xxx.xxx.46(1080),
denied
Jun 20 00:04:37 tcp 220.99.138.166(4176) xxx.xxx.xxx.47(3127),
denied
Jun 20 00:04:48 tcp 220.99.138.166(4969) xxx.xxx.xxx.47(1080),
denied
Jun 20 00:05:04 tcp 220.99.138.166(3554) xxx.xxx.xxx.48(3128),
denied

3. Probability the source address was spoofed:

Since there were no other logs to correlate the data to, I can’t tell if the packets
have any signs of crafting. However, because of the ports that are being
scanned the source address is probably real.

Source Address – The source address is 220.99.138.166. If you do a whois on
the IP address, you will be returned with the following information from APNIC.

 % [whois.apnic.net node-1]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html
inetnum: 220.96.0.0 - 220.99.255.255
netname: OCN-JPNIC-JP
descr: OCN Provided By NTT-Communications which is ISP
descr: in Chiyoda-ku, Tokyo, Japan
country: JP
admin-c: JNIC1-AP
tech-c: JNIC1-AP
remarks: **
remarks: Allocated to JPNIC member. Authoritative
remarks: information regarding assignments and allocation
remarks: made from within this block can also be queried
remarks: at whois.nic.ad.jp. To obtain an English output
remarks: query whois -h whois.nic.ad.jp x.x.x.x/e
remarks: Email address for spam or abuse complaints : abuse@ocn.ad.jp
remarks: **
mnt-by: MAINT-JPNIC
mnt-lower: MAINT-JPNIC
changed: hm-changed@apnic.net 20020904
changed: ip-apnic@nic.ad.jp 20040413
status: ALLOCATED PORTABLE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

source: APNIC
role: Japan Network Information Center
address: Kokusai-Kougyou-Kanda Bldg 6F, 2-3-4 Uchi-Kanda
address: Chiyoda-ku, Tokyo 101-0047, Japan
country: JP
phone: +81-3-5297-2311
fax-no: +81-3-5297-2312
e-mail: hostmaster@nic.ad.jp
admin-c: SS13-AP
tech-c: SY7-AP
nic-hdl: JNIC1-AP
mnt-by: MAINT-JPNIC
changed: apnic-ftp@nic.ad.jp 19990629
changed: ip-staff@nic.ad.jp 20030806
source: APNIC
inetnum: 220.99.128.0 - 220.99.255.255
netname: PLALA
descr: Plala Networks Inc.
country: JP
admin-c: MN2905JP
tech-c: HS3694JP
remarks: This information has been partially mirrored by APNIC from
remarks: JPNIC. To obtain more specific information, please use the
remarks: JPNIC whois server at whois.nic.ad.jp. (This defaults to
remarks: Japanese output, use the /e switch for English output)
changed: apnic-ftp@nic.ad.jp 20030203
remarks: This information has been partially mirrored by APNIC from
remarks: JPNIC. To obtain more specific information, please use the
remarks: JPNIC whois server at whois.nic.ad.jp. (This defaults to
remarks: Japanese output, use the /e switch for English output)
changed: apnic-ftp@nic.ad.jp 20040609
source: JPNIC

In that it is a valid IP address according to APNIC and the ports that it is trying to
probe may return some type of response to allow the hacker to gain access to
the system leads me to believe that the IP address is not spoofed.

4. Description of attack:

The attack is obviously a scan for Socks and squid proxies in attempt to locate a
compromised system or one that is running the service to exploit possible
vulnerabilities within the service.

A CVE that covers the squid proxy vulnerability can be found at the following
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0068

A CAN, which is under review at this time, that covers the socks proxy
vulnerability can be found at the following URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0315

Along with the proxies, the attacker appears to be probing for port 3127. This
port is left open as a back door by the myDoom virus12 which future could be an
avenue for a denial of service attack in the future, according to CERT at
http://www.cert.org/incident_notes/IN-2004-01.html.

12 LinkLogger

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

5. Attack mechanism:

The attacker is probing the network in search of responding ports. Since there
are no other logs to correlate with, I can only assume that the TCP packets that
are being sent are to elicit some response to find a listening or compromised
host. For example, the attacker sends an unsolicited TCP packet with the ACK
flag set. The normal response would be for the host to respond back with RST.
If that is indeed the case, the attacker now knows that: 1) the host is alive and
listening, and 2) there is no filtering in place.

If the attacker receives no response then he can assume: 1) some type of
filtering is in place, or 2) that the host is not alive.

If the attacker receives the response that is being solicited then he can attempt to
exploit the vulnerabilities with a buffer overflow using specially crafted packets.
In the case of the back door left by the myDoom virus, the attacker could possibly
take control of that system to launch a denial of service attack.

6. Correlations:

I found a posting at http://lists.sans.org/pipermail/unisog/2004-March/006955.php
that states that they had seen some scans, particularly on the weekends, just a
couple of months back. I was unable to see any other postings to correlate my
findings.

7. Evidence of active targeting:

It appears to be targeted in the sense that it is targeting three specific ports as
possible back doors to compromised systems. Also, the attacker is scanning the
full range of addresses on this particular subnet. The scans are not rapid in
succession but fairly consistent.

8. Severity: 1

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)
Each value is ranked on a scale from 1 (lowest) to 5 (highest).

Criticality: 3

I believe that criticality is low based on the fact that we do not run socks or squid
proxies on our network. It is possible that the myDoom virus could be introduced

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20

but active virus scanning with updated definitions is in use. However, the
criticality of this attack can lead to compromised systems.

Lethality: 3

I do not think that this scan in itself is very lethal but the nature of business on my
network a compromise could be very lethal. A continued monitoring of this type
of scan and any other associated IP addresses should be considered.

System countermeasures: 2

The systems on this network are patched and updated regularly or as they
become available. The systems administrators do a fair job of ensuring that the
systems are secure and up to date.

Network countermeasures: 3

I am happy to say that this scan was denied at the border router. The network
currently uses a defense-in-depth approach. Inside the border router, using
extensive ACLs, is monitored by a network IDS. A firewall is then in place that all
traffic to the internal network is routed through. The internal network is monitored
by multiple network IDS on various segments along with Cisco IDS modules in
the switches. Correlation with various agencies allows us to put preventative
measures up at the border ahead of time.

9. Defensive Recommendations:

The border router should be configured to block incoming requests for services
that are not in use or vulnerable to remote access. If the scan is coming from a
specific host, then that IP address can be blocked at the router. Firewalls, should
also be set to block any unused services. Since the scan also includes the port
commonly associated with the myDoom virus, a full system scan with updated
definitions should be done on all systems to ensure that none of the systems
have been compromised.

10. Multiple choice test question:

What range of ports does the myDoom virus open up and listen on?

a. 4200-4000
b. 3127-3198
c. 1024-1029
d. 135-139

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21

Answer: b.
A system that has been compromised by the myDoom virus opens ports 3127-
3198, according to CERT http://www.cert.org/incident_notes/IN-2004-01.html.

Questions from the intrusions@incidents.org mailing list

I posted this detect to the intrusions mailing list. I only received one reply from
Donald Smith. Mostly, comments were made to my post as helpful hints but he
did post some questions to be answered.

1) From Donald Smith ‘Donald.Smith@qwest.com’

>Jun 20 00:02:40 tcp 220.99.138.166(3507) xxx.xxx.xxx.42(3127),
>denied
>Jun 20 00:02:53 tcp 220.99.138.166(4053) xxx.xxx.xxx.42(1080),
>denied
>Jun 20 00:03:02 tcp 220.99.138.166(4326) xxx.xxx.xxx.43(3127),
>denied
Look at the source and dst ports notice anything?
There appears to be some “near” matches (1st and forth digit matching.

I reviewed the log and found a few that fit that pattern. Take for example the top
line:
>Jun 20 00:02:40 tcp 220.99.138.166(3507) xxx.xxx.xxx.42(3127),
>denied

Here the first and forth digits in the source and destination ports do match.
However, it is not consistent throughout the log. I did notice that the source port
is using a small range of ports.

2) From Donald Smith ‘Donald.Smith@qwest.com’

Did you notify the abuse department listed above?

I did not notify the abuse department. Our normal procedure is to notify US
DOE-CIAC (Computer Incident Advisory Capability). Since I work for a
government contractor, notifications are made to CIAC in order to correlate
events to see if there are any patterns to such attacks. CIAC will usually make
the call on whether an event warrants notification of the abuse department. At
times, the decision to watch for repeated traffic without notification will allow you
to get a better picture of what an attacker is trying to accomplish.

3) From Donald Smith ‘Donald.Smith@qwest.com’

>The attack is obviously a scan for Socks and squid proxies in attempt to
YES
>locate a compromised system or one that is running the service to exploit
Compromised?

The firewall logs were analyzed to ensure that the source address did not make
any attempts to pass through. The targets machines were scanned with Nessus

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22

to make sure that the targeted ports were not listening. There were no signs of
compromise on any of the machines that were targeted.

4) From Donald Smith ‘Donald.Smith@qwest.com’

Some servers scan for proxies to prevent spammers from using one proxies to
send mail to them.
Did you check and see what that ip is?

I was unable to determine any information other than the output by APNIC. What
I did find though is that the IP address could possibly be infected and the scan is
a result of worm propagation. MyDoom.B propagates by the opening up ports to
serve as proxies. The ports used by MyDoom.B variant are: TCP 80, 1080,
3128, 8080, 10080. Along with these ports it may look for port 3127 opened by a
previous infection of the A variant.

5) From Donald Smith ‘Donald.Smith@qwest.com’

>If the attacker receives no response then he can assume: 1) some type of
>filtering is in place, or 2) that the host is not alive.
Any other possibilities?

This is the only information that I could find.

6) From Donald Smith ‘Donald.Smith@qwest.com’

>What range of ports does the myDoom virus open up and listen on?
Mydoom.a or.b?

W32.Mydoom.A@mm (also known as W32.Novarg.A) is a mass-mailing worm that arrives as an
attachment with the file extension .bat, .cmd, .exe, .pif, .scr, or .zip.

When a computer is infected, the worm sets up a backdoor into the system by opening TCP ports
3127 through 3198, which can potentially allow an attacker to connect to the computer and use it
as a proxy to gain access to its network resources.13

Network Detect 3: DNS named version attempt

=+

[**] DNS named version attempt [**]
06/23/02-08:22:36.474488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x48
203.197.102.167:2168 -> 46.5.139.43:53 UDP TTL:42 TOS:0x0 ID:59165 IpLen:20
DgmLen:58
Len: 30
12 34 00 80 00 01 00 00 00 00 00 00 07 76 65 72 .4...........ver
73 69 6F 6E 04 62 69 6E 64 00 00 10 00 03 sion.bind.....

=+

13 Symantec Security Response

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23

[**] DNS named version attempt [**]
06/23/02-06:33:46.514488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x48
203.197.102.180:1434 -> 46.5.220.1:53 UDP TTL:44 TOS:0x0 ID:13154 IpLen:20
DgmLen:58
Len: 30
12 34 00 80 00 01 00 00 00 00 00 00 07 76 65 72 .4...........ver
73 69 6F 6E 04 62 69 6E 64 00 00 10 00 03 sion.bind.....

=+

1. Source of Trace:

The raw log was taken from the GIAC Certification Practical logs at random:
http://www.incidents.org/logs/RAW/2002.5.10. The IDS is on the 46.5.0.0/16
network. The true IP addresses are obviously obscured because of the bad
checksums in the IP and TCP headers.

2. Detect was generated by:

This detect was generated by Snort. The alerts were generated using the default
configuration file that comes with the Snort install. All of the signatures were
used. The following command was issued to run Snort:

snort –c ../etc/snort.conf –r ../logs/2002.5.10 –h 46.5.0.0/16 –k none
–deyv

The data was then analyzed using the following tcpdump command:

tcpdump -nevXS -r /media/cdrom/2002.5.23 'dst port 53'

06:33:46.514488 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
72: IP (tos 0x0, ttl 44, id 13154, offset 0, flags [none], length: 58, bad
cksum 23d9 (->1ed1)!) 203.197.102.180.1434 > 46.5.220.1.53: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS? version.bind. (30)
0x0000 4500 003a 3362 0000 2c11 23d9 cbc5 66b4 E..:3b..,.#...f.
0x0010 2e05 dc01 059a 0035 0026 8e01 1234 0080 5.&...4..
0x0020 0001 0000 0000 0000 0776 6572 7369 6f6e version
0x0030 0462 696e 6400 0010 0003 .bind.....

08:22:36.474488 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
72: IP (tos 0x0, ttl 42, id 59165, offset 0, flags [none], length: 58, bad
cksum c300 (->bdf8)!) 203.197.102.167.2168 > 46.5.139.43.53: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS? version.bind. (30)
0x0000 4500 003a e71d 0000 2a11 c300 cbc5 66a7 E..:....*.....f.
0x0010 2e05 8b2b 0878 0035 0026 dc06 1234 0080 ...+.x.5.&...4..
0x0020 0001 0000 0000 0000 0776 6572 7369 6f6e version
0x0030 0462 696e 6400 0010 0003 .bind.....

18:50:19.824488 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4, length
72: IP (tos 0x0, ttl 47, id 21233, offset 0, flags [none], length: 58, bad
cksum 762c (->7026)!) 210.195.43.35.4507 > 46.5.156.176.53: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS? version.bind. (30)
0x0000 4500 003a 52f1 0000 2f11 762c d2c3 2b23 E..:R.../.v,..+#

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24

0x0010 2e05 9cb0 119b 0035 0026 f6e2 1234 0080 5.&...4..
0x0020 0001 0000 0000 0000 0776 6572 7369 6f6e version
0x0030 0462 696e 6400 0010 0003 .bind.....

3. Probability the source address was spoofed:

The source IP address is probably not spoofed because the attacker is doing
reconnaissance by requesting the version of BIND that the DNS is using. In an
attempt to gain this information, the reply would need to respond to a valid IP
address.

Source Address – The source addresses are three different IP addresses.

Destination Address – Again, three different IP addresses.

Destination Port – All three packets are destined for port 53, the reserved port for
DNS.

Payload – All three packets are querying for the version of BIND.

4. Description of the attack:

This is a reconnaissance attempt to gain information from the DNS server to
possibly exploit known vulnerabilities in earlier versions of BIND. The payload
shows that a version.bind attempt was sent. There was no indication that a reply
was sent back, so this attempt was unsuccessful.

5. Attack Mechanism:

An attacker can query a DNS server for the version of BIND running. Some
versions of BIND, by default, respond to these queries while BIND version 9; by
default, does not. A response to this query can assist an attacker in discovering
servers that are potentially vulnerable to exploits associated with specific
versions of BIND.14

6. Correlations:

I found some information on the same type of reconnaissance on a University
network at the following URL: http://www.dshield.org/pipermail/intrusions/2001-
June/000492.php.

14 Snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 25

Also, there have been several postings in GCIA practicals on the same type of
probe resulting in “DNS named version attempt” alerts.

There are several CVEs listed on buffer overflows in BIND:

CVE-1999-0009 Inverse query buffer overflow in BIND 4.9 and BIND 8.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0009

CVE-1999-0833 Buffer overflow in BIND 8.2 via NXT records.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0833

CVE-2001-0010 Buffer overflow in transaction signature (TSIG) handling code in
BIND 8 allows remote attackers to gain root privileges.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0010

CVE-2001-0011 Buffer overflow in nslookupComplain function in BIND 4 allows
remote attackers to gain root privileges.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0011

7. Evidence of active targeting:

Using this log is a small picture of the total traffic and only a couple of systems
were targeted, however, this does not seem to indicate active targeting. The
attacker seems to be doing reconnaissance or probing for potential targets based
on a response from a DNS server running a version of BIND that responses to
named version requests.

8. Severity: 2

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)
Each value is ranked on a scale from 1 (lowest) to 5 (highest).

Criticality: 5

If the servers targeted were actually DNS servers, the information that is
contained on this server is critical in that it provides name resolution to the entire
organization.

Lethality: 2

This type of traffic is reconnaissance in nature and is not considered lethal. If the
request would have provided what version of BIND the server was running, then
a more lethal exploit could have been initiated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 26

System countermeasures: 2

The system is unknown by the traffic in the log, but since there was not a reply to
the request, systems are updated and patched.

Network countermeasures: 3

Assuming that this is an external DNS server, it should be located outside the
firewall. No response from the server suggests that there was no information
leakage to the attacker.

9. Defensive Recommendations:

Ensure that all external DNS servers are placed outside the firewall. The firewall
should be configured to block all traffic destined for port 53 on the internal
network. Patch and update all DNS servers to the most current version of BIND.
Configure the BIND not to respond to version requests is a possible solution.
Check firewall logs to see if other reconnaissance by the same IP address has
been logged.

10. Multiple choice test question:

23:38:27.655334 24.34.240.10.53 > 207.189.175.3 13079*- 1/0/0 CHAOS)
TXT 9.1.1 (48) (DF)

What type of traffic does this indicate?

a. DNS named version request
b. Echo reply
c. GET request
d. DNS named version reply

Answer: d.
If a DNS server is queried with version.bind and elicits a response, then the
traffic seen would be the response. This response indicates that the DNS server
is using BIND version 9.1.1.

Assignment #3 – Analyze This

Executive Summary
The following report is the result of a preliminary audit of the University network
as requested by GIAC.org. After reading this report, the University should have a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 27

better understanding of the current state of the network and the defensive
measures needed to protect their assets on the network in the future.

Over the five days that were analyzed, there were 130161 Alerts, 13816216 Port
Scans, and 5098 Out of Spec packets used in the analysis. The early analyses
of the data lead me to believe that just about every computer on the network had
been compromised. However, this does not appear to be the case. Although
there are some signs of compromise, the majority of the traffic appears to have
generated a great amount of false positives. This results in the usefulness of the
intrusion detection system being minimized. There are some simple changes to
the configurations that will be addressed in the Defensive Recommendations that
will help resolve these issues.

The only major issue that I have noted is the amount of what appears to be Peer-
to-Peer (P2P) file sharing that is taking place on the network. This type of traffic
is most likely the reason for the compromised systems. Not only does file
sharing expose the network to viruses and Trojans, but also the legal
ramifications of sharing copyrighted material that can be imposed on the
University and students.

Along with the P2P traffic, there appears to be the use of remote desktop
applications by various hosts on the University network. Remote desktop
applications could potentially allow unauthorized access to the network through
vulnerabilities associated with these applications, which will be discussed in
detail later in this report.

On a good note, there were no alerts generated for internal-to-internal traffic.
This is usually a good thing. There appears to be signs of worm propagation, but
nothing has alerted to such traffic. However, there is a possibility that there are
no sensors or rules in place to monitor internal traffic.

Suspicious Internal Hosts
MY.NET.109.25 MY.NET.150.226 MY.NET.69.210
MY.NET.112.189 MY.NET.153.195 MY.NET.80.119
MY.NET.112.139 MY.NET.17.45 MY.NET.80.224
MY.NET.112.199 MY.NET.43.10 MY.NET.84.186
MY.NET.112.226 MY.NET.69.155

The suspicious hosts are based on extensive P2P file sharing and signs of worm
propagation seen coming from these hosts. These hosts should be removed for
the network and observed for signs of compromise.

Defensive Recommendations
Defensive measures are often difficult in an environment that must provide an
accessible means to information to the internal network, as well as, external.
Unfortunately, this exposes those environments to malicious activity that a more

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 28

secure environment does not have to worry about. The University should assess
the risks and the consequences associated with the malicious and illegal
activities taking place on their network and protect critical and valuable assets by
the use of access control lists (ACLs) and firewall rules.

The University should consider hardening the operating systems on the network
hosts to prevent compromises through security holes that exist in default
installations of operating systems. A good guide for this can be at the NSA
Security Recommendation Guide website at the following link:
http://nsa2.www.conxion.com/win2k/download.htm15

A security policy should be in place and enforced. Enforcement could be through
the use of disciplinary action and/or the use of a product to disable or quarantine
hosts that violate this policy. Products such as netIQ16 or StillSecure VAM17 can
provide this type of policy management, as well as, patch management to ensure
that hosts connected to the network are up to date on all security patches and
fixes.

These recommendations are a starting point that will help to reduce future risks
to the network. A more complete audit should be performed to determine what
acceptable and authorized traffic is and tune the intrusion detection system
accordingly. Other recommendations will be made throughout this report.

Technical Suggestions:

To reduce the amount of false positives:
Tune Snort rules to be more content specific, rather than alerting on a specific
port. Determine what makes a packet malicious and use that as the content.
Also, modify the portscan preprocessor options by raising the detection period to
reduce the amount of portscan alerts by random scanning.

To monitor traffic:
Tune Snort rules to log rather than alert for rules that are meant to monitor
activity to valuable assets.

And last, a complete vulnerability scan of all network assets should be done
periodically. In order to protect the network, a complete understanding of what is
out there and what is vulnerable is a must. Implement a patch management
policy to address the vulnerabilities that are found to ensure that the appropriate
patches are applied in a timely manner.

15 NSA
16 netIQ
17 StillSecure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 29

Log files Analyzed
Alert logs Scan logs OOS logs
alert_040420 scans_040420 oos_report_040417
alert_040421 scans_040421 oos_report_040418
alert_040422 scans_040422 oos_report_040419
alert_040423 scans_040423 oos_report_040420
alert_040426 scans_040426 oos_report_040422

The dates on the OOS logs do not correspond with the Alert and Scan logs;
however, the dates in the OOS log file do match with the dates of the Alert and
Scan logs. The dates between 4/23 and 4/26 were skipped in order to receive a
matching set of log files out the most current files available.

Alerts

Top Ten Alert Summary
Alert Hits Src IPs Dst IPs Ports %
EXPLOIT x86 NOOP 38903 2084 916 65 29.89
MY.NET.30.4 activity 35289 313 23 27.11
High port 65535 tcp – possible Red Worm –
traffic

19471 119 154 86 14.96

MY.NET.30.3 activity 15900 197 23 12.22
SMB Name Wildcard 8627 61 639 137 6.63
Tiny Fragments – Possible Hostile Activity 4412 5 18 3.39
RFB – Possible WinVNC – 010708-1 2355 15 17 1099 1.81
Null Scan! 1936 89 54 152 1.49
NMAP TCP ping! 869 218 67 46 .67
Possible trojan server activity 419 48 52 9 .32

Top 10 External Talkers
Alert type Count
134.192.42.11 21779
131.92.177.18 5206
209.164.32.205 4763
68.55.155.26 3730
69.136.228.63 3470
64.12.24.34 3073
220.197.192.39 2611
69.138.77.62 2478
151.196.115.104 2454
64.12.24.35 2329

Top 10 Internal Talkers
Alert type Count
MY.NET.43.8 3230
MY.NET.11.4 3108

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 30

MY.NET.69.232 2990
MY.NET.11.7 2508
MY.NET.43.13 2123
MY.NET.153.81 883
MY.NET.150.44 632
MY.NET.75.13 506
MY.NET.150.198 435
MY.NET.70.156 245

EXPLOIT x86 NOOP
In my research of the top alerts, my search began with finding the rules that
caused the alert to determine what the possible trigger is. Other than close
matches at Snort.org, I found this one in Eric Evans practical assignment.

alert tcp $EXTERNAL any -> $INTERNAL any (msg:"EXPLOIT x86 NOOP";
content: "|90
90 90 90 90|"; flags: A+; reference:arachnids,181;)

Rule Source: http://www.geocrawler.com/archives/3/5343/2001/4/50/5487319/18

This alert accounts for 29.89% of all the alerts collected. Out of all 38903
“EXPLOIT x86 NOOP” alerts, the majority of the traffic is related to port 80
(HTTP traffic) with the exception of a few hosts that had traffic destined for port
135. We will look at this traffic later. For the most part this appears to be normal
Internet related traffic. The rule above triggers on traffic that contains a series of
NOOPs (|90 90 90 90|). The alert has most likely triggered on Internet traffic that
contains NOOP padding. Internet downloads of binary and image files tend to
cause many false positives, as it is common to pad these files. A NOOP exploit
uses what is called a “NOOP Sled” to fill memory buffers in an attempt to execute
shellcode to gain access to the targeted machine. Now, the traffic related to port
135. Port 135 relates to RPC DCOM, which was exploited with the MSBlaster
worm that looks for vulnerable hosts listening on port 135. The following IP
addresses alerted with “EXPLOIT x86 NOOP” destined for port 135:
MY.NET.190.102, MY.NET.190.93, MY.NET.190.95, MY.NET.190.97, and
MY.NET.190.98.

Timestamp Alert SrcIP SrcPort DstIP DstPort
04/23-17:44:30.697743 EXPLOIT x86 NOOP 81.203.168.147 4066 MY.NET.190.95 135
04/23-17:44:17.166145 EXPLOIT x86 NOOP 81.203.168.147 4064 MY.NET.190.93 135
04/23-17:49:37.395311 EXPLOIT x86 NOOP 130.228.160.98 1286 MY.NET.190.97 135
04/23-17:27:55.600556 EXPLOIT x86 NOOP 213.39.146.147 2394 MY.NET.190.102 135
04/23-17:26:20.858987 EXPLOIT x86 NOOP 216.114.98.129 2468 MY.NET.190.102 135
04/23-17:26:19.361561 EXPLOIT x86 NOOP 216.114.98.129 2463 MY.NET.190.97 135
04/23-17:26:17.853508 EXPLOIT x86 NOOP 216.114.98.129 2461 MY.NET.190.95 135
04/23-17:11:59.705701 EXPLOIT x86 NOOP 80.116.219.2 4334 MY.NET.190.98 135

18 Evans, Eric

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 31

A look at the scan logs does not indicate that these machines have been
compromised, as there are no scans originating from these IP addresses
consistent with worm propagation. However, MY.NET.190.93,95, and 97-98
were seen in the “SMB Named Wilcard” that will be discussed later.

Recommendation: Consider modifying this rule, this will reduce the amount of
false positive data that an analyst must go through. The concern of the analyst
should be to look for signs of attempted shellcode against a targeted machine.
The NOOP is a precursor to the execution of shellcode. If this is the purpose of
this alert, tune it to include shellcode commands. A scan of the target machines
should be done to ensure that there are no signs of compromise. Ensure that all
hosts are update on the latest patches and block port 135 traffic from entering
the network.

MY.NET.30.4 activity
This alert is generated by a custom Snort rule. The exact reason for this rule is
unclear, unless its purpose is to monitor all traffic to this server. This rule seems
to generate a great deal of alerts to be analyzed by the analyst. MY.NET.30.4
appears to be a Novell NetWare server running Tomcat Apache, based on the
connections to ports 524, 51443, and 8009. Port 524 is the default port for
NetWare Core Protocol (NCP), which handles client server requests.19 Port 524
is also the default port for eDirectory services. Ports 51443 and 8009 are used
for remote admin, iManager20 and Web Manager21 respectively. The rest of the
traffic seen to MY.NET.30.4 is primarily to ports 80 and 443, which are commonly
used for the Web Admin Interface that is equivalent to rconsole. There are
several IP addresses that appear to be accessing MY.NET.30.4 on the remote
administration ports. The top sources for port 51443 are:

Source Address # of Alerts Destination Ports
134.192.42.11 21779 51443
69.136.228.63 3470 51443
68.33.49.146 1581 51443, 80
172.209.111.241 811 51443, 80

The first IP address resolved to the University of Maryland, which leads me to
believe that this is legitimate traffic. The next two IP addresses resolve to
Comcast and the last to America Online.

**
OrgName: University of Maryland at Baltimore
OrgID: UMAB-1
Address: 601 W. Lombard St
City: Baltimore
StateProv: MD

19 Faske, Mark
20 Hughes, Timothy
21 Que

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 32

PostalCode: 21201
Country: US

NetRange: 134.192.0.0 - 134.192.255.255
CIDR: 134.192.0.0/16
NetName: UMAB-NET
NetHandle: NET-134-192-0-0-1
Parent: NET-134-0-0-0-0
NetType: Direct Assignment
NameServer: NMS1.UMARYLAND.EDU
NameServer: NMS2.UMARYLAND.EDU
Comment:
RegDate: 1988-06-15
Updated: 2004-09-02

TechHandle: FS178-ARIN
TechName: Smith, Frederick
TechPhone: +1-410-706-8337
TechEmail: fsmith@umaryland.edu

OrgTechHandle: BSM40-ARIN
OrgTechName: Smith, Bryan
OrgTechPhone: +1-410-706-8237
OrgTechEmail: bsmith@umaryland.edu

ARIN WHOIS database, last updated 2004-09-07 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

**
Comcast Cable Communications, Inc. JUMPSTART-3 (NET-69-136-0-0-1)
 69.136.0.0 - 69.143.255.255
Comcast Cable Communications, Inc BALTIMORE-B-6 (NET-69-136-224-0-1)
 69.136.224.0 - 69.136.239.255

ARIN WHOIS database, last updated 2004-09-07 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

**
OrgName: America Online
OrgID: AOL
Address: 22000 AOL Way
City: Dulles
StateProv: VA
PostalCode: 20166
Country: US

NetRange: 172.192.0.0 - 172.211.255.255
CIDR: 172.192.0.0/12, 172.208.0.0/14
NetName: AOL-172BLK-2
NetHandle: NET-172-192-0-0-1
Parent: NET-172-0-0-0-0
NetType: Direct Allocation
NameServer: DAHA-01.NS.AOL.COM
NameServer: DAHA-02.NS.AOL.COM
NameServer: DAHA-07.NS.AOL.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2002-02-13
Updated: 2003-08-08

TechHandle: AOL-NOC-ARIN
TechName: America Online, Inc.
TechPhone: +1-703-265-4670
TechEmail: domains@aol.net

OrgAbuseHandle: AOL382-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-703-265-4670
OrgAbuseEmail: abuse@aol.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 33

OrgNOCHandle: AOL236-ARIN
OrgNOCName: NOC
OrgNOCPhone: +1-703-265-4670
OrgNOCEmail: noc@aol.net

OrgTechHandle: AOL-NOC-ARIN
OrgTechName: America Online, Inc.
OrgTechPhone: +1-703-265-4670
OrgTechEmail: domains@aol.net

ARIN WHOIS database, last updated 2004-09-07 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Port 524 traffic was almost entirely comprised of four IP addresses, they are as
follows:

Source Address # of Alerts Destination Ports
68.55.155.26 400 524, 8009
68.34.92.70 292 524
64.8.195.10 226 524
68.57.90.146 198 524

The only other port of concern is 8009, which was accessed by two IP
addresses. The first one 68.55.155.26, the major talker of port 524, was again
the major player. The rest of the alerts belonged to the IP address
68.55.158.146. Most likely this the same person with a dynamically assigned IP
address as both IP addresses resolves to Comcast. The rest of the IP addresses
also resolved to Comcast with the exception of 64.8.195.10. This IP address
resolved to DSL.net, as seen in the following Whois results.

OrgName: DSL.net, Inc.
OrgID: FTCI
Address: 545 Long Wharf Dr. 5th floow
City: New Haven
StateProv: CT
PostalCode: 06511
Country: US

NetRange: 64.8.192.0 - 64.8.255.255
CIDR: 64.8.192.0/18
NetName: DSL-NET-15
NetHandle: NET-64-8-192-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.DSL.NET
NameServer: NS2.DSL.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-02-06
Updated: 2004-04-27

OrgAbuseHandle: ABUSE177-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-203-772-1000
OrgAbuseEmail: abuse@dsl.net

OrgNOCHandle: NOC291-ARIN
OrgNOCName: Network Operations Center
OrgNOCPhone: +1-203-772-1000
OrgNOCEmail: noc@dsl.net

OrgTechHandle: IPADM54-ARIN
OrgTechName: IP Administration

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 34

OrgTechPhone: +1-203-772-1000
OrgTechEmail: ipadmin@dsl.net

ARIN WHOIS database, last updated 2004-09-07 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

A good majority of the activity is requests on port 80, which would provide strong
support to the fact that this node is a web server.

Mark Faske analyzed the same traffic in his practical assignment. His
assumptions were the same in that the majority of the ports were related to web-
based administration on Novell servers.

Recommendation: Based on the shear volume of alert activity logged, it would
appear that too many generalized alerts are being logged from this web server.
The activity to this web server makes up 27.11% of the alert volume for the five
days analyzed. Combined with the alerts generated from a like web server
MY.NET.30.3, these alerts are responsible for more than a third of the alerts
generated, 39.33% to be exact. An analyst can quickly be consumed by the
amount of generalized alerts only to miss more important alerts. The Snort rules
should be tuned to log such activity rather than alert, this will result in more
important alerts to trigger to indicate malicious activity. A periodic vulnerability
scan of public access servers should be performed to ensure that only those
services that are suppose to be running are the only services running. If remote
management is approved practice, then consideration should be given to using
secure channels. Examples would be SSH or encrypted VPN access.

High port 65535 tcp – possible Red Worm – traffic
This alert, which amounts to approximately 15% of the alerts, is another custom
rule to detect port 65535 traffic that is associated with RC1 trojan and Adore
worm. There seems to be a considerable amount of traffic in and out of the local
network, most of which was associated with an ephemeral port connecting to port
65535. There are several alert associated with port 65535 traffic to external port
25 (SMTP).

At first, the assumption was that the network had a major worm infection. I kept
trying various sources to find how the Red Worm propagates and hours of staring
at all the alerts generated by port 65535. I then correlated the scan logs of
various internal hosts with the timestamps of the alerts to find that prior to traffic
that generates the “High port 65535 tcp – possible Red Worm – traffic” alert,
there are numerous SYN scans for ports 6881-6888.

Take a look at the following logs, the first one is the scan log and the second is
from the alert database with corresponding traffic.

Apr 22 11:37:10 130.85.153.81:1645 -> 206.170.204.115:6882 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1646 -> 68.252.236.34:6883 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1648 -> 164.58.59.60:6881 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 35

Apr 22 11:37:10 130.85.153.81:1649 -> 65.124.168.126:6883 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1653 -> 213.51.48.5:6883 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1654 -> 68.248.29.41:6881 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1655 -> 65.3.81.59:6881 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1656 -> 65.92.168.80:6882 SYN ******S*
Apr 22 11:37:10 130.85.153.81:1661 -> 68.162.146.118:6886 SYN ******S*
Apr 22 11:37:12 130.85.153.81:1644 -> 220.39.6.191:6887 SYN ******S*

Timestamp Alert SrcIP SrcPort DstIP DstPort
04/22-
11:38:47.878631

High port 65535 tcp - possible
Red Worm - traffic

MY.NET.153.81 1759 195.36.245.141 65535

04/22-
11:38:49.290031

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

04/22-
11:38:49.290391

High port 65535 tcp - possible
Red Worm - traffic

MY.NET.153.81 1759 195.36.245.141 65535

04/22-
11:38:51.719914

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

04/22-
11:38:51.720424

High port 65535 tcp - possible
Red Worm - traffic

MY.NET.153.81 1759 195.36.245.141 65535

04/22-
11:38:51.725190

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

04/22-
11:38:51.730467

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

04/22-
11:38:51.860697

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

04/22-
11:38:51.861999

High port 65535 tcp - possible
Red Worm - traffic

MY.NET.153.81 1759 195.36.245.141 65535

04/22-
11:38:51.862124

High port 65535 tcp - possible
Red Worm - traffic

MY.NET.153.81 1759 195.36.245.141 65535

04/22-
11:38:51.862266

High port 65535 tcp - possible
Red Worm - traffic

MY.NET.153.81 1759 195.36.245.141 65535

04/22-
11:38:53.299850

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

04/22-
11:38:53.310262

High port 65535 tcp - possible
Red Worm - traffic

195.36.245.141 65535 MY.NET.153.81 1759

It appears that these hosts are using P2P software known as BitTorrent.
BitTorrent listens on ports 6881-6999.22 What I believe is happening is that the
hosts are scanning for BitTorrent servers and making a connection. Once the
connection is made, port 65535 is negotiated as the file transfer port. I cannot
find any hard evidence that this is exactly true, but it seems logical.

The rest of the traffic generated the same alert, but is very different. It had me
puzzled because it did not fit the same pattern as the other traffic. Analyzing the
scan logs did not turn up anything, as I did not see any type of scans coming
from the associated hosts.

Timestamp Alert SrcIP SrcPort DstIP DstPort
04/22-
14:19:29.583217

High port 65535 tcp - possible Red Worm -
traffic

MY.NET.25.10 65535 65.222.188.7 25

04/22- High port 65535 tcp - possible Red Worm - MY.NET.25.10 65535 65.222.188.7 25

22 FedoraForum.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 36

Timestamp Alert SrcIP SrcPort DstIP DstPort
14:19:29.599019 traffic
04/22-
14:19:29.599165

High port 65535 tcp - possible Red Worm -
traffic

MY.NET.25.10 65535 65.222.188.7 25

04/22-
14:19:29.599307

High port 65535 tcp - possible Red Worm -
traffic

MY.NET.25.10 65535 65.222.188.7 25

04/22-
14:19:29.599464

High port 65535 tcp - possible Red Worm -
traffic

MY.NET.25.10 65535 65.222.188.7 25

04/22-
14:19:29.599515

High port 65535 tcp - possible Red Worm -
traffic

MY.NET.25.10 65535 65.222.188.7 25

I believe this is legitimate SMTP traffic, possibly retries to deliver email to
external mail servers. For example, the destination IP address in the table above
resolves to the following:

UUNET Technologies, Inc. UUNET65 (NET-65-192-0-0-1)
 65.192.0.0 - 65.223.255.255
Public Citizen Inc. UU-65-222-188 (NET-65-222-188-0-1)
 65.222.188.0 - 65.222.188.255

ARIN WHOIS database, last updated 2004-09-08 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Further digging using IP Lookup23 resulted in the IP address belonging to
savgw.citizen.org. I’m taking a guess, but this is most likely a valid
GroupWise mail server for Citizen.org.

Peter Storm in his practical assignment stated that if this was the Red
Worm/Adore infection scans for vulnerable systems would be seen from these
machines. I did not see any signs of this in my analysis.

Recommendation: This Snort rule is most likely to general in that it only looks for
traffic using port 65535. Tune this rule to be more specific to the signature of the
Adore.worm or simply just drop this rule to reduce the amount of false positives.
The Snort default rule set includes several rules that address the vulnerabilities in
Linux systems associated with Adore.worm, which are: wuftpd, bind, lprng, and
statd. Ensure that all Linux machines are patched and up to date to reduce
exposure to vulnerabilities. An example Snort rule, that was in Peter Storm’s
practical that can be found on Whitehats, follows:

alert TCP $EXTERNAL any -> $INTERNAL 515 (msg: "IDS457/lpr_LPRng-
redhat7-overflow-security.is"; flags: A+; content: "|31DB 31C9 31C0
B046 CD80 89E5 31D2 B266 89D0 31C9 89CB|"; nocase; classtype: system-
attempt; reference: arachnids,457;)24

MY.NET.30.3 activity
This alert is generated by a custom Snort rule. The exact reason for this rule is
unclear, unless its purpose is to monitor all traffic to this server. This rule seems

23 SuperScan4
24 Whitehats

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 37

to generate a great deal of alerts to be analyzed by the analyst. The majority of
the alerts generated were port 524 traffic (86.41%). The majority of this traffic
was associated with the following IP addresses: 131.92.177.18 – 5206 alerts,
resolves to Army Information Systems Command – Aberdeen, 69.138.77.62 –
2457 alerts, another Comcast address, 151.196.115.104 – 2454 alerts, and
138.88.98.71 – 227 alerts, both of which resolve to Verizon Global Networks.

OrgName: Army Information Systems Command - Aberdeen (EA)
OrgID: AISCAE
Address: AMSSB-SCI-N/BLDG E5234
City: ABERDEEN PROVING GROUND
StateProv: MD
PostalCode:
Country: US

NetRange: 131.92.0.0 - 131.92.255.255
CIDR: 131.92.0.0/16
NetName: APGEA-NET1
NetHandle: NET-131-92-0-0-1
Parent: NET-131-0-0-0-0
NetType: Direct Assignment
NameServer: NS01.ARMY.MIL
NameServer: NS02.ARMY.MIL
NameServer: NS03.ARMY.MIL
Comment:
RegDate: 1988-11-01
Updated: 2001-08-09

TechHandle: RW943-ARIN
TechName: Ward, Ronnie
TechPhone: +1-410-436-4755
TechEmail: RONNIE.WARD@sbccom.apgea.army.mil

ARIN WHOIS database, last updated 2004-09-08 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

**
Verizon Global Networks, Inc. VZGNI-PUB-1 (NET-138-88-0-0-1)
 138.88.0.0 - 138.88.255.255
Verizon Internet Services VZ-DSLDIAL-RSTNVA-6 (NET-138-88-9-0-1)
 138.88.9.0 - 138.88.159.255

ARIN WHOIS database, last updated 2004-09-08 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Since the IP address that belongs to the Army (Aberdeen) amounts to a third of
the alerts, I would assume that this is valid traffic. IP addresses 69.138.77.62
and 151.196.115.104 was also associated with port 3019. This port is registered
to Resource Manager, which is used to manage a wide range of resources.
Besides port 80 traffic, other traffic observed on this host related to various ports
associated with worm propagation; however, no response was observed in the
alert and scan logs.

Recommendation: Much the same as MY.NET.30.4. Tuning this rule to log
rather than alert will reduce the need to analyze normal traffic. Scan this
machine to ensure that no signs of compromise exist. Again, a periodic
vulnerability scan should be performed to ensure that only those services that are
suppose to be running are the only services running.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 38

SMB Name Wildcard
The “SMB Name Wildcard” alert is only related to SMB traffic leaving the internal
network. There does not appear to be a Snort rule for this alert, therefore it must
be another custom alert. My assumption, as the name implies, is that this is a
“Wildcard” rule to catch all SMB traffic to external hosts. The top three sources in
this alert are:

Source Address # of Alerts
MY.NET.11.4 3108
MY.NET.11.7 2508
MY.NET.75.13 506

These three hosts, along with less significant traffic by MY.NET.11.5 and
MY.NET.11.6, appear to be normal SMB traffic. SMB traffic is considered to be
normal NetBIOS traffic with many Windows machines and some Linux nodes if
configured as a Samba server or client. This traffic appears that this might be an
attempt by the internal hosts to resolve NetBIOS information from the external
host, possibly for P2P file sharing or IRC chat. Windows machines often
exchange these queries when using Windows File and Print sharing to determine
NetBIOS names when only IP addresses are known. Another reason for SMB
traffic to outside sources may be a result of negotiations from connections such
as identd requests from a mail server or IRC server.25 IRC will be discussed in
detail later.

For the most part it appears that MY.NET.11.4 talks to two external hosts,
210.120.128.117 and 129.254.25.169. These IP addresses resolve to the
following:

% [whois.apnic.net node-1]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 210.120.128.0 - 210.120.191.255
netname: DACOM-CHOLLIANRAS-KR
descr: DACOM
descr: 706-1 Yeoksam-dong Kangnam-gu
descr: SEOUL
descr: 135-610
country: KR
admin-c: KH206-AP
tech-c: WS168-AP
mnt-by: MAINT-KR-DACOM
status: ASSIGNED NON-PORTABLE
remarks: imported from KRNIC
changed: hm-changed@apnic.net 20021025
source: APNIC

person: Kyunam Hwang
address: DACOM
address: 706-1 Yeoksam-dong Kangnam-gu
address: SEOUL
address: 135-610

25 Whitehats

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 39

country: KR
phone: +82-2-6220-7462
fax-no: +82-2-6220-0323
e-mail: zprivacy1@chollian.net
nic-hdl: KH206-AP
mnt-by: MAINT-KR-DACOM
remarks: imported from KRNIC
changed: hm-changed@apnic.net 20021022
source: APNIC

person: Wangseok Shin
address: DACOM
address: 706-1 Yeoksam-dong Kangnam-gu
address: SEOUL
address: 135-610
country: KR
phone: +82-2-6220-7462
fax-no: +82-2-6220-0323
e-mail: zprivacy2@chollian.net
nic-hdl: WS168-AP
mnt-by: MAINT-KR-DACOM
remarks: imported from KRNIC
changed: hm-changed@apnic.net 20021022
source: APNIC

**
OrgName: Internet Assigned Numbers Authority
OrgID: IANA
Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US

NetRange: 169.254.0.0 - 169.254.255.255
CIDR: 169.254.0.0/16
NetName: LINKLOCAL
NetHandle: NET-169-254-0-0-1
Parent: NET-169-0-0-0-0
NetType: IANA Special Use
NameServer: BLACKHOLE-1.IANA.ORG
NameServer: BLACKHOLE-2.IANA.ORG
Comment: Please see RFC 3330 for additional information.
RegDate: 1998-01-27
Updated: 2002-10-14

OrgAbuseHandle: IANA-IP-ARIN
OrgAbuseName: Internet Corporation for Assigned Names and Number
OrgAbusePhone: +1-310-301-5820
OrgAbuseEmail: abuse@iana.org

OrgTechHandle: IANA-IP-ARIN
OrgTechName: Internet Corporation for Assigned Names and Number
OrgTechPhone: +1-310-301-5820
OrgTechEmail: abuse@iana.org

ARIN WHOIS database, last updated 2004-09-08 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Other NetBIOS traffic to IP addresses assigned to IANA are IP addresses:
MY.NET.11.5, MY.NET.11.6, and MY.NET.11.7. I assume that these hosts are
running DHCP since the IP addresses assigned to IANA are invalid IP addresses
for the Internet, according to RFC 3330.26 RFC 3330 states, “This is the "link
local" block. It is allocated for communication between hosts on a single link.

26 Faqs.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 40

Hosts obtain these addresses by auto-configuration, such as when a DHCP
server may not be found.”

However, there are several hosts that do not fit what is “normal” NetBIOS traffic.
Three of the top sources of this are the following:

Source Address # of Alerts
MY.NET.150.44 632
MY.NET.150.198 435
MY.NET.43.14 220

Timestamp Alert SrcIP SrcPort DstIP DstPort
04/20-14:13:47.325546 SMB Name Wildcard MY.NET.150.44 1058 200.81.6.20 137
04/20-14:14:01.825863 SMB Name Wildcard MY.NET.150.44 1058 200.81.6.20 137
04/20-14:14:25.388745 SMB Name Wildcard MY.NET.150.44 1058 200.81.6.20 137
04/20-14:14:59.827571 SMB Name Wildcard MY.NET.150.44 1058 200.81.6.20 137
04/20-14:19:35.139906 SMB Name Wildcard MY.NET.150.44 1058 216.118.120.35 137
04/20-14:19:54.035203 SMB Name Wildcard MY.NET.150.44 1058 216.118.120.35 137
04/20-14:20:52.036370 SMB Name Wildcard MY.NET.150.44 1058 216.118.120.35 137

I assumed that this traffic was the same traffic that Peter Storm described in his
practical, but what I did not see were entries in the scan logs to correlate the
data.

Further analysis showed that the “SMB Name Wildcard” alert is possibly the
result of stimulus from external sources.

Timestamp Alert SrcIP SrcPort DstIP DstPort
04/20-22:55:24.352259 SMB Name Wildcard MY.NET.150.44 1058 218.154.73.202 137
04/20-22:55:24.659901 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:24.909182 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:24.910383 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:24.911381 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.406728 SMB Name Wildcard MY.NET.150.44 137 218.154.73.202 137
04/20-22:55:25.411404 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.413471 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.416618 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.417727 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.659325 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.660389 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.661926 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:25.663104 EXPLOIT x86 NOOP 218.154.73.202 1160 MY.NET.150.44 80
04/20-22:55:28.276067 SMB Name Wildcard MY.NET.150.44 1058 218.154.73.202 137
04/20-22:55:28.400723 SMB Name Wildcard MY.NET.150.44 137 218.154.73.202 137

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 41

Timestamp Alert SrcIP SrcPort DstIP DstPort
04/20-22:55:42.776302 SMB Name Wildcard MY.NET.150.44 1058 218.154.73.202 137
04/20-22:56:42.589804 SMB Name Wildcard MY.NET.150.44 1058 218.154.73.202 137

It appears that this traffic might after all be “normal.” I assume that the IP
address MY.NET.150.44 is a web server for research purposes that is used for
file sharing. This address resolved to illiad.lib.university.edu. MY.NET.150.198,
which was characteristic of the same traffic, resolves to
pharos2.lib.university.edu.

Recommendation: This rule should be modified to look for inbound SMB traffic.
Routers and firewalls should also be configured with ACLs and firewall rules to
deny any outbound NetBIOS traffic. There is no legitimate reason for NetBIOS
traffic to leave the boundaries of the network.

Tiny Fragments – Possible Hostile Activity
This alert is caused by the minifrag preprocessor: 128. The minfrag option
checks the size of IP fragments. If a fragment is smaller than a set threshold
value, an alert is generated.27 Fragmentation small enough to trigger the
preprocessor should not occur normally. However, it appears that with
correlation of the scan logs, this is mostly the result of port scanning attempts
using crafted packets by the IP address 209.164.32.205, which in this five-day
period accounted for the third most alerts.

OrgName: XO Communications
OrgID: XOXO
Address: Corporate Headquarters
Address: 11111 Sunset Hills Road
City: Reston
StateProv: VA
PostalCode: 20190-5339
Country: US

ReferralServer: rwhois://rwhois.eng.xo.com:4321/

NetRange: 209.164.0.0 - 209.164.63.255
CIDR: 209.164.0.0/18
NetName: XOXO-BLK-18
NetHandle: NET-209-164-0-0-1
Parent: NET-209-0-0-0-0
NetType: Direct Allocation
NameServer: NAMESERVER.CONCENTRIC.NET
NameServer: NAMESERVER1.CONCENTRIC.NET
NameServer: NAMESERVER2.CONCENTRIC.NET
NameServer: NAMESERVER3.CONCENTRIC.NET
Comment: For best results, please send all spam and worm reports only to abuse@xo.com.
RegDate: 1997-11-14
Updated: 2003-08-08

OrgAbuseHandle: XCNV-ARIN
OrgAbuseName: XO Communications, Network Violations
OrgAbusePhone: +1-866-285-6208
OrgAbuseEmail: abuse@xo.com

27 Roesch, Marty

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 42

OrgTechHandle: XCIA-ARIN
OrgTechName: XO Communications, IP Administrator
OrgTechPhone: +1-703-547-2000
OrgTechEmail: ipadmin@eng.xo.com

ARIN WHOIS database, last updated 2004-09-07 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

This alert was also generated by IP addresses 212.41.93.144, 61.19.223.227,
61.216.77.135, and 200.221.157.175. Since 61.216.77.135 was one of the two
major attackers, the following Whois results are listed. The other IP addresses
were from an address pool out of Switzerland and a pool from Latin American
and Caribbean Addresses.

% [whois.apnic.net node-1]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 61.216.0.0 - 61.219.255.255
netname: HINET-TW
descr: CHTD, Chunghwa Telecom Co.,Ltd.
descr: Data-Bldg.6F, No.21, Sec.21, Hsin-Yi Rd.
descr: Taipei Taiwan 100
country: TW
admin-c: HN27-AP
tech-c: HN28-AP
remarks: Delegated to HiNet for ADSL subscriber.
remarks: This information has been partially mirrored by APNIC from
remarks: TWNIC. To obtain more specific information, please use the
remarks: TWNIC whois server at whois.twnic.net.
mnt-by: MAINT-TW-TWNIC
changed: hostmaster@twnic.net 20010117
status: ALLOCATED PORTABLE
source: APNIC

person: HINET Network-Adm
address: CHTD, Chunghwa Telecom Co., Ltd.
address: Data-Bldg. 6F, No. 21, Sec. 21, Hsin-Yi Rd.,
address: Taipei Taiwan 100
country: TW
phone: +886 2 2322 3495
phone: +886 2 2322 3442
phone: +886 2 2344 3007
fax-no: +886 2 2344 2513
fax-no: +886 2 2395 5671
e-mail: network-adm@hinet.net
nic-hdl: HN27-AP
remarks: same as TWNIC nic-handle HN184-TW
mnt-by: MAINT-TW-TWNIC
changed: hostmaster@twnic.net 20000721
source: APNIC

person: HINET Network-Center
address: CHTD, Chunghwa Telecom Co., Ltd.
address: Data-Bldg. 6F, No. 21, Sec. 21, Hsin-Yi Rd.,
address: Taipei Taiwan 100
country: TW
phone: +886 2 2322 3495
phone: +886 2 2322 3442
phone: +886 2 2344 3007
fax-no: +886 2 2344 2513
fax-no: +886 2 2395 5671
e-mail: network-center@hinet.net
nic-hdl: HN28-AP
remarks: same as TWNIC nic-handle HN185-TW
mnt-by: MAINT-TW-TWNIC
changed: hostmaster@twnic.net 20000721
source: APNIC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 43

inetnum: 61.216.0.0 - 61.216.255.255
netname: HINET-NET
descr: CHTD, Chunghwa Telecom Co., Ltd.
descr: Data-Bldg. 6F, No. 21, Sec. 21, Hsin-Yi Rd.,
descr: Taipei Taiwan
country: TW
admin-c: CYK-TW
tech-c: CYK-TW
mnt-by: MAINT-TW-TWNIC
remarks: This information has been partially mirrored by APNIC from
remarks: TWNIC. To obtain more specific information, please use the
remarks: TWNIC whois server at whois.twnic.net.
changed: fkchung@ms1.hinet.net 20010117
status: ASSIGNED NON-PORTABLE
source: TWNIC

person: Chung Yung Kang
address: Chunghwa Telecom Data communication Business Group
address: No.21, Hsin-Yi Rd., sec. 1
address: Taipei Taiwan
country: TW
phone: +886-2-2322-3442
fax-no: +886-2-2344-2513
e-mail: cykang@ms1.hinet.net
nic-hdl: CYK-TW
remarks: This information has been partially mirrored by APNIC from
remarks: TWNIC. To obtain more specific information, please use the
remarks: TWNIC whois server at whois.twnic.net.
changed: hostmaster@twnic.net 19990924
source: TWNIC

Recommendation: Based on the assumption that these are malicious attempts
to gain access to the network, IP addresses 209.164.32.205 and 61.216.77.135
should be blocked at the border by the use of ACLs and denied by the firewall.
Since the remaining IP addresses only accounted for a couple of alerts each and
destined for one IP address, these should be monitored for any other attempts to
access the network or blocked. The machines that were targeted should be
removed from the network and scanned for signs of compromise.

RFB – Possible WinVNC – 010708 – 1
VNC stands for Virtual Network Computing. Basically, WinVNC is a remote
desktop application that allows you to view a remote desktop from anywhere on
the Internet.

This alert was generated 2355 times by several hosts. Analysis shows that these
hosts are running as VNC servers to external hosts. The University might allow
this application for educational purposes, but there are several security issues
with WinVNC.

WinVNC provides encrypted authentication at login; however, data transfer after
login is unencrypted. Everything that I could find on WinVNC, assures the user
that local logon is a must in order for a client to login. I would be interested in
confirming this. There is a known vulnerability that will allow remote access via a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 44

buffer overflow to a client. Also, there is another vulnerability that will allow
someone with local access to exploit a buffer overflow to add new users.28

The following link graph shows an example of the possible WinVNC traffic that
was captured during this five-day period. MY.NET.30.3 and MY.NET.30.4 traffic
appear to attempts by the external hosts to connect to these machines. I did not
see and traffic originating from these internal hosts. MY.NET.150.44 and
MY.NET.150.198 traffic is an “SMB Name Wildcard” alert in response to scans
from IP address 144.92.91.95. All the traffic back and forth appears to be
associated with 24.43.50.166. Only four alerts were associated with
144.92.91.95, which are most likely a response to an extensive scan of the entire
network by this host.

IP address 24.43.50.166 resolves to the following:

Rogers Cable Inc. ROGERS-CAB-3 (NET-24-42-0-0-1)
 24.42.0.0 - 24.43.255.255
Rogers Cable Inc. Lndn ON-ROG-LDN-18 (NET-24-43-48-0-1)
 24.43.48.0 - 24.43.51.255

ARIN WHOIS database, last updated 2004-09-08 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Recommendation: Continue to monitor this type of traffic. If this is indeed
WinVNC traffic and is authorized, consider tuning this rule to log rather than alert.

28 ICAT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 45

Other Snort rules should alert to malicious activity. Also, like with remote
management, consider the use of encrypted channels to prevent unauthorized
access. For example, a SSH tunnel to a bastion host that will only allow
authorized clients to the server.29 A good example of how to secure WinVNC
through the use of SSH is documented on the Bitvise website. If this is not
authorized activity, remove those hosts from the network and remove WinVNC
services. Scan for other signs of compromise before connecting back to the
network.

Scans
Nearly 14 million scan alerts were analyzed for the five-day period. Of the scan
alerts, 99.90% of those are associated with SYN Scans and UDP Scans. The
major concern is that 93% of all scans were from internal hosts.

Scan Summary
Scan Type # of Alerts % of All Scan Alerts
SYN Scan 8259149 59.78%
UDP Scan 5542620 40.12%
FIN Scan 9888 0.07%
UNKNOWN Scan 1974 0.014%
NULL Scan 929 0.007%
INVALIDACK Scan 660 0.005%
NOACK Scan 630 0.005%
VECNA Scan 276 0.002%
XMAS Scan 43 0.0003%
FULLXMAS Scan 20 0.0001%
SPAU Scan 12 0.00006%
SYNFIN Scan 8 0.00005%
NMAPID Scan 7 0.00005%

The scan logs were used extensively in the analysis of the alert logs. Since the
SYN Scans and UDP Scans were responsible for the majority of the scans, I will
analyze them in further detail.

SYN Scans
Internal hosts generated approximately 91% of the SYN scan alerts, with the
majority of the destinations to external hosts. The following table is a list of the
top five sources of the SYN Scan.

Source Address # of SYN Scan

Alerts
Destination Ports

MY.NET.17.45 1179172 2745,135,1025,445,3127,6129,139, 80
MY.NET.80.224 910226 445,3127,6129,139,3410,5000,2745,135,1025
MY.NET.112.189 713578 135

29 Norton, Ed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 46

MY.NET.81.39 694877 135
MY.NET.111.51 553549 445,139, 1025, 6129, 135,2745, 3410, 3127

The most probable cause of this traffic is that the machines are infected with a
virus and it is trying to propagate. The top two and number five all show signs of
propagation of the Backdoor.Agobot. The Agobot worm is an IRC-controlled
backdoor with network spreading capabilities that allow its authors to gain control
over computers and link them into P2P networks. These networks, in turn, can be
used to send large amounts of spam e-mail messages or to flood Web sites with
data.30

The other two are characteristic of the W32.Blaster worm that propagates rapidly
via port 135 to exploit RPC DCOM on unpatched systems.

Recommendation: The University should disconnect these machines from the
network and scan them with antivirus software with the current DAT files.
Completely disinfect the machines before connecting the machines to the
network. A complete review of all hosts to look for signs of infection is
recommended. Additionally, the University should block all unnecessary ports
except for those that are needed.

UDP Scans
Again, approximately 90% of the UDP Scans were generated by internal
sources. Although the top five sources only account for 38% of the alerts, there
were several more sources that generated around 100000 alerts each. With the
exception of MY.NET.1.3 and MY.NET.1.4, the majority of the traffic was what
appeared to be the result of more P2P file sharing by internal hosts. The
following table shows the top five sources.

Source Address # of UDP Scan Alerts Destination Ports
MY.NET.1.3 3629991 53
MY.NET.1.4 1072082 53
MY.NET.69.232 221506 Numerous ephemeral
MY.NET.69.214 167296 Numerous ephemeral
MY.NET.53.225 117977 Numerous ephemeral

Recommendation: The University should consider modifying the preprocessor
options to a higher threshold. This will reduce the amount of alerts generated if
file sharing is accepted practice on the network. Also, pass statements can be
used for the DNS servers. DNS servers generate a large amount of scans when
querying for name resolution. The pass statement will reduce the amount of
alerts generated by this normal DNS traffic.

30 eTrust PestPatrol

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 47

Out of Spec (OOS) Logs
There were only a total of 5098 OOS logs for the five day period analyzed. I am
not sure if this is because of insufficient logging or due to prior recommendations
in previous practical assignments. However, out of those logs 99.3% were
generated by external sources. These alerts were generated by illegal flags or
ECN bits set in the TCP packets. The following table lists the top five destination
hosts with associated ports.

Destination Address # of OOS Alerts Destination Ports
MY.NET.6.7 1685 80, 110
MY.NET.12.6 1352 25
MY.NET.24.44 453 80
MY.NET.5.67 156 8080
MY.NET.24.34 92 80

A large amount of the OOS alerts were generated by P2P traffic. Several
common file-sharing ports were noted, for example 6881-6888. The majority of
these alerts were generated because of what Snort sees as illegal bits, which are
now known as ECN and CWR bits. This is a new concept that is explained in
RFC 2481 as a type of flow control to prevent bottlenecks.31

It appears for the most part, this is legitimate traffic to the above IP addresses
based on the fact that these machines are web servers. MY.NET.12.6 is most
likely the SMTP server for the network.

Analysis Process
I began the analysis process be reading several practical assignments to
determine the best approach. After reading a couple of documents, I determined
that I would not try my hand at SnortSnarf or ACID based on the problems
documented by these individuals.

The alert logs were concatenated into one large file to add continuity to the
alerts. I comma delimited the file using a perl script often recommended and
borrowed from Tod Beardsley. I also used the other script that was posted by
Tod Beardsley to generate an alert summary of the data.

I found another useful set of scripts that were written by James Maher. The alert-
reports.pl script generated some very nice reports to perform early analysis. This
script produces lists like: Hits per Source Address, Hits per Destination Address,
and Attack/Scan Types. There is also a nice set of options to tailor the output.

I must say that it would have been hard to get started had it not been for the
summaries provided by the excellent written scripts of the aforementioned
gentlemen. I have included these scripts in Appendix A. Once I had all the data

31 IETF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 48

I wanted, I began the brutal task of querying the Access database for more
information.

I followed the same process for the scan logs. I concatenated the scan logs into
one large file. Did I say large? Once again, I used Tod Beardsley’s csv.pl script
to parse the file. As soon as I did that, I realized that I was going to have trouble
transferring the file to CD to import it into the Access database. I went back and
parsed each log separately and then imported it into Access. I lost several files
doing that, but I still had plenty to play with.

I couldn’t find a script to parse the oos logs that worked so I resorted to manually
removing parts of the logs in order to import them into an Excel spreadsheet. I
used several sorting options and functions to count in order to analyze these
logs.

I must mention here that along with Internet sources, I used several previously
submitted practical assignments to correlate what I saw in the analysis. If they
were not specifically mentioned in the text of this report, they have been
mentioned in the references.

Equipment Used
Computer 1
HP Laptop
1800+
512K RAM
Windows XP
Microsoft Access XP
Microsoft Excel XP
Microsoft Word XP
SuperScan 4 (FoundStone tool that simplifies Whois queries and IP Lookups)

Computer 2
Toshiba Laptop
1.8 GHz
512K RAM
SuSE 9.1 Linux
Snort v2.1.3

References (Assignment #2)

CERT. “CERT® Advisory CA-2001-30 Multiple Vulnerabilities in lpd.” URL:
http://www.cert.org/advisories/CA-2001-30.html (July 14, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 49

CERT. “CERT® Advisory CA-2001-32 HP-UX Line Printer Daemon Vulnerable to
Directory Traversal.” URL: http://www.cert.org/advisories/CA-2001-32.html (July
14, 2004)

CERT. “CERT® Incident Note IN-2004-01.” URL:
http://www.cert.org/incident_notes/IN-2004-01.html. (July 16, 2004)

Common Vulnerabilities and Exposures. “CVE-1999-0009 Inverse query buffer
overflow in BIND 4.9 and BIND 8.” URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-1999-0009 (July 13, 2004)

Common Vulnerabilities and Exposures. “CVE-1999-0833 Buffer overflow in
BIND 8.2 via NXT records.” URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-1999-0833 (July 14, 2004)

Common Vulnerabilities and Exposures. “CVE-2001-0010 Buffer overflow in
transaction signature (TSIG) handling code in
BIND 8 allows remote attackers to gain root privileges.” URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0010 (July 13, 2004)

Common Vulnerabilities and Exposures. “CVE-2001-0011 Buffer overflow in
nslookupComplain function in BIND 4 allows remote attackers to gain root
privileges.” URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0011 (July 13, 2004)

Common Vulnerabilities and Exposures. “CVE-2002-0068” URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0068 (July 17, 2004)

Common Vulnerabilities and Exposures. “CAN-2004-0315” URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0315 (July 16, 2004)

IETF. “Transmission Control Protocol.” Sept. 1981. URL:
http://www.ietf.org/rfc/rfc793.txt (Aug. 4, 2004)

LinkLogger. “TCP Port 3127” April 30, 2004 URL:
http://www.linklogger.com/TCP3127.htm (Sept. 2, 2004)

Network Associates, Inc. “Backdoor-Q” McAfee. URL:
http://vil.nai.com/vil/content/v_100468.htm (July 15, 2004)

Riddell, Trent. “Detect #1 – Broadcast to Printer Port.” GIAC Certification
Practical Assignment version 3.0. Sans.org. URL:
http://www.giac.org/practical/Trenton_Riddell_GCIA.doc (July 14, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 50

Robertson, Paul D. “Re: Probe from 255.255.255.255?” The Shmoo Group. Jun
1, 2004. URL: http://www.shmoo.com/mail/firewalls/jun01/msg00006.shtml (July
15, 2004)

Snort Signature Database. “DNS named version attempt.” Snort.org URL:
http://www.snort.org/snort-db/sid.html?sid=257 (July 13, 2004)

Symantec Security Response. “W32.Mydoom.A@mm.” July 27, 2004 URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.novarg.a@mm.ht
ml (Aug. 10, 2004)

Symantec Security Response. “W32.Mydoom.B@mm.” July 27, 2004 URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.mydoom.b@mm.
html (Aug. 10, 2004)

Viner, Dennis. “[unisog] Increased Port 3128/1080 Scanning.” Sans.org. Mar. 5,
2004. URL: http://lists.sans.org/pipermail/unisog/2004-March/006955.php (July
17, 2004)

Zirkle, Laurie. “May 31, 2001 Probes.” DShield.org. Jun 1, 2001 URL:
http://www.dshield.org/pipermail/intrusions/2001-June/000492.php (Aug. 10,
2004)

References (Assignment #3)

Ackerman, Richard. “TCP/IP Ports” URL:
http://www.chebucto.ns.ca/~rakerman/port-table.html (Sept. 11, 2004)

Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and
Tools.” GIAC.org. Mar 15, 2002. URL:
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc (Aug. 31, 2004)

BitTorrent. “BitTorrent protocol specifications.” URL:
http://bitconjurer.org/BitTorrent/protocol.html (Sept. 6, 2004)

Bitvise. “Securing WinVNC Using SSH Connection Tunneling” URL:
http://www.bitvise.com/winvnc.html (Sept. 5, 2004)

Dshield. “Port Report.” Port 25. URL:
http://www.dshield.org/port_report.php?port=25&recax=1&tarax=2&srcax=2&per
cent=N&days=40 (Sept. 3, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 51

Dshield. “Port Report.” Port 113. URL:
http://www.dshield.org/port_report.php?port=113&recax=1&tarax=2&srcax=2&pe
rcent=N&days=40 (Sept. 6, 2004)

Dshield. “Port Report.” Port 135. URL:
http://www.dshield.org/port_report.php?port=135&recax=1&tarax=2&srcax=2&pe
rcent=N&days=40 (Sept. 7, 2004)

Dshield. “Port Report.” Port 3127. URL:
http://www.dshield.org/port_report.php?port=3127&recax=1&tarax=2&srcax=2&p
ercent=N&days=40 (Sept. 7, 2004)

Dshield. “Port Report.” Port 6129. URL:
http://www.dshield.org/port_report.php?port=6129&recax=1&tarax=2&srcax=2&p
ercent=N&days=40 (Sept. 7, 2004)

Dshield. “Port Report.” Port 6881. URL:
http://www.dshield.org/port_report.php?port=6881&recax=1&tarax=2&srcax=2&p
ercent=N&days=40 (Sept. 6, 2004)

eTrust PestPatrol – Pest Encyclopedia. “Backdoor.Agobot” URL:
http://www.pestpatrol.com/pestinfo/b/backdoor_agobot.asp (Sept. 8, 2004)

Evans, Eric. “Intrusion Detection In-Depth: GCIA Practical Assignment, v3.4.”
Dec. 11, 2003. URL: http://www.giac.org/practical/GCIA/Eric_Evans_GCIA.pdf
(Sept. 10, 2004)

Extreme Networks. “Recommendations for Virus Protection from Extreme
Networks®.” URL: http://www.extremenetworks.com/services/news/article4.asp
(Sept. 8, 2004)

Faske, Mark. “GCIA Certified Intrusion Analyst (GCIA) Practical Assignment.”
GIAC.org. Dec. 7, 2003. URL:
http://www.giac.org/practical/GCIA/Mark_Faske_GCIA.pdf (Sept. 11, 2004)

Faqs.org. “RFC 3330.” Sept. 2002. URL: http://www.faqs.org/rfcs/rfc3330.html
(Sept. 9, 2004)

FedoraForum.org. “Azureus BitTorrent, port 6881 security question” URL:
http://www.fedoraforum.org/forum/archive/index.php/t-20720.html (Sept. 6, 2004)

Gladiator Security Forum. “Emergency Processing Report for Sasser Worm and
its variants.” May 12, 2004. URL:
http://forum.gladiator-antivirus.com/index.php?showtopic=14534 (Sept. 9, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 52

Hughes, Timothy. “Re: 1501?” ADSM.org. Jul 7, 2001. URL:
http://msgs.adsm.org/cgi-bin/get/adsm0407/19/1.html (Sept. 8, 2004)

ICAT Metabase. “CAN-2001-0167: Buffer overflow in AT&T WinVNC.” NIST. May
5, 2001. URL: http://icat.nist.gov/icat.cfm?cvename=CAN-2001-0167 (Sept. 7,
2004)

ICAT Metabase. “CAN-2002-0971: Vulnerability in VNC, TightVNC, and
TridiaVNC.” NIST. Sept. 24,2002. http://icat.nist.gov/icat.cfm?cvename=CAN-
2002-0971 (Sept. 7, 2004)

Internet Storm Center. “Port History.” April 20, 2004. SANS.org. URL:
http://isc.sans.org/port_report.php?l=20&a=0&s=records&d=desc&date_month=0
4&date_day=20&date_year=2004 (Sept. 10, 2004)

Microsoft. “Windows Systems Resource Manager.” URL:
http://www.microsoft.com/windowsserver2003/downloads/wsrm.mspx (Sept. 8,
2004)

Montcalm, Erik. “GCIA Practical Assignment Version 3.3.” Nov. 12, 2003. URL:
http://www.giac.org./practical/GCIA/Erik_Montcalm_GCIA.pdf (Sept. 10, 2004)

Norton, Ed. “Safe® WinVNC.” OIT Security and Assurance. Sept. 12, 2002. URL:
http://www1.umn.edu/oit/img/assets/5630/SafeWinVNC.pdf (Sept. 7, 2004)

Novell. “Port Number Assignments.” URL:
http://www.novell.com/documentation/nw6p/index.html?page=/documentation/lg/
nw6p/adminenu/data/aclkn27.html (Sept. 9, 2004)

NSA. “Windows 2000 Security Recommendation Guides.” Jan. 16, 2004. URL:
http://nsa2.www.conxion.com/win2k/download.htm (Sept. 5, 2004)

Que. “Novell NetWare 6.5 Management Tools.” URL:
http://www.quepublishing.com/articles/article.asp?p=102274&seqNum=12 (Sept.
8, 2004)

Ramakrishnan, K. and S. Floyd. “A Proposal to add Explicit Congestion
Notification (ECN) to IP.” IETF. Jan. 1999 URL:
http://www.ietf.org/rfc/rfc2481.txt?number=2481 (Sept. 8, 2004)

Randier, Sylvain. “GCIA Practical Assignment.” URL:
http://www.giac.org/practical/GCIA/Sylvain_Randier_GCIA.pdf (Sept. 10, 2004)

Roesch, Marty. “Re: [snort] Tiny Fragments.” May 14, 2000 URL:
http://archives.neohapsis.com/archives/snort/2000-05/0103.html (Sept. 6, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 53

SANS. “Adore Worm” Version 0.8 April 12, 2001. Sans.org. URL:
http://www.sans.org/y2k/adore.htm (Sept. 7, 2004)

Schultz, Greg. “GCIA Practical Assignment.” Dec. 18, 2003. URL:
http://www.giac.org/practical/GCIA/Greg_Schultz_GCIA.pdf (Sept. 10, 2004)

Snort.org. “Snort Rules Database.” URL: http://www.snort.org/snort-db/ (Sept. 10,
2004)

Snort.org. “Snort Signature Database.” URL:
http://www.snort.org/snort-db/sid.html?sid=648 (Sept. 9, 2004)

Snort.org. “Snort Signature Database.” URL:
http://www.snort.org/snort-db/sid.html?sid=1394 (Sept. 9, 2004)

StillSecure. “Safe Access.” URL: http://www.stillsecure.com/products/sa/ (Sept.
8, 2004)

StillSecure. “VAM.” URL: http://www.stillsecure.com/products/vam/ (Sept. 8,
2004)

Storm, Peter H. “GIAC Certification Practical Assignment.” SANS.org. Nov. 15,
2003. URL: http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf (Sept. 11,
2004)

Sun Microsystems. “ Solaris 9 Resource Manager Data Sheet.” URL:
http://wwws.sun.com/software/solaris/ds/ds-srm/ (Sept. 8, 2004)

Symantec Security Response. “Backdoor.Gaobot” Aug. 6, 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.gaobot.html
(Sept. 7, 2004)

Symantec Security Response. “Linux.Adore.Worm” April 15, 2001. URL:
http://securityresponse.symantec.com/avcenter/venc/data/linux.adore.worm.html
(Sept. 7, 2004)

Symantec Security Response. “W32.Blaster.worm” Aug. 11, 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html
(Sept. 7, 2004)

Symantec Security Response. “W32.Beagle.J@mm” Mar. 2, 2004. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.beagle.j@mm.ht
ml (Sept. 7, 2004)

Symantec Security Response. “W32.Opaserv.Worm” July 29, 2004. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 54

http://securityresponse.symantec.com/avcenter/venc/data/w32.opaserv.worm.ht
ml (Sept. 8, 2004)

Whitehats Network Security Resource. URL: http://www.whitehats.com/ids/
(Sept. 9, 2004)

Whitehats Network Security Resource. “IDS177 "NETBIOS-NAME-QUERY".”
arachnids. URL: http://www.whitehats.com/info/IDS177 (Sept. 9, 2004)

Whitehats Network Security Resource. “IDS457 "LPRNG-REDHAT7-
OVERFLOW-SECURITY.IS".” arachnids. URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids457&view=signatures
(Sept. 9, 2004)

Appendix A – Perl Scripts

csv.pl – A perl script used to format alert logs into .csv files for importing into a
database. (Courtesy of Tod Beardsley)
#!/cygdrive/c/Perl/bin/perl.exe -w

Name: csv.pl

Reads in a Snort -A Fast style alert log which for some
reason wasn't generated as CSV, and make it as such.

Usage: csv.pl infile [outfile]

unless ($ARGV[0]) {
 print "Need an input file!\n";
 die "(Hint: go to http://www.research.umbc.edu/~andy and get one)\n";
}

unless ($ARGV[1]) {
 $outfile = "$ARGV[0].csv";
} else {
 $outfile = "$ARGV[1]";
}

open(INFILE,"$ARGV[0]") || die "Can't open $ARGV[0] for reading!\n";
open(OUTFILE,">$outfile") || die "Can't open $ARGV[1] for writing!\n";

print "Transforming $ARGV[0] into $outfile.\n";
print "Just a moment.";

@calendar=qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

while (<INFILE>) {
 next unless /(\w{1,3}\.){2}(\d{1,3}\.\d{1,3})/; # Skip lines missing IPv4 IPs.
 next if /spp_portscan/; # Skip portscan notifications.
 chomp;
 if (/ \[**\] /) { # Alert report.

 ($date_and_time,$alert,$src_and_dst) = split(/\s+\[**\]\s/);
 ($date,$time) = split(/-/,$date_and_time);
 ($month_number,$day) = split(/\//,$date);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 55

 $month = $calendar[$month_number-1];
 ($src,$dst) = split(/\s-\>\s/,$src_and_dst);
 ($src_ip,$src_port) = split(/:/,$src);
 ($dst_ip,$dst_port) = split(/:/,$dst);
 $snort_entry="ALERT" ;

 } else { # Scan report.
 ($month,$day,$time,$src,$arrow,$dst,$alert,$flags) = split;
 undef $arrow;
 ($src_ip,$src_port) = split(/:/,$src);
 $alert = "$alert scan (Internally-based)" if $src_ip =~ /^MY\.NET/;
 $alert = "$alert scan (Externally-based)" unless $src_ip =~ /^MY\.NET/;
 ($dst_ip,$dst_port) = split(/:/,$dst);
 $snort_entry="SCAN" ;
}

 print OUTFILE "$snort_entry,";
 print OUTFILE "$month,$day,$time,$alert,";
 print OUTFILE "$src_ip,";
 print OUTFILE "$src_port" if $src_port;
 print OUTFILE "None" unless $src_port;
 print OUTFILE ",";
 print OUTFILE "$dst_ip";
 print OUTFILE ",";
 print OUTFILE "$dst_port" if $dst_port;
 print OUTFILE "," if $flags;
 print OUTFILE "None," unless $dst_port;
 print OUTFILE "$flags" if $flags;
 print OUTFILE "\n";

 $happydots++;
 print "." if $happydots % 100 == 0; # if $happydots == 100;
 print "Just a moment." if $happydots % 46600 == 0;
}

summarize.pl – A perl script used to generate an alert summary of the data.
(Courtesy of Tod Beardsley)
#!/cygdrive/c/Perl/bin/perl.exe

Name: summarize.pl

Take a source file (generated by csv.pl) and summarize the contents,
grouping alerts in a variety of ways we care about. This code absolutely
could be and should be optomized by a real perl hacker.

Usage: summarize.pl infile [outfile]

unless ($ARGV[0]) {
 print "Need an input file!\n";
 print "(Hint: go to http://www.research.umbc.edu/~andy and get one)\n";
 die "(Hint2: Don't forget to turn it into CSV and drop the portscans.)\n";
}

unless ($ARGV[1]) { # Check for a specified output file.
 if ($ARGV[0] =~ /\.csv$/) { # If it's *.csv, autogenerate the output
 $outfile = $`."-summary.txt"; # filename. (Could be seen as unfriendly.)
 }
 } else {
 $outfile = "$ARGV[1]";
}

open(INFILE,"$ARGV[0]") || die "Can't open $ARGV[0] for reading!\n";
open(OUTFILE,">$outfile") || die "Can't open $outfile for writing!\n";

print "Counting up all the Events of Interest in $ARGV[0].\nJust a moment.";

while (<INFILE>) {
chomp;
if ((split(/\,/,$_))[0] eq "ALERT") {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 56

 ($snort_type,$month,$day,$time,$alert,
 $src_ip,$src_port,$dst_ip,$dst_port) = (split(/\,/,$_));
 $date = "$month/$day";
} else {
 ($snort_type,$month,$day,$time,$alert,
 $src_ip,$src_port,$dst_ip,$dst_port,$flags) = (split(/\,/,$_));
 $date = "$month/$day";
}

Frequency analysis on all that junk up there.

$date_counter{"$date"}++;
$alert_counter{"$alert"}++;

 if ($src_ip =~ "^MY\.NET") {
 $internal_src_ip_counter{"$src_ip"}++;
 $internal_src_port_counter{"$src_port"}++;

 if ($dst_ip =~ "^MY\.NET") {
 $internal_internal_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 } else {
 $internal_external_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 }
 } else {
 $external_src_ip_counter{"$src_ip"}++;
 $external_src_port_counter{"$src_port"}++;
 if ($dst_ip =~ "^MY\.NET") {
 $external_internal_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 } else {
 $external_external_relationship_counter{"$src_ip"."->"."$dst_ip"}++;
 # Hopefully, this case never happens.
 }
 }

if ($dst_ip =~ "^MY\.NET") {
 $internal_dst_ip_counter{"$dst_ip"}++;
 $internal_dst_port_counter{"$dst_port"}++;
} else {
 $external_dst_ip_counter{"$dst_ip"}++;
 $external_dst_port_counter{"$dst_port"}++;
}

Assure the user that something's happening, and we're not hung.

 $happydots++;
 print "." if $happydots % 100 == 0; # if $happydots == 100;
 print "Just a moment." if $happydots % 46600 == 0;
}

foreach $key (keys(%date_counter)) {
 push (@dates, "$date_counter{$key},$key");
}
foreach $key (keys(%alert_counter)) {
 push (@alerts, "$alert_counter{$key},$key");
}
foreach $key (keys(%internal_src_ip_counter)) {
 push (@internal_src_ips, "$internal_src_ip_counter{$key},$key");
}
foreach $key (keys(%internal_src_port_counter)) {
 push (@internal_src_ports, "$internal_src_port_counter{$key},$key");
}
foreach $key (keys(%internal_dst_port_counter)) {
 push (@internal_dst_ports, "$internal_dst_port_counter{$key},$key");
}
foreach $key (keys(%internal_dst_ip_counter)) {
 push (@internal_dst_ips, "$internal_dst_ip_counter{$key},$key");
}
foreach $key (keys(%external_src_ip_counter)) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 57

 push (@external_src_ips, "$external_src_ip_counter{$key},$key");
}
foreach $key (keys(%external_src_port_counter)) {
 push (@external_src_ports, "$external_src_port_counter{$key},$key");
}
foreach $key (keys(%external_dst_ip_counter)) {
 push (@external_dst_ips, "$external_dst_ip_counter{$key},$key");
}
foreach $key (keys(%external_dst_port_counter)) {
 push (@external_dst_ports, "$external_dst_port_counter{$key},$key");
}
foreach $key (keys(%internal_internal_relationship_counter)) {
 push (@internal_internal_relationships,
"$internal_internal_relationship_counter{$key},$key");
}
foreach $key (keys(%internal_external_relationship_counter)) {
 push (@internal_external_relationships,
"$internal_external_relationship_counter{$key},$key");
}
foreach $key (keys(%external_internal_relationship_counter)) {
 push (@external_internal_relationships,
"$external_internal_relationship_counter{$key},$key");
}
foreach $key (keys(%external_external_relationship_counter)) {
 push (@external_external_relationships,
"$external_external_relationship_counter{$key},$key");
}

Group everything up in a sensible order:

@things_we_care_about = (
 [@dates],
 [@alerts],
 [@external_src_ips],
 [@external_src_ports],
 [@external_internal_relationships],
 [@external_external_relationships],
 [@internal_src_ips],
 [@internal_src_ports],
 [@internal_internal_relationships],
 [@internal_external_relationships],
 [@internal_dst_ips],
 [@internal_dst_ports],
 [@external_dst_ips],
 [@external_dst_ports],
);

Write it all down.

print "\nWriting the report to $outfile.";
undef $happydots;

foreach $report_item (@things_we_care_about) {

print OUTFILE "\n\@$report_item\n"; # Uncomment this for light debugging

if ($report_item eq @things_we_care_about[0]) {
 $title = "EOIs by Date";
 } elsif ($report_item eq @things_we_care_about[1]) {
 $title = "EOIs by Alert Message";
 } elsif ($report_item eq @things_we_care_about[2]) {
 $title = "EOIs by Source IP (External Only)";
 } elsif ($report_item eq @things_we_care_about[3]) {
 $title = "EOIs by Source Port (External Only)";
 } elsif ($report_item eq @things_we_care_about[4]) {
 $title = "EOIs by Relationship (External->Internal Only)";
 } elsif ($report_item eq @things_we_care_about[5]) {
 $title = "EOIs by Relationship (External->External Only)";
 } elsif ($report_item eq @things_we_care_about[6]) {
 $title = "EOIs by Source IP (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[7]) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 58

 $title = "EOIs by Source Port (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[8]) {
 $title = "EOIs by Relationship (Internal->Internal Only)";
 } elsif ($report_item eq @things_we_care_about[9]) {
 $title = "EOIs by Relationship (Internal->External Only)";
 } elsif ($report_item eq @things_we_care_about[10]) {
 $title = "EOIs by Destination IP (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[11]) {
 $title = "EOIs by Destination Port (Internal Only)";
 } elsif ($report_item eq @things_we_care_about[12]) {
 $title = "EOIs by Destination IP (External Only)";
 } elsif ($report_item eq @things_we_care_about[13]) {
 $title = "EOIs by Destination Port (External Only)";

}

print OUTFILE " ";
for ($i = -1; $i <= length($title); $i++) {print OUTFILE "_" ; }

print OUTFILE "\n";
print OUTFILE " __/ $title \\";
for ($i = 0; $i+8+length($title) <= 70; $i++) { print OUTFILE "_" ; }
print OUTFILE "\n";
printf OUTFILE "| %-68s|\n";

undef $eoi_unique_count;
undef $eoi_total_count;
unless (@$report_item) {
 printf OUTFILE "| %-68s|\n","No events of interest for this category (usually a
Good Thing)" ;
}

foreach $item (reverse(sort{ $a <=> $b }(@$report_item))) {
 ($count,$entry) = split(/\,/,$item);

 # Assure the user we're doing stuff (ie, not hung or anything)...
 $happydots++;
 print "." and $happydots = 0 if $happydots == 100;

 $eoi_unique_count++;
 $eoi_total_count = $eoi_total_count + $count;

 if (length($entry) <= 58) {
 printf OUTFILE "| %-8d %-58s |\n",$count,$entry;
 } elsif (length($entry) > 65) {
 printf OUTFILE "| %-8d %-55s... |\n",$count,substr($entry,0,55);
 }
}

printf OUTFILE "| %-68s|\n";
printf OUTFILE "| %-20s%8d%31s%8d |\n ",
 "Total Uniques: ",
 $eoi_unique_count,
 "Total EOIs: ",
 $eoi_total_count;

for ($i = 0; $i <= 68; $i++) { print OUTFILE "-" ; }
print OUTFILE "\n";

}

print "\nDone!\n";

parse-alerts-simple.pl – A perl script used to format alert logs into .csv files to be
used with the alert-report.pl script. (Courtesy of James Maher)
#!/usr/bin/perl -w

#Name: parse-alerts-simple.pl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 59

#Synopsis: parse-alerts-simple.pl[-d][-p]-f<alert-file>

#Description:
Simple script to generate a csv file from
a snort alert file which I may later import
into a DB. Also having one line of data
makes mining it in correlation with
the other files easier.
Very similar to parse-alerts.pl, however this script only does the csv stuff and
Analysis is left to alert-report.pl.

#Author: James Maher <scouser@paradise.net.nz>

use Getopt::Long;
#get the options
my $result = GetOptions("file=s" =>\$alert_file, #string
 "ports" =>\$ports, #include portscan data in csv
 "help" =>\$help, #print out command line options and die
 "debug" =>\$debug); #debug flag

die "\t--ports include portscan data in csv\n",
 "\t--debug debug flag\n",
 "\t--file <name> Name of the alert file we are reading in\n",
 "\t--help print out command line options and die.\n",
 if $help;

die "usage: $0 [-d][-p] -f <alert-file>\n" if (! defined($alert_file));

#use a temp output csv file if we are in debug mode
$csv_file=$debug ?'output.csv':defined($ports)?"$alert_file+scans.csv":"$alert_file.csv";

open DATA,"$alert_file" or die "Failed to open $alert_file: $?\n";
open CSV,">$csv_file" or die "Failed to open CSV file: $?\n";

#Data structure for storing results
my %alert_list;
while(<DATA>)
{
 if((!/^\d/)|(/.*\[*{2}\].*\[*{2}\].*\[*{2}\]/)){
 push (@matchless, $_) if(!/^\d/);
 next;
 }
 chomp $_;
 $count++;
 #better make sure there are no commas in the data
 $_=~s/,//g;

 my ($date_s,$desc,$src,$src_prt,$dst,$dst_prt);

 #some patterns to make the regexps easier to follow
 my $IP_CHRS='(?:[a-zA-Z0-9\.]+)';
 my $DLM='\[*{2}\]';
 my $EOS='End of portscan from';
 my $TM='Total time\S';

 if($_=~/^(\S+)\s+\[*{2}\]\s+(.*)\s+\[*{2}\]\s+($IP_CHRS)(:(\d+))?(?:\s+-
>\s+($IP_CHRS)(:(\d+))?)?$/){
 ($date_s,$desc,$src)=($1,$2,$3);
 if(defined($8)){
 ($src_prt,$dst,$dst_prt)=($5,$6,$8);
 print CSV "$date_s,$desc,$src,$src_prt,$dst,$dst_prt\n";
 }
 elsif(defined($6))
 {
 ($src_prt,$dst,$dst_prt)=('-',$6,'-');
 print CSV "$date_s,$desc,$src,$src_prt,$dst,$dst_prt\n";
 }elsif(defined($5))
 {
 ($src_prt,$dst,$dst_prt)=($5,'-','-');

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 60

 print CSV "$date_s,$desc,$src,$src_prt,$dst,$dst_prt\n";
 }
 }

elsif($_=~/^(\S+)\s+SDLM\s+(\S+):$EOS\s+($IP_CHRS\.\d+):\s+$TM(\d+s)\S\s+hosts\S(\d+)\STC
P\S(\d+)\SUDP\S(\d+)\S\s+$DLM/){
 ($date_s,$desc,$src,$host_cnt)=($1,$2,$3,$5);
 $port_cnt=$6+$7;
 print CSV "$date_s,$desc,$src,$host_cnt,$port_cnt\n" if$ports;
 }
 elsif($_!~/^(\S+)\s+$DLM\s+spp_port/){
 push(@matchless,$_);
 print STDERR "\nNo Match:\t$_\n";
 next;
 }
}
close DATA or die "Failed to close data file!\n";
print "\n\t processed $count records\n\n";

alert-reports.pl – A perl script used to generated several alert reports based on
the different options available. (Courtesy of James Maher)

#!/usr/bin/perl -w

#Name: alert-reports.pl

#Synopsis: alert-reports.pl [-d][-s][-n][-c<max>][-l<min>]-f<alert-file>

#Description:
Read in the parsed alert.csv file
and generate a number of reports

#Author: James Maher <scouser@paradise.net.nz>
#$Id: alert-reporter.pl,v 1.4 2003/06/22 11:49:09 Exp scouser $

use Getopt::Long;

#get the options
my $result = GetOptions("file=s" =>\$alert_file, #Name of the alert CSV file we are
reading in
 "portscans" =>\$scans, #should we include portscans?
 "ip-order" =>\$ip_order, #print IP summary ordered by IP not
frequency
 "summary" =>\$summary, #Summary mode only prints out totals of
hits per IP,
 #not a line for each attack type per
host.
 "verbose" =>\$verbose, #always print out full lists rather
than totals
 "lowest" =>\$floor, #what is the cut off for printing out
data
 "ceiling=i" =>\$ceiling, #How many entries should I print out
per report(ie top ten)
 "no_attack" =>\$no_attack, #Do not generate an attack report
 "target" =>\$dst_grp, #Group by target address rather than
source address
 "help" =>\$help, #print out command line options and
die.
 "debug" =>\$debug); #debug flag

die "\t--ceiling <max> How many entries should I print out per report(ie top ten)\n",
 "\t--debug debug flag\n",
 "\t--file <name> Name of the alert CSV file we are reading in\n",
 "\t--help print out command line options and die.\n",
 "\t--ip-order print IP summary ordered by IP not frequency\n",
 "\t--lowest <min> what is the cut off for printing out data\n",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 61

 "\t--no_attack Do not generate an attack report\n",
 "\t--summary Summary mode only prints out totals of hits per IP,\n",
 "\t not a line for each attack type per host.\n",
 "\t--target Group by target address rather than source address\n",
 "\t--verbose always print out full lists rather than totals\n",
 "\t--help print out command line options and die.\n",
 if $help;

die "usage: $0 [-d][-s][-n][-c <max>][-l <min>]-f <alert-file>\n" if(!
defined($alert_file));
die "Alert file not a .csv file, aborting...\n" if $alert_file !~/csv$/;

#Set things up before we start.
#Data structure for storing results
my %alert_list;
my $rpt_dir='/home/cashmoney/GIAC/reports';
&initialise();

&read_in_data();

&gen_ip_report();

&gen_attack_report() if!$no_attack;

print "\nFinished analysis, reports written to:\n$address_report\n";
print "$atck_rpt\n" if!$no_attack;
print "\n";

#Subroutines
sub gen_ip_report(){
#Lets see what we have got;-)
#and print out to a file
 print "\nGenerating IP report... -";
 open TARGET,">$address_report" or die "Could not open IP address report file\n";
 print TARGET $rpt_heading;
 $cnt =0;
 foreach $target(sort ip_sort keys(%{$alert_list{'hosts'}}))
 {
 $cnt++
 &progress(200);
 local *STDOUT=*TARGET;
 next if $target =~/^-/;
 last if(($floor)&&($alert_list{'hosts'}->{$target}->{'count'}<$floor));
 last if(($ceiling)&&($cnt>=$ceiling));
 if($summary){
 print "$target\t ".$alert_list{'hosts'}->{$target}->{'count'}."\t\t";

 my @alerts=keys(%{$alert_list{'hosts'}->{$target}});
 my $num_alrts=$#alerts;
 print " $num_alrts\t\t";
 my @hosts=(keys(%{$alert_list{'hosts'}->{$target}->{'hosts'}}));
 my $count=($#hosts+1);
 print " $count\t";
 my @ports=(keys(%{$alert_list{'hosts'}->{$target}->{'dprts'}}));
 $count=($#ports + 1);
 print " $count\n";

 }
 else
 {
 foreach $alert_desc(sort keys(%{$alert_list{'hosts'}->{$target}}))
 {
 #save count till after -)
 next if $alert_desc =~/^(count)|(hosts)|(sprts)|(dprts)/;

 my $alrt= $alert_list{'hosts'}->{$target}->{$alert_desc};
 print "$target,$alert_desc,";
 print $alrt->{"count"}.",";

 my @hosts=(keys(%{$alrt->{'hosts'}}));
 my $num_hosts=$#hosts+1;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 62

 if(($num_hosts < 3)||($verbose)){
 print "H: ";
 my $last=pop @hosts;
 print "$_," foreach (@hosts);
 print "$last";
 }else{
 print $num_hosts;
 }
 print "\t";

 my @ports=(keys(%{$alrt->{"ports"}}));
 my $num_ports=$#ports+1;
 if($num_ports==0){
 print "\n";
 }elsif(($num_ports<2)||($verbose)){
 print "P: ";
 my $last=pop @ports;
 print "$_," foreach @ports;
 print "$last\n";
 }
 else{
 print "$num_ports\n";
 }

 }
 print "\t".$alert_list{'hosts'}->{$target}->{'count'}."total hits
($target)\n";
 }
 }
 close TARGET ||die "Could not close target tally output file\n";
}

sub gen_attack_report(){
#now for the report by attack type
#pretty similar to above
 print "\nGenerating attack report... -";
 open ATTACK,">$atck_rpt" or die "Could not open tally output file\n";
 print ATTACK $atck_heading;
 $cnt=0;
 foreach $attack(sort atck_sort keys(%{$alert_list{'Attacks'}}))
 {
 $cnt++;
 last if(($ceiling)&&($cnt>=$ceiling));
 &progress(5);
 local *STDOUT=*ATTACK;
 last if(($floor)&&($alert_list{'Attacks'}->{$attack}->{'count'}<$floor));
 my $alrt= $alert_list{'Attacks'}->{$attack};
 print "$attack\t".$alrt->{'count'}."\t";

 foreach $hst('src','dst'){
 my @hosts=(keys(%{$alrt->{$hst}}));
 my $num_hosts=$#hosts+1;

 if(($num_hosts<3)||($verbose)){
 print "H: ";
 my $last=pop @hosts;
 print "$_," foreach(@hosts);
 print "$lasts";
 }else{
 print "$num_hosts hosts";
 }
 print "\t";
 }

 my @ports=(keys(%{$alrt->{"ports"}}));
 my $num_ports=$#ports+1;
 if($num_ports==0){
 print "\n";
 }elsif(($num_ports<3)||($verbose)){
 print "P:";
 my $last=pop @ports;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 63

 print "$_," foreach @ports;
 print "$last\n";
 }else{
 print "$num_ports ports\n";
 }
 }
 close ATTACK ||die "\nCould not close target tally output file\n";
}

#sort attacks by frequency
sub atck_sort(){
 return($alert_list{'Attacks'}->{$b}->{'count'}<=>$alert_list{'Attacks'}->{$a}-
>{'count'});
}

#sort IP addresses
sub ip_sort{
 if(!$ip_order){
 return-1 if(!defined($alert_list{'hosts'}->{$b}-
>{'count'}))||(!defined($alert_list{'hosts'}->{$a}->{'count'}));
 return($alert_list{'hosts'}->{$b}->{'count'}<=>$alert_list{'hosts'}->{$a}-
>{'count'});
 }

 #else we have to do sort by IP address ;-(
 my($a1,$a2,$a3,$a4)=split(/\./,$a);
 my($b1,$b2,$b3,$b4)=split(/\./,$b);

 if(($a1 =~/^MY/)||($b1 =~/^MY/)){
 if(($a1 =~/^MY/)&&($b1 =~/^MY/)){
 if($a3 ne $b3){ return($a3<=>$b3);}
 if($a4 ne $b4){ return($a4<=>$b4);}
 }
 return-1 if($a1 =~/^MY/);
 return 1;
 }

 if($a1 ne $b1){ return($a1<=>$b1);}
 if($a2 ne $b2){ return($a2<=>$b2);}
 if($a3 ne $b3){ return($a3<=>$b3);}
 if($a4 ne $b4){ return($a4<=>$b4);}

 return($a<=>$b);
}

#Initialise variables based on command line args etc.
sub initialise(){
 die "WARNING: Incompatible options \'--scans\' and \'--target\'-tCan't group portscan
alerts by destination port, exiting.\n" if(($dst_grp)&&($scans));

 print "--portscans flag not implemented, ignoring...\n" if $scans;
 undef $scans;

 $line_cnt=0;
 print "\ninitialising report variables...\n";
 $ad_sfx=defined($summary)?'summary':defined($verbose)?'verbose':'normal';
 $ad_sfx.="-$floor" if defined($floor);
 $ad_sfx.="-$ceiling" if $ceiling;

$address_report=defined($dst_grp)?"$rpt_dir/dst_IP_report.$ad_sfx":"$rpt_dir/src_IP_repor
t.$ad_sfx";

 $at_sfx=defined($verbose)?'verbose':'normal';
 $at_sfx.="-$floor" if defined($floor);
 $at_sfx.="-$ceiling" if $ceiling;
 $atck_rpt="$rpt_dir/attack_report.$at_sfx";;

 $rpt_heading="Hits per Destination Address\n=======================\n" if $dst_grp;
 $rpt_heading="Hits per Source Address\n=======================\n" if !$dst_grp;
 $rpt_heading.="(including portscans)\n" if $scans;
 $rpt_heading.="Verbose Mode\n" if $verbose;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 64

 $rpt_heading.="\n Address \tTot-Hits \tDistinct \tHosts \t Ports\n" if $summary;

 $atck_heading="Attack/Scan Types\n=================\n";
 $atck_heading.="(including portscans)\n\n" if $scans;
 $atck_heading.="Verbose Mode\n" if $verbose;
 $atck_heading.="\nDescription\t\tHits\tSrc IPs\t\tDst IPs\t\tDst Ports\n";

 print "Ceiling set to $ceiling\n" if $ceiling;
 #just for fun, and to stop you from going crazy while the reports run ;-)
 @display =('-','\\','|','/');
}

sub read_in_data(){
 print STDERR "reading in csv file...-";
 open DATA, "$alert_file" or die "Failed to open $alert_file: $?\n";
 while(<DATA>){
 &progress(1000);
 chomp;

 #no need to analyse if it is an spp portscan line unless forced to by command
line flag
 my @data=split/,/;
 if($data[1]!~/^spp_portscan/){
 &process_alert(@data);
 }
 elsif($scans){
 #&process_scan(@data); #Not implemented - Handling portscans separately
now.
 }
 else{print "DBG:$_\n" if $debug;}
 }
 close DATA or die "Failed to close data file!\n";
}

sub process_alert(){
 my ($date_s,$desc,$src,$src_prt,$dst,$dst_prt)=@_;
 #decide who to log this under Will use the source address for now.
 if(!defined($dst)&&($dst_grp)){
 print STDERR "Target grouping specified but no dst IP!! Ignoring this
alert.\n" if $debug;
 next;
 }
 my $alert_host=$dst_grp ?$dst:$src;
 my $scnd_host=$dst_grp ?$src:defined($dst) ?$dst:'-';
 $alert_list{'hosts'}->{$alert_host}->{$desc}={} if !$alert_lilst{'hosts'}-
>{$alert_host}->{$desc};
 my $alert=$alert_list{'hosts'}->{$alert_host}->{$desc};

 $alert->{'ports'}->{$dst_prt}++ if(defined($dst_prt)&&($dst_prt !~/-/));
 $alert->{'hosts'}->{$scnd_host}++ if $scnd_host !~/^-/;
 #print $alert->{'hosts'}->{$scnd_host}."\t" if $scnd_host !~/^-/;
 $alert->{'count'}++;

 #lets also count total alerts against a host
 $alert_list{'hosts'}->{$alert_host}->{'count'}++;
 #and the total number of ports
 $alert_list{'hosts'}->{$alert_host}->{'sprts'}->{$src_prt}++ if(
defined($src_prt)&&($src_prt !~/-/));
 $alert_list{'hosts'}->{$alert_host}->{'dprts'}->{$dst_prt}++ if(
defined($dst_prt)&&($dst_prt !~/-/));
 $alert_list{'hosts'}->{$alert_host}->{'hosts'}->{$scnd_host}++ if(
defined($scnd_host)&&($scnd_host !~/-/));

 #lets also collate totals for different attacks
 $alert_list{'Attacks'}->{$desc}={} if !$alert_list{'Attacks'}->{$desc};
 local *signature=$alert_list{'Attacks'}->{$desc};
 $signature{'count'}++;
 $signature{'src'}->{$alert_host}++;
 $signature{'dst'}->{$scnd_host}++ if $scnd_host !~/^-/;
 $signature{'ports'}->{$dst_prt}++ if(defined($dst_prt)&&($dst_prt !~/-/));

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 65

}

sub progress(){
 $mod=shift;
 if($line_cnt%$mod==0){
 $char=shift @display;
 system("echo -n");
 print "\b\b$char";
 push @display,$char;
 }
 $line_cnt++;
}

Appendix B – Complete List of Alerts

Alert Hits Src IPs Dst IPs Ports
EXPLOIT x86 NOOP 38903 2084 916 65
MY.NET.30.4 activity 35289 313 23
High port 65535 tcp – possible Red Worm – traffic 19471 119 154 86
MY.NET.30.3 activity 15900 197 23
SMB Name Wildcard 8627 61 639 137
Tiny Fragments – Possible Hostile Activity 4412 5 18
RFB – Possible WinVNC – 010708-1 2355 15 17 1099
Null Scan! 1936 89 54 152
NMAP TCP ping! 869 218 67 46
Possible trojan server activity 419 48 52 9
SUNRPC highport access! 254 25 25 1

(32771)
connect to 515 from outside 250 515
TCP SMTP Source Port traffic 191 4 4 25
DDOS shaft client to handler 147 3 1 1

(20432)
[UMBC NIDS IRC Alert] IRC user /kill detected
possible trojan.

138 61 49 111

Incomplete Packet Fragments Discarded 127 40 28 1 (0)
High port 65535 udp – possible Red Worm – traffic 122 34 28 29
TCP SRC and DST outside network 80 23 34 15
SMB C access 75 19 5 1 (139)
FTP passwd attempt 69 44 1 1 (21)
[UMBC NIDS IRC ALERT] Possible sdbot floodnet
detected attempting to IRC

65 12 7 1 (7000)

ICMP SRC and DST outside network 43 21 37
TFTP – Internal UDP connection to external tftp
server

41 12 11 6

IDS552/web-iis_IIS ISAPI Overflow ida Internal
nosize

38 1 21 1 (80)

[UMBC NIDS IRC Alert] Possible drone command
detected.

34 6 5 19

NIMDA – Attempt to execute cmd from campus host 34 11 23 1 (80)
EXPLOIT x86 setuid 0 28 22 16 19
EXPLOIT x86 setgid 0 26 22 20 24
Attempted Sun RPC high port access 25 6 21 1

(32771)
External RPC call 23 23 1 4 1 (111)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 66

[UMBC NIDS IRC Alert] SDCC client detected
attempting to IRC

23 1 4 2 (7000,
6667)

[UMBC NIDS] External MiMail alert 17 12 25
TFTP – External TCP connection to internal tftp
server

17 4 5 2 (69,
48386)

FTP DoS ftpd globbing 15 21
EXPLOIT NTPDX buffer overflow 14 7 6 1 (123)
DDOS mstream client to handler 14 4 3 2

(15104,
12754)

[UMBC NIDS] Internal MiMail alert 11 4 10 1 (25)
[UMBC NIDS IRC Alert] Possible Incoming XDCC
Send Request Detected.

10 1 1
(34078,
32795)

IRC evil – running XDCC 7 6663
TFTP – Intenal TCP connection to external tftp server 6 3 3 3
EXPLOIT x86 stealth noop 5 4 4 4
DDOS mstream handler to client 4 1 2 (1164,

4662)
connect to 515 from inside 4 1 (515)
Traffic from port 53 to port 123 3 1 (123)
SYN-FIN scan! 3 1 1 3
Probable NMAP fingerprint attempt 2 1 1 2 (0,

6131)
External FTP to HelpDesk MY.NET.70.49 2 1 1 (21)
EXPLOIT x86 NOPS 2 1 (7001)
NETBIOS NT NULL session 2 1 1 (139)
NIMDA – Attempt to execute root fro campus host 2 1 1 (80)
HelpDesk MY.NET.70.49 to External FTP 2 1 (21)
TFTP – External UDP connection to internal tftp
server

1 1 (69)

[UMBC NIDS IRC Alert] User joining XDCC channel
detected. Possible XDCC bot

1 1 (1642)

Back Orifice 1 1
(31337)

External FTP to HelpDesk MY.NET.53.29 1 1 (21)
External FTP to HelpDesk MY.NET.70.50 1 1 (21)

