
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 4.1

Submission date:
October 6, 2004

Wouter Clarie
SANS Germany 2004
Delegate Conference
Munich – April 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Table of Contents

 - 2 -

Table of Contents
Part I – Executive Summary ...3
Part II – Detailed Analysis...4

1 Files Analyzed ..4
2 Relationship Analysis ...4

2.1 Network Topology..4
2.2 Link Graph ...5

3 Detects ...6
3.1 List of Detects ..6
3.2 Detect 1: IRC Related Activity – Possible botnets7
3.3 Detect 2: FTP DoS ftpd globbing ...13
3.4 Detect 3: MY.NET.30.3 and MY.NET.30.4 Activity17

4 Network Statistics...22
4.1 Top Five Talkers ..22
4.2 Top Five Targeted Services...24
4.3 Most Suspicious External Source Addresses ..26

5 Correlations..28
6 Compromised Internal Hosts ..29
7 Defensive Recommendations...29

Part III – Analysis Process ..31
Hardware and Software...31
Handling the Data Files ...31

Alert Files...31
Scans Data ..32
Out of Specification (OOS) Data..32

References ...33
Relationship Analysis ..33
Detect 1: IRC Related Activity – Possible botnets ...33
Detect 2: FTP DoS ftpd globbing...34
Detect 3: MY.NET.30.3 and MY.NET.30.4 Activity..35
Network Statistics..35
Defensive Recommendations ...36
Analysis Process ...36

Appendices ...37
Appendix: SSH session alerted as Red Worm ..37
Appendix: Perl scripts to import data into MySQL database37

Import alerts...37
Import port scans ...38
Import UDP scans..39
Import TCP scans ..40

List of Figures
Figure 1: University Network Diagram ..5
Figure 2: Link Graph of Bot Network...5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part I – Executive Summary

 - 3 -

Part I – Executive Summary
This is an analysis of the network traffic of the University of Maryland, Baltimore
Country during three days (April 8 - 10, 2004), based on data provided by the
university's intrusion detection system, which tries to detect malicious or
suspicious activity. During these three days, a total of 59,972 alerts were
generated, or nearly 20,000 alerts per day. It is clear that not enough staff is
available to actually monitor 20,000 events per day. An abundance of alerts
makes the analysts indifferent, which has adverse effects on security.

Traffic evaluated by an insufficiently finetuned rule set results in many irrelevant
alerts Additionally, because the rule set is not really up to date, many attacks or
suspicious events might go unnoticed. This gives a false sense of security. If the
amount of alerts cannot be drastically reduced by finetuning and updating the
ruleset, more resources might be needed to keep the intrusion detection system
operational. Possible solutions include: hire more people to monitor the alerts, or
make use of automatic correlation infrastructures. These options should be
thoroughly researched.

It is important to update not only the intrusion detection system itself, but also the
hosts it monitors. Some of the software on the internal network (including the
network that provides public services) has been found to be outdated. This often
makes these important assets vulnerable to attack. Care must be taken in
maintaining a database of software versions to be able to cross-check
vulnerability information efficiently.

A number of hosts on the network have been compromised by worm or virus
infections. The consequences of this fact are not only unpleasant or risky for the
rest of the network, there are also legal issues. Hosts that have been
compromised are often used as a stepping stone for new attacks to either
internal or external systems. If a host in the internal network actively participates
in e.g. a distributed denial of service attack on external targets, the University of
Maryland, Baltimore County might be held liable. Measures such as a revised
firewalling policy should be taken to prevent these scenarios from occurring. With
universities often being hotbeds of worm activity, relations with other universities
in the region should be strengthened, to be able to exchange information on
worm activity. We need to become more proactive.

Several of the events that were recorded by the intrusion detection system are
difficult to research in depth, because of insufficient logging. Storage capacity
that can be saved by finetuning the rule sets should be used for more extensive
logging. This would make correlation with other devices and infrastructures
easier and could result in a faster incident response process.

In the next sections, a more in-depth analysis of the network events will be given.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 4 -

Part II – Detailed Analysis
1 Files Analyzed
The following table contains the files (from http://isc.sans.org/logs/) that were
analyzed.

Analyzed Data
Alerts Scans Out of Specification
alert.040408 scans.040408 oos_report_040404
alert.040409 scans.040409 oos_report_040405
alert.040410 scans.040410 oos_report_040406

As you may have noticed, the OOS files have different timestamps. The data
inside, however, is from the correct dates. For example, oos_report_040404
contains the OOS data from April 8, etc. Some of the scans and alert files were
slightly damaged. They have been extracted as much as possible with the
normal Unix tools.

2 Relationship Analysis
2.1 Network Topology
First of all, as part of the logs has been anonymized and some have not, I will
just use the real addresses of the hosts in this report. This makes life a lot easier,
since it allows us to do reverse DNS lookups. It is not news that we are talking
about the umbc.edu domain here. After some time trying to reconstruct the
network environment, I found out that UMBC has web pages describing their
infrastructure. I had already found out quite a lot of information myself, but being
able to cross-check it was convenient. Here are the resources I used:

• Intermapper System at http://noc2.noc.umbc.edu/~admin/map_screen.html

(advertised on the public website)
• System Hardware List at http://www.gl.umbc.edu/hardware.shtml
• Loic Juillard's GCIA Practical Assignment

From the scan and alerts files, certain things were pretty obvious. There are a
few subnets that are used to host the big services. The 130.85.1/24 subnet hosts
DNS, the 130.85.12/24 one hosts some mail services, 130.85.24/24 has the web
services, the directory server, FTP server, the news server etc, 130.85.25/24 has
the big mail installations, with the milters, the outgoing mail exchangers, and the
IMAP/POP servers. And then, the 'mysterious' subnet 130.85.30/24, which is
hosting Novell Netware servers, probably with storage facilities, confirmed by Tim
Kroeger's analysis and a practical by Andrew J. Wagoner.

There is one big connection point in this network, called ernie.umbc.edu. Ernie
has at least 120 IP addresses on the network. The following figure is possible
setup of the network, based on a diagram by Loic Julliard.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 5 -

Figure 1: University Network Diagram

2.2 Link Graph

Figure 2: Link Graph of Bot Network

This link graph illustrates the bot network at the university: the compromised
hosts, the IRC server at another university, and the activity of the hosts. Refer to
section 3.2 for details.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 6 -

3 Detects
3.1 List of Detects
Alert Total
EXPLOIT x86 NOOP 17730
MY.NET.30.3 activity 9420
High port 65535 tcp - possible Red Worm - traffic 8962
SMB Name Wildcard 7920
MY.NET.30.4 activity 7248
DDOS mstream handler to client 3265
Possible trojan server activity 942
External RPC call 930
Null scan! 851
NMAP TCP ping! 805
SUNRPC highport access! 582
TCP SRC and DST outside network 253
Incomplete Packet Fragments Discarded 177
UMBC NIDS Internal MiMail alert 129
High port 65535 udp - possible Red Worm - traffic 114
DDOS shaft client to handler 84
UMBC NIDS IRC Alert IRC user /kill detected, possible trojan 73
FTP passwd attempt 71
IRC evil - running XDCC 66
UMBC NIDS IRC Alert Possible sdbot floodnet detected attempting to IRC 42
SMB C access 38
EXPLOIT x86 setuid 0 38
UMBC NIDS External MiMail alert 36
EXPLOIT x86 stealth noop 26
EXPLOIT x86 setgid 0 25
TCP SMTP Source Port traffic 21
UMBC NIDS IRC Alert Possible Incoming XDCC Send Request Detected 14
SYN-FIN scan! 13
NIMDA - Attempt to execute cmd from campus host 13
UMBC NIDS IRC Alert Possible drone command detected. 12
FTP DoS ftpd globbing 11
EXPLOIT NTPDX buffer overflow 10
TFTP - Internal UDP connection to external tftp server 9
RFB - Possible WinVNC - 010708-1 8
EXPLOIT x86 NOPS 8
Attempted Sun RPC high port access 6
Probable NMAP fingerprint attempt 5
DDOS mstream client to handler 5
NETBIOS NT NULL session 3
IRC Alert User joining XDCC channel detected. Possible XDCC bot 2
TFTP - External TCP connection to internal tftp server 2
External FTP to HelpDesk MY.NET.70.50 1
External FTP to HelpDesk MY.NET.53.29 1
External FTP to HelpDesk MY.NET.70.49 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 7 -

3.2 Detect 1: IRC Related Activity – Possible botnets

Alert Number
UMBC NIDS IRC Alert IRC user /kill detected, possible trojan 73
UMBC NIDS IRC Alert Possible sdbot floodnet detected attempting to IRC 42
UMBC NIDS IRC Alert Possible drone command detected. 12

Total 127

3.2.1 Description of Detect
This detect is actually a group of detects, all related to certain IRC (Internet Relay
Chat) activity on the network. They are caused by three different Snort rules. A
total of 127 alerts were generated. There are 49 internal and 33 external hosts
involved. The top ten internal and external hosts can be found below, along with
the number of alerts they generated.

Internal Hosts External Hosts
Host Alerts Host Alerts
130.85.5.44 17 128.122.66.204 69
130.85.151.75 10 66.40.25.214 9
130.85.153.174 8 206.252.192.194 5
130.85.112.163 7 24.72.40.108 4
130.85.80.224 7 202.91.34.9 4
130.85.70.96 7 216.201.150.42 3
130.85.153.195 6 216.109.195.222 3
130.85.60.40 6 195.169.138.124 2
130.85.150.199 5 69.50.174.218 2
130.85.80.28 4 64.62.196.26 2

These alerts are usually generated by traffic from computers that have been
compromised by a worm. Most worms try to take over a machine using one or
more exploits, and continue by hiding themselves and connecting to an IRC
server. The attacker then connects to the IRC server as well, joins a channel,
and by way of entering commands in that channel, gives specific orders to the
compromised hosts. Some of the worms have limited functionality, but others can
exploit multiple vulnerabilities and have a whole set of functionalities, such as
scanning whole IP ranges for specific ports in order to exploit even more
machines, open an unrestricted shell on a specific port, perform a Denial of
Service attack, send large amounts of SPAM, or even patch the system and
remove itself completely. They can also be used to scan the internal networks
from an internal host - conveniently bypassing the border firewall and/or one or
more of the perimeter devices - and return the results to the attacker.

It is important to realize that seeing this kind of traffic usually means the hosts
have already been compromised and are now 'obeying' the commands of the
attacker(s).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 8 -

3.2.2 Reason this Detect Was Selected
As network resources such as bandwidth are a big cost for most educational
institutions such as universities, (Distributed) Denial of Service attacks can be
very expensive if they are not prevented from leaving the internal network.

Additionally, as the University of Maryland, Baltimore County actually created
custom rules to detect this kind of activity (the names start with 'UMBC NIDS') , it
must be that they find it very important to track this activity.

And finally, these worms also perform many activities that are usually illegal
(such as port scanning, sending SPAM, etc.), so there is a liability problem too,
as noted before by various people.

3.2.3 Detect was Generated by
Snort Intrusion Detection System using custom rules. We will try to reconstruct
the rules.

UMBC NIDS IRC Alert IRC user /kill detected, possible trojan.
alert tcp $EXTERNAL_NET 6666:7000 -> $HOME_NET any (msg:"UMBC NIDS IRC
Alert IRC user /kill detected, possible trojan."; content:"KILL";
flow:to_client,established;)

This is the 'reaction' of the IRC server to the client. If an operator or server uses
the /kill command, the server sends a message to the client and then drops the
connection by sending a FIN. In 'normal' IRC traffic, the client usually
disconnects from the server itself.

UMBC NIDS IRC Alert Possible sdbot floodnet detected attempting to IRC.
alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:" UMBC NIDS IRC
Alert Possible sdbot floodnet detected attempting to IRC."; flags:S;)

This alert is triggered for outgoing connection setup to IRC servers, but in the
logs, there is not much more information than that. If the IRC server is running on
a TCP port outside the 'normal' 6666-7000 range, this rule is obviously not
sufficient. Additionally, it also fires on 'normal' IRC traffic. This is reflected in the
alert message by the word 'Possible'.

UMBC NIDS IRC Alert Possible drone command detected.
It is very difficult to reconstruct this particular rule. The 'drone commands' this
rule refers to, can be just about anything. A 'drone command' is basically a
command sent to the IRC client (the 'drone'; in this case: the trojan on the
infected machine) with instructions. This could be: reboot, hide, but also:
portscan, infect other hosts, etc. It should be noted, however, that these
commands are usually very dangerous. As far as I know, they are hardly ever
false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 9 -

3.2.4 Probability the Source Address was Spoofed
The IRC protocol is based on TCP connections, which require a three-way
handshake. This handshake is virtually impossible to complete with spoofed
source addresses. Therefore, the probability that the source address was
spoofed, is close to zero.

Spoofing IP addresses in this case is also pointless. We need two-way
communications with the hosts, to get results from scans etc. Also note that the
attacker's real IP address is not known: only the IP address of the host that was
compromised and is running as an IRC server, is known to the particular bot.

3.2.5 Attack Mechanism
First, the host is compromised using one of the unpatched holes in the software,
or using a backdoor left on the computer by another worm or attack. You can find
resources on the vulnerabilities that are 'usually' exploited by these worms in the
References section of this document. Then a trojan is installed, which
immediately connects to an IRC server configured in the trojan program. When
that has happened, the attacker has complete control over the compromised
host.

Often, the attacker then commands the host to start scanning for the ports that
are associated with the previously mentioned vulnerabilities. In this case, the
ports are 135, 139, 445, 1025, 2745, 3127, 3410, 5000, and 6129. On this IDS,
this generated a lot of log files. Some hosts managed to scan more than 400,000
ports in three days. Other hosts remained quiet.

If we correlate the alert data (which contains the alerts for IRC connections being
set up and killed) with the data about port scanning, we see some interesting
patterns. Have a look at this example:

04/09-08:36:07.472302 [**] UMBC NIDS IRC Alert Possible sdbot floodnet
detected attempting to IRC [**] 203.85.151.75:1237 -> 128.122.66.204:7000

Immediately followed by:

Apr 9 08:36:08 130.85.151.75:1240 -> 130.8.128.221:2745 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1242 -> 130.8.128.221:1025 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1243 -> 130.8.128.221:445 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1244 -> 130.8.128.221:3127 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1245 -> 130.8.128.221:6129 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1246 -> 130.8.128.221:139 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1247 -> 130.8.128.221:3410 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1248 -> 130.8.128.221:5000 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1249 -> 130.200.109.15:2745 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1251 -> 130.200.109.15:1025 SYN ******S*
Apr 9 08:36:08 130.85.151.75:1252 -> 130.200.109.15:445 SYN ******S*
...
Apr 9 09:52:08 130.85.151.75:1656 -> 130.236.237.49:445 SYN ******S*
Apr 9 09:52:08 130.85.151.75:1662 -> 130.236.237.49:3127 SYN ******S*
Apr 9 09:52:08 130.85.151.75:1669 -> 130.236.237.49:6129 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 10 -

04/09-10:18:36.578620 [**] UMBC NIDS IRC Alert IRC user /kill detected,
possible trojan. [**] 128.122.66.204:7000 -> 203.85.151.75:1237

What happens is that a trojan installed on 130.85.151.75 (one of the
compromised hosts) connects to an IRC server on 128.122.66.204 on port 7000.
One second later, the host is already scanning the network for the ports
mentioned above.

In other words, the prime goal of compromising these hosts seems to be to
compromise even more hosts. Note also that the IRC servers that these trojans
connect to, usually reside on compromised hosts as well. In the example, the
host with the trojan, connected to 128.122.66.204, which resolves to
KAPTEREV.ICAS.FAS.NYU.EDU. I do not think New York University is hosting
an IRC service on that kind of address. Patrik Sternudd agrees. This host is also
discussed in section 4.3 as one of the most suspicious external hosts.

The net result of this analysis is that at least 13 hosts on the network have been
found compromised. The write-up of the full analysis would take too long, but at
least the following hosts were compromised by the same family of worms. The
first seven of them were actively scanning the network afterwards. The last six
were still quiet, or had no other alerts associated to them, apart from the IRC
communications with the same server. But since there is no benign reason to
communicate with an IRC server on a compromised host that is usually not
providing IRC services, it is quite certain that in fact they have been
compromised.

Compromised Hosts
IP address FQDN
130.85.70.96 ecs123pc-04.ucs.umbc.edu
130.85.66.56 (does not resolve)
130.85.42.2 bsvcuser-2.vpn.umbc.edu
130.85.151.75 lib009pc-02.umbc.edu
130.85.153.174 libstkpc28.libpub.umbc.edu
130.85.97.66 ppp1-66.dialup.umbc.edu
130.85.150.199 bibroom16.lib.umbc.edu
130.85.112.163 (does not resolve)
130.85.80.224 pplant-80-224.pooled.umbc.edu
130.85.153.195 (does not resolve)
130.85.97.44 ppp1-44.dialup.umbc.edu
130.85.80.28 ss-80-28.pooled.umbc.edu
130.85.97.95 ppp1-95.dialup.umbc.edu

At least 8 of the hosts in the original top 10 internal hosts list in 3.2.1 were
compromised. This has been confirmed in a previous GCIA Practical by Patrik
Sternudd. Refer to the link graph in section 2.2 for a graphical view of all
compromised hosts that were controlled by 128.122.66.204.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 11 -

Please note that some of these systems appear to be university-owned
computers (such as library computers) and that one of them is using a VPN
connection. They are not only students' systems. In other words: not only should
corrective action be taken to prevent further spreading of the worm itself (by
appropriate packet filtering or firewalling and security policy changes), a number
of hosts also need to be taken off the network, analyzed and rebuilt.

3.2.6 Correlations
These scans were first announced in the Handler's Diary at the Internet Storm
Center on April 1, 2004. They had not been identified at that time. Continued
scanning of the same ports was discussed 5 days later in the Handler's Diary
again.

On March 18, there had already been an interesting write-up of the
Agobot/Polybot family of worms and their relationship. This document also refers
the reader to an excellent analysis of the Phatbot worm by LURHQ. A few other
worms, such as 'W32.HLLW.Polybot' and 'W32.HLLW.Gaobot.gen' have been
described in detail by Symantec and other vendors.

These bots or worms all exploit one or more of the vulnerabilities described in
these security bulletins from Microsoft: MS01-059, MS02-061, MS03-001, MS03-
007, MS03-026, MS03-043, MS03-049, and MS-04-011.

The vulnerabilities have been assigned CAN entries by the CVE: CAN-2001-
0876, CAN-2001-0877, CAN-2002-1145, CAN-2003-0109, CAN-2003-0352,
CAN-2003-0533, CAN-2003-0717, CAN-2003-0812 and others.

These issues have been and are actively discussed on the UNISOG University
Security Operations Group) mailing list hosted at DShield / SANS Institute.

Links to all cited resources can be found in the References section at the end of
this document.

3.2.7 Evidence of Active Targeting
The IRC traffic itself, and especially the commands being issued that cause the
compromised hosts to start scanning networks, are certainly active targeting.
Unfortunately, because we do not have the full packet logs, there is no way to be
absolutely sure of the commands issued to each host. However, the hosts have
most likely been compromised as part of a wide-scale scanning effort. Material
that strongly suggests this, can be found at the end of part 3.2.5.

3.2.8 Severity
Criticality. As the whole network is possibly targeted, the criticality of the target
is very high. The information about this network seems to indicate that all the
important assets are located on UNIX servers, which are not affected by this list

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 12 -

of vulnerabilities. There are also Windows servers on the network, but there is no
information on the importance of these systems. Value: 3.

Lethality. Infection with one of these trojans means total compromise of the
system, so the lethality of this is very high: 5.

System countermeasures. Students' computers are usually not or not very well
protected by a host-based firewall and are often not patched properly. Because
the number of possible targets is very high, it is difficult to say if all of them are
well-protected. Value: 3.

Network countermeasures. There is no evidence of any effective network
countermeasures in this scenario. Machines from the outside can easily connect
to inside hosts without apparent restrictions, and vice versa. Note that it is very
difficult to actually implement network countermeasures for hosts that have been
compromised on another network. As the connection to the botnet is going to
ports between 6666 and 7000, which are the 'normal' ports for IRC traffic, it is not
really possible to block that outgoing traffic, unless IRC is banned on the whole
network as part of the university security policy. Value: 1.

Severity = (criticality + lethality) – (system + network countermeasures)

Severity = (3 + 5) – (2 + 1) = 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 13 -

3.3 Detect 2: FTP DoS ftpd globbing
3.3.1 Description of Detect
04/09-09:51:55.991064 [**] FTP DoS ftpd globbing [**]
63.196.157.142:40424 -> MY.NET.24.27:21

04/10-10:44:29.313011 [**] FTP DoS ftpd globbing [**]
65.243.215.17:1913 -> MY.NET.24.27:21

04/10-11:48:19.564709 [**] FTP DoS ftpd globbing [**]
24.106.112.246:4109 -> MY.NET.24.27:21

04/10-11:53:58.127486 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-11:53:59.239259 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-11:54:00.367257 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-11:54:01.611847 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-12:01:51.020061 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-12:01:56.192552 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-12:01:59.997002 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21
04/10-12:02:01.330520 [**] FTP DoS ftpd globbing [**]
140.239.150.248:3387 -> MY.NET.24.27:21

This attack targets the University of Washington FTP daemon (wu-ftpd) versions
2.5.0, 2.6.0 and 2.6.1. These versions have a bug in the way they handle
filename globbing, causing a possibility for remote root compromise. The attacker
needs a valid login to the service. This can be a normal user account or an
anonymous login.

I highly recommend to take this server off the network immediately, and perform
a forensic analysis on it. It is not clear at this moment if the server has actually
been compromised. The repeated attempts by the fourth attacker, who
apparently managed to fire 8 alerts on the IDS (in a single session, based on the
source port number), may indicate that the exploit did not work against it.
Furthermore, after the attacks, no alerts were generated by the FTP server itself.
This may be because the attackers are only using it for activity for which there
are not rules in the Snort system. But the most important remark here is: none of
this can be confirmed without analysis on the machine itself.

Because of the very bad track record of the wu-ftpd and the fact that it appears
not to be maintained anymore, I would recommend switching to another FTP
server package, such as ProFTPD or vsftpd.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 14 -

3.3.2 Reason this Detect Was Selected
Years ago this exploit was very 'popular', because many sites were running the
University of Washington FTP daemon. It basically meant instant root access
back then. Currently, many other FTP daemons are in use, because of wu-ftpd's
bad reputation with security bugs. However, universities are a classic target of
hackers, because most of them still have a lot of old and vulnerable software
running. It is not certain that this targeted FTP server is vulnerable, but it is very
likely. Let us start the analysis. This is the banner, grabbed from the particular
server:

$ ftp ftp.umbc.edu
Connected to 130.85.24.27.
220 ragnarok.umbc.edu FTP server (Version wu-2.6.1(3) Thu Jun 28 19:17:44 EDT
2001) ready.

It is running version 2.6.1, which is known to be vulnerable. We are not
completely sure yet, because a patch has been issued for this problem. The
patch does not change the version number, however. Additionally, the patch was
only released on November 29, 2001, and the build number on this version says
June 28, 2001, more than five months before the patch was released! It is now
quite certain that this particular server is vulnerable.

Note: The other FTP server on the network, ftp1.umbc.edu, is running ProFTPD
1.2.9, which is a completely different product, and is not vulnerable to this kind of
attack..

3.3.3 Detect was Generated by
Snort intrusion detection system with an outdated rule set. There used to be a
signature called "FTP DoS ftpd globbing", but it is not there anymore. It has now
been replaced by two signatures, Snort ID's 1377 and 1378 and has been
renamed to "FTP wu-ftp bad file completion attempt X", with X being either '~[' or
'~{'.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP wu-ftp bad file
completion attempt ["; flow:to_server,established; content:"~"; content:"[";
distance:1; reference:bugtraq,3581; reference:bugtraq,3707; reference:cve,2001-
0550; reference:cve,2001-0886; classtype:misc-attack; sid:1377; rev:14;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP wu-ftp bad file
completion attempt {"; flow:to_server,established; content:"~"; content:"{";
distance:1; reference:bugtraq,3581; reference:bugtraq,3707; reference:cve,2001-
0550; reference:cve,2001-0886; classtype:misc-attack; sid:1378; rev:14;)

3.3.4 Probability the Source Address was Spoofed
As this attack requires an interactive TCP session with two-way communications,
it would be very hard to spoof the source address of this attack. Spoofing in this
scenario is highly unlikely.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 15 -

3.3.5 Attack Mechanism
There is a bug in the way wu-ftpd handles filename 'globbing'. From the Security
Advisory 'Globbing Vulnerabilities in Multiple FTP Daemons' by COVERT Labs:

[...] when an FTP daemon receives a request involving a file that has a tilde
as its first character, it typically runs the entire filename string through
globbing code in order to resolve the specified home directory into a full
path. This has the side effect of expanding other metacharacters in the
pathname string, which can lead to very large input strings being passed into
the main command processing routines. This can lead to exploitable buffer
overflow conditions, depending upon how these routines manipulate their input.

In other words: by constructing a special string that includes characters to be
expanded by the globbing code (such as the tilde sign '~' being expanded to the
home directory) and sending that to the FTP server in a command, we can make
the server overwrite a buffer, which later on causes a shell to be executed as the
root user, effectively providing a full compromise of the server.

Team Teso released an exploit for this vulnerability, called 7350wurm.c. It is
available from Packet Storm. Possibly, this is the exploit code that was used, and
which generated the alerts.

3.3.6 Correlations
To SecurityFocus, this vulnerability is known as the "Wu-Ftpd File Globbing Heap
Corruption Vulnerability" and has been assigned BugTraq ID 3581. It is also
referred to as CVE-2001-0550. CERT has released two advisories on these
problems:

• CA-2001-33: Multiple Vulnerabilities in WU-FTPD
• CA-2001-07: File Globbing Vulnerabilities in Various FTP Servers

The vulnerabilty is discussed in detail in an excellent GCIH Practical by Warwick
Webb. It was also analyzed as part of a GCIA Practical by Maarten Van
Horenbeeck and a GCIH Practical by David McGuine.

The 2002 version of the SANS / FBI Top 20 also refers to wu-ftpd as being
insecure.

3.3.7 Evidence of Active Targeting
Based on the available information, there is no indication of the FTP server being
attacked in any other way than by the wu-ftpd exploit. There was scanning
activity to it from several hosts (a total of 24 packets), but none of these packets
were destined for port 21.

None of the four hosts involved in these attacks generated any other logging on
the intrusion detection system during the observed time frame: no scanning
activity, no alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 16 -

This may indicate that the attackers had already done some reconnaissance
activity before, in a stealthy way, and that they were determined to attack this
server in particular.

3.3.8 Severity
Criticality. An FTP server is to be considered critical. It is part of the service
network, so it might have trust relationships with other servers in the network.
This particular server allows anonymous logins, so the data on the server itself
may not be that valuable. However, other data on the machine, which is not
accessible from the FTP directories, might be more valuable. Value: 4.

Lethality. Successful exploitation of this vulnerability usually results in remote
root compromise. Value: 5.

System countermeasures. This host has not been patched for over three years.
It is quite safe to assume that the system countermeasures are close to zero.
Moreover, it is a public service providing anonymous access. Value: 0.

Network countermeasures. It does not appear as if the access to this server
has been blocked anywhere in the path, as the cited attackers all managed to get
an interactive session. It is also very hard to implement network
countermeasures for this vulnerability, as it resides in a plaintext service on a
freely accessible FTP server, unless access from the outside is not necessary.
Value: 1.

Severity = (criticality + lethality) – (system + network countermeasures)

Severity = (4 + 5) – (0 + 1) = 8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 17 -

3.4 Detect 3: MY.NET.30.3 and MY.NET.30.4 Activity

Alert Number
MY.NET.30.3 activity 9420
MY.NET.30.4 activity 7248

Total 16668

3.4.1 Description of Detect
The alerts indicate that there was traffic to the hosts 130.85.30.3 and 130.85.30.4
on the internal network. The alerts were generated by traffic to the following TCP
ports:

130.85.30.3 130.85.30.4
Port Alerts Port Alerts Port Alerts Port Alerts
524 8898 21 3 51443 5267 8000 3

80 340 8000 3 80 1458 715 3
2745 53 715 3 524 344 21 2
6129 34 427 3 2745 54 1433 2
3019 13 12849 2 6129 49 446 1
4899 12 1433 2 4899 12 57778 1
1080 9 446 1 3128 9 26112 1
3128 8 55838 1 1080 7 10080 1
5000 8 20168 7 20480 1
1025 8 1025 6 12849 1
3410 7 3410 6 3862 1

20168 7 5000 6 55838 1
389 5 389 5

Port 524 is the port used by Netware Core Protocol (NCP). This is where the
Novell Directory Services are located. In other words: this is the protocol used to
authenticate users and to negiotate authorization. Port 51443 is for the Secure
iFolder product of Novell (a.k.a. NetStorage), which provides secure, SSL
encrypted access to the storage attached to the server. Port 80 is used on both
machines, because it provides a nice login screen for the users. See the next
section, 3.4.2, for details.

The other ports are basically the classic ports scanned by numerous hosts. The
fact that the ports and the number of alerts are almost the same on both systems
clearly indicates that this is caused by a horizontal scan. This is confirmed by a
scan log analysis.

Now that we have seen the usage of these servers, let us see who connected to
them. The criteria used to build the query were: destination port 80, 524 or
51443, and an exchange of more than 10 packets. The last criterium is
introduced because the servers apparently attract many curious users. They just
go to the HTTP server on port 80, have a look at the login page, and stop there.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 18 -

There are quite a few that need more than 10 packets just for that, so those were
manually filtered.

The result of that is a list of 27 different hosts. Another 9 were filtered out
because they had not sent more than 80 packets and thus were not really a
danger for stealing information or brute forcing the authentication system or
anything related. These are the 19 hosts that were left:

Host P80 P524 P51443 FQDN
66.149.110.200 0 380 0 user-119arm8.biz.mindspring.com
151.196.115.104 0 789 0 pool-151-196-115-104.balt.east.verizon.net
128.183.35.77 16 0 363 w223gest.gsfc.nasa.gov
131.92.177.18 0 2169 0 aeclt-cf00a4.apgea.army.mil
134.192.65.152 0 287 0 hshsl152.umaryland.edu
66.151.181.4 242 0 0 default-gw.bos3.fastsearch.net
68.55.113.194 0 0 671 pcp311543pcs.woodln01.md.comcast.net
68.55.116.84 0 146 0 pcp312201pcs.woodln01.md.comcast.net
68.55.129.60 0 0 160 pcp295040pcs.owngsm01.md.comcast.net
68.55.178.168 0 1114 0 pcp233959pcs.elictc01.md.comcast.net
68.55.250.229 0 165 0 pcp261188pcs.howard01.md.comcast.net
68.55.27.157 0 514 0 pcp02560368pcs.owngsm01.md.comcast.net
68.55.62.244 22 0 836 pcp02894056pcs.catonv01.md.comcast.net
68.57.90.146 0 1199 0 pcp912734pcs.brndml01.va.comcast.net
68.81.0.87 18 0 2976 pcp01333933pcs.columb01.pa.comcast.net
69.137.43.10 14 0 429 pcp08648674pcs.towson01.md.comcast.net
69.138.242.40 18 0 212 pcp07724660pcs.nrockv01.md.comcast.net
69.138.77.62 0 1535 0 pcp08479849pcs.desoto01.md.comcast.net
69.3.85.94 23 0 269 h-69-3-85-94.mclnva23.dynamic.covad.net

I tried to locate all of the addresses. At least 15 of the hosts are in the Baltimore
area. Two of them are 'around', more precisely in Richmond, Virginia and
Arlington, D.C. Then there is a host in Boston (default-gw.bos3.fastsearch.net),
which appears to be a gateway or proxy server. And then there is one address
(user-119arm8.biz.mindspring.com) that NeoTrace Pro locates in the New York
City area, but that does not look right. The trace from my system goes through
New York, Philadelphia, Washington DC and back to New York, so probably the
last hops just have incorrect location information. I will consider this host as being
in the Baltimore area too.

In other words: all of the locations seem reasonably close to the university and
could be the residence of university staff, except the address in Boston.
However, the only traffic that was sent by the Boston connection went to port 80.
This was probably someone looking for NetStorage login pages all over the
internet. As there is no port 524 or 51443 traffic from this host, no sensitive
information could have been exchanged.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 19 -

The area information does not completely rule out the possibility of intrusion,
though. A smart attacker who managed to get his hands on password information
could possibly be located in the area too. On the other hand, downloading
content this way would not be very smart at all, since it is all logged by the IDS.

3.4.2 Reason this Detect Was Selected
First of all: the people who constructed this rule set, found this traffic important
enough to create custom rules for it. Additionally, many alerts were generated for
these rules.

To further understand the importance of this traffic or these hosts, some research
is needed. The reverse DNS of these systems shows us that they are called
lan1.umbc.edu (130.85.30.3) and lan2.umbc.edu (130.85.30.4). lan2 also has an
alias called novell.umbc.edu. As quite a few people have pointed out in the past,
these are indeed Novell servers. There is also a 130.85.30.2 (lan3.umbc.edu),
but there are no alerts for traffic to that machine anywhere. Maybe it is a backup
server.

On the Software page of the Office of Information Technology on the university
website, there is a reference to the use of these servers:

Novell Netware is used for our campus faculty and staff print and file servers.

Ok, so they are file and print services. Very interesting targets for an attacker. In
the Winter 2003 OIT newsletter, which is "provided as a service to UMBC
students, faculty and staff", we can read:

Access Your Novell Files Via the Web
If you want to access your personal or department's novell files from home, you
can now do so via the Web through Novell's Web Access feature. Just visit
http://novell.umbc.edu and login with your usual UMBC userid & password. You
can upload, download or delete files, and even modify directories.

It is not clear whether this only refers to staff. The document "Novell for Windows
NT/2000/XP Installation" seems to indicate it is a staff-only thing:

If you are a faculty or staff member and do not yet have a Novell account
please speak to your department head. To use the Novell system you must be on
the UMBC campus and be connected to the Local Area Network.

The second sentence in this document is probably outdated now, since it
contradicts the previous quote from the newsletter.

In other words: these rules seem to be aimed at monitoring the staff members
who access the Novell system from home to use the files that are stored on
there. And of course: to monitor people who are trying to access these resources
without being authorized to do so. They provide a convenient audit trail, even

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 20 -

though the traffic is only recorded in one direction and there are no packet
captures.

3.4.3 Detect was Generated by
Snort Intrusion Detection System with custom rules. Trying to reconstruct the
rules:

alert ip $EXTERNAL_NET any -> 130.85.30.3 any (msg:"MY.NET.30.3 activity";)
alert ip $EXTERNAL_NET any -> 130.85.30.4 any (msg:"MY.NET.30.4 activity";)

These rules log all IP traffic coming from external hosts (outside the 130.85/16
network) and going to 130.85.30.3 or 130.85.30.4. No return traffic is logged.

3.4.4 Probability the Source Address was Spoofed
All of this traffic consists of TCP packets, as part of TCP connections. Due to the
nature of the setup of a TCP connection, it is highly unlikely that the source
addresses were spoofed. As the possible goal of an attacker in this scenario
would be to steal information from the fileserver, spoofing addresses would not
be useful.

3.4.5 Attack Mechanism
There is no sign of an attack in these traces, but they looked interesting enough
to do a more thorough analysis of them.

Possible ways to attack these services would be to login to the system using
credentials that have been compromised by other means. But as noted before,
this would leave serious traces.

Another possibility is a brute force attack on credentials. I do not know whether or
not this is feasible with Netware products. Nowadays, most authentication
systems have failure timers installed: every time you enter a wrong password,
you have to wait longer for the system to allow you to try again. Many password
systems also lock out the user completely after a number of failed logins.

3.4.6 Correlations
In his GCIA Practical, Erik Montcalm noted that port 524 (Novell Directory
Services) should not be available to anyone but the internal users. I do not agree.
The data that is transmitted over this channel is encrypted. Moreover, users need
valid login credentials to be able to use the service.

The idea to assess the risk of the connecting hosts by trying to pinpoint them on
a map, was inspired by Tim Kroeger's analysis.

In the Fall 2004 newsletter of the Office of Information Technology, it was noted
that the Netware systems are to be phased out in exchange for a new Active

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 21 -

Directory based Windows domain. Whether or not this is a good decision for
security, I do not know.

3.4.7 Evidence of Active Targeting
No evidence of active targeting has been found.

3.4.8 Severity
Criticality. The targets are very critical systems. They provide access to the file
systems of university staff members. If these systems are compromised, a huge
breach of confidentiality of information can be the result. Value: 5.

Lethality. As I have no insight into the security architecture of Novell Netware
servers and there is no real sign of a specific attack here, I will assign a safe
value to the lethality factor. In this case, I think assigning a rather high value is
better: better safe than sorry. The fact that this is a modern product produced by
a mature vendor is not a good indication of lethality. Novell Netware has had
serious vulnerabilities in the past. Value: 3.

System countermeasures. The Netware servers are running version 6.0. This is
not the latest version of the software. There is no information available about the
state of patches on these systems, or the level of hardening of the underlying
operating systems. There appears to be no restriction of the hosts that can
connect to these systems. Again, I am going to assign a safe value, in this case
that is a 2.

Network countermeasures. As this service is announced as being accessible
from the internet, I see no real network countermeasures. It is not clear whether
or not other traffic to this host is blocked by a perimeter device. This is again a
safe value, because of a lack of information. Value: 2.

Severity = (criticality + lethality) – (system + network countermeasures)

Severity = (5 + 3) – (2 + 2) = 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 22 -

4 Network Statistics
4.1 Top Five Talkers
4.1.1 The Alert Logs
Based on the raw alerts data, these are the top five internal and external talkers.

Internal based on Alerts
IP address FQDN Alerts
130.85.11.7 dc2.ad.UMBC.EDU 4794
130.85.84.235 (does not resolve) 3382
130.85.60.16 linux2.gl.umbc.edu 2169
130.85.97.51 ppp1-51.dialup.umbc.edu 619
130.85.75.13 chpdm.umbc.edu 482

As far as I can tell from the naming of number one, this must be a domain
controller in an Active Directory system, so it must be a Windows machine. All
alerts that were generated by this machine were SMB Name Wildcards, all sent
to the 169.254/16 'autoconfiguration' range. Windows automatically puts you in
that range when it cannot find a DHCP server. This looks like a configuration
problem. Number two is scanning for eDonkey (port 4662). That traffic is
incorrectly regarded as mstream because it originates from port 12754. Also a
number of 'Possible trojan server activity' alerts are generated by this host,
because it uses local port 27374. This looks suspicious, especially because it
also generates 'High port 65535 tcp - possible Red Worm – traffic' alerts caused
by traffic to port 65535. Three is one of the Linux shell servers, with an SSH
session connected to it from port 65535, which generates 'Red Worm traffic'. As
far as I can tell, the traffic looks like normal SSH. From this IP, there is also one
UDP packet going to the TFTP (69) port of 128.186.103.201, which resolves to
neptune.gsfc.nasa.gov and appears to be close to Baltimore. The fourth one is a
dialup connection from the university, generating many TCP SYN packets to port
65535 at the same host (619 packets) and also scanning other hosts on different
ports (not in the alert data). Number five is a Windows system used by the
Center for Health Program Development and Management. It is generating SMB
Name Wildcards (UDP port 137) to all sorts of servers outside the network.
These look very much like response packets to probes from scanners.

External based on Alerts
IP address FQDN Alerts
68.81.0.87 pcp01333933pcs.columb01.pa.comcast.net 2994
141.157.102.155 pool-141-157-102-155.balt.east.verizon.net 2694
131.92.177.18 aeclt-cf00a4.apgea.army.mil 2169
69.138.77.62 pcp08479849pcs.desoto01.md.comcast.net 1535
68.57.90.146 pcp912734pcs.brndml01.va.comcast.net 1199

Number one generated a lot of RPC traffic to the Novell server on 130.85.30.4.
The second one is the same case as number three in the first list: the return

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 23 -

packets in the SSH session (also see Appendix). The third entry is a session to
the 130.85.30.3 Novell server on port 524, generating the usual 'MY.NET.30.3
traffic' alert for each packet. Number four and five are the same thing. The first
four addresses are located in the Baltimore area. The fifth one is in Richmond.
The four last entries are most probably caused by 'normal' traffic from students or
teachers of the university, combined with a lack of IDS rule set tuning.

4.1.2 The Scans Logs
There are some very active scanners in the network. Here are the tables.

Internal TCP based on Scans
IP address FQDN Scans Activity
130.85.111.51 trc208pc-02.engr.umbc.edu 1047994 Port 135
130.85.81.39 someone @ umbc.edu 745449 Port 135
130.85.70.96 ecs123pc-04.ucs.umbc.edu 471920 Agobot/Phatbot scanning
130.85.66.56 someone @ umbc.edu 334879 Agobot/Phatbot scanning
130.85.42.2 bsvcuser-2.vpn.umbc.edu 253156 Agobot/Phatbot scanning

First there is one PC in the engineering department scanning for port 135,
followed by another 'anonymous' machine inside the university network, also
scanning for port 135. The next three are internal systems infected with Phatbot
or Agobot, scanning for their specific series of ports: 135, 139, 445, 1025, 2745,
3127, 3410, 5000, and 6129. One thing which is very important: one of the VPN
users apparently is infected. As the VPN is a layer of defense, it has already
been breached this time.

Internal UDP based on Scans
IP address FQDN Scans Activity
130.85.153.35 refweb06.libpub.umbc.edu 1079394 Seemingly random ports and hosts
130.85.110.72 eds-lin1.engr.umbc.edu 128279 Seemingly random ports and hosts
130.85.111.34 fsc2.engr.umbc.edu 89137 eMule activity
130.85.53.169 ecs122pc06.ucslab.umbc.edu 72703 Seemingly random ports and hosts
130.85.97.30 ppp1-30.dialup.umbc.edu 70570 Korean File sharing App

Three of these are apparently scanning random hosts and ports. I could not find
any pattern whatsoever, and no references describing this were found on the
internet. Number three is just using the eMule file sharing application, and
number five is using the Korean File sharing application. Credits go to Michael
Wisener for finding that out.

External TCP based on Scans
IP address FQDN Scans Activity
61.146.52.26 someone @ chinanet.cn.net 28219 Port 80
138.100.42.180 (does not resolve) 27798 Port 80
136.142.36.112 (does not resolve) 26338 Port 6129
64.218.200.19 SBC Internet Services 25641 Port 6129
211.239.150.130 someone @ hostway.co.kr 23863 Port 80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 24 -

Apart from the fact that four of these five addresses belong to the Asia-Pacific
region and that they are probably looking for vulnerable HTTP servers and open
Dameware Remote remote control software, there is not much interesting going
on here.

External UDP based on Scans
IP address FQDN Scans Activity
210.192.127.28 (does not resolve) 257 Ports 1025-1029
130.49.65.144 dorms-pppoe-1-65-144.pittsburgh.resnet.pitt.edu 241 Port 137
130.228.88.235 130.228.88.235.ip.tele2adsl.dk 185 Port 137
212.144.11.198 dialin-212-144-011-198.arcor-ip.net 159 Port 137
219.133.113.140 someone @ chinanet.cn.net 137 Port 137

First, some checks for Microsoft RPC/LSA ports, which can be exploited easily.
Then we have all traffic going to port 137, another Windows port, looking for
vulnerable machines.

4.2 Top Five Targeted Services
Setting up lists of top targeted services is not an easy task. Just extracting the
information from the alerts database would produce very useless results,
because we have already seen that the rules produce vast amounts of false
positives. The scans logs are an other option. And then there is the OOS traffic.

4.2.1 The Alert Logs
A 'dumb' analysis on the raw data of the alerts file generates the first list for the
services that were targeted inside the network. The fact that port 80, being the
most 'popular' port on the internet for 'normal' traffic, is being attacked the most,
would not be surprising. But at least 16,000 of the alerts for port 80 were actually
'EXPLOIT x86 NOOP' alerts, which are commonly known as being false positives
with servers serving binary data. Also the 'Possible trojan server activity' alerts
were filtered out, because they were just normal traffic to the main web server
(www.umbc.edu). Additionally, all the alerts for port 22 (SSH) were 'Possible red
worm traffic'. These turned out to be all false positives too. All of this port 22
traffic went to 130.85.60.16, also known as linux2.gl.umbc.edu, a shell server for
the students. See also the analysis in 4.1. These alerts were filtered. The port
51443 traffic was not filtered, because all the alerts were 'MY.NET.30.4 traffic',
which is a rule that probably just records all traffic to that host. The sole fact that
all traffic to that host is logged, indicates that it must be providing an important
and valuable service. The result of the filtering operation is shown in the second
table.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 25 -

Corrected data

Port Description Alerts
524 Novell 9242

51443 RPC 5267
80 HTTP 2028

1025 Microsoft RPC/LSA 936
111 RPC 930

4.2.2 The Scans Logs
So, what do the scans logs say? Outgoing UDP is certainly not interesting. 90%
of it are false positives, mainly our own DNS server traffic (2,424,972 packets
from 130.85.1.{2,4,5} to other DNS servers), 189,538 packets for the Korean file
sharing application mentioned before, another 83,000+ packages for eMule
protocols, our own NTP servers synchronizing, some online gaming and Kazaa…
Having more than 4 million UDP packets logged without precise filtering
apparently is not very useful.

Incoming UDP is somewhat more interesting. The majority of that traffic (1074
packets) goes to port 137, the NetBIOS Name Service, probably looking for open
shares on Windows machines. Next is 82 packets to port 53. These probably
came in fast, causing them to be alerted as a port scan. The rest is mainly
DCOM-related scanning to ports 1025-1029.

If we are talking about incoming TCP, port 135 (Microsoft RPC) is certainly the
champion with 1,932,041 packets. This is probably scanning from MSBlast and
similar worms trying to exploit vulnerabilities in the RPC implementation (see
CAN-2003-0352, CAN-2003-0528, CAN-2003-0533, CAN-2003-0605 and CAN-
2003-0715).

4.2.3 Out of Specifications Logs

Out of Specifications
IP Address FQDN Entries
68.54.84.49 pcp01741335pcs.howard01.md.comcast.net 968
202.144.28.167 kurinji.tenet.res.in 691
141.224.64.4 bessie.augsburg.edu 144
193.170.194.27 (does not resolve) 135
66.225.198.20 unknown.splashhost.net 97

As these are 'Out of Specifications', we can expect some 'weird' trafic here. The
first IP is from someone checking his e-mail (POP3, TCP port 110 on 130.85.6.7)
every minute. Every packet gets tagged as "SYN 12****S* RESERVEDBITS" by
Snort. The same traffic is generated by host number two, but to port 4662
(eDonkey) on host 130.85.70.225 this time. This host is located in India. Number
three: again the same tagging by Snort, this time to port 25 (SMTP) on
130.85.12.4, one of the mailservers. The fourth entry is sending these packets to

Raw data from database
Port Description Alerts

80 HTTP 18044
524 Novell 9242

51443 RPC 5267
22 SSH 2694

1025 Microsoft RPC/LSA 936

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 26 -

port 113 (ident) on host 130.85.110.82 and a few to port 25 (SMTP) on
130.85.12.6. Number five is the same story, again to port 25 of 130.85.12.6.

A mailing list post by Victor Barahona seems to indicate that this is caused by
Explicit Congestion Notification (ECN) bits in the TCP header being set. ECN
itself is described in RFC 3168: "The Addition of Explicit Congestion Notification
(ECN) to IP". From the RFC:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
		U	A	P	R	S	F
Header Length	Reserved	R	C	S	S	Y	I
		G	K	H	T	N	N
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 Figure 3: The old definition of bytes 13 and 14 of the TCP
 header.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
		C	E	U	A	P	R	S	F
Header Length	Reserved	W	C	R	C	S	S	Y	I
		R	E	G	K	H	T	N	N
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 Figure 4: The new definition of bytes 13 and 14 of the TCP
 Header.

We call a SYN packet with the ECE and CWR flags set an "ECN-setup SYN packet"
[...] Before a TCP connection can use ECN, Host A sends an ECN-setup SYN packet

I did not find any indication of malicious activity or intent in this traffic.

4.3 Most Suspicious External Source Addresses
4.3.1 KAPTEREV.ICAS.FAS.NYU.EDU
This host, 128.122.66.204 or KAPTEREV.ICAS.FAS.NYU.EDU, is actively
involved in controlling worm or trojan compromised hosts. It is running an IRC
server on port 7000 for that purpose. In the analyzed timeframe, a total of 13
different internal hosts connected or communicated with this IRC server. The
server is most probably also compromised, because a university usually does not
provide IRC services, and certainly not on hosts with 'obscure' names such as
this one. Refer to the Link Graph in section 2.2 for a graphical overview of what
hosts it controlled.

Registration information:
OrgName: New York University
OrgID: NYU
Address: Academic Computing Facility
Address: 251 Mercer Street
City: New York
StateProv: NY
PostalCode: 10012
Country: US

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 27 -

NetRange: 128.122.0.0 - 128.122.255.255
CIDR: 128.122.0.0/16
NetName: NYU-NET
NetHandle: NET-128-122-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Assignment
NameServer: CMCL2.NYU.EDU
NameServer: EGRESS.NYU.EDU
NameServer: NYUNSB.NYU.EDU
Comment:
RegDate: 1986-05-02
Updated: 2001-05-21

TechHandle: ZN68-ARIN
TechName: New York University
TechPhone: +1-212-998-3431
TechEmail: NOC@nyu.edu

4.3.2 ip248.netriplex.com
This is the host that triggered 8 FTP globbing alerts on the intrusion detection
system. The IP address is 140.239.150.248. The PTR record gives us the FQDN
ip248.netriplex.com, but this name does not resolve back. Therefore, along with
the netblock registration, I am providing the registration information of the domain
name itself too. NeoTrace Pro puts this address in the Boston area.

Netblock:
Allegiance Telecom Companies Worldwide ALGX-HVD-BLK1 (NET-140-239-0-0-1)
 140.239.0.0 - 140.239.255.255
CONFUSCIUS LTD HTW-04627 (NET-140-239-150-241-1)
 140.239.150.241 - 140.239.150.254

Domain name:
 NETRIPLEX, LLC
 1112 Boylston Street
 Second Floor, PMB17
 Boston, Massachusetts 02215
 United States

 Registered through: GoDaddy.com
 Domain Name: NETRIPLEX.COM
 Created on: 18-Nov-02
 Expires on: 18-Nov-04
 Last Updated on: 21-Jul-04

 Administrative Contact:
 Manager, IT itmanager@netriplex.com
 NETRIPLEX, LLC
 1112 Boylston Street
 Second Floor, PMB17
 Boston, Massachusetts 02215
 United States
 6172424855 Fax -- 0000000000
 Technical Contact:
 Manager, IT itmanager@netriplex.com
 NETRIPLEX, LLC
 1112 Boylston Street

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 28 -

 Second Floor, PMB17
 Boston, Massachusetts 02215
 United States
 6172424855 Fax -- 0000000000

 Domain servers in listed order:
 NS1.NETRIPLEX.COM
 NS4.NETRIPLEX.COM

4.3.3 61.146.52.26
This is the top external scanner, which sent us more than 28,000 packets. The IP
address does not have a PTR record. This is the registration information:

inetnum: 61.140.0.0 - 61.146.255.255
netname: CHINANET-GD
descr: CHINANET Guangdong province network
descr: Data Communication Division
descr: China Telecom
country: CN
admin-c: CH93-AP
tech-c: IC83-AP
mnt-by: APNIC-HM
mnt-lower: MAINT-CHINANET-GD
status: ALLOCATED PORTABLE
changed: hm-changed@apnic.net 20040914
source: APNIC

person: Chinanet Hostmaster
address: No.31 ,jingrong street,beijing
address: 100032
country: CN
phone: +86-10-66027112
fax-no: +86-10-58501144
e-mail: hostmaster@ns.chinanet.cn.net
e-mail: anti-spam@ns.chinanet.cn.net
nic-hdl: CH93-AP
mnt-by: MAINT-CHINANET
changed: hostmaster@ns.chinanet.cn.net 20021016
remarks: hostmaster is not for spam complaint,please send spam complaint
to anti-spam@ns.chinanet.cn.net
source: APNIC

person: IPMASTER CHINANET-GD
nic-hdl: IC83-AP
e-mail: ipadm@gddc.com.cn
address: NO.1,RO.DONGYUANHENG,YUEXIUNAN,GUANGZHOU
phone: +86-20-83877223
fax-no: +86-20-83877223
country: CN
changed: ipadm@gddc.com.cn 20040902
mnt-by: MAINT-CHINANET-GD
remarks: IPMASTER is not for spam complaint,please send spam complaint to
abuse@gddc.com.cn
source: APNIC

5 Correlations
As these events and this network have been analyzed before, there are many
references to other GCIA Practicals. These have been referenced in the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 29 -

appropriate sections, as well as in the References section. 'New' vulnerability
information and background is referenced in the specific sections too. Please
refer to the other parts of this document for these correlations.

6 Compromised Internal Hosts
In section 4.1.2, I already mentioned that quite a few hosts had been infected
with some form of the Agobot/Phatbot worm. This analysis is based on the
scanning pattern showed by these hosts. Worm compromised hosts are listed in
section 3.2.6, based on the outgoing IRC connections these hosts made to a
'controlling' IRC server. In addition, ftpd.umbc.edu might have been
compromised. Refer to section 3.3 for details on that host.

7 Defensive Recommendations
• Fine tune the IDS rule set for port scanning, because the service networks

are in there too. For example, the DNS servers obviously generate a lot of
UDP traffic, which is recorded as port scanning.

• Fine tune the rest of the rule set, because it generates so many false
positives that analyzing this traffic is nearly impossible if you want to maintain
mental sanity of the administrators. Especially the shellcode alerts should be
turned off for certain servers or ports, such as the main web server. Updating
the rule set would allow to correctly identify the 'new' forms of suspicious
traffic instead of alerting on old signatures that are 'too broad'.

• If sufficient hardware is available, log whole sessions for certain alerts. This
can be easily accomplished with the normal Snort rules.

• Dump alerts and/or traffic in pcap format, not in ASCII. Maybe this is already
the case, and the logs that were provided have been post-processed already.
Pcap format allows the analyst to find out a lot more information about what
caused the alert, and allows for more in depth analysis of the network
topology, in certain scenarios.

• Upgrade the version of Snort. This version does not understand the Explicit
Congestion Notification (ECN) bits and marks them as bad traffic.
Additionally, Snort has been found vulnerable to a buffer overflow in the
stream4 preprocessor, for which exploit code has been posted on the
internet. You do not want your Intrusion Detection System to be
compromised. Refer to the References section for more information.

• If legally possible, schedule a weekly or daily scan of all network resources,
including the service networks and the students' machines, to be able to
identify compromised machines fast. Additionally, by using strong
authentication mechanisms for the 'untrusted' computers on the network, it is
easy to find out who exactly was using a certain IP address at the time of a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part II – Detailed Analysis

 - 30 -

compromise. For a nice example of this, refer to OpenBSD's authpf(8) manual
page. The idea is simple: all network access is blocked by default, except
SSH sessions to a certain host, which is controlling the access. By logging in
to this server, the authpf(8) starts, and, based on the configuration, gives the
particular host access to certain resources. Authentication can be done with
LDAP, Kerberos or any other standard. When the host logs off (closes the
SSH session), the access privileges are removed again. This way, not only
the access is controlled, but the IP address used is also linked to a user ID.

• If this is not already being done, block all incoming (from the internet) TCP
and UDP connections to hosts that are not on public service subnets. It is
unclear if this kind of firewalling is set up right now.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part III – Analysis Process

 - 31 -

Part III – Analysis Process
Hardware and Software
All operations were carried out on OpenBSD 3.5 (i386) in a VMware Workstation
on Windows XP SP1 and on the host operating system itself. The machine I used
is a 2.6 GHz Pentium IV machine with 1 GB of physical memory and plenty of
disk space.

Because of the vast amount of data, I decided to put all records in a MySQL 4.0.x
database. Therefore, I wrote several Perl (version 5.8.2) and shell scripts, and
used the standard UNIX tools. I based the scripts on work of others. The analysis
work was done with SQL statements through a popular web interface to the
MySQL database: phpMyAdmin, in this case version 2.6.0 running on an Apache
1.3.29 server with PHP 4.3.

Getting the data into the database was not very hard, but it took a while. For
example, the table with UDP scans and TCP scans each contained more than 4
million records. On the cited configuration, importing the data took almost four
hours.

I also noticed that generating indexes on the srchost, srcport, dsthost and dstport
fields in the tcpscan and udpscan tables speeds things up tremendously,
especially when using grouping queries etc. Generating the indexes takes some
time, but you only have to do it once, since you are not inserting any data
afterwards.

The figures have been produced with Microsoft Office Visio 2003. Tables were
managed with Microsoft Excel. To locate certain hosts based on their IP
addresses, I used NeoTrace Pro version 3.25.

Handling the Data Files
The data files were provided in a raw ASCII form, which was not ready for
analysis. For each of the data files, several operations were needed to be able to
handle them with scripts or databases.

Alert Files
Processing the alert files went as follows:

Merge all the files together.

$ cat alert.040408 alert.040409 alert.040410 > alert.full

Check which lines do not start with a date in the covered timeframe, and dump
results, including a line number, to the 'anomalies' file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Part III – Analysis Process

 - 32 -

$ egrep -nv "(^04/08)|(^04/09)|(^04/10)|(^04/11)" alert.full > anomalies

Manually fix some of the stuff, using the anomalies file as a guide. It seems these
errors are the result of either a concurrency bug in Snort, or a problem with
multiple Snort instances running on the same host or logging to the same file.
Typical Example:

04/08-13:12:37.778948 [**] MY.NET.30.3 activity [**]
131.92.177.18:1033 -> MY.NET.30.3:524
04/08-13:12:37.988681 [**] MY.NET.30.3 activity [**]
131.92.177.1804/08-14:05:40.308048 [**] spp_portscan: portscan status
from MY.NET.80.5: 5 connections across 4 hosts: TCP(5), UDP(0) [**]
:1033 -> MY.NET.30.3:524

The third line obviously needs to be added to the first line, and the second line
needs a line break after the 131.92.177.18.

Next, the data from alerts and port scans is fed to the MySQL database using the
script outlined in the Appendix.

$../tools/alert2mysql.pl alert.full
$../tools/portscan2mysql.pl alert.full

Scans Data
Same thing: concatenate all the files, filter the right dates, and sort the data. The
–H flag to sort(1) is not used on all systems. From the OpenBSD manual page:

 -H Use a merge sort instead of a radix sort. This option should be
 used for files larger than 60Mb.

$ cat scans.040408 scans.040409 scans.040410 > scans.full
$ cat scans.full | egrep '(^Apr 8)|(^Apr 9)|(^Apr 10)' | sort -H > scans.tmp
$ mv scans.tmp scans.full

Then, import the scans into the database using the Perl scripts.

$../tools/tcpscans2mysql.pl scans.full
$../tools/udpscans2mysql.pl scans.full

Out of Specification (OOS) Data
Merge all the OOS files together.

$ cat oos_report_040404 oos_report_040405 oos_report_040406 > oos.full

Generate a list of the source addresses causing OOS alerts. This is based on a
command line by Maarten Van Horenbeeck.

$ cat oos.full | egrep '(^04/08)|(^04/09)|(^04/10)' | cut -d " " -f 2 \
 | cut -d ":" -f 1 | sort | uniq -c | sort -r -n > oos.summary

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie References

 - 33 -

References
Relationship Analysis
University of Maryland, Baltimore County (UMBC); Intermapper System;
http://noc2.noc.umbc.edu/~admin/map_screen.html

University of Maryland, Baltimore County (UMBC); System Hardware List;
http://www.gl.umbc.edu/hardware.shtml

Loic Juillard's; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Loic_Juillard_GCIA.pdf

Tim Kroeger; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Tim_Kroeger_GCIA.pdf

Andrew J. Wagoner; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Andrew_J_Wagoner_GCIA.pdf

Patrik Sternudd; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Patrik_Sternudd_GCIA.pdf

Detect 1: IRC Related Activity – Possible botnets
Michael Meacle; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Michael_Meacle_GCIA.pdf

Symantec Security Response; W32.HLLW.Lovgate.J@mm;
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.lovgate.j@mm.html

Patrik Sternudd; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Patrik_Sternudd_GCIA.pdf

SANS Internet Storm Center; Handler's Diary April 1st 2004;
http://isc.sans.org/diary.php?date=2004-04-01

SANS Internet Storm Center; Handler's Diary April 5th 2004;
http://isc.sans.org/diary.php?date=2004-04-05

SANS Internet Storm Center; Handler's Diary March 18th 2004;
http://isc.sans.org/diary.php?date=2004-03-18

LURHQ Threat Intelligence Group; Phatbot Trojan Analysis;
http://www.lurhq.com/phatbot.html

Symantec Security Response; W32.HLLW.Polybot;
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.polybot.html

Symantec Security Response; W32.HLLW.Gaobot.gen;
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.gaobot.gen.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie References

 - 34 -

Microsoft Corporation; Security Bulletins;
http://www.microsoft.com/technet/security/bulletin/MS01-059.mspx
http://www.microsoft.com/technet/security/bulletin/MS02-061.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-001.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-043.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-049.mspx
http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx

CVE/CAN-entries;
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1145
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0717
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0812

DShield; UNISOG – University Security Operations Group mailing list;
http://www.dshield.org/mailman/listinfo/unisog

Detect 2: FTP DoS ftpd globbing
CERT Advisory CA-2001-07: File Globbing Vulnerabilities in Various FTP Servers;
http://www.cert.org/advisories/CA-2001-07.html

CERT Advisory CA-2001-33: Multiple Vulnerabilities in WU-FTPD;
http://www.cert.org/advisories/CA-2001-33.html

Network Associates COVERT Labs; Globbing Vulnerabilities in Multiple FTP Daemons;
http://packetstormsecurity.nl/advisories/nai/nai.00-ftp.glob

SecurityFocus; Wu-Ftpd File Globbing Heap Corruption Vulnerability;
http://www.securityfocus.com/bid/3581

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0550

Warwick Webb; GCIH Practical Assignment;
http://www.giac.org/practical/Warwick_Webb_GCIH.doc

David McGuire; GCIH Practical Assignment;
http://www.giac.org/practical/David_McGuire_GCIH.doc

Snort Signatures
http://www.snort.org/snort-db/sid.html?id=1377
http://www.snort.org/snort-db/sid.html?id=1378

Team Teso; 7350wurm.c; http://packetstormsecurity.nl/0205-exploits/7350wurm.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie References

 - 35 -

Patch for wu-ftpd 2.6.1; ftp://ftp.wu-ftpd.org/pub/wu-
ftpd/patches/apply_to_2.6.1/ftpglob.patch

The SANS Institute; The Twenty Most Critical Internet Security Vulnerabilities;
http://www.sans.org/top20/oct02.php#U5

ProFTPD; http://www.proftpd.org/

vsftpd; http://vsftpd.beasts.org/

Detect 3: MY.NET.30.3 and MY.NET.30.4 Activity
University of Maryland, Baltimore County (UMBC); Novell for Windows NT/2000/XP
Installation;
http://www.umbc.edu/oit/sans/desktopsupport/installation/novell/windows/2000_xp/

University of Maryland, Baltimore County (UMBC); Software Menu;
http://www.umbc.edu/oit/software/

University of Maryland, Baltimore County (UMBC); OIT Newsletter: Winter 2003;
http://www.umbc.edu/oit/newsletter/winter2003.html

University of Maryland, Baltimore County (UMBC); OIT Newsletter: Fall 2004;
http://www.umbc.edu/oit/newsletter/fall2004.html

Novell; Ask the Experts: BorderManager Cool Solutions Q&A Collection ; Filter
exceptions for GroupWise;
http://www.novell.com/coolsolutions/bordermag/ask_the_experts.html

Tim Kroeger; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Tim_Kroeger_GCIA.pdf

Erik Montcalm; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Erik_Montcalm_GCIA.pdf

Network Statistics
Ryan Troll; Automatically Choosing an IP Address in an Ad-Hoc IPv4 Network; IETF
Draft; http://www.ietf.org/proceedings/99mar/I-D/draft-ietf-dhc-ipv4-autoconfig-03.txt

Michael Wisener; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Michael_Wisener_GCIA.pdf

CVE/CAN-entries;
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0528
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0605
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0715

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie References

 - 36 -

American Registry for Internet Numbers (ARIN); WHOIS Database Search;
http://www.arin.net/whois/

Victor Barahona; Snort-users mailing list; January 12, 2001;
http://archives.neohapsis.com/archives/snort/2001-01/0183.html

K. Ramakrishnan; The Addition of Explicit Congestion Notification (ECN) to IP; Request
for Comments number 3168; http://www.rfc-editor.org/rfc/rfc3168.txt

Defensive Recommendations
Snort TCP Packet Reassembly Integer Overflow Vulnerability
BugTraq ID: http://www.securityfocus.com/bid/7178
Exploit code: http://www.securityfocus.com/data/vulnerabilities/exploits/p7snort191.sh
CVE/CAN entry: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0209

OpenBSD authpf(8) manual page; http://www.openbsd.org/cgi-
bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+3.5

OpenBSD; PF: Authpf: User Shell for Authenticating Gateways;
http://www.openbsd.org/faq/pf/authpf.html

Analysis Process
OpenBSD sort(1) manual page; http://www.openbsd.org/cgi-
bin/man.cgi?query=sort&apropos=0&sektion=1&manpath=OpenBSD+3.5&arch=i386&fo
rmat=html

Maarten Van Horenbeeck; GCIA Practical Assignment;
http://www.giac.org/practical/GCIA/Maarten_Vanhorenbeeck_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Appendices

 - 37 -

Appendices
Appendix: SSH session alerted as Red Worm
04/08-23:45:06.617679 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:06.631306 [**] High port 65535 tcp - possible Red Worm - traffic
[**] MY.NET.60.16:22 -> 141.157.102.155:65535
04/08-23:45:08.446529 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:08.461483 [**] High port 65535 tcp - possible Red Worm - traffic
[**] MY.NET.60.16:22 -> 141.157.102.155:65535
04/08-23:45:08.653856 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:08.794017 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:08.955410 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:09.535802 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:09.761137 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 141.157.102.155:65535 -> MY.NET.60.16:22
04/08-23:45:10.001812 [**] High port 65535 tcp - possible Red Worm - traffic
[**] MY.NET.60.16:22 -> 141.157.102.155:65535

Appendix: Perl scripts to import data into MySQL database
These scripts are basically written by Jason Lam. You can find the originals at
http://www.giac.org/practical/Jason_Lam_GCIA.doc. I hacked them up, because
some of the file formats had changed slightly.

They do not do sufficient error checking, and there is no real date parsing. The
regular expressions used are very bad. But it worked for me. Basically, the same
script is used four times, but with a different regular expression and a different
table layout. You need the DBI module for it. Use at your own risk.

Import alerts
#!/usr/bin/perl -w
Based on work by Jason Lam

#--[Settings ---------------
$driver = "mysql";
$database = "giac";
$host = "localhost";
$user = "giac";
$password = "mekmitasdigoat";
$tablename = "alert";
$year = "2004";
#----------------------------

use DBI;

$file = $ARGV[0];
open ALERT, $file or die "Could not open file";

$dsn = "DBI:$driver:database=$database;host=$host;";
$dbh = DBI->connect($dsn, $user, $password) or die "Database error";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Appendices

 - 38 -

$tablecreate = "CREATE TABLE IF NOT EXISTS $tablename ("
 . "`id` INT NOT NULL AUTO_INCREMENT,"
 . "`datestamp` DATETIME NOT NULL,"
 . "`attack` TEXT NOT NULL,"
 . "`srchost` TEXT NOT NULL,"
 . "`srcport` INT NOT NULL,"
 . "`dsthost` TEXT NOT NULL,"
 . "`dstport` INT NOT NULL,"
 . "PRIMARY KEY (`id`))";

my $query = $dbh->prepare($tablecreate) or die "Could not prepare statement";
$query->execute() or die "Could not create table";

$query = $dbh->prepare("DELETE FROM $tablename") or die "Could not delete
records from table";
$query->execute();

while ($line=<ALERT>) {
 if ($line =~ /^(\d+)\/(\d+)-
(\d+:\d+:\d+).\d+\s+\[**\]\s([\s\W\w]+)\s\[**\]\s([\d\w.]+):(\d+)\s-
>\s([\d\w\W.]+):(\d+)\s$/) {
 # Rules alert
 # $1 = Month, $2=date, $3=time, $4 = attack, $5 = srcip, $6 =
srcport, #7 = dstip, #8 = dstport
 $sql = "INSERT INTO $tablename (datestamp, attack, srchost,
srcport, dsthost, dstport) VALUES (";
 $sql .= "'$year-$1-$2 $3', '$4', '$5', $6, '$7', $8)";
 $query = $dbh->prepare($sql) or die "Couldn't prepare statement: "
. $dbh->errstr . "\nQuery string was: $sql\n";
 $query->execute();
 }
}

Import port scans
#!/usr/bin/perl -w
Based on work by Jason Lam

#--[Settings ---------------
$driver = "mysql";
$database = "giac";
$host = "localhost";
$user = "giac";
$password = "mekmitasdigoat";
$tablename = "portscan";
$year = "2004";
#----------------------------

use DBI;

$file = $ARGV[0];
open ALERT, $file or die "Could not open file";

$dsn = "DBI:$driver:database=$database;host=$host;";
$dbh = DBI->connect($dsn, $user, $password) or die "Database error";

$tablecreate = "CREATE TABLE IF NOT EXISTS $tablename ("
 . "`id` INT NOT NULL AUTO_INCREMENT, "
 . "`datestamp` DATETIME NOT NULL, "
 . "`src` VARCHAR(20) NOT NULL, "
 . "`hosts` INT NOT NULL, "

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Appendices

 - 39 -

 . "`totaltime` INT NOT NULL, "
 . "`tcp` INT NOT NULL, "
 . "`udp` INT NOT NULL, "
 . "PRIMARY KEY (`id`))";

my $query = $dbh->prepare($tablecreate) or die "Could not prepare statement";
$query->execute() or die "Could not create table";

$query = $dbh->prepare("DELETE FROM $tablename") or die "Could not delete
records from table";
$query->execute();

while ($line=<ALERT>) {
 if ($line =~ /^(\d+)\/(\d+)-(\d+:\d+:\d+).\d+\s+\[**\]
spp_portscan:\sEnd of portscan from ([\d\S]*.[\d\S]*.[\d\S]+.[\d\S]+): TOTAL
time\((\d+)s\) hosts\((\d*)\) TCP\((\d+)\) UDP\((\d+)\)/) {
 # Portscan
 # $1 = Month, $2=date, $3=time, $4 = srcip, $5 = nohost, $6 =
totaltime, $7 = TCPno, $8 = UDPno
 $sql = "INSERT INTO $tablename (datestamp, src, totaltime, hosts,
tcp, udp) VALUES (";
 $sql .= "'$year-$1-$2 $3', '$4', $5, $6, $7, $8)";
 $query = $dbh->prepare($sql) or die "Couldn't prepare
statement: " . $dbh->errstr . "\nQuery string was: $sql\n";
 $query->execute();
 }
}

Import UDP scans
#!/usr/bin/perl -w
Based on work by Jason Lam

#--[Settings ---------------
$driver = "mysql";
$database = "giac";
$host = "localhost";
$user = "giac";
$password = "mekmitasdigoat";
$tablename = "udpscan";
$year = "2004";
$month = "04"; # Yes, very nasty, but it works fine for now
#----------------------------

use DBI;

$file = $ARGV[0];
open ALERT, $file or die "Could not open file";

$dsn = "DBI:$driver:database=$database;host=$host;";
$dbh = DBI->connect($dsn, $user, $password) or die "Database error";

$tablecreate = "CREATE TABLE IF NOT EXISTS $tablename ("
 . "`id` INT NOT NULL AUTO_INCREMENT,"
 . "`datestamp` DATETIME NOT NULL,"
 . "`srchost` TEXT NOT NULL,"
 . "`srcport` INT NOT NULL,"
 . "`dsthost` TEXT NOT NULL,"
 . "`dstport` INT NOT NULL,"
 . "PRIMARY KEY (`id`))";

my $query = $dbh->prepare($tablecreate) or die "Could not prepare statement";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Appendices

 - 40 -

$query->execute() or die "Could not create table";

$query = $dbh->prepare("DELETE FROM $tablename") or die "Could not delete
records from table";
$query->execute();

while ($line=<ALERT>) {
 if ($line =~ /^([\w\W]+).*(\d+) (\d+:\d+:\d+) ([\d\w\W.]+):(\d+) ->
([\d\w\W.]+):(\d+) UDP/) {
 # UDP Scan
 # $1 = Month, $2=date, $3=time, $4 = srcip, $5 = srcport, $6 =
dstip, $7 = dstport
 $day = sprintf '%02d', $2;
 $sql = "INSERT INTO $tablename (datestamp, srchost, srcport,
dsthost, dstport) VALUES (";
 $sql .= "'$year-$month-$day $3', '$4', $5, '$6', $7)";
 $query = $dbh->prepare($sql) or die "Couldn't prepare statement: "
. $dbh->errstr . "\nQuery string was: $sql\n";
 $query->execute();
 }
}

Import TCP scans
#!/usr/bin/perl -w
Based on work by Jason Lam

#--[Settings ---------------
$driver = "mysql";
$database = "giac";
$host = "localhost";
$user = "giac";
$password = "mekmitasdigoat";
$tablename = "tcpscan";
$year = "2004";
$month = "04"; # Yes, very nasty, but it works fine for now
#----------------------------

use DBI;

$file = $ARGV[0];
open ALERT, $file or die "Could not open file";

$dsn = "DBI:$driver:database=$database;host=$host;";
$dbh = DBI->connect($dsn, $user, $password) or die "Database error";

$tablecreate = "CREATE TABLE IF NOT EXISTS $tablename ("
 . "`id` INT NOT NULL AUTO_INCREMENT,"
 . "`datestamp` DATETIME NOT NULL,"
 . "`srchost` TEXT NOT NULL,"
 . "`srcport` INT NOT NULL,"
 . "`dsthost` TEXT NOT NULL,"
 . "`dstport` INT NOT NULL,"
 . "`type` TEXT NOT NULL,"
 . "PRIMARY KEY (`id`))";

my $query = $dbh->prepare($tablecreate) or die "Could not prepare statement";
$query->execute() or die "Could not create table";

$query = $dbh->prepare("DELETE FROM $tablename") or die "Could not delete
records from table";
$query->execute();

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wouter Clarie Appendices

 - 41 -

while ($line=<ALERT>) {
 if ($line =~ /^([\w\W]+).*(\d+) (\d+:\d+:\d+) ([\d\w\W.]+):(\d+) ->
([\d\w\W.]+):(\d+) (.+)/) {
 # UDP Scan
 # $1 = Month, $2=date, $3=time, $4 = srcip, $5 = srcport, $6 =
dstip, $7 = dstport, $8 = type
 $day = sprintf '%02d', $2;
 $sql = "INSERT INTO $tablename (datestamp, srchost, srcport,
dsthost, dstport, type) VALUES (";
 $sql .= "'$year-$month-$day $3', '$4', $5, '$6', $7, '$8')";
 $query = $dbh->prepare($sql) or die "Couldn't prepare statement: "
. $dbh->errstr . "\nQuery string was: $sql\n";
 $query->execute();
 }
}

