
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 4.0

Derek A. Buelna

November 16, 2004



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Part I –Executive Summary .................................................................................................. 3
Part II –Detailed Analysis..................................................................................................... 3

1. Scenario...................................................................................................................... 3
2. General Analysis........................................................................................................ 4
3. Detect Analysis ........................................................................................................ 12

Detect 1: [1:184:6] BACKDOOR Q access (18 alerts) ............................................... 12
Detect 2: [1:649:8] SHELLCODE x86 setgid 0 (1 alert) ............................................ 14
Detect 3: [1:648:7] SHELLCODE x86 NOOP (1 alert) .............................................. 16

4. Network Statistics .................................................................................................... 18
5. Correlations.............................................................................................................. 19
6. Internal Insights ....................................................................................................... 20
7. Defensive Recommendations................................................................................... 20

Part III - Analysis Process.................................................................................................... 21
Appendix.............................................................................................................................. 22

1. References................................................................................................................ 22
2. Snort Alert Information............................................................................................ 22



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part I –Executive Summary

The alerts analyzed in the packet log include a variety of malicious traffic. Some is
worse then others. We detected a variety of scans for an open proxy and several
attempts to connect to a Windows share. We noticed attempts to compromise
(hack) and also to communicate with potentially compromised hosts inside your
network. There’s also quite a bit of peer to peer file sharing activity, which places
your organization at risk. Some of your internal hosts may have illegal or pirated
software as well as pornography. We recommend against the use of such
programs and that this should be defined as part of your acceptable use policy.

There’s one internal host (207.166.87.157) that may be compromised. At the very
least, the user of this system is up to no good, attempting to hack into other
systems on the Internet. We recommend that the computer is confiscated and that
someone with experience in computer forensics analyzes it. If it turns out that one
of your employees is in control of this computer and that it hasn’t been
compromised, this employee needs to be disciplined at the very least.

As a follow-up to this analysis, we recommend that the firewall rule set is analyzed
in order to determine which of the attacks could have made it through the firewall.
Ports such as 8080, 1080, 3128, 139, 445 and 515 need to be closed. If they
aren’t, further analysis of internal hosts is suggested. Of course, the only ports on
the firewall that should be open are those that are required to be open. Lastly, we
want to communicate the importance of patch management. We don’t know
whether or not your hosts are up to date or not but you should know. It’s a critical
part of maintaining the security of your organization and its assets. Please
reference the Defensive Recommendations for more suggestions on how to
increase security.

Part II –Detailed Analysis

1. Scenario

The file http://isc.sans.org/logs/Raw/2002.9.30 has been analyzed. This binary
capture file was generated by an unknown version of Snort with an unknown rule
set. It is understood that every packet in the file is the result of an alert and that IP
addresses and checksums have been sanitized in the file. The “–k none”option will
be used with Snort so it will ignore the bad checksums. It was noted that the date
on each of the logged packets is actually 10/30/02 and that there is a total of
15021 packets.

Snort 2.2.0 with 2.2 rules from 08/10/04, Tcpdump 3.81, Libpcap 0.83 and Ethereal
0.10.7 will be used for this analysis. Perl and various UNIX utilities were also used
to manipulate the data.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. General Analysis

Introduction

This section focuses on the intrusion analysis results. Our interpretation of the
network topology is covered, then we dive into a general analysis of the logged
packets. This is followed by a detailed analysis of three detects, along with some
important statistics about the network. We reference the analysis of previous GCIA
students in order to back up some of our conclusions, then we cover our concerns
about internal hosts. Lastly, we provide defensive recommendations for your
organization. For more information about the analysis process, please reference
Part III: Analysis Process.

Network Topology

As there’s only two unique MAC addresses among the logged packets, we can tell
the IDS is watching a segment with only two devices.

tcpdump –ner 2002.9.30 | perl –ane ‘print $F[1], “\n”;’| sort –u
00:00:0c:04:b2:33
00:03:e3:d9:26:c0

We suspect that these are a Cisco router and a Cisco PIX firewall as IEEE
(http://standards.ieee.org/regauth/oui/index.shtml) shows that the 00-00-0C and
00-03-E3 prefixes are registered to Cisco. We assume the IDS is monitoring traffic
via a span port on a Cisco switch, however it’s possible that the packet logs were
obtained through the use of a vampire tap.

The examination of the MAC to IP address associations allowed us determine the
inside and outside of the network. There’s only one source IP address
(207.166.87.157) among the packets where the source MAC address is
00:00:0c:04:b2:33.

tcpdump –ner 2002.9.30 ether src 00:00:0c:04:b2:33 | perl –ane ‘print $F[9], “\n”;’|
sort –u
207.166.87.157

On the other hand, there’s 71 source IP addresses among the packets where the
source MAC address is 00:03:e3:d9:26:c0.

tcpdump –ner 2002.9.30 ether src 00:03:e3:d9:26:c0 | perl –ane ‘print $F[9], “\n”;’|
perl -i -n -a -F\\. -e 'print join(".", @F[0..3]), "\n"' | sort –u
12.31.192.98
12.5.225.66
128.167.120.13
[snip]



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

80.67.66.49
80.67.66.7
80.67.68.9

We show 2160 IP destination addresses among the packets with source MAC
address 00:03:e3:d9:26:c0.

tcpdump –ner 2002.9.30 ether src 00:03:e3:d9:26:c0 | perl –ane ‘print $F[9], “\n”;’|
perl -i -n -a -F\\. -e 'print join(".", @F[0..3]), "\n"' | sort –u | wc –l
2160

In browsing through these addresses, we started to think that the inside network
was 207.166.0.0/16. The following command confirmed that.

tcpdump –ner 2002.9.30 ether src 00:03:e3:d9:26:c0 | perl –ane ‘print $F[11], “\n”;’
| perl -i -n -a -F\\. -e 'print join(".", @F[0..3]), "\n"' | sort –u | grep –v 207.166
[no results]

Based on the data obtained above, we produced the following basic network
diagram.

Figure 1

While the logged packets only list one source IP address on the inside, we’re
certain several other hosts exist, based on the destination addresses and behavior
of the packets coming from the outside.

Alert Analysis

Although it is understood that each of the 15021 packets in the 2002.9.30 file
originally created a Snort alert and were thus logged, we were unable to obtain



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15021 alerts when we ran Snort on the file. Depending on our configuration, we
obtained between 500 and 2842 alerts. In order to solve this problem we analyzed
the remaining 12179 packets manually. Breaking out the alerts by source IP and
comparing the original alerts with the alerts that we received when running Snort
against the packet log allowed us to begin doing so. Mapping out destination IP
addresses, ports and in some cases source ports, enabled us to put together some
Network Statistics, which is included below in section 4. In some cases (where our
Snort run actually detected alerts) as with source IP 207.166.57.187, there were
discrepancies with the number of alerts generated during our Snort run and those
that were previously generated. This host originally generated 3625 alerts but only
generated 2664 alerts when we ran Snort against the packet log. Even worse, 918
of the 2664 alerts that we received were redundant. In order to make sense of this
we filtered out the packets from this source IP, broke it out by protocol and then by
destination. This allowed us to determine which packets were not firing an alert for
us. Additionally, some of the logged packets created multiple alerts when we ran
Snort against the packet log. For example, 148.64.2.114 created 18 alerts when
we ran Snort against the packet log but it originally generated 9 alerts.

The following link graph highlights the alerts that we detected in the packet log.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

207.166.87.157
HTTP

207.166.87.40 HTTP

Gnutella

207.166.135.150 Gnutella

207.166.87.159

207.166.87.157

207.166.87.53

Many

209.126.136.77

Many

63.211.17.228

12.31.192.98

12.5.225.66

64.152.70.68

141.156.147.178

Many

OutsideInside

ManyMany
3128

8080
1080

MSN

Many Q 255.255.255.255

DNS

DNS

SMB

Shell Code

Proxy Scans

Figure 2

Although we consider it to be one of the least malicious attackers, the top talker
(accounting for the most alerts) was 24.90.122.137. The host originally generated
10850 alerts while none of these were detected by our Snort run. The host sent
5425 packets to TCP destination port 8080 and another 5425 packets to TCP
destination port 3128. We believe that these alerts may have been generated by a
Snort rule like 1:620 that wasn’t present in our rule set. The following rule would
have picked up the traffic destined for TCP port 8080.

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy Port
8080 attempt"; flags:S,12; flow:stateless; classtype:attempted-recon; sid:620;
rev:10;)

The alerts appear to be a scan for an open proxy. The scan started at
207.166.38.38 and ended at 207.166.45.246, covering close to a /21 range. Some
hosts are only probed for each port once, while other are probed as many as six
times per port.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Other outside hosts were found scanning for various proxy ports. TCP Destination
port 1080 was scanned for by three outside hosts. 216.77.216.150 scanned 89
inside IP’s, 216.77.219.225 scanned 51 inside IP’s and 216.77.216.104 scanned
14 inside IP’s. We noticed that the three outside hosts only managed to scan a
total of 148 inside IP’s although they sent out 244 packets. It’s assumed that the
244 packets are coming from the same attacker.

Two more outside hosts were found to be scanning for an open proxy.
172.184.170.160 scanned 9 inside IP’s for TCP destination port 3128 while
65.169.47.29 scanned 3 hosts for TCP destination port 3128 and also scanned 3
hosts for TCP destination port 8080.

The scans for open proxies are some of the least malicious attacks in the packet
log. However, confirmation that these ports are blocked on the firewall should be
obtained. If this is the case then the signatures firing these alerts could be
disabled. Alternately, the ports could be blocked on the perimeter router and the
IDS signatures could be left in place. Although we understand that in some cases
it’s preferable to block traffic on the firewall as it can be easier to manage a firewall
rule set versus a router ACL, in this situation the IDS could provide router ACL
validation. If these signature fire in this case, the router ACL would have been
misconfigured or disabled.

207.166.87.157, an inside host, generated the second highest number of alerts.
(3625) This host also generated the most different types of alerts. 2683 HTTP-
related, 918 Gnutella and 24 MSN Messenger alerts were generated. Our Snort
run detected 11 different types of HTTP-related alerts, some of which have no
known false positives. In addition, 30 outside hosts generated alerts on what
appear to be responses to traffic originating from 207.166.87.157. Here’s what our
Snort run of the packet log identified, although it really only picked up 1746 out of
3625 alerts due to the 918 duplicate GNUtella alerts.

Alert Type # of Alerts
[119:2:1] (http_inspect) DOUBLE DECODING ATTACK 15
[1:882:5] WEB-CGI calendar access 1
[1:895:7] WEB-CGI redirect access 2
[1:972:8] WEB-IIS %2E-asp access 16
[1:1113:5] WEB-MISC http directory traversal 1
[1:1653:5] WEB-CGI campus access 4
[119:13:1] (http_inspect) NON-RFC HTTP DELIMITER 8
[1:540:11] CHAT MSN message 24
[119:4:1] (http_inspect) BARE BYTE UNICODE ENCODING 500
[119:7:1] (http_inspect) IIS UNICODE CODEPOINT ENCODING 76
[119:15:1] (http_inspect) OVERSIZE REQUEST-URI DIRECTORY 116
[1:556:5] P2P Outbound GNUtella client request 918
[1:1432:6] P2P GNUtella client request 918
[119:12:1] (http_inspect) APACHE WHITESPACE (TAB) 65

Total 2664
Figure 3



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

While the Gnutella and MSN alerts are not necessarily malicious, some of the
HTTP-related alerts have no known false positives. Additionally, there are three
Snort alerts related to shell code (1:648:7. 1:649:8 and 1:1390:5) destined for
207.166.87.157, which is really bad. We’ll take a closer look at one of the shell
code alerts below. We have reason to believe that 207.166.87.157 has been
compromised or at least the user of the system is up to no good. Based on this
information, other inside hosts could have been compromised.

Note that the Snort signatures related to GNUtella [1:556:5] and [1:1432:6] are
redundant as there were only 918 packets in the packet log originating from
207.166.87.157 that were not HTTP or MSN Messenger traffic.

There are two different types of GNUtella packets that generated alerts in the
packet log. The first type includes 918 alerts originating from 207.166.87.157.
These packets did not use a consistent TCP destination port. The second type
includes 72 alerts generated from 9 outside hosts targeting inside host
207.166.135.150 on TCP destination port 9511. We also noticed an IP fragment
from 217.36.23.34, destined for 207.166.135.150. The fragment was likely an
attempt to get through the firewall. Our Snort run didn’t detect the fragment but we
assume that a custom rule was examining bytes 6 and 7 of the IP header.

Note that we recommend against the use of GNUtella inside your organization.
Confidential information could have been leaked to the Internet and there may be
files on inside hosts that you don’t want. There could be pornography, illegally
copied software and so on. You should consider prohibiting the use of peer to
peer file sharing protocols as part of your acceptable use policy if it doesn’t
already.

The 24 [1:540:11] CHAT MSN message alerts originating from 207.166.87.157
were destined for two external hosts, 21 packets to 64.4.12.192 and 3 packets to
64.4.12.172. This chat was sent in the clear and there appears to be 2 separate
conversations, although we’re only seeing bits and pieces of the communications.
The 21 packets destined for 64.4.12.192 appears to be a normal conversation and
occurred between 01:46 and 01:58 while the second conversation, consisting of
the 3 packets destined for 64.4.12.172 is a little more questionable. The latter 3
packets timestamps were between 06:02 and 06:08. We think that if an audit
signature like 1:540 had been previously enabled, we should have seen the entire
conversations, so we’re not clear why only some of the packets generated alerts.

Inside host 207.166.87.47 appears to be a Web server, as there are alerts being
fired on traffic destined for TCP port 80 to that host, from 13 different sources. We
do not have any alerts originating from this host but we believe that the host exists.
We noticed 4 outside hosts (see below) that generated the same types of attacks
against 207.166.87.47. It’s possible that these are the same attacker.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Source IP [1:937:9] [1:962:12] [1:990:8] [1:1288:7] [119:13:1]
61.218.105.219 3 3 2 3 1
61.222.191.98 1 1 1 1 1
65.193.39.163 1 1 1 1
61.170.244.77 1 1 1 1

Figure 4

These signatures indicate attacks on Microsoft FrontPage. 207.166.87.47 needs to
be examined to see if Microsoft FrontPage is installed and if so that it has the
appropriate patches applied as per Microsoft Security Bulletin MS02-053. The
FrontPage server configuration should be examined to validate that it is not
password-less as Snort signature [1:990:8] detected an attack against this
configuration. Snort signature 1:1288:7 detected reconnaissance of the directory
structure as well.

In addition to the external attacks, it’s likely that 207.166.87.47 is on the same
subnet as 207.166.87.157, which may be compromised. This obviously isn’t good.
The front-end Web server should be on a DMZ and should have access controls in
place for communication with other devices. Reference our Defensive
Recommendations for more information.

18 packets destined for 18 different hosts in the 207.166.0.0/16 subnet fired the
Snort alert [1:184:6] BACKDOOR Q access. These packets used TCP destination
port 515 and source port 31337, which spells “eleet”in cracker speak. The source
IP address on these packets was 255.255.255.255, which means this is a version
of Q prior to 2.0, according to Les Gordon’s paper What is the Q Trojan? It appears
that the objective of this traffic is to send commands to hosts that have been
compromised. We need to determine if the firewall allows TCP destination port
515. If so, further investigation is necessary.

4 external hosts sent a total of 7 packets to 207.166.87.157 and 207.166.87.159
on TCP port 53, normally used for DNS zone transfers. 3 of the 7 packets are
directed at 207.166.87.159 and these are the only alerts destined for this host in
the entire packet log. It’s possible that these two internal boxes are DNS servers.
The attack packets appear to be crafted, possibly attempting to bypass a simple
firewall, as the source ports are set to 80 and 53.

Src IP Src Port Dst IP Dst Port Flags TTL IP ID
12.31.192.98 80 207.166.87.159 53 ACK 47 48266
12.5.225.66 80 207.166.87.159 53 ACK 47 48256
12.5.225.66 53 207.166.87.159 53 SYN 47 48258
63.211.17.228 80 207.166.87.157 53 ACK 54 22649
63.211.17.228 53 207.166.87.157 53 ACK 54 22650
64.152.70.68 80 207.166.87.157 53 ACK 54 21123
64.152.70.68 53 207.166.87.157 53 ACK 54 21124



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The 4 external hosts exhibit very similar behavior, making us curious as to why.
12.31.192.98 and 12.5.225.66 targeted 207.166.87.159 while 63.211.17.228 and
64.152.70.68 targeted 207.166.87.157. The packets are nearly identical except
that one of the packets from 12.5.225.66 had the SYN flag set. It appears that the
first 2 sources are the same, while the latter two may also be the same. It could
even be the same attacker across all of these alerts. We suspect that the attacker
is trying to elicit a response from the internal hosts, attempting to circumvent
access controls.

The packet log included 2 packets from 2 external sources, targeted at
207.166.87.53. These are the only packets in the packet log directed at this inside
host. The target port is TCP 139. The packets show an attempt to connect to a
Windows share \\b2b\c. It’s odd that two different sources are trying to connect to
the same share. Confirmation that NetBIOS traffic is blocked at the firewall should
be obtained. We looked into why our Snort run did not detect these alerts and
found a detect post by Daniel Wesemann to the intrusions mailing list. It appears
that a Snort rule that checks for access to the Windows default shares may have
been modified to look for any access to the c drive. According to Daniel, the
following rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB C$
access"; flow: to_server,established; content: "|5c|C$|00 41 3a
00|";reference:arachnids,339; c lasstype:attempted-recon; sid:533; rev:5;)

could have been modified to look like this:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB C
access"; flow:to_server,established; content: "|5c|C|00 41 3a
00|";reference:arachnids,339; classtype:attempted-recon; sid:100533; rev:6;)

in order to alert on access attempts to a share called c, which makes sense.

In summary, it’s clear that there’s a variety of malicious code traversing the IDS.
Some of it is malicious but much of it isn’t terribly concerning. The proxy scans
aren’t a big deal. Crafted packets are concerning and deliberate attempt to
compromise or issue commands to compromised hosts is even worse. It’s also
clear that the IDS is using a highly customized rule set. While it is readily apparent
why most of the alerts originally generated did not generate an alert during our
Snort run, we’ve had to make a few educated guesses in some cases.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Detect Analysis

This section provides an in-depth analysis of what we have determined to be the 3
most critical detects. This includes examining Snort alerts [1:184:6] BACKDOOR Q
access, [1:649:8] SHELLCODE x86 setgid 0 and [1:648:7] SHELLCODE x86
NOOP. We felt that Q and the 3 shell code alerts were the most severe as these
are deliberate attempts to compromise or issue commands to a compromised host.
It’s possible that the shell code alerts are false positives but further analysis is in
order due to their criticality.

Detect 1: [1:184:6] BACKDOOR Q access (18 alerts)

Description
The is a Trojan that affects all UNIX operating systems. It offers the attacker
remote access to the victim host. The Trojan is controlled by sending packets to
the host that include commands to be run as root. The packets can be ICMP, TCP
or UDP. In this case the 18 packets that caused alerts were destined for TCP port
515.

Reason Selected
This detect was selected due to it’s criticality. These alerts are in reference to
sending commands to already compromised internal host. While there are some
attempts to compromise FrontPage on a server in the packet log and various
crafted packets, we consider this detect worthy of further examination.

Detect Generation
The following rule detected this traffic.

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q
access"; flow:stateless; dsize:>1; flags:A+; reference:arachnids,203;
classtype:misc-activity; sid:184; rev:7;)

The signature is looking for TCP packets coming from 255.255.255.x using any
source port, going to $HOME_NET on any port. The datagram size needs to be
larger then 1 byte.

The following packet matches this rule. Note that we haven’t included the Ethernet
header as it isn’t relevant.

01:43:06.876507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4,
length 60: IP (tos 0x0, ttl 15, id 0, offset 0, flags [none], length:
43, bad cksum ae17 (->63cd)!) 255.255.255.255.31337 > 207.166.120.90.515:
R [bad tcp cksum 633f (->18f5)!] 0:3(3) ack 0 win 0 [RST cko]
0x0000 4500 002b 0000 0000 0f06 ae17 ffff ffff E..+............
0x0010 cfa6 785a 7a69 0203 0000 0000 0000 0000 ..xZzi..........
0x0020 5014 0000 633f 0000 636b 6f00 0000 P...c?..cko...



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The packets match as the source IP is 255.255.255.255, the protocol is TCP and
the payloads are 3 bytes. All of the datagrams are 43 bytes long. The IP header
takes up 20 bytes, the TCP header takes up another 20 bytes, leaving 3 bytes for
the payload.

Probability Source Address Spoofed
It is certain that the source address was spoofed as the source address is invalid.
The source port appears to be crafted as well. 31337 is a well known cracker port
that spells “eleet”.

Attack Mechanism
The attacker is trying to communicate with hosts that have been compromised.
The article What is the Q Trojan? by Les Gordon describes the different versions of
Q, indicating that the version used was pre 2.0, as using 255.255.255.255 as a
source address is no longer supported. Go figure.

Correlations
Pete Storm’s GCIA practical includes analysis of Q. Pete analyzed the log file
2002.9.26, which is four days younger than the packet log we analyzed. Andrew
Wagoner’s GCIA practical also analyzed Q, which was detected in the 2002.10.14
packet log, dated a few weeks after the log we analyzed. White Hats has the alert
listed as IDS203 "TROJAN-ACTIVE-Q-TCP" while the CVE includes a reference
to CAN-1999-0660.

Evidence of Active Targeting
It is hard to say if the attacker was trying to target specific hosts. There was a total
of 18 alerts and each one includes a unique destination in the 207.166.0.0/16
range. We haven’t seen other alerts destined for these 18 inside host. It’s possible
that these are random destinations.

Severity = 7
Severity is defined by the following equation. (criticality + lethality) - (system
countermeasures + network countermeasures)

Criticality = 4
We have no information on the internal hosts targeted by this attack and as such
have assigned a 4 to the criticality of this detect. As it’s possible that one of the
targeted boxes are critical, we’d prefer to a assign a higher value versus a lower
value. Once further information about the inside hosts is obtained, this value may
be adjusted.

Lethality = 5
If the attack succeeded, the host would likely execute commands on behalf of the
attacker. This is about as bad as it can get so the lethality has been assigned a 5.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

System Countermeasures = 1
There is no information available regarding system countermeasures on the hosts
targeted by this attack. Therefore, we’ve assigned a 1 to the system
countermeasures. If we had to guess, we would assume that no host-based
firewall was present on the inside hosts, as we believe that host-based firewalls
were not widespread in 2002. Given the nature of this attack, the targeted host
should have already been compromised. Assuming that this was the case, the
system countermeasures would have already been breached. It’s likely that if a
box gets owned, the attacker would configure the host-based firewall to allow the
backdoor traffic, or disable it. Further information regarding patch management should be
obtained in order to increase the accuracy of the value assigned here.

Network Countermeasures = 1
We know the perimeter router is letting in just about everything but we have limited
visibility into the rule set of the inside router/firewall. We have to assign a 1 to
network countermeasures until we can obtain further information about the rule set.
This is one of the most critical things that needs to be determined. Many of the
detects in the packet log, including Q, should have been blocked at the firewall.

Detect 2: [1:649:8] SHELLCODE x86 setgid 0 (1 alert)

Description
This alert detected an attempt to change the privileges of a current running
process to having the privileges of root. One packet originating from 63.250.205.44
on port 1755, destined for 207.166.87.157 on port 62218 triggered the alert. IANA
has TCP Port 1755 listed as ms-streaming.

Reason Selected
Even though it’s likely that this alert is a false positive, it’s severity warrants some
attention. There’s nothing worse then having an outsider obtain root access on an
inside box.

Detect Generation
The following rule caused the packet to fire an alert.

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 setgid 0"; content:"|B0 B5 CD 80|";
reference:arachnids,284; classtype:system-call-detect; sid:649; rev:8;)

It is unknown what $SHELLCODE_PORTS was defined as on the IDS generating
the traffic. The default is to exclude port 80, as including it would apparently
provide too many false positives. Basically, the signature is looking for “0xB0 0xB5
0xCD 0x80” to appear in the payload of the packet. It’s possible that this could
appear in many packets that aren’t really trying to execute a setgid 0 attack. This



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

packet that generated this alert does have the “0xB0 0xB5 0xCD 0x80”but it looks
like a binary. It’s very large as well, 1500 bytes. We wouldn’t expect it to be this
large if it was an actual attack.

Probability Source Address Spoofed
It is unlikely that the source address was spoofed. The attacker would need to
execute some form of buffer overflow in order to execute the attack and would
likely need responses from the target in order to do so. As we believe that this is a
false positive, it’s even more unlikely that the source address was spoofed.

Attack Mechanism
The getgid 0 attack is something that is used to target a process that has an
effective gid of 0, as part of a buffer overflow attack. For example, Apache starts as
root but then it changes privileges and runs with minimal privileges. It does
however have the ability to become root if needed. The getgid 0 exploit injects
code into process in order to increase the privileges of the process and then some
other code will generally spawn a shell, which is very complicated to do as you
need to bind t.

Correlations
Rich Helton posted a setgid 0 detect to the intrusions mailing list on 01/26/04. He
found evidence of this attack from the 2002.8.30 packet log, dated one month
earlier then the packet log we analyzed. The GCIA Practical submitted by James
Affeld included analysis of the setgid 0 detect, from his analysis of alert logs dated
04/07/04 through 04/12/11.

Evidence of Active Targeting
This detect only includes one alert originating from one source, destined for one
inside host. This could tell you that the attack wasn’t random in nature and that the
attacker targeted this specific inside host. However, as we believe this is a false
positive, we don’t believe that there is evidence of active targeting.

Severity = 8
Severity is defined by the following equation. (criticality + lethality) - (system
countermeasures + network countermeasures)

Criticality = 5
It is possible that the internal host 207.166.87.157 is a DNS server. Therefore we
have assigned criticality a value of 5. Once further information about this inside
host is obtained, this value may be adjusted.

Lethality = 5
Privilege escalation of a process to root is very lethal. The attacker may be able to
spawn a shell, thus owning the box. Therefore, lethality has been set to 5.

System Countermeasures = 1



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We don’t know if the target is running a host-based firewall but we do know that the
host is generating a considerable amount of malicious traffic and believe that the
system is either compromised or that the user is up to no good. Based on this, we
have assigned a value of 1 to system countermeasures.

Network Countermeasures = 1
Although the packet that generated this alert came from the outside, the session
likely originated from the inside. Assuming that users are allowed to make
outbound connections to TCP port 1755, there’s not much that your average
firewall could do against an attack like this. We have to assign a 1 to network
countermeasures.

Detect 3: [1:648:7] SHELLCODE x86 NOOP (1 alert)

Description
A NOP helps an attacker execute code as part of a buffer overflow attack. When
an application or service does not perform proper boundary checking on its
variables, it’s possible to submit more data then the application was expecting and
cause the processor to start executing code that was provided by the attacker. In
order to do this the attacker needs to tell the processor where to execute the code.
The NOP tells the processor to skip over to the next code segment. Multiple NOPs
allow attackers to direct the processor to execute code provided by the attacker.

Only one alert was generated due to a packet from 203.66.215.25 on port 1352,
destined for 207.166.87.157 on port 63648.

Reason Selected
Although this shellcode alert also appears to be a false positive, attempts to
overflow buffers should be considered severe and thoroughly analyzed. The
packet log includes some attempts to compromise a FrontPage server and some
crafted packets that are worthy of analysis but if the Q and the shell code attacks
were actually real, we felt that these were the most severe.

Detect Generation
The following rule detected the alert:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 NOOP"; content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90|";
depth:128; reference:arachnids,181; classtype:shellcode-detect; sid:648; rev:7;)

As with detect 2, the signature is looking for non port 80 traffic with a certain
payload. In this case we’re looking for 14 of 0x90 in the payload, essentially a NOP
sled. The packet did include a bunch of 0x90’s but it doesn’t look like a sled as
there are 0x51’s mixed in with the 0x90’s. This packet is very large, 1500 bytes,
which is unexpected with this type of attack.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Probability Source Address Spoofed
It’s unlikely that the source address was spoofed. The attacker would need to
execute some form of buffer overflow in order to execute this attack and would
likely need responses from the target in order to do so. As with detect 2, we
believe that this is a false positive, so it’s even more unlikely that the source
address was spoofed.

Attack Mechanism
A NOP can appear as part of a buffer overflow, sliding the processor into the right
place, in order to execute code provided by the attacker. This could provide access
to a root shell, which is of course undesirable to the victim.

Correlations
We referenced the classic paper on buffer overflows, Smashing the Stack for Fun
and Profit in order to gain some insight into how these attacks are executed and
found it to be very complicated. Knowledge of Assembly, how the x86 processor
works and how the target service works is essential, otherwise an attacker may
end up just crashing the service.

Evidence of Active Targeting
This detect only includes one alert originating from one source, destined for one
inside host. This could tell you that the attack wasn’t random in nature and that the
attacker targeted this specific inside host. However, as we believe this is a false
positive, we don’t believe that there is evidence of active targeting.

Severity = 7
Severity is defined by the following equation. (criticality + lethality) - (system
countermeasures + network countermeasures)

Criticality = 5
It is possible that the internal host 207.166.87.157 is a DNS server. Therefore we
have assigned criticality a value of 5. Once further information about this inside
host is obtained, this value may be adjusted.

Lethality = 4
If the attack was successful and didn’t just crash the service, it’s likely that a root
shell could be obtained. Due to this, the lethality of this attack has been set to 4.
We’ve assigned this detect a slightly lower value then the previous detect as it is
possible that this attack would not be lethal.

System Countermeasures = 1
We don’t know if the target is running a host-based firewall but we do know that the
host is generating a considerable amount of malicious traffic and believe that the
system is either compromised or that the user is up to no good. Based on this, we
have assigned a value of 1 to system countermeasures.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Countermeasures = 1
We know the perimeter router is letting in just about everything but we have limited
visibility into the rule set of the inside router/firewall. We have to assign a 1 to
network countermeasures until we can obtain further information about the rule set.
This is one of the most critical things that needs to be determined.

4. Network Statistics

The top talker in the log (based on the total number of alerts generated) was an
external host scanning for an open proxy. Internal host 207.166.87.157 was the
second noisiest and also generated the most different types of alerts. The other
hosts in the log didn’t generate anywhere near this many events, many only
generated only one or two.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The two top ports were proxy ports with web traffic coming in third. Another proxy
port came in fourth while GNUtella came in fifth.

We decided to select the following three IP addresses as the most suspicious
sources.

Source IP
# of
Alerts [1:937:9] [1:962:12] [1:990:8] [1:1288:7] [119:13:1]

61.218.105.219 12 3 3 2 3 1
61.222.191.98 5 1 1 1 1 1
61.170.244.77 4 1 1 1 1

These boxes appear to be working together in an attempt to compromise Microsoft
FrontPage which may or may not exist on 207.166.87.157. We selected these
hosts as being the most suspicious as we believe the shell code attacks are false
positives and there’s no point looking into source IP 255.255.255.255. Registration
information is not provided herein as we understand that the IP addresses in the
packet log have been sanitized.

5. Correlations

We found the following three papers to be very enlightening. Pete’s paper was
referenced time and again because it was so informative. Pete’s analysis of Q and
references to other papers about Q was crucial to our understanding of the
backdoor. We found a reference in Pete’s paper to Les Gordon’s paper on how Q
works, which was also very helpful. We needed help in understanding how the
setgid 0 exploit works and read several articles about buffer overflows including
what appear to be a classic paper, Smashing the Stack for Fun and Profit.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pete Storm. “GIAC Certified Intrusion Analyst (GCIA) Practical Assignment Version
3.3.”
November 15, 2003. URL:
http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf

Les Gordon. “What is the Q Trojan?”Unknown Date.
URL: http://www.sans.org/resources/idfaq/qtrojan.php

Aleph One. “Smashing the Stack for Fun and Profit.”Unknown Date.
URL: http://www.insecure.org/stf/smashstack.txt

6. Internal Insights
We believe that 207.166.87.40 is a web server, while 207.166.87.157 and
207.166.87.159 may be DNS servers. We aren’t certain why 207.166.87.53 is
being targeted as being a Windows server. It’s possible that the 207.166.87.0/24
net is a subnet with servers on it but it could also be the only active net inside.

7. Defensive Recommendations

The firewall rule set needs to be examined in order to determine if the attacks
detected in the packet log were able to reach the inside network. In fact, we
suggest confirming that the firewall is blocking the port that it is configured to block
by doing some scanning and sniffing. As always, the firewall should only allow the
necessary ports and block everything else. Further analysis is required if some of
the attacks actually made it inside. We suspect that the FrontPage attacks made it
to 207.166.87.157 so this host probably needs attention.

We suggest that the rules on the perimeter router are reviewed. We suggest
blocking 255.255.255.255 for example. Additionally, only allow traffic out that
originates from your internal network. This will prevent any of your hosts from
spoofing other hosts. We also recommend internal and external penetration testing
against the mission critical applications and infrastructure components. This will
likely provide some good feedback for your IT staff.

We also suggest that you validate that all of your hosts are up to date on their
patches, including applications and the OS. We don’t have any reason to believe
that you aren’t up to date but we want to stress the importance of this. It’s an
important part of your security architecture that must be managed effectively as it’s
a never ending process.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part III - Analysis Process

As part of the analysis, Linux and Windows platforms were used. Linux was used
as the primary machine to analyze the packet log. We used Tcpdump, Ethereal
and Snort on Linux. Windows was only used for the purposes of running Microsoft
Office including Word, Excel and Visio.

We found the discrepancies between the original packet log and the log created
during our Snort run was the biggest hurdle to overcome. Many alerts were not
detected during our Snort run so we needed to figure out why. Also, some of the
alerts that our Snort run generated were redundant. We found that making a
spreadsheet of the source IP addresses found in the packet log and filling in details
such as source port, destination port, number of alerts originally detected, number
of alerts currently being detected and so on was the only way to make sense of it
all. Once we had done that, things started falling into place. We found a huge
number of discrepancies regarding source IP 207.166.87.157 and were forced to
break out the alerts for this source by protocol and also by destination. This gave
us more insight into what the host was doing.

Note that we tried several things that would allow us to compare the original packet
log with the packet log that our Snort run generated but this didn’t work too good.
We managed to get both files to be in the same output format and did a sort and a
diff on them, but the output wasn’t what we expected, including discrepancies. It
appeared as if some of the packets were duplicates, even though we thought the
timestamps on the packets would have been unique. We also tried using Perl to
put one of the files in a hash, then read in the other file line by line, checking each
line to see if it was in the hash and if it wasn’t, writing that line to a file. This didn’t
work too good either as we received some unexpected results. Suffice it to say that
the spreadsheet based on the source IP worked best for us. Beyond the issues
with 207.166.87.157, other duplicate alerts were readily apparent.

Considerable effort was put into determining why alerts were originally created but
weren’t being created during our Snort run. By analyzing the sources, destinations,
ports and portions of the headers, we were able to determine why many of the
alerts originally fired. We think the IDS that generated the original packet was
operating with a customized rule set and that some of the signatures that fired no
longer exist. More research was done in order to determine who the malicious
sources were and what the most severe alerts were. We felt that Q and the shell
code attacks were the worst. The more we dug into this though, it became
apparent that the shell code attacks were very likely to be false positives. We
decided to stick with these though as the only other really malicious activity was
attempts to compromise a FrontPage server and then there were some crafted
packets that appeared to be reconnaissance activity.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix

1. References

Andrew Wagoner. “GIAC Certified Intrusion Analysts (GCIA) v. 3.4”
May 17, 2004. URL: http://www.giac.org/practical/GCIA/Andrew_J_Wagoner_GCIA.pdf

Daniel Wesemann. “LOGS: GIAC GCIA Version 3.3 Practical (Daniel Wesemann).”Jan. 11, 2003.
URL: http://www.dshield.org/pipermail/intrusions/2003-January/006363.php

Les Gordon. “What is the Q Trojan?”Unknown Date.
URL: http://www.sans.org/resources/idfaq/qtrojan.php

Microsoft. “Microsoft Security Bulletin MS02-053.”Sept. 25, 2002.
URL: http://www.microsoft.com/technet/security/bulletin/MS02-053.mspx

Pete Storm. “GIAC Certified Intrusion Analyst (GCIA) Practical Assignment Version 3.3.”
November 15, 2003. URL: http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf

Rich Helton. “LOGS: GIAC GCIA Version 3.4 Practical Detect 2 Rich Helton.”Jan. 26, 2004. URL:
http://cert.uni-stuttgart.de/archive/intrusions/2004/01/msg00137.html

James Affeld. “GIAC Certified Intrusion Analyst –GCIA Practical Assignment Version 3.5.”
June 3, 2004. URL: http://www.giac.org/practical/GCIA/James_Affeld_GCIA.pdf

Aleph One. “Smashing the Stack for Fun and Profit.”Unknown Date.
URL: http://www.insecure.org/stf/smashstack.txt

2. Snort Alert Information

[1:184:6] BACKDOOR Q access
This Trojan affects UNIX operating systems. The Trojan is controlled by sending raw packets
(TCP/UDP/ICMP) to the victim host containing commands to be run as root.
255.255.255.255 -> many (18)
Total (18)

[1:504:6] MISC source port 53 to <1024
Traffic from TCP port 53 is used by DNS servers for zone transfers. Normal DNS traffic uses the
UDP protocol. An attacker could use a TCP source port of 53 to pass through a poorly configured
firewall. DNS traffic from port 53 using either UDP or TCP should be to a port above 1023. Ports
1023 and below are privileged.
12.5.225.66 -> 207.166.87.159 (1)
Total (1)

[1:523:5] BAD-TRAFFIC ip reserved bit set
Under normal circumstances IP packets do not use the reserved bit. This may be an indicator of the
use of the reserved bit by a malicious user to instigate covert channel communications, an indicator
of unauthorized network use, reconnaisance activity or system compromise. These rules may also
generate an event due to improperly configured network devices.
217.36.23.34 -> 207.166.135.150 (1)
Total (1)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[1:540:11] CHAT MSN message
Instant Messaging (IM) and other chat related client software can allow users to transfer files
directly between hosts. This can allow malicious users to circumvent the protection offered by a
network firewall. Vulnerabilities in these clients may also allow remote attackers to gain
unauthorized access to a host.
207.166.87.157 -> 64.4.12.192 (21)
207.166.87.157 -> 64.4.12.172 (3)
Total (24)

[1:556:5] P2P Outbound GNUTella client request
GNUTella is a P2P (Peer-to-Peer) protocol for exchanging arbitrary files. Depending on your site's
policies, using it may be a policy violation. If not properly configured, GNUTella clients may
accidentally share out confidential files. GNUTella worms (which use deceptive names to
encourage download) and viruses may also be accidentally downloaded by a client. This rule being
triggered means that a GNUTella client has been detected on your network.
207.166.87.157 -> many (918)
Total (918)

[1:648:7] SHELLCODE x86 NOOP
The NOP allows an attacker to fill an address space with a large number of NOPs followed by his or
her code of choice. This allows "sledding" into the attackers shellcode.
203.66.215.25 -> 207.166.87.157 (1)
Total (1)

[1:649:8] SHELLCODE x86 setgid 0
Snort detected data resembling the x86 assembly code to change the group identity to 0.
63.250.205.44 -> 207.166.87.157 (1)
Total (1)

[1:882:5] WEB-CGI calendar access
An open source calendar perl script by Matt Kruse, Allows commands to be executed without input
verification using the perl open() function. ie /cgi-bin/calendar_admin.pl place the string "|ping
127.0.0.1|" in the configuration file field, this executes the command "ping 127.0.0.1"
207.166.87.157 -> 207.68.176.250 (1)
Total (1)

[1:884:14] WEB-CGI formmail access
This event is generated when an attempt is made to access the perl cgi script Formmail. Early
versions (1.6 and prior) had several vulnerabilities (Spam engine, ability to run commands under
server id and set environment variables) and should be upgraded immediately. Newer versions can
still be used by spammers for anonymizing email and defeating email relay controls.
203.167.97.19 -> 207.166.87.40 (4)
68.129.127.199 -> 207.166.87.40 (1)
Total (5)

[1:895:7] WEB-CGI redirect access
This event is generated when an attempt is made to gain unauthorized access to a CGI application
running ona web server. Some applications do not perform stringent checks when validating the
credentials of a client host connecting to the services offered on a host server. This can lead to
unauthorized access and possibly escalated privileges to that of the administrator. Data stored on
the machine can be compromised and trust relationships between the victim server and other hosts
can be exploited by the attacker. If stringent input checks are not performed by the CGI application,
it may also be possible for an attacker to execute system binaries or malicious code of the attackers
choosing.
207.166.87.157 -> 207.68.185.58 (2)
Total (2)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[1:937:9] WEB-FRONTPAGE _vti_rpc access
This event is generated when an attempt is made to compromise a host running Microsoft
FrontPage Server Extensions. Many known vulnerabilities exist for this platform and the attack
scenarios are legion.
65.193.39.163 -> 207.166.87.40 (1)
61.170.244.77 -> 207.166.87.40 (1)
61.218.105.219 -> 207.166.87.40 (3)
61.222.191.98 -> 207.166.87.40 (1)
Total (6)

[1:962:12] WEB-FRONTPAGE shtml.exe access
This event is generated when an attempt is made to compromise a host running Microsoft
FrontPage Server Extensions. Many known vulnerabilities exist for this platform and the attack
scenarios are legion.
65.193.39.163 -> 207.166.87.40 (1)
61.170.244.77 -> 207.166.87.40 (1)
61.218.105.219 -> 207.166.87.40 (3)
61.222.191.98 -> 207.166.87.40 (1)
Total (6)

[1:972:8] WEB-IIS %2E-asp access
Microsoft Internet Information Service (IIS) uses Active Server Page to supply HTML and server-
side scripting. ASP files use a .asp extension. When the period of the .asp is hex-encoded with a
"%2e" to reference an ASP file, the contents of the file are disclosed.
207.166.87.157 -> 207.68.176.190 (5)
207.166.87.157 -> 207.68.176.250 (2)
207.166.87.157 -> 207.68.185.58 (6)
207.166.87.157 -> 63.115.140.26 (3)
Total (16)

[1:990:8] WEB-FRONTPAGE _vti_inf.html access
Microsoft FrontPage provides software for web designers to generate and administer web
pages. The file '_vti_inf.html' contains FrontPage configuration information of version number and
scripting paths that is normally used by a FrontPage client to communicate with the server. An
attacker can craft a URL to access this file to disclose the version number and scripting paths.
65.193.39.163 -> 207.166.87.40 (1)
61.170.244.77 -> 207.166.87.40 (1)
61.218.105.219 -> 207.166.87.40 (2)
61.222.191.98 -> 207.166.87.40 (1)
Total (5)

[1:1042:8] WEB-IIS view source via translate header
Microsoft Internet Information Services (IIS) 5.0 contains scripting engines to support various
advanced files types such as .ASP and .HTR files. This permits the execution of server-side
processing. IIS determines which scripting engine is appropriate to use depending on the file
extension. If an attacker crafts a URL request ending in 'Translate: f' and followed by a slash '/', IIS
fails to send the file to the appropriate scripting engine for processing. Instead, it returns the source
code of the referenced file to the browser.
66.166.10.224 -> 207.166.87.40 (7)
Total (7)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[1:1113:5] WEB-MISC http directory traversal
Directory traversal attacks usually target web, web applications and ftp servers that do not correctly
check the path to a file when requested by the client. This can lead to the disclosure of sensitive
system information which may be used by an attacker to further compromise the system.
207.166.87.157 -> 216.136.232.84 (1)
Total (1)

[1:1288:7] WEB-FRONTPAGE /_vti_bin/ access
This event is generated when an attempt is made to compromise a host running Microsoft
FrontPage Server Extensions. Many known vulnerabilities exist for this platform and the attack
scenarios are legion. In particular this rule generates events when the directory _vti_bin is
accessed. This directory contains sensitive files that may be utilized in an attack against the server.
65.193.39.163 -> 207.166.87.40 (1)
61.170.244.77 -> 207.166.87.40 (1)
61.218.105.219 -> 207.166.87.40 (3)
24.52.142.6 -> 207.166.87.40 (1)
61.222.191.98 -> 207.166.87.40 (1)
Total (7)

[1:1390:5] SHELLCODE x86 inc ebx NOOP
This is the x86 opcode for 'inc ebx'. This can be used as a NOOP in an x86 architecture, however
as with all shellcode rules, this can cause false positives. Check to see if you are ignoring
shellcode rules on web ports, as this will reduce false positives.
143.166.224.204 -> 207.166.87.157 (1)
Total (1)

[1:1432:6] P2P GNUTella client request
This event indicates that use of a p2p client has been detected. This may be against corporate
policy. p2p clients connect to other p2p clients to share files, commonly music and video files but
can be configured to share any file on the local machine. This activity may not only use bandwidth
but may also be used to transfer company confidential information to unauthorized hosts external to
the protected network bypassing other security measures in place. This rule detects activity from
Gnutella p2p client applications.
207.166.87.157 -> many (918)
Total (918)

[1:1610:11] WEB-CGI formmail arbitrary command execution attempt
This could be an attempt to gain intelligence about the web-server that might be used to further
exploit the machine. The environment variables of the web-server might be retrieved and sent via
email to an address of the attackers choosing. More importantly this could be an attempt to execute
commands on the web-server. Should this be successful, the commands would execute with the
privileges of the user owning the httpd daemon.
203.167.97.19 -> 207.166.87.40 (4)
Total (4)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[1:1653:5] WEB-CGI campus access
This event is generated when an attempt is made to gain unauthorized access to a CGI application
running ona web server. Some applications do not perform stringent checks when validating the
credentials of a client host connecting to the services offered on a host server. This can lead
to unauthorized access and possibly escalated privileges to that of the administrator. Data stored
on the machine can be compromised and trust relationships between the victim server and other
hosts can be exploited by the attacker. If stringent input checks are not performed by the CGI
application, it may also be possible for an attacker to execute system binaries or malicious code of
the attackers choosing.
207.166.87.157 -> 207.68.176.250 (1)
207.166.87.157 -> 207.68.185.58 (3)
Total (4)

[1:2570:6] WEB-MISC Invalid HTTP Version String
This event is generated when an attempt is made to compromise a host running a Web server or a
vulnerable application on a web server. In particular this rule generates events when a non-
standard HTTP request is made to a server. Some applications do not handle this exception in an
acceptable manner and may present an attacker with the opportunity to exploit the application and
server becasue of this. Some applications do not perform stringent checks when validating the
credentials of a client host connecting to the services offered on a host server. This can lead to
unauthorized access and possibly escalated privileges to that of the administrator. Data stored on
the machine can be compromised and trust relationships between the victim server and other hosts
can be exploited by the attacker.
68.129.127.199 -> 207.166.87.40 (1)
Total (1)

[119:2:1] (http_inspect) DOUBLE DECODING ATTACK
This event is generated when double encoded characters are detected in web traffic. This is
abnormal behavior and may be an indicator of a possible attack against a vulnerable system. This
may also be an attempt to evade IDS.
207.166.87.157 -> 144.81.82.80 (4)
207.166.87.157 -> 205.188.144.241 (2)
207.166.87.157 -> 207.68.176.190 (9)
Total (15)

[119:4:1] (http_inspect) BARE BYTE UNICODE ENCODING
Microsoft IIS servers are able to use non-ASCII characters as values when decoding UTF-8 values.
This is non-standard behavior for a webserver and violates RFC recommendations. All non-ASCII
values should be encoded with a %. This event may indicate an attack against a web server or at
the least an attempt to evade an IDS. No web clients encode UTF-8 characters in this way. This is
most likely a malicious request.
207.166.87.157 -> many (500)
Total (500)

[119:7:1] (http_inspect) IIS UNICODE CODEPOINT ENCODING
This event is generated when the pre-processor http_inspect detects Unicode encoded web
requests. This may be an indicator of an obfuscated attack against a server as well as an attempt to
evade an IDS. The Unicode map for the target servers can be generated for specific servers. Refer
to the documentation for http_inspect for instructions.
207.166.87.157 -> 209.11.34.129 (60)
207.166.87.157 -> 209.11.34.136 (16)
Total (76)



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[119:12:1] (http_inspect) APACHE WHITESPACE (TAB)
This event is generated by the http_inspect pre-processor when a tab character is detected in a
web request. This is non-standard, but Apache web servers may use this character as a space
delimeter.
207.166.87.157 -> many (65)
Total (65)

[119:13:1] (http_inspect) NON-RFC HTTP DELIMITER
This event is generated when the http_inspect pre-processor detects the use of a newline "\n"
character as a delimeter. This is non-standard but is accepted by both Apache and IIS web servers.
207.166.87.157 -> 216.136.232.84 (6)
207.166.87.157 -> 209.11.34.129 (2)
61.218.105.219 -> 207.166.87.40 (1)
61.222.191.98 -> 207.166.87.40 (1)
Total (10)

[119:15:1] (http_inspect) OVERSIZE REQUEST-URI DIRECTORY
This event is generated when the http_inspect pre-processor detects a request for a URL that is
longer than a specified length. This may indicate an attack or an attempt to evade an IDS. The
maximum expected length of the URL is user configured.
207.166.87.157 -> many (116)
Total (116)


