
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Intrusion In Depth

GCIA Practical Version 4.0

Michael Spellane

November 20, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract:
With this practical, I intend to demonstrate my effectives in the Intrusion
Detection field and what I have learned and continue to learn in this vast field. I
will analyze events that I have found of interest, and provide technical
explanations about what is found.

Executive Summary:

I have been tasked with analyzing the security posture of your University. The
report that I have submitted contains detailed analysis pertaining to log files
obtained from your Intrusion Detection System, and will point out alert’s of
concern as well as statistical data about the amount of traffic your network is
generating. It is my intention to provide you with a clear view of the areas that
require improvement, as well as professional recommendations. I have chosen in
this report to focus in on, but not limited to, data that occurred on 06/09/2001.
There is evidence of Peer to Peer network traffic, file sharing if you will, from
many machines on your network. Universities typically have a plethora of
bandwidth, as such, this becomes a perfect breeding ground for file sharing
activity, as well as malicious activity. Upon reading this report, you will be asked
what acceptable risk to your organization is. This will provide a clear path as to
where your organization will go with network security, and the changes that you
choose to implement recommended within this report.

Network relationships:

In looking at the data and discovering hosts’ based on the protocols in use, here
is a graph of what I believe to be a web/ftp server on the University network, and
all hosts that have made attempted connections:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Link Graph:
Here is a link graph displaying a many to one relationship between external hosts
and what is believed to be an internal web server. This graph also depicts a one
to many network sweep from 255.255.255.255 (broadcast address of the class C
network space). The GET default.ida xxxxxxx and the GET scripts/CMD.EXE
are of interest here. They are typical of CODERED and NIMDA. These worms
exploit vulnerable IIS web servers with Buffer Overflow attacks to achieve
directory traversal. In looking at some packets where MY.NET.180.133 sent
403’s (Forbidden) back to the requesting hosts, I do not believe this server is
running IIS, and here’s why: In looking at the 8th byte offset from 0 in the IP
header, MY.NET.180.133 generated a TTL value of 61. Now, Microsoft had a
couple of default TTL values, 32 for Win95, and WinNT3.51, and 128 for WinNT
4.0 on up to the current WinXP. So, unless the INTERNAL server is roughly 67
hops away from the SNORT sensor, I would say it is unlikely that this is a
Microsoft IIS server. I would venture to say that this is more likely to be a Linux
box running Apache.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Overview of Alert’s:

The following is an overview of the alerts from file 2002.5.10 obtained from
http://www.isc.sans.org/logs/raw and their aggregated counts. I will use this as
the basis for Detects 1 and 2:

Signature # Alerts # Sources # Destinations
BARE BYTE UNICODE ENCODING 416 1 10
DNS named version attempt 42 9 42
BACKDOOR Q access 36 1 36
WEBROOT DIRECTORY
TRAVERSAL

24 4 8

OVERSIZE REQUEST-URI
DIRECTORY

18 1 6

DOUBLE DECODING ATTACK 11 1 5
APACHE WHITESPACE (TAB) 10 1 5
NON-RFC HTTP DELIMITER 10 4 3
SHELLCODE x86 NOOP 5 1 1
BAD-TRAFFIC ip reserved bit set 1 1 1
MISC Tiny Fragments 1 1 1

Detect 1:

In order to understand what is going on in the capture file, we need to attempt to
map out the network. Michael Meacle has a process in his practical that is very
ingenious. He obtained the idea from Chris Reining. Due to page constraints
implemented version 4.0 of the GCIA practical, I will not go into detail of every
command typed to achieve the network layout, but simply provide a link to
Michael Meacle’s paper that has the instruction’s on how to conclude the network
layout.
http://www.giac.org/practical/GCIA/Michael_Meacle_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Below is what I believe the basic network layout of the file 2002.5.10 obtained
from http://www.isc.sans.org/logs/raw to be:
INTERNET
 |
CISCO DEVICE (0:3:e3:d9:26:c0)
 |
SNORT SENSOR
 |
CISCO DEVICE (0:0:c:4:b2:33)
 |
NATTED DEVICE (REST OF NETWORK)

[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
06/09-20:18:48.944488 255.255.255.255:31337 -> MY.NET.87.61:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
06/09-20:20:27.934488 255.255.255.255:31337 -> MY.NET.172.250:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
06/09-20:28:33.904488 255.255.255.255:31337 -> MY.NET.9.165:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

Attack Description:

BACKDOOR Q is a Trojan backdoor that affects UNIX operating systems. The
backdoor could allow an attacker to run commands remotely as root.
The Trojan is controlled by sending raw packets to the target computer. Once the
backdoor has been delivered and installed, the attacker can send commands via
TCP, UDP, or ICMP from the broadcast address of a class “C” network
(255.255.255.255). This would allow an attacker to craft packets and evade
detection of their true source. The snort rule description gave me better insight
on this alert.
http://www.snort.org/snort-db/sid.html?sid=184

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This attack was selected due to the use of port’s 31337 and 515. 31337 being
the port that Backorifice
(http://www.symantec.com/avcenter/warn/backorifice.html) uses and 515 being
the UNIX printer daemon. Older versions of the UNIX printer daemon have a
vulnerability. Exploits have been released into the wild; such exploits include the
lpdw0rm and the Ramen worm.
Ref: http://www.securityfocus.com/archive/75/180015 lpdw0rm
Ref: http://www.whitehats.com/library/worms/ramen Ramen

Detect was generated by:

Snort version 2.2 using default ruleset. Snort was ran against the raw logfile
2002.5.10 obtained from isc.sans.org/logs/raw.
The following rule triggered this event:
1:184 indicated by the [1:184:6] in the alert.
The rule that triggers this event contains the following:
alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q
access"; dsize:>1; flags:A+; flow:stateless; reference:arachnids,203;
classtype:misc-activity; sid:184; rev:6;)

Probability the source address was spoofed:

High – The IP is 255.255.255.255. This IP is the broadcast address of the class
“C” network space. In reading another student’s practical, he states that, per
RFC950, this is normal traffic used by a host to discover it’s subnet mask.
However, in reading RFC950, it states that the protocol used to accomplish this
is ICMP, whereas the traffic in question is TCP. Also, there are no signs of a
completed 3 way handshake, the TCP packet is being sent with the ACK RST
Flags set, no initial SYN. All of this on top of the fact that this, again, is TCP
traffic coming from a broadcast address, and as we know, TCP only supports
unicast.

Attack Mechanism:

The attacker is looking for UNIX boxes that have the BACKDOOR Q server
installed. The packets are being directed to multiple IP’s on the same network
targeting port 515 (UNIX Printer Port). The payload of the packet contains “CKO”,
which, Perhaps, the backdoor that was installed responds to CKO data, and this
could be a “wakeup call” instructing the Trojan to phone home, whether “home”
be the attacker’s computer, or an IRC server. This is obviously a crafted packet,
either by hand or by other means, such as an automated tool. The IP of
255.255.255.255 is not the only key here. The IPID is 0 on all packets that are
sent. This should not be. Additionally, the IPID should increment for each packet
sent. The attacker is also using the source port of 31337, very odd, this is the
port that BackOrifice utilizes for it’s backdoor. The odd thing about this traffic
(and is not reflected in the above raw data) is the DNS BIND requests within

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

minutes of the BACKDOORQ alert. This is ALMOST consistent throughout the
beginning of the dataset, but not entirely. Could the BACKDOOR Q attack just be
a decoy to throw an analyst off the real attack? Supporting evidence could be the
fact that the attacker is using the source port of 31337, destination port of
515,and a TTL of 14 (ok, that one might be a stretch) this (to me, at least) sticks
out like a sore thumb. This was my thinking at first blush, however, I am leaning
towards maybe not since the two alerts are not consistent enough throughout the
ENTIRE dataset.

Correlations:

There are many correlations to this event. It actually seems like this subject has
been debated for some time.

Maslowski-Yerges – GCIA Practical
http://www.giac.org/practical/GCIA/Al_Maslowski-Yerges_GCIA.pdf

Whitehats.org
http://www.whitehats.com/info/IDS201

Evidence of Active targeting:

No. Throughout the entire dataset, the attacker seems to be sweeping the
MYNET.5.x.x network space in hopes to kickoff a remote program.

Severity:

Criticality = 2

This appears to be a network sweep, the attacker is not targeting a specific host,
so the OS is unknown. I did not see any traffic in response to this either.

Lethality = 5

If an attacker has the ability to send data to the backdoor, in order to run
commands as root, this would be a very, very bad thing.

System Countermeasures = 4

The system’s that are being targeted do not seem to be responding to this attack.
Either it is not if the preferred OS flavor for the attack, or it has a defensive
mechanism in place.

Network Countermeasures = 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This is an unknown network, I have no idea which (if any) network defensive
mechanisms are in place.

(2+5) – (4+2) = 1

Detect 2:
Again, since this detect came from the same file as above, this is what I believe
the basic network layout of the file 2002.5.10 obtained from
http://www.isc.sans.org/logs/raw to be:
INTERNET
 |
CISCO DEVICE (0:3:e3:d9:26:c0)
 |
SNORT SENSOR
 |
CISCO DEVICE (0:0:c:4:b2:33)
 |
NATTED DEVICE (REST OF NETWORK)

[**] [1:523:5] BAD-TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3]
06/10-09:41:19.544488 218.2.129.171 -> MY.NET.188.185
TCP TTL:231 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x11F1 Frag Size: 0x0014

[**] [1:522:2] MISC Tiny Fragments [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
06/10-14:51:14.694488 218.2.129.171 -> MY.NET.142.232
TCP TTL:231 TOS:0x0 ID:0 IpLen:20 DgmLen:40 MF
Frag Offset: 0x0004 Frag Size: 0x0014

I know that these are two different alerts, but I believe that they coinincide with
one another.

Attack description:

When IP fragmentation occurs, the packets are broken up into smaller fragments
and reassembled at the destination. If the packets are sent out of order, the IDS
must properly reassemble the packet. An IDS that does not reassemble the
packet correctly is susceptible to evasion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This alert was selected because I believe this could be some type of IDS evasion
technique. The fact that we only see each alert once and that they are split up by
roughly 5 hours, leads me to believe that this may be a “low and slow” attacker.

Detect was generated by:

Snort version 2.2 using default rule set. Snort was ran against the raw logfile
2002.5.10 obtained from isc.sans.org/logs/raw.
The following rule triggered this event:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC ip
reserved bit set"; fragbits:R; classtype:misc-activity; sid:523; rev:5;)

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny
Fragments"; dsize:< 25; fragbits:M; classtype:bad-unknown; sid:522; rev:2;)

Probability the source address was spoofed:

HIGH – Given that the 9th byte offset from 0 in the IP header is 06 (TCP), I see
no evidence of a 3-way handshake. It looks like the attacker has crafted this
packet by hand, given that the ID is set to 0, and in the first packet, the reserved
bit is set (not normal TCP traffic) and the second packet has the MF flag set, with
only 40 bytes as a total length in the packet.

Attack Mechanism:

An attacker can send a fragmented packet with a proper TCP header and the
firewall will allow this to pass. The second portion of the fragmented traffic will
contain information that will overwrite the original TCP header that is now on the
other side of the firewall if it is vulnerable. This is known as fragmentation overlap
and fragmentation overwrite. The key difference between the two is that
fragmentation overlap only overwrites the last byte in the first packet.
Fragmentation overwrite overwrites the entire previous fragment. There is an
excellent write up from Kevin Timm on
http://www.securityfocus.com/infocus/1577 that explains various methods of
IDS evasion. Here is a line from that write up which cites an example of
overlapping;

“Fragmentation overlap involves sending packets so one fragment overwrites
data from a previous fragment therefore evading network detection. An example
could be as follows:

Packet #1 GET x.idd
Packet #2 a.?(buffer overflow here)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The packets are assembled so that packet #2 overwrites the last byte of packet
#1 so that when they are re-assembled on the destination host the string is GET
x.ida?(buffer overflow). “

Another interesting fact I took away from this paper is the technique of
fragmentation timeout’s. The attacker will send a packet with the More
Fragments bit set, and then wait for the IDS to discard the packet. Older or
improperly configured IDS will discard the packet after 60 seconds.
The attacker may also fragment an exploit that will elude IPS’s.
 http://www.snort.org/snort-db/sid.html?sid=522

This alert is interesting in the fact that NORMAL traffic will not have the reserved
bit set. When you look at the IPID of 0, the TTL of 231 on top of the fact that the
reserved bit is set, you can pretty easily come to the conclusion that this packet
is crafted.

"MISC Tiny Fragments" This alert is also interesting. The fact that the TTL is
again 231 and the IPID is again 0 leads me to believe that this packet is crafted
as well. Another interesting fact about this packet is the fact that the More
Fragments flag is set, yet, the total Datagram length is only 40 bytes. According
to the README file on the http://isc.sans.org/logs/raw URL, all of the “normal”
traffic has been extracted. In going with that, there could be more packets that
are related to this traffic that we are not seeing here because SNORT did not
pick them up, or they were just pulled out of the dataset all together. I have used
nemesis to emulate this traffic on my home network to see what it would do:

Nemesis ip –S MY.NET.SPOOFED.SOURCE –D MY.NET.HOME.NET –I 0 –p 6
–F R 32

My SNORT box picked up this packet just like it was supposed to. I did not evade
my IDS, nor did I crash the machine.

If you look at the 9th byte offset of the IP header, you will see a 06, indicating that
the protocol is TCP; however, I do not see the TCP header in the packet. I
believe that the second fragment is sent with no TCP header. I understand
fragmentation; I now want to see it in action. To test this, I used the standard ping
command to send a packet with 1500 bytes of data:

Ping –l 1500 MY.NET.VICTIM.MACHINE
The l -1500 tells ping to send 1500 bytes of data. Here are the results:

First part of fragmented packet:

16:56:59.123505 IP (tos 0x0, ttl 128, len 1500) MY.NET.SPOOFED.SOURCE >
MY.NET.VICTIM.MACHINE: icmp 1480: echo request seq 23552 (wrong icmp
cksum 675 (->e247)!) (frag 28745:1480@0+)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0000 4500 05dc 7049 2000 8001 236e c0a8 000b E...pI....#n....
0x0010 c0a8 000e 0800 0675 0200 5c00 6162 6364u..\.abcd
0x0020 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqrst
0x0030 7576 7761 6263 6465 6667 6869 6a6b 6c6d uvwabcdefghijklm
0x0040 6e6f 7071 7273 7475 7677 6162 6364 6566 nopqrstuvwabcdef
0x0050 6768 696a 6b6c 6d6e 6f70 7172 7374 7576 ghijklmnopqrstuv
0x0060 7761 6263 6465 6667 6869 6a6b 6c6d 6e6f wabcdefghijklmno
0x0070 7071 7273 7475 7677 6162 6364 6566 6768 pqrstuvwabcdefgh
0x0080 696a 6b6c 6d6e 6f70 7172 7374 7576 7761 ijklmnopqrstuvwa
0x0090 6263 6465 6667 6869 6a6b 6c6d 6e6f 7071 bcdefghijklmnopq
0x00a0 7273 7475 7677 6162 6364 6566 6768 696a rstuvwabcdefghij
0x00b0 6b6c 6d6e 6f70 7172 7374 7576 7761 6263 klmnopqrstuvwabc
0x00c0 6465 6667 6869 6a6b 6c6d 6e6f 7071 7273 defghijklmnopqrs
0x00d0 7475 7677 6162 6364 6566 6768 696a 6b6c tuvwabcdefghijkl
0x00e0 6d6e 6f70 7172 7374 7576 7761 6263 6465 mnopqrstuvwabcde
0x00f0 6667 6869 6a6b 6c6d 6e6f 7071 7273 7475 fghijklmnopqrstu

Second part of fragmented packet:

16:56:59.128483 IP (tos 0x0, ttl 128, len 48) MY.NET.HOME.11 >
MY.NET.HOME.14: icmp (frag 28745:28@1480)
0x0000 4500 0030 7049 00b9 8001 4861 c0a8 000b E..0pI....Ha....
0x0010 c0a8 000e 6162 6364 6566 6768 696a 6b6cabcdefghijkl
0x0020 6d6e 6f70 7172 7374 7576 7761 6263 6465 mnopqrstuvwabcde

As you can see, the packet first packet is sent with 1500 bytes total length
(ethereal will show this as ICMP protocol) and the second part of the packet is
sent with 48 bytes total length (ethereal sees this as IP protocol) with no ICMP
header information. If you look at the 6th byte offset in the IP header, you will see
this field zeroed out; the More Fragments flag is not set. This is normal
fragmentation at work.

CORRELATIONS:
http://www.securityfocus.com/infocus/1577
http://www.faqs.org/rfcs/rfc1858.html

Evidence of active targeting: NONE – The two packets are being sent to two
different machines. I believe the attacker is trying to see if he can evade the IDS,
it does not appear that he has a specific target in mind.
SEVERITY:

Criticality: 2 Not knowing the utility of these machines, it is hard to gauge.
However, through the entire dataset, this destination IP only shows up twice. If it
were a resource that serviced many user’s and computers (ie. Web server, DNS
server ect.) then we would probably see much more traffic to and from these
machines.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lethality: 5 If an attack like this were to succeed, an attacker would have
successfully evaded an IDS. To me, this is a VERY bad thing.

System Countermeasure: 5 This, again, is hard to determine without knowing the
system itself. As I stated above, I see no other traffic going to or coming from
these machines, which leads me to believe that the machine is not servicing any
specific requests (no IIS, no FTP, no SMTP ect.).

Network Countermeasure: 3 While snort picked up these packets as an alert,
should the packet have made it that far? I think not, if the external firewall was
capable of dropping packets with the IP reserved bit set, and the MF flag set on a
fragment that is small in nature.

Detect 3:

The following is an aggregated view of the alert’s from a single day on my home
network:

Signature # Alerts # Sources # Destinations
DOUBLE DECODING ATTACK 16 1 1
OVERSIZE REQUEST-URI
DIRECTORY

14 7 1

BARE BYTE UNICODE ENCODING 14 7 1
WEBROOT DIRECTORY
TRAVERSAL

4 1 1

ICMP PING 4 1 1
ICMP L3retriever Ping 4 1 1
NON-RFC HTTP DELIMITER 2 1 1

This detect was taken from my home network. Below is the layout of the network:

Cable Modem
|
|

Router/Switch
|
|

Switch
|
|

Web/SMTP Server With SNORT running on host

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CodeRed II still making lots of noise.

It is still amazing to me that in the day’s of technological choices that consumers
have, that a virus, 3 years old now, is still running wild. How can it be that with all
of the Antivirus programs, personal hardware firewall’s, software firewalls, and
widely available OS and Application patches, that a Virus is still able to go
without the user knowing about it?

[**] [119:3:1] (http_inspect) U ENCODING [**]
08/09-19:27:53.556903 68.83.35.132:4011 -> MY.NET.HOME.5:80
TCP TTL:118 TOS:0x0 ID:35728 IpLen:20 DgmLen:1500 DF
A* Seq: 0x6BA48E87 Ack: 0xFFAFEFD9 Win: 0x4470 TcpLen: 20

[**] [119:13:1] (http_inspect) NON-RFC HTTP DELIMITER [**]
08/09-19:27:53.556903 68.83.35.132:4011 -> MY.NET.HOME.5:80
TCP TTL:118 TOS:0x0 ID:35728 IpLen:20 DgmLen:1500 DF
A* Seq: 0x6BA48E87 Ack: 0xFFAFEFD9 Win: 0x4470 TcpLen: 20

[**] [119:4:1] (http_inspect) BARE BYTE UNICODE ENCODING [**]
08/09-19:27:53.598209 68.83.35.132:4011 -> MY.NET.HOME.5:80
TCP TTL:118 TOS:0x0 ID:35729 IpLen:20 DgmLen:1500 DF
A* Seq: 0x6BA4943B Ack: 0xFFAFEFD9 Win: 0x4470 TcpLen: 20

[**] [119:15:1] (http_inspect) OVERSIZE REQUEST-URI DIRECTORY [**]
08/09-19:27:53.650470 68.83.35.132:4011 -> MY.NET.HOME.5:80
TCP TTL:118 TOS:0x0 ID:35738 IpLen:20 DgmLen:938 DF
AP Seq: 0x6BA499EF Ack: 0xFFAFEFD9 Win: 0x4470 TcpLen: 20

Attack Description:

“CodeRed II was discovered on August 4, 2001. It has been called a variant of
the original CodeRed Worm because it uses the same "buffer overflow" exploit to
propagate to other Web servers. Symantec Security Response received reports
of a high number of infected IIS Web servers. CodeRed II is considered to be a
serious threat.” – Symantec website.
http://securityresponse.symantec.com/avcenter/venc/data/codered.ii.html

Codered II was designed to exploit a known Buffer overrun vulnerability in IIS
servers. It is intended to allow an attacker to have full control of the system by
sending the http get request to run scripts/root.exe.

Attack Mechanism:

Codered II propagates itself by by sending Default.ida and a buffer overrun to an
unpatched IIS server. The worm exploits a known vulnerability in Microsoft’s
indexing service which is part of the Microsoft IIS server. Microsoft has released

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a patch and bulletin to deal with this problem,
http://www.microsoft.com/technet/security/bulletin/MS01-033
Once infected, the worm copies CMD.EXE to
%Systemdrive%\Inetpub\Scripts\Root.exe and
%systemdrive%\Progra~1\Common~1\System\MSADC\Root.exe. If the Trojan
that the worm drops has modified the registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\W3SVC\Parameters\Virtual Roots

and, by adding a few new keys and setting the user group to 217, a hacker can
control the Web server by sending an HTTP GET request to run scripts/root.exe
on the infected Web server.

The main thread of the worm goes dormant for 48 hours on Chinese systems
and 24 hours on other systems, while the other threads continue to make
attempts to infect other IIS servers. When the main thread wakes up from its
sleep, it causes the computer to restart. Further, all the threads check whether
the month is October or whether the year is 2002. If so, the computer is
restarted.

The worm copies the command shell (Cmd.exe) to the default execution-enabled
directory of the IIS Web server, allowing remote control. It also drops a file (which
has its attributes set to Hidden, System, and Read Only) onto the root drive as
either or both C:\Explorer.exe or D:\Explorer.exe. Norton AntiVirus identifies
these Trojan files as Trojan.VirtualRoot. The worm carries this file inside itself in
a packed format and unpacks it when it is dropped.
The infection lasts 24 or 48 hours, and then the compute is restarted. However,
the same computer can be re-infected until it is patched with the latest update
from Microsoft.

If the month is October or if the year is 2002, the computer will also be restarted.
When the computer is restarted, Trojan.VirtualRoot is executed when the system
attempts to execute Explorer.exe (due to the way that Windows NT resolves or
searches program paths when executing a program). The Trojan
(C:\Explorer.exe) sleeps for a few minutes and resets these keys to assure that
the registry keys are modified.

NOTE: After a restart, the memory-resident worm will be inactive, meaning that,
on an infected system that has been restarted, the worm will not attempt to
spread itself to other machines unless it happens to get re-infected. The Trojan
also alters the registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\Winlogon

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

so that the value SFCDisable is set to 0xFFFFFF9D. This disables the System
File Checker (SFC). System file checker is a feature of Windows that scans the
systems files to ensure that they are the correct versions provided by Microsoft.

Additionally, you can see the strings that the worm sends to a web server by
looking in the web server log’s:

2004-08-09 23:46:31 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/<Rejected-By-UrlScan> ~/scripts/..%c1%1c../winnt/system32/cmd.exe 401 5
www -
2004-08-09 23:46:32 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/scripts/winnt/system32/cmd.exe /c+dir 401 5 www -
2004-08-09 23:46:34 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/winnt/system32/cmd.exe /c+dir 401 5 www -
2004-08-09 23:46:35 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/winnt/system32/cmd.exe /c+dir 401 5 www -
2004-08-09 23:46:36 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/<Rejected-By-UrlScan> ~/scripts/..%%35%63../winnt/system32/cmd.exe 401 5
www -
2004-08-09 23:46:37 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/<Rejected-By-UrlScan> ~/scripts/..%%35c../winnt/system32/cmd.exe 401 5
www -
2004-08-09 23:46:39 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/<Rejected-By-UrlScan> ~/scripts/..%25%35%63../winnt/system32/cmd.exe 401
5 www -
2004-08-09 23:46:40 68.32.113.86 - W3SVC3 WEB MY.NET.HOME.5 80 GET
/<Rejected-By-UrlScan> ~/scripts/..%252f../winnt/system32/cmd.exe 401 5 www
–

Here is the packet capture of the traffic:

02:46:01.772737 IP 68.34.216.159.4715 > MY.NET.WEB.5.80: .
1117379848:1117381296(1448) ack 2524299361 win 64240 <nop,nop,timestamp
614113 0>
0x0000 4500 05dc 2ae7 0000 7406 38c6 4422 d89f E...*...t.8.D"..
0x0010 c0a8 0005 126b 0050 4299 dd08 9675 c061k.PB....u.a
0x0020 8010 faf0 3fe3 0000 0101 080a 0009 5ee1?.........^.
0x0030 0000 0000 4745 5420 2f64 6566 6175 6c74GET./default
0x0040 2e69 6461 3f58 5858 5858 5858 5858 5858 .ida?XXXXXXXXXXX
0x0050 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0x0260 0000 e80a 0000 0043 6f64 6552 6564 4949CodeRedII
0x04b0 813c 0347 6574 5075 f581 7c03 0472 6f63 .<.GetPu..|..roc
0x04c0 4175 eb03 4a10 49d1 e103 4a24 0fb7 0c0b Au..J.I...J$....
0x04d0 c1e1 0203 4a1c 8b04 0b03 c389 4424 2464J.......D$$d
0x04e0 678f 0600 0058 61c3 e851 ffff ff89 5dfc g....Xa..Q....].
0x04f0 8945 f8e8 0d00 0000 4c6f 6164 4c69 6272 .E......LoadLibr
0x0500 6172 7941 00ff 75fc ff55 f889 45f4 e80d aryA..u..U..E...
0x0510 0000 0043 7265 6174 6554 6872 6561 6400 ...CreateThread.
0x0520 ff75 fcff 55f8 8945 f0e8 0d00 0000 4765 .u..U..E......Ge
0x0530 7454 6963 6b43 6f75 6e74 00ff 75fc ff55 tTickCount..u..U

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0540 f889 45ec e806 0000 0053 6c65 6570 00ff ..E......Sleep..
0x0550 75fc ff55 f889 45e8 e817 0000 0047 6574 u..U..E......Get
0x0560 5379 7374 656d 4465 6661 756c 744c 616e SystemDefaultLan
0x0570 6749 4400 ff75 fcff 55f8 8945 e4e8 1400 gID..u..U..E....
0x0580 0000 4765 7453 7973 7465 6d44 6972 6563 ..GetSystemDirec
0x0590 746f 7279 4100 ff75 fcff 55f8 8945 e0e8 toryA..u..U..E..
0x05a0 0a00 0000 436f 7079 4669 6c65 4100 ff75CopyFileA..u
0x05b0 fcff 55f8 8945 dce8 1000 0000 476c 6f62 ..U..E......Glob
0x05c0 616c 4669 6e64 4174 6f6d 4100 ff75 fcff alFindAtomA..u..
0x05d0 55f8 8945 d8e8 0f00 0000 476c U..E......Gl

I pasted this in with a font of 10. The 12 font was messing the display of the
packet. Sections of the packet that did not show the point I am making were
removed to save space. As you can see, the Trojan attempted to fill the buffer up
with the XXXXXXXX (585858585858585858). Then the packet moves on, where,
in plain text, CodeRedII is displayed. After further inspection of the packet, you
can see that the Trojan is attempting to run system call’s, described in
Symantec’s write up of this virus. You can see that it is attempting to
LoadLibraryA (Map’s the executable module into the address space of the
calling process), CreateThread, (Creates a thread to execute within the virtual
address space of the calling process), GetTickCount (Get’s the number of
milliseconds that have elapsed since the system was started). Next, it looks like it
puts the thread to sleep. Then, it looks to be grabbing the default language of the
machine with GetSystemDefaultLangID (this must be to tell the Trojan how long
to stay dormant, remember, Chinese will be dormant for 48 hours, everyone else,
24 hours. The Trojan then issues the GetSystemDirectory, which is used to find
the system directory on a system. This is where system files such as .DLL’s will
be located. Next, it issues the CopyFile command, which copies an existing file to
another filename. In this case, CodeRedII copies CMD.EXE to ROOT.EXE. The
next command run is the GlobalFindAtom command, which searches the global
atom table for the specified character string and retrieves the global atom
associated with that string. Now, this one threw me off. What the hec is an Atom?
Well, per the MSDN, an atom is a normal character, a character class, or a
parenthesized regular expression.

Probability source address was spoofed: LOW
CodeRed II Does not care about hiding it’s origin. I believe it is also looking for a
SYN-ACK from a web server to spread it’s virus.

CORRELATRIONS:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/dataexchange/atoms/atomreference/a
tomfunctions/globalfindatom.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/fileio/base/copyfile.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vjref98/html/com.ms.wfc.app.Locale_getDefaultLanguage.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sysinfo/base/getsystemdirectory.asp

http://securityresponse.symantec.com/avcenter/venc/data/codered.ii.html

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/loadlibrary.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/createthread.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sysinfo/base/gettickcount.asp

http://www.microsoft.com/technet/security/bulletin/MS01-033

Evidence of Active Targeting: No

Codered II targets computers by generating an IP list. The packets are then sent
to port 80 (WEB) of the selected IP’s. These IP’s are generated randomly, the
worm is simply looking for a SYN-ACK response from the server to continue on
it’s merry little way.

Severity:

Criticality = 5

The only machine on my network that answers to a call to port 80 is my web
server. I hold this machine to be very important to me.

Lethality = 5

If this attack were to succeed, an attacker would have full control of my web
server. Once the attacker has full control of that server, he or she could then start
attacking other machines on my internal network, use my web server to attack
other machines on the big I internet.

System Countermeasures = 4

The machine in question is a fully patched IIS web server. It is running NAV
Corporate and SNORT IDS on the host itself. All services that I do not use (FTP,
POP, Terminal services, ect.) have been disabled. You might be wondering why
if the system is fully patched and protected, then why didn’t this value earn the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

highest score? Well, although it is fully patched and protected, it is still an
Microsoft IIS server, which, seems to be the preferred servers to exploit on the
internet.

Network Countermeasures = 2

I have a firewall in place at my point of presence, but I allow port 80 through the
firewall, being forwarded to my web server. My firewall does not allow me to filter
by the packet content’s itself, therefore, the network countermeasures are low.

Taking all this in mind, here is the severity rating:

(5+5) – (4+2) = 4

Network Statistics:

The following is a list of the top five talkers in terms of total # of packets, either
Transmitted or received, from the 2002.5.10 file:

DNS NAME IP ADDRESS Packets
Rx

Packets
Tx

Packet’s
Total

MY.NET.180.250 111 3850 3961

ehg.hitbox.com 64.154.80.51 1529 0 1529
web14526.mail.yahoo.com 216.136.224.55 990 0 990
hg1.hitbox.com 64.154.80.50 730 0 730
webmail.juno.com 64.136.20.82 142 0 142

As you can see, the majority of the packet’s in the dataset are coming from
MY.NET.180.250. I believe this address to be one of the routers/natting devices
that the snort sensor is between.

Here is a graphical depiction if this data, with the caveat that this chart depicts
the top 10 talkers by packet’s sent or received. Note that this graph is outside of
the alert’s that snort has generated, this is simply ALL traffic from the 2002.5.10
file:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Here are the top 5 talkers in terms of SOURCE ADDRESSES THAT
GENERATED ALERT’S:

DNS NAME IP ADDRESS # of occurrences
MY.NET.180.250 MY.NET.180.250 462

255.255.255.255 36
203.122.47.137 11

ppp102-110.pppcal.vsnl.net.in 203.197.102.110 9
custnets-63-70-83-162.rinc.net 63.70.83.162 8

On top of this list, I want to add a chart that shows the top talkers in terms of
DESTINATION address:

DNS NAME IP ADDRESS # of occurrences
ehg.hitbox.com 64.154.80.51 361
hg1.hitbox.com 64.154.80.50 38
web14526.mail.yahoo.com 216.136.224.55 18

64.94.89.210 9
MY.NET.180.250 MY.NET.180.250 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Now that we have a list of the top IP’s that triggered alerts, and the top IP’s by
packet’s sent and received, let’s look at the port’s that are being targeted on the
network:

DST PORT SERVICE ASSOCIATED # OF OCCURENCES
80 TCP WEB TRAFFIC 495
53 UDP DNS 42
515 TCP Print Spooler 36
63599 TCP Not Well Known port 5
0 No association 2

As you can see, the web traffic has the highest # of occurrences for alerts.
DNS is also being targeted, this is held true by the DNS Named version attempts
that snort triggered on.

There is evidence of a network sweep for port 515. A crafted packet with the
source IP of 255.255.255.255 is responsible for this port being targeted. I saw no
evidence of successful penetration to any machines using this port.

Port 63599 is not a well known port, it is an ephemeral port, meaning, any port
above 1024. In looking at the connection that is using this port, a user on the
internal seems to have connected to an FTP site. After further inspection of the
site, which was wide open to anonymous user’s, it looks to be a Linux computer,
or at least it has a Linux file system, eg. /usr /bin ect, on an AOL server. The
machine that connected to this site should be examined for malicious activity.
Unfortunately, the destination is the MY.NET.180.250 address. We will need to
inspect the logs of that routing/natting device to track this connection to the
actual machine.

Port 0 is interesting because it is just not a normal thing to see. Usually, as with
the case of many connections from this file, this is an indication of crafted
packets. Depending on the intent of the packet, ie. Recon, exploit ect. We cannot
trust the validity of the source IP generating this packet. No specific service is
being targeted with this port, the packets associated with this port show
indication of an attempt to evade the IDS.

Now, looking at all the total’s from the data previously presented, It is my opinion
that the 3 most suspicious EXTERNAL ip’s are as follows:

1) 218.2.129.171 – This IP only show’s up twice, but it is extremely
suspicious to me due to the fact that it seems to be a “low and slow”
attacker. I came to this conclusion with this fact in mind; the attacker hit’s
again in the 2002.5.11 file, with the same low number of occurrences.
The attacker seems to be attempting to hide himself between all of the
other attacks. The fact that this IP is coming out of China should also raise

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

concern levels. This individual is attempting to evade the IDS, which is a
major concern of mine.

Registration:

Server Used: [whois.apnic.net]

218.2.129.171 = []

 inetnum: 218.2.0.0 - 218.4.255.255
 netname: CHINANET-JS
 descr: CHINANET jiangsu province network
 descr: China Telecom
 descr: A12 Xin-Jie-Kou-Wai Street
 descr: Beijing 100088
 country: CN
 admin-c: CH93-AP
 tech-c: CJ186-AP
 mnt-by: MAINT-CHINANET
 mnt-lower: MAINT-CHINANET-JS
 mnt-routes: maint-chinanet-js
 changed: hostmaster@ns.chinanet.cn.net
 20020209
 changed: hostmaster@ns.chinanet.cn.net
 20030306
 status: ALLOCATED non-PORTABLE
 source: APNIC
 route: 218.2.0.0/16
 descr: CHINANET jiangsu province network
 country: CN
 origin: AS23650
 mnt-by: MAINT-CHINANET-JS
 changed: ip@jsinfo.net
 20030414
 source: APNIC
 role: CHINANET JIANGSU
 address: No.268 Hanzhong Road Nanjing 210029
 country: CN
 phone: 86-25-6588783
 fax-no: 86-25-6588740
 e-mail: ip@jsinfo.net

 trouble: send anti-spam reports to spam@jsinfo.net

 trouble: send abuse reports to abuse@jsinfo.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 trouble: times in GMT8
 admin-c: CH360-AP
 tech-c: CS306-AP
 tech-c: CN142-AP
 nic-hdl: CJ186-AP
 remarks: www.jsinfo.net
 notify: ip@jsinfo.net

 mnt-by: MAINT-CHINANET-JS
 changed: dns@ptt.js.cn
 20020530
 changed: ip@jsinfo.net
 20021213
 source: APNIC
 person: Chinanet Hostmaster
 address: No.31 jingrong street beijing
 address: 100032
 country: CN
 phone: 86-10-66027112
 fax-no: 86-10-58501144
 e-mail: hostmaster@ns.chinanet.cn.net

 e-mail: anti-spam@ns.chinanet.cn.net

 nic-hdl: CH93-AP
 mnt-by: MAINT-CHINANET
 changed: hostmaster@ns.chinanet.cn.net
 20021016
 remarks: hostmaster is not for spam complaint please send spam complaint
to anti-spam@ns.chinanet.cn.net

 source: APNIC

2) 64.154.80.51 – This IP is suspicious in that it is associated with the hitbox
counter. There are numerous connections from MY.NET.180.250 to this
server. Hitbox has been listed as spyware. The data being sent look’s to
be encrypted; that is, it does not contain human readable data. It would be
my intention to locate the machine that is sending data to this site, and
perform extensive forensics, that is, take an image using DD, and possibly
run through the content’s using Autopsy. (Yes, I am also preparing for the
track 8 practical)

 Ref: http://www.pestpatrol.com/PestInfo/e/ehg-tmgolf_hitbox.asp

Registration:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Server Used: [whois.arin.net]

64.154.80.51 = [ehg.hitbox.com]

 OrgName: Level 3 Communications Inc.
 OrgID: LVLT
 Address: 1025 Eldorado Blvd.
 City: Broomfield
 StateProv: CO
 PostalCode: 80021
 Country: US
 NetRange: 64.152.0.0 - 64.159.255.255
 CIDR: 64.152.0.0/13
 NetName: LC-ORG-ARIN
 NetHandle: NET-64-152-0-0-1
 Parent: NET-64-0-0-0-0
 NetType: Direct Allocation
 NameServer: NS1.LEVEL3.NET
 NameServer: NS2.LEVEL3.NET
 Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
 RegDate: 2000-06-08
 Updated: 2001-05-30
 TechHandle: LC-ORG-ARIN
 TechName: level Communications
 TechPhone: 1-877-453-8353
 TechEmail: ipaddressing@level3.com

 OrgAbuseHandle: APL8-ARIN
 OrgAbuseName: Abuse POC LVLT
 OrgAbusePhone: 1-877-453-8353
 OrgAbuseEmail: abuse@level3.com

 OrgTechHandle: TPL1-ARIN
 OrgTechName: Tech POC LVLT
 OrgTechPhone: 1-877-453-8353
 OrgTechEmail: ipaddressing@level3.com

 OrgTechHandle: ARINC4-ARIN
 OrgTechName: ARIN Contact
 OrgTechPhone: 1-800-436-8489
 OrgTechEmail: arin-contact@genuity.com

 ARIN WHOIS database last updated 2004-11-05 19: 10
 Enter ? for additional hints on searching ARIN's WHOIS database.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3) 61.194.28.1 – This seems to be yet another low and slow attacker. This IP
has sent one packet, utilizing the TCP protocol, with 0 bytes of data in the
TCP header. This seems to be another firewall/IDS evasion tactic that
does not look to be successful.

Registration:

Server Used: [whois.nic.ad.jp]

61.194.28.1 = [fws.futabaunyu.co.jp]
 []
 InfoSphere (NTT PC Communications Inc.)
 SUBA-029-392 [Sub Allocation] 61.194.28.0
 futabaunyu. corp
 FUTABA-LOGI [61.194.28.0 <-> 61.194.28.7] 61.194.28.0/29

CORRELATIONS:

MSDN correlations for detect 3:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/dataexchange/atoms/atomreference/a
tomfunctions/globalfindatom.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/fileio/base/copyfile.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vjref98/html/com.ms.wfc.app.Locale_getDefaultLanguage.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sysinfo/base/getsystemdirectory.asp

http://securityresponse.symantec.com/avcenter/venc/data/codered.ii.html

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/loadlibrary.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/createthread.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sysinfo/base/gettickcount.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.microsoft.com/technet/security/bulletin/MS01-033

Symantec’s website:
http://securityresponse.symantec.com/avcenter/venc/data/codered.ii.html

Michael Meacle’s practical:
http://www.giac.org/practical/GCIA/Michael_Meacle_GCIA.pdf

Al Maslowski Yerges practical:
http://www.giac.org/practical/GCIA/Al_Maslowski-Yerges_GCIA.pdf

Security focus article on IDS evasion techniques:
http://www.securityfocus.com/infocus/1577

Security Considerations for IP Fragment Filtering:
http://www.faqs.org/rfcs/rfc1858.html

Possible Compromise:

Although it is tough to pick out any signs of compromise using the data provided,
there is a strong indication of spyware on the network. MY.NET.180.250 (you
remember, that natted device we love to hate) show’s multiple connections to a
known spyware source.

MY.NET.180.133 seems to have a considerable amount of web requests sent to
this machine. Some of the more notable ones are those that send the default.ida
request to this machine. This could possibly be a web server setup by the
university, an individual set this up on their own, or the machine has been
compromised by a Trojan that sets the machine up to listen on port 80. There are
numerous worms and Trojans that operate in this manner, here is a link to the
SANS port 80 detailed report: http://isc.sans.org/port_details.php?port=80
 This machine has also had FTP requests sent to it. This looked to be active
targeting, as there were multiple attempts to port 21 on this box. This machine
should require further inspection to obtain a clearer indication of positive
compromise or not.

MY.NET.180.250 also has multiple GNUTELLA connections going to and from
this address. I am unaware of the universities policies on file sharing, but this
would be something to look at. What exactly is being shared on your network?
We will need inspection of the offending machines to decipher this.

Analysis Process:
1) Downloaded log files from http://isc.sans.org/logs/raw onto Windows XP,
Redhat 9.0.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2) Ran files through SNORT v2.2 with default ruleset:
Snort –r 2002.5.10 –c /etc/snort/etc/snort.conf –l /var/log/snort –X –k none

3) Used Ethereal to view entire dataset.

4) Imported 2002.5.10 logfile into ACID and MySQL database.
 Here is the install guide used for this setup.
http://www.snort.org/docs/Snort_SSL_FC2.pdf

5) Used Observer to achieve graph of Top 10 talker’s and to view other network
statistics. Ie. Total packets Tx and Rx and Total Bytes Tx and Rx.
http://www.networkinstruments.com/assets/pdf/observer_brochure.pdf

6) Implemented Michael Meacle’s method to map out network.

ACID and SNORT was setup on a 1.7GHZ x86 box running Redhat 9.0.
List of programs used and their versions:
ACID version 0.9.6b23
SNORT version 2.2
WINDUMP version 3.6.2
ETHEREAL version 10
NEMESIS 1.4 for Windows
OBSERVER version 9 by Network Instruments.

Most of the analyzing was performed from a Window’s XP 2.8GHZ machine with
1GB RAM. Snort, nemesis, ETHEREAL, WINDUMP, and OBSERVER were all
loaded on this machine.

Defensive Recommendation’s:

Detect 1: Backdoor Q network sweep.
This attack, like almost all other’s out there, seems to target a specific OS,
Linux/Unix. One of the key defense policies to defend against OS specific threats
is to ensure the OS is fully patched. This will mitigate the risk of compromise in
many situations. If there are any known Linux/Unix machines on the network, it
would be wise to ensure all users understand the patching process, and the
importance of keeping their systems up to date. If possible, a network
vulnerability scanner should be used to assist in weeding out vulnerable
machines. A process such as this could save the organization a lot of time and
money. Another defensive move to make in this chess match we call network
security would be to block all incoming traffic to the broadcast address space, if it
is not already. From this, you would be able to eliminate the possibility of traffic
such as this coming from outside of your network, and can begin to track down
the source on the internal side of the network. In this case, port 515 should be
blocked at the firewall from entering the network as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect 2: Tiny Fragments.
In the case of fragmentation attacks, IDS evasion, it is best to ensure that you
are running a network intrusion detection system, such as SNORT, and that the
NIDS is fully patched and up to date. Also, as stated above, ensure that an OS
patching policy is in place. Make sure that your NIDS properly performs packet
reassembly for inspection. Check with your firewall vendor for known issues and
patches that may exist to prevent fragmentation attacks, as well as DoS attacks.

Detect 3: Codered II
IIS has many vulnerabilities associated with it. As such, Microsoft has release
patches to address these issues. In the case of Codered, it is recommended to
apply the patch http://www.microsoft.com/technet/security/bulletin/MS01-033

