
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 4.1

Listening to White Noise
Looking for patterns of malicious traffic

Jorge D. Ortiz-Fuentes

November 16, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Abstract

This document contains the full detailed analysis of the IDS logs captured at
the University between April 20, 2004 and April 22, 2004.

The paper is divided in three parts. The first part is an executive summary
of the analysis. The second part describes the network, analyzes the IDS logs
and perform an in-depth analysis of three detects. Finally, part three covers the
methodology used for getting the results.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Contents

I Executive Summary (10 points) 1

II Detailed Analysis (70 points) 1

1 Data to Analyze 1

2 Topology 2

3 Detects 4
3.1 Detect 1: Resurrection of the Adore worm? 8
3.2 Detect 2: Knocking on System’s (back)Door 12
3.3 Detect 3: Wrong neighborhood . 15

4 Network Statistics 18

5 Correlations 20

6 Malicious activity 20

7 Recommendations 20

III Analysis Process (20 points) 21

8 Analysis Platform 21

9 Perl scripts 21
9.1 Topology . 21
9.2 Filtering logs . 23
9.3 Detect 1 . 26
9.4 Detect 2 . 27
9.5 Statistics . 28

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Acknowledgments

The unquestionable help that Rosa and Lidia have provided me with, through their
patience and unconditional support, has been the decisive factor for writing this
paper.

I also thank David and Raul. Working together as a group is making us all
improve and extend our knowledge about security.

Finally, I sincerely thank all the people that have put their knowledge and work
in developing the free tools that I use every day and that are both an important part
of what I explain in this paper and the applications used for writing it.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Part I

Executive Summary (10 points)
This document contains the full detailed analysis of the IDS logs captured at the
University between April 20, 2004 and April 22, 2004.

The systems that offer the main network services to the alumni, faculty and staff
have not been involved in any major security events. However, malicious activity
has been detected affecting to several systems. Many systems could be running
programs that provide unauthorized access to them, while some others could be
running tools used to perform distributed attacks against Internet sites.

The Chief Security Officer should initiate actions so the affected systems are
investigated and recovered to a clean state. Other events should be investigated
as well as recommended through this document.

Additionally, in order to increase the security of the University network and in-
formation systems, I would recommend doing the following things:

• Increase security awareness among the alumni, faculty, and staff.

• Train and dedicate people to review the alerts generated by the intrusion
detection systems.

• Create a computer emergency response team that is responsible for investi-
gating suspicious activity.

• If possible for this University install a perimeter firewall. If it is already installed
configure it properly: deny by default.

• Configure systems and network elements so other events are captured. This
will help in case of an eventual investigation.

• Keep a full network capture for as long as it is possible.

• Be proactive in patching the systems.

• Stablish or review the system configuration policy. Require personal firewalls,
antivirus, and safe defaults.

Part II

Detailed Analysis (70 points)

1 Data to Analyze

The log files analyzed in this documment were generated during three days start-
ing april 20th, 2004 and finishing april 22nd, 2004. The nine files used can be

1

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

downloaded from http://isc.sans.org/logs and their names and MD5 hashes are:

Name MD5
alert.040420.gz d6d0fd09056958d73d26090f913a0633

alert.040421.gz 5da640f15825446400aff861aa4a8158

alert.040422.gz bbf45a73fa3bea9b58615e304fb6b75e

oos report 040420.gz b927c85d715ac534200a4060acd90b24

oos report 040421.gz 2b90f5b7fc20e1cfb9da7dfea39bc513

oos report 040422.gz a68ac2316e5df4f8b82468a09e580786

scans.040420.gz 8595f1be4f4f8e352bd0dfcd9fbf5770

scans.040421.gz 5580a3066e21d36a38ef43d914f5e411

scans.040422.gz 17b0535b52b1606cc316c1cf8865bb49

These data have been generated by a snort instance. However, there is no
information about the version of either Snort or the ruleset.

2 Topology

The first task I had to acomplish was extracting information about the topology for a
better understanding of the logs. It would be very valuable to obtain a picture about
the physical topology from the layer two addresses (MAC), however this information
was not available in any of the files used for this analysis. It is possible from the
information present in the logs to establish the logical topology of the machines
involved in them, though. In order to do so, I extracted the IP address information
from the three different file types: alerts, oos, and scans. Each file type had a
different format and there were two different types of entries in the alert files —one
for the portscans and another for the rest of the alerts. I wrote the Perl script that
can be found in section 9.1. This script uses Perl’s capability to work with regular
expressions and extract data using them.

I noticed that in the alert and oos files, the first two bytes of the IP address
space of the University begun with MY.NET, but this was not the case with the scan
files that contained fully specified IP addresses. It seems that every entry of the
scan files, has an IP address with the form 130.85.x.y as can be extracted from
the output of the following commands:

wc -l scans.040420

2042803 scans.040420

grep -v ’130\.85’ scans.040420 | wc -l

21

Futher review of the 21 lines that do not contain that type of address confirms that
they are incomplete or bad formed entries. This allows me to assume that MY.NET
is the same as 130.85, which could be a class B network1. The script replaces
those values in order to have an homogeneus set of data.

1Although the network 130.80.0.0/24 belongs to the cannonical class B address space, the data
might have been sanitized so I cannot trust this hint.

2

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

topology.pl alert.04042* oos* scans.04042*

2098814 different IP addresses.

15747 internal IP addresses.

2083067 external IP addresses.

Top 5 mail:

IP address Frequency

MY.NET.12.6 2939

MY.NET.60.17 28

MY.NET.34.14 20

MY.NET.97.21 15

MY.NET.34.11 15

Top 5 DNS:

IP address Frequency

MY.NET.1.3 305

MY.NET.1.4 87

MY.NET.1.5 63

MY.NET.18.25 16

MY.NET.97.55 11

Top 5 Web:

IP address Frequency

MY.NET.30.4 757

MY.NET.53.84 525

MY.NET.17.4 458

MY.NET.24.44 396

MY.NET.17.3 396

The results indicate that there are 15,747 different internal IP addresses (823
if the scan logs are not used). It is probably a B class network —with or without
subnetting— or a set of consecutive C class networks, because the first and sec-
ond byte of the IP addresses are assumed to be equal (MY.NET), while the third
byte has several values. The third byte of the IP addresses ranges from 1 to 191,
but some numbers are not present (like 3, 8, 19, 23. . .)

On the one hand, it is possible that C class networks have been assigned to
different departments of the University. The reason of having some C class subnet-
wors that are not present in this list could be because they have been allocated for
future use —departments that might have more systems in the future,— assigned
to departments that are not currently using them, or simply because no activity
related to them has been detected.

On the other hand, it is also possible that it is a class B network. If so, subnetting
could have been used to make administration of the different parts of the network
easier. There are IP address in the alerts in which the value of the last byte is 0.
These can be valid addresses in a class B network with no subnetting or with a
division of the network with a mask that has less than 24 bits. It is also possible
that these alerts correspond to either ill formed target addresses or spoofed source
addresses.

The script also finds the systems that have more activity associated with the
most common well known ports. From its results, it seems that MY.NET.12.6 is a

3

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

mail server, because it has generated a lot of entries —many more that the next
one in the list— in the logs that involve this kind of activity. The same reasoning
can be applied to identify MY.NET.1.3 as a name server. However, there is no clear
winner for the web server role. It is possible that the top five web systems printed
by the script are all running a web server.

Figure 1 is a network diagram that conforms the previous descriptions.

Figure 1: Network diagram

For the link graph, figure 2, I decided to represent the activity that is studied in
the detect 2.

3 Detects

I started reviewing the alert logs, and counting the number of entries —one per
line— in each file:

wc -l alert.04042*

112319 alert.040420

221462 alert.040421

218187 alert.040422

The purpose of this review is to filter out the less relevant entries of the log files.
I started using only a combination of less —a common Linux program to scroll
through texts,— grep —a program to extract strings from text files,— and wc —a
utility to count the lines, words and characters of a tex file. However, after some
tries I decided to use Perl also, because it would offer me all these functionality
and some more in an integrated script.

Using less I opened the file alert.040420. All but one of the first fourty lines of
the file are described as “spp portscan: ”. Portscanning is part of the information
gathering that an attacker should do during the scanning phase before starting
the actual attack. Only the IP address address of the system that originated the
portscan is stored with the alert, so I did not have in the alert logs any information
about the target machine(s), the ports they have open, nor how many replies have
been sent from the systems that identify the ports as open or closed. For all these
reasons, I decided to concentrate on the rest of the alerts and ignore the portscans,
at least for a while. I then used grep to verify that the most representative string for
those alerts (portscan) can be used to filter them and only them out.

4

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Figure 2: Link graph

5

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

grep spp_portscan alert.040420 | less

I took a look at the results from the previous command and verify that only
spp portscan alerts had been selected. I then used grep again to check if there
was any other alert about portscanning different than the ones selected before.

grep spp_portscan alert.040420 | grep -i portscan | wc -l

0

I included this filter in the Perl script that can be found in section 9.2 (lines
12–13) and went on with the rest of the entries.

filter_alert.pl alert.040420 | less

From this point on I followed the process described above with the three alert
files to discard other entries. The main loop of this process can be summarized as
follows:

1. Use less to review the remaining entries —the current output of the Perl
script— looking for entries that appear frequently but seem unimportant.

2. Choose an expression that is part of the entry, so it can be used to filter out
all those and only those entries.

3. Use grep to verify that only the selected expressions are filtered.

4. Optionally use wc -l to determine how many entries are going to be filtered.

5. Include the expression in the Perl script to filter out and count those entries.

After some work I have decided to filter out several types of alerts. Below there
is a list with the types of alerts that I decided to filter out and the reason why I did
so.

IP address activity These are custom alerts to detect activity directed to one of
these two machines: MY.NET.30.3 and MY.NET.30.4. These two machines
are probably acting as honeypots[2]. All this activity is originated from other
IP addresses —as can be seen in the output of the script— and there is no
alert that has been produced by those two systems.

NMAP This matches both Nmap tcp pings and nmap fingerprinting attemptes,
which are the part of the scanning phase too. They are performed before
or during the course of a portscan as part of the information gathering pro-
cess. They determine if a target host is alive and which operating system is
installed in the target box.

Null scan This is another type of scan implemented by Nmap as described in its
man page[3].

6

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

SYN-FIN scan This is yet another type of scan implemented by Nmap as de-
scribed in its man page[3].

SMB Name Wildcard or NETBIOS NT NULL These are part of the scanning phase
too and it is done as part of the information gathering process to obtain Net-
BIOS information[4].

SRC and DST These alerts are generated either because of routing/filtering prob-
lems or because of packets crafted inside of the University’s network that
contain a spoofed source address. I would pass them to the network admin-
istrator to have them checked.

TCP SMTP Source Port traffic This alert identifies traffic that is originated from
the SMTP source port, that is 25. However, this is normal when two mail
servers interchange emails. It seems that MY.NET.12.6 has been previously
identified as a mail server. The administrators should confirm if this is the
authorized mail server.

Possible trojan server activity This is probably a custom alert created to detect
traffic to or from TCP port 27374 —and some others— that is commonly
used by SubSeven and other trojans (Bad Blood, DefCon 8, etc.)[8]. As in
the previous case, there are several possible false positives because this port
is also used as an ephemeral port.

DDOS mstream client to handler This alert has the purpouse of detecting mstream
traffic. Clients communicate to mstream handlers through port 12754 as ex-
plained in [9]. This is also an ephemral port, which can generate false posi-
tives.

SUNRPC highport access This alert tries to detect access to Sun RPC through
port 32271. As in the previous cases, this can also be an ephemeral port. I
have filtered out in the script all the instances of this alert that record traffic to
a well known port (smtp, http, identd and AIM).

RFB - Possible WinVNC This alert is generated when traffic from a Windows VNC
server —a remote desktop application similar to Microsoft’s Terminal Server—
which could be the sympthom of a compromised system or unauhtorized use
of VNC to control any of the systems of the University from outside of the
perimeter.

The result of filtering all those alerts out with the aforementioned Perl script,
generates the folloing output:

filter_alert.pl alert.04042* > /dev/null

Alert type Frequency

portscan 464610

honeypots 40118

red worm 19360

exploit x86 11212

smb wildcard or null session 5979

fragment 4452

winvnc 2358

7

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

null scan 1728

nmap 629

trojan server 362

sunrpc highport 240

irc 194

shaft 145

src and dst 120

smtp 97

invalid 82

ftp passwd 60

smb c access 40

external tftp 37

other rcp 32

internal tftp 17

mimail 16

nimda 15

ftpd globbing 15

dameware trojan 12

ddos mstream 11

exploit ntpdx 9

mstream 6

external spooler 4

syn-fin scan 3

external ftp helpdesk 3

anomalous 1

back orifice 1

Honeypots:

MY.NET.30.3 => 9269

MY.NET.30.4 => 30849

COMPROMISED: 0

This output shows how many alerts of each type have been filtered out. Never-
theless, there are still 35,631 alerts left out of the initial 551,968 alerts —less than
a 6.5%,— which should be analyzed more carefully. I have selected three different
types of those that I consider most interesting —for the reasons explained below—
to analyze them in more detail.

3.1 Detect 1: Resurrection of the Adore worm?

3.1.1 Description of detect

04/20-14:00:05.100064 [**] High port 65535 udp - possible Red Worm - traffic [**]

66.250.188.23:32767 -> MY.NET.66.29:65535

04/20-14:02:49.789800 [**] High port 65535 udp - possible Red Worm - traffic [**]

212.187.204.47:65535 -> MY.NET.10.12:65535

04/20-14:03:17.743390 [**] High port 65535 udp - possible Red Worm - traffic [**]

212.187.204.47:65535 -> MY.NET.10.12:65535

04/20-13:54:19.309575 [**] High port 65535 tcp - possible Red Worm - traffic [**]

MY.NET.24.34:80 -> 66.194.21.200:65535

04/20-13:54:19.313665 [**] High port 65535 tcp - possible Red Worm - traffic [**]

MY.NET.24.34:80 -> 66.194.21.200:65535

04/20-13:54:19.313807 [**] High port 65535 tcp - possible Red Worm - traffic [**]

MY.NET.24.34:80 -> 66.194.21.200:65535

:

This activity is associated with the Adore Worm, previously known as Red
Worm. This worm targets Linux i386 systems, mostly Red Hat 7.0 but other Linux
i386 systems with the same vulnerabilities will also be compromised. It uses four
previously known vulnerabilities to distribute itself to other systems.

8

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Once a system is compromised it downloads a tar file from go.163.com and in-
stalls its contents. It hides itself with a trojanized version of ps, enables anonymous
FTP access, and launches a backdoor that gets activated using ICMP and listens
to port 65535 both TCP and UDP. After notifying by email that the system has
been compromised it tries to distribute itself to other systems using the following
vulnerabilities:

• A remote format string vulnerability in wu-ftpd[12] (CVE-2000-0573).

• A remote format string vulnerability in rpc.statd[13] (CVE-2000-0666).

• A remote format string in LPRng[14] (CVE-2000-0917).

• A remote buffer overflow in BIND[15] (CVE-2001-0010).

A very detailed explanation of the Adore worm can be found in [10] and [11].

3.1.2 Reason this detect was selected

I considered very interesting this activity because the original Adore worm re-
quiered a file to be downloaded from a site that was closed for a period of time
because of the alarm generated by this attack. I would have thought that the mech-
anism that the worm uses to propagate itself was not efective anymore by the time
this alerts were captured. However, there are a lot of alerts registering this kind of
activity in the logs captured in April 2004 as shown with the following command:

grep "Red Worm" alert.04042* | wc -l

19381

3.1.3 Detect was generated by

The detect was generated by one of the intrusion detection systems of the Univer-
sity. This system is running Snort. The rules that were triggered are not present in
my rulebase, but it seems that they look for any traffic directed to TCP or UDP port
65535. A possible reconstruction of the rules would be:

alert tcp any any <> any 65535 \

(flow: established; \

msg: "High port 65535 tcp - possible Red Worm - traffic";)

alert udp any any <> any 65535 \

(msg: "High port 65535 udp - possible Red Worm - traffic";)

I have not been able to determine, from the documentation about the Adore
Worm that was mentioned previously, if there is some characteristic content in the
packets. The raw capture packets would be very helpful for this task.

If the rules are similar to the ones above, they would be triggered by false
positives. Actually, when I first saw the entries, I thought that it was a false positive:
a web server talking to an ephemeral port. But then I realized that there are a few
UDP entries also and it is not very common to see traffic from UDP port 80.

9

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Table 1 contains, in the first column, the external IP addresses that have gener-
ated more Red Worm alers. The second column is the number of Red Worm alerts
that have been generated by that IP address. The third and the fourth column are
the number of alerts due to TCP and UDP traffic respectively. And the last two
columns are the number of portscans and alerts, other than Red Worm alerts, that
have been generated by the corresponding IP address.

The table does not include every IP address, but only the ones that generated
more alerts. The Perl script included in section 9.3 can be used to generate an
exhaustive list of IP addresses together with their correspondent data.

The top five IP addresses in table 1 —and probably many others— belong
to ISPs (America Online, Comcast Cable Communications, T-OnlineFrance, and
UUNET Technologies).

IP address Red Worm RW tcp RW udp Portscans Other Activity
64.12.24.34 6140 6140 0 4 1

67.167.3.240 4504 4504 0 1 1
64.12.24.35 4495 4495 0 4 3

195.36.245.141 2231 2231 0 3 1
65.222.188.7 344 344 0 0 0
64.12.201.10 312 312 0 0 0

202.171.70.94 141 141 0 0 0
64.12.30.172 128 128 0 0 0

204.235.236.35 120 120 0 0 0
218.30.19.116 85 85 0 0 0
205.188.5.100 85 85 0 0 0

212.195.185.226 65 65 0 0 0
64.136.109.8 57 57 0 0 1
192.35.35.36 56 56 0 0 0
205.188.7.64 39 39 0 0 0

205.188.179.73 38 38 0 0 0
202.171.71.17 28 28 0 0 0

81.5.168.8 21 0 21 0 0
219.111.73.192 18 18 0 0 0

216.148.227.126 17 17 0 0 0
64.12.26.32 17 17 0 0 0

63.110.173.3 17 17 0 0 0
64.12.161.153 16 16 0 0 0
12.158.35.251 15 15 0 18 0

: : : : : :

Table 1: External IP addresses involved in Red Worm alerts.

3.1.4 Probability the source address was spoofed

It seems very unlikely that most source addresses are spoofed since many of them
correspond to stablished TCP sessions. There is still chance of them to be spoofed
if the systems involved have good predictability of the IP sequence number.

10

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

3.1.5 Attack mechanism

In this detect the alert was triggered to indicate that those systems were being
accessed through a backdoor that had been supposedly installed by the Adore
worm.

As I explained before, the Adore worm downloads a file from go.123.com to
install some binaries in the system as part of its distribution mechanism. This
site was taken off-line three years ago and the required file has been supposedly
unavailable since then. So an alternate explanation for this traffic is required.

There are three possible explanations for it:

1. They are false positives.

2. These systems have been infected for a very long period of time, the back-
door is still available and someone knows it.

3. This is a new variant of the Adore worm or another malicious software that
still uses the same backdoor or, at least, the same access ports.

The first one would imply that normal traffic —like the connections from an
ephemeral port— triggers this alert. This seems very unlikely considering the num-
ber of alerts and that some of the systems have generated a big number of them
from many different connections.

The second one is not very probable either. There is a big number of systems
that would have been running the backdoor for the last three years. Although,
Linux systems are very stable most environments upgrade their i386 systems more
often. System administrators should verify whether the internal systems have been
reinstalled since then or not.

The third one is the most plausible. The amount of traffic directed to TCP port
65535 is unusualy big.

If the systems were infected with the Adore worm they would try to propagate
using the aforementioned vulnerabilities. Despite the big number of alerts about
exploit x86, that would capture at least explotation attempts against the buffer
overflow vulnerabilities, I have been unable to find any activity that relates to the
Adore worm distribution process. The activity in the alert, oos and scan logs that
involves connections to the ports that run the vulnerable services (21, 53, 111, and
515) has no relation with any of the systems that generated the Red worm alerts.

I would recommend that one of those internal systems is investigated by one
member of the security staff together the system administrator.

3.1.6 Correlations

This activity has been detected in previous practicals such as[16] and [17].

3.1.7 Evidence of active targeting

Most systems involved in this traffic do not show up in almost any other alerts as
can be verified in the output of the Perl script partially shown in table 1. Only the

11

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

top four have been registered in other alerts and portscans. Probably those four
systems are compromised or, more rarely, belong to an attacker.

This traffic is directed to a big number of internal hosts —more than 50— which
would be normal behaviour for a worm.

3.1.8 Severity

severity = (criticality + lethality) - (system countermeasures + network countermea-
sures)

severity = (3 + 5) - (1 + 2) = 5

Criticality I do not know the function of the infected systems so I will take the
middle value. Criticality is 3.

Lethality This is probably a backdoor, that is already installed in many systems
using an unknown distribution method. Lethality is 5.

System Countermeasures The affected systems have the backdoor already in-
stalled. System countermeasures is 1.

Network Countermeasures The backdoor is being accessed from the outside,
although it is a high port not assigned to a well known service. Fortunately
the presence of IDSs sensors has helped to detect this traffic. Network coun-
termeasures is 2.

3.2 Detect 2: Knocking on System’s (back)Door

3.2.1 Description of detect

04/20-14:45:09.171005 [**] DDOS shaft client to handler [**]

81.220.163.126:4662 -> MY.NET.84.235:20432

04/20-14:42:38.799893 [**] DDOS shaft client to handler [**]

81.220.163.126:4662 -> MY.NET.84.235:20432

04/20-14:42:40.160566 [**] DDOS shaft client to handler [**]

81.220.163.126:4662 -> MY.NET.84.235:20432

04/20-14:42:40.778421 [**] DDOS shaft client to handler [**]

81.220.163.126:4662 -> MY.NET.84.235:20432

:

This activity is associated with Shaft. Shaft is a distributed denial of service
(DDoS) tool. The systems that generate the traffic that exhausts the resources of
the target system have an agent installed. These agents are commanded by one
or more handlers that provide one more level of indirection and make possible the
control of a big number of agents. The client sends commands to every handler
using TCP port 20432. Communication between the handler(s) and each agent is
done through two udp ports.

All the DDOS shaft alerts refer to a client communicating to a handler.
Very detailed explanations about the way Shaft clients, handlers and agents

work can be found in [5], [6] and [7].

12

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

3.2.2 Reason this detect was selected

I decided to investigate these alerts because the University could be liable for any
attacks to Web sites that had been originated here.

It is also interesting that a DDoS tool that was created in 2000 can still used
without even modifying the ports used. The problem with this is that chances
are good that the traffic gets detected. By their own nature, the agents and the
handlers can be distributed among many different networks and any of them can
detect the traffic and notify the others. Having just one agent in a network that has
a the right signatures in place to detect Shaft traffic could cause the detection of all
the systems and the dismantlement of the DDoS network.

3.2.3 Detect was generated by

The detect was generated by one of the intrusion detection systems of the Univer-
sity. This system is running Snort. The rule that was triggered is still present in my
rulebase and probably in the same version that I have since this signature has not
changed a lot lately. The current snort rule is:

alert tcp $HOME_NET 20432 -> $EXTERNAL_NET any \

(msg:"DDOS shaft client login to handler"; flow:from_server,established;\

content:"login|3A|"; reference:arachnids,254;\

reference:url,security.royans.net/info/posts/bugtraq_ddos3.shtml;\

classtype:attempted-dos; sid:230; rev:5;)

This rule does not only detect a tcp connection to port 20342 in one of the
systems of the University, but it also checks that:

• The connection has been established.

• The internal system —the one using port 20432— is acting as the server.

• The packet contains a login: prompt.

Snort Signature Database[18] mentions the possibility of false positives if a
legitimate server is using this port or if its used as a data port during an FTP
session.

There is no CVE number related to this because having a DDoS tool installed
in the system is not a vulnerability itself, but the result of the explotation of any
vulnerability by an attacker.

3.2.4 Probability the source address was spoofed

This rule is only triggered if the TCP session has already been stablished. Thus,
it is very unlikely that the external IP addresses have been spoofed. There is still
chance of them to be spoofed if the systems involved have good predictability of
the IP sequence number.

13

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

3.2.5 Attack mechanism

If the system is already acting as a Shaft handler it means that it was previously
compromised. If it is running as a Shaft agent the intruder most probably got root
access so it can generate raw IP packets.

The communication is used to instruct the handler to command the agents or to
perform different operations related to DDoS attacks. A very detailed explanation
about the possible commands can be found here[5].

No traffic from the handler to the agents has been detected in the logs, hopefully
because it did not ocurr.

Table 2 contains in the first column, the IP addresses that were involved in the
DDOS shaft alers. The second column is the number of Shaft alerts that have been
generated by that IP address. The last column is the number of alerts, other than
DDOS shaft alerts, that have been generated by the corresponding external IP
address. This data can be generated using the Perl script included in section 9.4.

Internal
IP address DDOS shaft

MY.NET.84.235 141
MY.NET.60.17 4

External
IP address DDOS shaft Other activity

81.220.163.126 141 0
216.59.134.165 4 0

Table 2: IP addresses involved in DDOS shaft alerts.

It is very significant that only four IP addresses, two as handlers and two as
clients, are involved in this alerts. Futher looking at the alerts reveals that the
141 alerts, corresponding to the first pair of systems, have been generated in 31
seconds while the other 4 alerts were generated within 5 minutes.

Since every packet that generates an alert contains a login: prompt the first
conversation looks like the session of a dictionary attack, with at least 141 common
passwords for shaft handlers. There is no way of knowing if the attack was suc-
cessful from the three types of logs. A full network capture would be required for
that. What seems to be certain is that there is a server —possibly a shaft handler—
listening to port 20432 in MY.NET.84.235.

The other conversation is not so clear. The first two alerts are generated in
less than a milisecond. The same happens with the other two, but both pairs are
5 seconds away. It looks like the IDS is getting two copies of each packet for this
conversation. The client tries to authenticate once and fails, and it succeeds the
next time.

3.2.6 Correlations

There are alerts available to detect this traffic from both the ArachNIDS site[6] and
the Snort Signature Database[18].

14

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Similar activity has been detected in previous GCIA practicals such as [19] and
[20].

3.2.7 Evidence of active targeting

This traffic targets very specific hosts. Probably the first target was found as a result
of a previous portscan —although no evidence has been found in the logs that
have been analyzed,— while the other one was previously known by the person
connecting to this system.

3.2.8 Severity

severity = (criticality + lethality) - (system countermeasures + network countermea-
sures)

severity = (3 + 4) - (1 + 2) = 4

Criticality I do not know the function of the infected systems so I will take the
middle value. Criticality is 3.

Lethality They are probably two instances of a DDoS handler, installed because
the system were previously compromised. Lethality is 4.

System Countermeasures The affected systems have the DDoS tool already in-
stalled. System countermeasures is 1.

Network Countermeasures The DDoS tool is being accessed from the outside,
although it is a high port not assigned to a well known service. Fortunately
the presence of IDSs sensors has helped to detect this traffic. Network coun-
termeasures is 2.

3.3 Detect 3: Wrong neighborhood

3.3.1 Description of detect

04/20-22:13:37.185606 [**] connect to 515 from inside [**]

MY.NET.97.186:3609 -> 192.168.2.1:515

04/20-22:13:40.226470 [**] connect to 515 from inside [**]

MY.NET.97.186:3609 -> 192.168.2.1:515

04/20-22:14:03.134777 [**] connect to 515 from inside [**]

MY.NET.97.186:3610 -> 192.168.2.1:515

04/20-22:14:06.112025 [**] connect to 515 from inside [**]

MY.NET.97.186:3610 -> 192.168.2.1:515

This activity is probably detected by a custom alert created to discover any leak
of information —produced either by an insider that sends information to somebody
else or an intruder that has already compromised the system— as well as any
try to exploit one of the several vulnerabilities —like the one used by the Adore
worm [14]— present in the various printer spooler daemons (LPR or LPRng) like
CVE-2000-0917.

15

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Any traffic to a printer spooler daemon outside of the perimeter is considered
suspicious because it is not very common for people to want to print something
outside of the facilities where they are currently working.

3.3.2 Reason this detect was selected

I selected this detect because I thought it would be interesting to analyze a case
that could involve a leak of information. This kind of issues are getting more and
more relevant with the increasing awareness on intelectual property threats these
days.

3.3.3 Detect was generated by

The detect was generated by one of the intrusion detection systems of the Univer-
sity. This system is running Snort. The rules that were triggered are not present in
my rulebase, but it seems that they look for any traffic directed to TCP port 515. A
possible reconstruction of the rule would be:

alert tcp $HOME_NET any <> $EXTERNAL 515 \

(msg: "connect to 515 from inside";)

All the alerts came from the same IP address and the destination IP address is
also the same one.

The rule does not inspect the packets for any content nor checks whether the
flow is stablished.

3.3.4 Probability the source address was spoofed

It is possible that the IP address was spoofed, since, as I previously stated the rule
does not check if the flow is stablished. However, if they are false positives as I
explain below it would make no sense, since there would be nothing to hide.

3.3.5 Attack mechanism

If the rule is similar to the one above, it would be triggered by false positives.
Actually, it seems that the four alerts that are present in the alert logs are in fact a
false positive, because the destination address is 192.168.2.1, which is a private
address as stated in the RFC-1918[21] and should be rejected by external routers.

Three possible explanations of these four alerts come to my mind:

• An authorized private newtwork exists and is not declared as part of the in-
ternal network in the snort configuration file.

• An unauthorized private network exists and static routes have been declared
in MY.NET.97.186 so it can access that network. The static route goes
through the segment in which the IDS is installed.

16

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

• MY.NET.97.186 has a configuration file with non valid —at least, when con-
nected this network— or outdated information. This system could even be
a portable computer that has a printer with this IP address configured for
another network that it has been connected to.

The following facts can be extracted from a closer inspection of the alerts:

• There are only two source ports present in the four alerts. The source port in
first two alerts is 3609 and in the last two is 3610.

• The first and the second alert are 3 seconds apart. The third and fourth alerts
are also 3 seconds apart. The first and second pair are 23 seconds apart.

Three seconds is a common defaul value for the initial retrasmission timeout
of a connection retry in TCP. If the user kills the process no other packets are
sent. They look like connection retries: the user tries to print and 4–8 seconds
later kills the process because it does not work. Twenty-three seconds later, after
reviewing its configuration and thinking that everything seems fine, he tries to print
again. 4–8 seconds later he realizes that the system is trying to connect to a wrong
address and kills the process again. Hopefully he fixed the problem and printed
successfully after that.

Thus, they can be dismissed as connections retries. A full network trace would
confirm if the connection was stablished at anytime.

3.3.6 Correlations

Similar alerts have been analized in previous practicals, such as [22] or [23]. How-
ever, the result of the analysis was completely different as they were associated
to malicious traffic trying to exploit vulnerabilities in the priter spooler as the one
described in [14].

Other practicals have also detected private addresses in the traffic and associ-
ated it with configuration problems, like [24].

3.3.7 Evidence of active targeting

The system that generated the alert did not show up in any other entry of the alert,
oos, and scan logs. Two other —SMB Name Wildcard— alerts were generated
with the same target, probably due to the same misconfiguration problem in any
other system.

3.3.8 Severity

severity = (criticality + lethality) - (system countermeasures + network countermea-
sures)

severity = (1 + 1) - (3 + 4) = -5

Criticality This was not a real attack and the main reason for triggering the alert
was that the target system did not exist. Criticality is 1.

17

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Lethality There was no damage to the target system since it did not exist. Lethality
is 1.

System Countermeasures No especial system countermeasures are required
nor in place for this detect. I think that chosing the middle value is a fair
decision, indicating that the system did not have more or less countermea-
sures in place that those that were required. System countermeasures is
3.

Network Countermeasures Private networks are not being routed in the external
routers and that is way —among other things— it did not get an answer.
Network countermeasures is 4.

4 Network Statistics

All the statistics presented in this section are obtained using the Perl script that can
be found in section 9.5.

Table 3 contains the top five talkers together with the number of times this IP
addresses appear in the logs.

IP address Frequency
MY.NET.1.3 2640587
MY.NET.17.45 1191898
MY.NET.1.4 831375
MY.NET.81.39 765374
MY.NET.112.189 737455

Table 3: Top five talkers.

Table 4 contains the list of the five top targeted ports. This list is the result
of counting the number of times each port is registered in the logs, but only as a
destination port. Counting also the source ports would generate a very different
table that contains ephemeral ports in the top five list.

Port Frequency
53 3273340
135 1847006
80 540341
2745 495672
6129 371258

Table 4: Top five target ports.

Table 5 contains the three most suspicious external source addresses based
on the amount of activity captured in the logs.

Whois returns this information for the most suspicious IP addresses:

18

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

Suspect Frequency
213.180.193.68 39515
220.197.192.39 31259
64.136.199.197 23704

Table 5: Top three suspicious external IP address.

whois 213.180.193.68

[Querying whois.ripe.net]

[whois.ripe.net]

inetnum: 213.180.192.0 - 213.180.193.255

netname: COMPTEK-NET1

descr: CompTek International/Yandex LLC

descr: 3, Gubkina str., Moscow, 117809

country: RU

:

role: Yandex LLC Network Operations

address: Yandex LLC

address: 40A Vavilova st.

address: 117333, Moscow, Russia

:

whois 220.197.192.39

[Querying whois.apnic.net]

[whois.apnic.net]

inetnum: 220.192.0.0 - 220.207.255.255

netname: UNICOM

descr: China United Telecommunications Corporation

descr: No.133,Taiyun Building,Xidan North Street

descr: Xicheng District,Beijing,China

country: CN

:

role: Unicom China Hostmaster

address: 911 Room,Xin Tong Center,No.8 Beijing Railway Station

address: East Avenue, Beijing,PRC.

country: CN

:

whois 64.136.199.197

[Querying whois.arin.net]

[whois.arin.net]

Everest Connections, LLC EVEREST-BLK3 (NET-64-136-192-0-1)

64.136.192.0 - 64.136.223.255

Everest Broadband EVEREST-KSLECMTS-2 (NET-64-136-192-0-2)

64.136.192.0 - 64.136.207.255

ARIN WHOIS database, last updated 2004-11-14 19:10

Google finds many web pages about Everest Connections, an Internet provider
based in Kansas City.

It would be good to verify with the system staff if there is a legitimate reason for
people connecting from China or Russia.

I could not obtain any information about the operating systems installed in those
machines because there were no raw captures available.

19

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

5 Correlations

I have previously stablished correlation with other GCIA practicals: [16], [17], [19],
[20], [22], [23], and [24].

Sans Top 20[25] also mentions BIND as the most commonly exploited UNIX/Linux
application because of its different vulnerabilities such as the one used by the
Adore worm (CVE-2000-0010).

6 Malicious activity

Malicious activity has been detected in two of the three detects. Many systems
could be running backdoors and some others could be running DDoS tools. Fortu-
nately none of this systems acts as the system responsible for the main services
offered at the University.

The Chief Security Officer (CFO) should initiate actions so the affected systems
are investigated and recovered to a clean state. Other events should be investi-
gated as well as recommended previously.

7 Recommendations

In order to solve or mitigate the problems shown here, I would recommend doing
the following things:

• Increase security awareness among the alumni, faculty, and staff.

• Create a computer emergency response team that is responsible for investi-
gating suspicious activity.

• IDS should be managed more carefully. The rulebase should be updated of-
ten and the configuration customized to reduce the number of false positives.

• There should be people trained to conduct periodic revisions of the IDS alerts,
reporting suspicious activity to the computer emergency response team.

• If possible for this University install a perimeter firewall. If it is already installed
configure it properly: deny by default.

• Capture events from other systems as well: the firewall, the routers, and the
critical systems at least. Time should be syncronized in order to make sense
of the results of the correlations of logs.

• I would recommend keeping a full network capture for as long as it is possible.
If this is impossible due to the storage requirements or the protection of the
privacy of the users, I would at least change the alert mode to full in all cases.

20

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

• Much of the activity detected can be related to old vulnerabilities. Systems
—at least the ones administered by the University staff— should be patched
short after the patch for critical vulnerabilities has been released.

• Stablish or review the system configuration policy. Require personal firewalls,
antivirus, and safe defaults.

Part III

Analysis Process (20 points)

8 Analysis Platform

The analysis of the data has been done in Pentium 4 workstation with 1 GB RAM
and 120 GB hard disc, running Fedora Core 1 Linux. The packages described in
table 6 were installed in the system.

Package name Description Version
bash Bourne Again shell command language interpreter 2.05b-34
perl Perl programming language 5.8.3-16
coreutils GNU core utils (wc, . . .) 5.0-34.1
less A text file browser that resembles more 382-1.1
grep Utility to search for matching lines through textual input 2.5.1-17.4
tcpdump Command-line tool for monitoring network traffic 3.7.2-8.fc1.2
snort Open source network intrusion detection system 2.2.0-0.fdr.1

Table 6: Software packages installed in the analysis workstation.

9 Perl scripts

9.1 Topology

The following script is used to extract IP addresses from the log files and calculate
the number of external and internal addresses. It also looks for system activity
related to three very common ports in order to identify the mail server(s), the name
server(s), and the web server(s).

topology.pl
1 #!/usr/bin/perl

2

3 foreach $arg (@ARGV) {

4 open(FILE, $arg) || die "Couldn’t open file $arg";

5 while ($line = <FILE>) {

6 # portscan entries

7 if ($line =~ /portscan.* from (\w+\.\w+\.\d+\.\d+)/i) {

8 $ip = $1;

21

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

9 $ip =~ s/^130\.85\./MY.NET./;

10 $address{$ip} = 1;

11 if ($ip =~ /^MY\.NET\./) {

12 $internal{$ip} = 1;

13 } else {

14 $external{$ip} = 1;

15 }

16 # ICMP entries

17 } elsif ($line =~ /(\w+\.\w+\.\d+\.\d+) -> (\w+\.\w+\.\d+\.\d+)/) {

18 $ip1 = $1; $ip2 = $2;

19 $ip1 =~ s/^130\.85\./MY.NET./;

20 $ip2 =~ s/^130\.85\./MY.NET./;

21 $address{$ip1} = 1;

22 $address{$ip2} = 1;

23 if ($ip1 =~ /^MY\.NET\./) {

24 $internal{$ip1} = 1;

25 } else {

26 $external{$ip1} = 1;

27 }

28 if ($ip2 =~ /^MY\.NET\./) {

29 $internal{$ip2} = 1;

30 } else {

31 $external{$ip2} = 1;

32 }

33 # any other entry

34 } elsif ($line =~ /(\w+\.\w+\.\d+\.\d+)\:(\d+) -> (\w+\.\w+\.\d+\.\d+)\:(\d+)/) {

35 $ip1 = $1; $ip2 = $3;

36 $port1 = $2; $port2 = $4;

37 $ip1 =~ s/^130\.85\./MY.NET./;

38 $ip2 =~ s/^130\.85\./MY.NET./;

39 $address{$ip1} = 1;

40 $address{$ip2} = 1;

41 if ($ip1 =~ /^MY\.NET\./) {

42 $internal{$ip1} = 1;

43 if ($port1 == 25) {

44 $mail{$ip1}++;

45 } elsif ($port1 == 53) {

46 $dns{$ip1}++;

47 } elsif ($port1 == 80) {

48 $web{$ip1}++;

49 }

50 } else {

51 $external{$ip1} = 1;

52 }

53 if ($ip2 =~ /^MY\.NET\./) {

54 $internal{$ip2} = 1;

55 if ($port2 == 25) {

56 $mail{$ip2}++;

57 } elsif ($port2 == 53) {

58 $dns{$ip2}++;

59 } elsif ($port2 == 80) {

60 $web{$ip2}++;

61 }

62 } else {

63 $external{$ip2} = 1;

64 }

65 }

66 }

67 close(FILE);

68 }

69

70 print scalar(keys(%address))." different IP addresses.\n";

71 print scalar(keys(%internal))." internal IP addresses.\n";

72 print scalar(keys(%external))." external IP addresses.\n";

73 print "\n------------\nTop 5 mail:\n------------\n";

74 print "IP address\tFrequency\n";

75 $i = 0;

76 foreach $key (sort

22

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

77 { $mail{$b} <=> $mail{$a} }

78 (keys %mail)) {

79 print "$key\t$mail{$key}\n";

80 last if ($i++ >= 4);

81 }

82 print "\n------------\nTop 5 DNS:\n------------\n";

83 print "IP address\tFrequency\n";

84 $i = 0;

85 foreach $key (sort

86 { $dns{$b} <=> $dns{$a} }

87 (keys %dns)) {

88 print "$key\t$dns{$key}\n";

89 last if ($i++ >= 4);

90 }

91 print "\n------------\nTop 5 Web:\n------------\n";

92 print "IP address\tFrequency\n";

93 $i = 0;

94 foreach $key (sort

95 { $web{$b} <=> $web{$a} }

96 (keys %web)) {

97 print "$key\t$web{$key}\n";

98 last if ($i++ >= 4);

99 }
topology.pl

9.2 Filtering logs

The following Perl script is used to classify the alerts in different categories and
obtain the number of ocurrences for each one. It also looks for alerts that involve
the honeypot systems and if there is any outgoing traffic from them.

filter alert.pl
1 #!/usr/bin/perl

2

3 foreach $arg (@ARGV) {

4 open(FILE, $arg) || die "Couldn’t open file $arg";

5 while ($line = <FILE>) {

6 # Filter out:

7 # invalid lines

8 if (($line =~ /^:/) || ($line =~ /^ ->/)) {

9 $entries{’invalid’}++;

10

11 # - portscans

12 } elsif ($line =~ /spp_portscan.* from /i) {

13 $entries{’portscan’}++;

14

15 # - honeypot activity

16 } elsif ($line =~ /\[**\] (MY\.NET\.\d+\.\d+) activity \[**\] (\w+\.\w+\.\d+\.\d+)/) {

17 $entries{’honeypots’}++;

18 $honeypot{$1}++;

19 # If the source is the honeypot, it has been compromised

20 $compromised++ if ($1 eq $2);

21

22 # - nmap tcp pings and fingerprints

23 } elsif ($line =~ /NMAP/) {

24 $entries{’nmap’}++;

25

26 # - null scan

27 } elsif ($line =~ /Null scan/) {

28 $entries{’null scan’}++;

29

30 # - SYN-FIN scan

31 } elsif ($line =~ /SYN-FIN scan/) {

32 $entries{’syn-fin scan’}++;

33

23

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

34 # - SMB name wildcard or null session

35 } elsif ($line =~ /SMB Name Wildcard|NETBIOS NT NULL/) {

36 $entries{’smb wildcard or null session’}++;

37

38 # - routing problems or spoofed src address

39 } elsif ($line =~ /SRC and DST/) {

40 $entries{’src and dst’}++;

41

42 # - email

43 } elsif ($line =~ /TCP SMTP Source Port traffic/) {

44 $entries{’smtp’}++;

45

46 # - trojan server

47 } elsif (($line =~ /trojan server.* \w+\.\w+\.\d+\.\d+\:(\d+) -> \w+\.\w+\.\d+\.\d+\:(\d+)/)

48 && ((($1 == 27374) && ($2 < 1024)) ||

49 (($1 < 1024) && ($2 == 27374)))) {

50 $entries{’trojan server’}++;

51

52 # - ddos mstream

53 } elsif (($line =~ /DDOS mstream.*\] \d+.\d+.\d+.\d+:(\d+)/)

54 && ($1 < 1024)) {

55 $entries{’ddos mstream’}++;

56

57 # SUNRPC highport

58 } elsif (($line =~ /SUNRPC highport.*\] \d+\.\d+\.\d+\.\d+\:(\d+)/)

59 && (($1 == 25)||($1 == 80)||($1 == 119)||($1 == 5190))) {

60 $entries{’sunrpc highport’}++;

61

62 # - WinVNC

63 } elsif ($line =~ /RFB - Possible WinVNC/) {

64 $entries{’winvnc’}++;

65

66 # Alerts from here on should be investigated.

67 # - exploit x86

68 } elsif ($line =~ /EXPLOIT x86/) {

69 $entries{’exploit x86’}++;

70

71 # - exploit ntpdx

72 } elsif ($line =~ /EXPLOIT NTPDX/) {

73 $entries{’exploit ntpdx’}++;

74

75 # - miscelaneous irc activity

76 } elsif ($line =~ / IRC /) {

77 $entries{’irc’}++;

78

79 # - Red worm

80 } elsif ($line =~ /Red Worm /) {

81 $entries{’red worm’}++;

82

83 # - DDOS shaft

84 } elsif ($line =~ /DDOS shaft/) {

85 $entries{’shaft’}++;

86

87 # - fragmented traffic

88 } elsif ($line =~ /Fragment/) {

89 $entries{’fragment’}++;

90

91 # - Dameware remote administration

92 } elsif ($line =~ /trojan server/) {

93 $entries{’dameware trojan’}++;

94

95 # - SMB C$ access

96 } elsif ($line =~ /SMB C access/) {

97 $entries{’smb c access’}++;

98

99 # - Nimda

100 } elsif ($line =~ /NIMDA/) {

101 $entries{’nimda’}++;

24

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

102

103 # - MiMail

104 } elsif ($line =~ /MiMail/) {

105 $entries{’mimail’}++;

106

107 # - internal TFTP

108 } elsif ($line =~ /TFTP - External/) {

109 $entries{’internal tftp’}++;

110

111 # - external TFTP

112 } elsif ($line =~ /TFTP - Internal/) {

113 $entries{’external tftp’}++;

114

115 # - other rpc

116 } elsif ($line =~ /RPC/) {

117 $entries{’other rcp’}++;

118

119 # - FTP passwd attempt

120 } elsif ($line =~ /FTP passwd/) {

121 $entries{’ftp passwd’}++;

122

123 # - ftpd globbing

124 } elsif ($line =~ /ftpd globbing/) {

125 $entries{’ftpd globbing’}++;

126

127 # - DDOS mstream

128 } elsif ($line =~ /DDOS mstream/) {

129 $entries{’mstream’}++;

130

131 # - DDOS mstream

132 } elsif ($line =~ /DDOS mstream/) {

133 $entries{’mstream’}++;

134

135 # - external spooler

136 } elsif ($line =~ /connect to 515/) {

137 $entries{’external spooler’}++;

138

139 # - external ftp to helpdesk

140 } elsif ($line =~ /HelpDesk/) {

141 $entries{’external ftp helpdesk’}++;

142

143 # - Back Orifice

144 } elsif ($line =~ /Back Orifice/) {

145 $entries{’back orifice’}++;

146

147 # - anomalous traffic

148 } elsif ($line =~ /Traffic from port/) {

149 $entries{’anomalous’}++;

150

151 # Rest of the lines

152 } else {

153 print $line;

154 $entries{’LEFT’}++;

155 }

156 }

157 close(FILE);

158 }

159

160 print STDERR "Alert type\tFrequency\n";

161 foreach $key (sort

162 { $entries{$b} <=> $entries{$a} }

163 (keys %entries)) {

164 print STDERR "$key\t$entries{$key}\n";

165 }

166

167 print STDERR "\nHoneypots:\n";

168 foreach $key (sort keys %honeypot) {

169 print STDERR "$key => $honeypot{$key}\n";

25

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

170 }

171 print STDERR "COMPROMISED: ".($compromised+0)."\n";
filter alert.pl

9.3 Detect 1

The following Perl script filters the alert logs looking for activity that involves any
of the external IP addresses that triggered any of the red worm alerts. It also
generates the list of internal and external systems that participate in the red worm
alerts indicating how many times. For the external systems, it presents a separate
count of the tcp and udp red worm alerts, and also shows how many portscans
and other alerts has this system generated.

detect 1.pl
1 #!/usr/bin/perl

2

3 # first pass to extract the how many alerts contain the same ip address

4 foreach $arg (@ARGV) {

5 open(FILE, $arg) || die "Couldn’t open file $arg";

6 while ($line = <FILE>) {

7 # look only for the red worm alerts

8 if ($line =~ /65535 (\w+).* Red Worm.* (\w+\.\w+\.\d+\.\d+)\:\d+ -> (\w+\.\w+\.\d+\.\d+)\:\d+/) {

9 # the protocol and ips have been extracted from the alert

10 $proto = $1;

11 $ip1 = $2;

12 $ip2 = $3;

13 if ($ip1 =~ /MY\.NET\./) {

14 $compromised{$ip1}++;

15 $external{$ip2}++;

16 if ($proto eq "tcp") {

17 $tcp{$ip2}++;

18 } else {

19 $udp{$ip2}++;

20 }

21 } else {

22 $compromised{$ip2}++;

23 $external{$ip1}++;

24 if ($proto eq "tcp") {

25 $tcp{$ip1}++;

26 } else {

27 $udp{$ip1}++;

28 }

29 }

30 }

31 }

32 close(FILE);

33 }

34

35 foreach $arg (@ARGV) {

36 open(FILE, $arg) || die "Couldn’t open file $arg";

37 while($line = <FILE>) {

38 foreach $system (keys %external) {

39 $sys_exp = $system;

40 $sys_exp =~ s/\./\\\./g;

41 if ($line =~ /$sys_exp/) {

42 if ($line =~ /portscan/i) {

43 $scan{$system}++;

44 } elsif($line !~ /Red Worm/) {

45 $activity{$system}++;

46 }

47 next;

48 }

49 }

50 }

26

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

51 close(FILE);

52 }

53

54 # print the list of internal systems in red worm alerts sorted desc by

55 # number of alerts

56 print "\n-----------\nCompromised:\n-----------\n";

57 print "IP address\tRed Worm\n";

58 foreach $key (sort

59 { $compromised{$b} <=> $compromised{$a} }

60 (keys %compromised)) {

61 print "$key\t$compromised{$key}\n";

62 $total += $compromised{$key};

63 }

64 print "TOTAL === $total\n";

65

66 # print the list of external systems in red worm alerts sorted desc by

67 # number of alerts including the number of other alerts

68 print "\n--------\nExternal:\n--------\n";

69 print "IP address\tRed Worm\tRW tcp\tRW udp\tPortscans\tOther Activity\n";

70 $total = 0;

71 foreach $key (sort

72 { $external{$b} <=> $external{$a} }

73 (keys %external)) {

74 print "$key\t$external{$key}\t" .

75 ($tcp{$key}+0)."\t".

76 ($udp{$key}+0)."\t".

77 ($scan{$key}+0)."\t".

78 ($activity{$key}+0)."\n";

79 $total += $external{$key};

80 }

81 print "TOTAL === $total\n";
detect 1.pl

9.4 Detect 2

The following Perl script filters the alert logs looking for activity that involves any
of the external IP addresses that triggered any of the DDoS shaft alerts. It also
generates the list of internal and external systems that participate in the DDoS
shaft alerts indicating how many times. For the external systems, it also shows
how many other alert this system has generated.

detect 2.pl
1 #!/usr/bin/perl

2

3 # first pass to extract the how many alerts contain the same ip address

4 foreach $arg (@ARGV) {

5 open(FILE, $arg) || die "Couldn’t open file $arg";

6 while ($line = <FILE>) {

7 # look only for the red worm alerts

8 if ($line =~ /DDOS shaft.* (\w+\.\w+\.\d+\.\d+)\:\d+ -> (\w+\.\w+\.\d+\.\d+)\:\d+/) {

9 # the two ip addresses have been extracted from the alert

10 $compromised{$2}++;

11 $external{$1}++;

12 }

13 }

14 close(FILE);

15 }

16

17 foreach $arg (@ARGV) {

18 open(FILE, $arg) || die "Couldn’t open file $arg";

19 while ($line = <FILE>) {

20 # check if any of the external system is involved in this alert

21 foreach $system (keys %external) {

22 $sys_exp = $system;

27

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

23 $sys_exp =~ s/\./\\\./g;

24 if ($line =~ /$sys_exp/) {

25 # the activity should be differnt than DDOS shaft

26 $activity{"$system"}++ if ($line !~ /DDOS shaft/);

27 next;

28 }

29 }

30 }

31 close(FILE);

32 }

33

34 # print the list of internal systems in red worm alerts sorted desc by

35 # number of alerts

36 print "\n-----------\nCompromised:\n-----------\n";

37 print "IP address\tDDOS shaft\n";

38 foreach $key (sort

39 { $compromised{$b} <=> $compromised{$a} }

40 (keys %compromised)) {

41 print "$key\t$compromised{$key}\n";

42 $total += $compromised{$key};

43 }

44 print "TOTAL === $total\n";

45

46 # print the list of external systems in red worm alerts sorted desc by

47 # number of alerts including the number of other alerts

48 print "\n--------\nExternal:\n--------\n";

49 print "IP address\tDDOS shaft\tOther activity\n";

50 $total = 0;

51 foreach $key (sort

52 { $external{$b} <=> $external{$a} }

53 (keys %external)) {

54 print "$key\t$external{$key}\t$activity{$key}\n";

55 $total += $external{$key};

56 }

57 print "TOTAL === $total\n";
detect 2.pl

9.5 Statistics

The following Perl script calculates the statistics of all the files passed in the com-
mand line. It extracts every ip from the logs and if the first two bytes are 130.85,
they are replaced by MY.NET —to adapt the information proceding from the scan
logs,— counting every time an IP address is used in order to show the top five
talkers. It also counts how many times each port is used as the destination port
in the logs in order to display the top five target ports. Finally, it also displays that
three external IP addresses that appear more often in the logs because they are
the top thee suspicious IP addresses.

statistics.pl
1 #!/usr/bin/perl

2

3 foreach $arg (@ARGV) {

4 open(FILE, $arg) || die "Couldn’t open file $arg";

5 while ($line = <FILE>) {

6 # extract ip addresses

7 if ($line =~ /(\w+\.\w+\.\d+\.\d+)/) {

8 $ip = $1;

9 $ip =~ s/^130\.85\./MY.NET./;

10 $talker{$ip}++;

11 $external{$ip}++ if ($ip !~ /^MY\.NET\./);

12 $port{$1}++ if ($line =~ /-> \w+\.\w+\.\d+\.\d+\:(\d+)/);

13 }

14 }

28

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

15 close(FILE);

16 }

17

18 # print the list of internal systems in red worm alerts sorted desc by

19 # number of alerts

20 print STDERR "\n------------\nTop talkers:\n------------\n";

21 print STDERR "IP address\tFrequency\n";

22 $i = 0;

23 foreach $key (sort

24 { $talker{$b} <=> $talker{$a} }

25 (keys %talker)) {

26 print STDERR "$key\t$talker{$key}\n";

27 last if ($i++ >= 4);

28 }

29

30 print STDERR "\n------------\nTop targets:\n------------\n";

31 print STDERR "Port\tFrequency\n";

32 $i = 0;

33 foreach $key (sort

34 { $port{$b} <=> $port{$a} }

35 (keys %port)) {

36 print STDERR "$key\t$port{$key}\n";

37 last if ($i++ >= 4);

38 }

39

40 print STDERR "\n------------\nTop suspects:\n------------\n";

41 print STDERR "Suspect\tFrequency\n";

42 $i = 0;

43 foreach $key (sort

44 { $external{$b} <=> $external{$a} }

45 (keys %external)) {

46 print STDERR "$key\t$external{$key}\n";

47 last if ($i++ >= 2);

48 }
statistics.pl

29

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

References

[1] Northcut S. & Novak, J. Networ Intrusion Detection Indianapolis, IN: New Rid-
ers, 2001.

[2] The Honeynet Project Know Your Enemy Indianapolis, IN: Addison Wesley,
2001.

[3] Fyodor “Nmap network security scanner man page.”
URL:http://www.insecure.org/nmap/data/nmap manpage.html (12 Nov 2004)

[4] Whitehats “IDS177 NETBIOS-NAME-QUERY.” ArachNIDS.
URL:http://whitehats.com/info/IDS177 (12 Nov 2004)

[5] Dietrich, S.; Dittrich, D.; Long, N. “An analysis of the Shaft distributed denial
of service tool.” 13 Mar 2000.
URL:http://www.sans.org/y2k/shaft.htm (12 Nov 2004)

[6] Whitehats “ IDS254 DDOS-SHAFT-CLIENT-TO-HANDLER.” ArachNIDS.
URL:http://whitehats.com/info/IDS254 (13 Nov 2004)

[7] Wash, R. & Nazario, J. “Analysis of a Shaft Node and Master.” 26 Mar 2000.
URL:http://biocserver.bioc.cwru.edu/∼jose/shaft analysis/node-analysis.txt
(14 Nov 2004)

[8] von Braun, J. “Ports used by trojans.” 14 Mar 2001.
URL:http://www.dalmatian.com/TrojanPortsfiles/nyheter9902.html
(13 Nov 2004)

[9] Dittrich, D. et al. “The mstream distributed denial of service attack tool”
1 May 2000
URL:http://staff.washington.edu/dittrich/misc/mstream.analysis.txt
(13 Nov 2004)

[10] Fearnow, M. & Stearns, W. “Adore Worm.” 12 Apr 2001
URL:http://www.sans.org/y2k/adore.htm (13 Nov 2004)

[11] Chien, E. “Linux.Adore.Worm.” 15 Apr 2002.
URL:http://securityresponse.symantec.com/avcenter/venc/data/linux.adore.worm.html
(14 Nov 2004)

[12] CERT/CC “CERT Advisory CA-2000-13 Two Input Validation Problems In
FTPD.” 21 Nov 2000.
URL:http://www.cert.org/advisories/CA-2000-13.html (14 Nov 2004)

[13] CERT/CC “CERT Advisory CA-2000-17 Input Validation Problem in rpc.statd.”
6 Sep 2000
URL:http://www.cert.org/advisories/CA-2000-17.html (14 Nov 2004)

30

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Jorge D. Ortiz-Fuentes Listening to White Noise GCIA

[14] CERT/CC “CERT Advisory CA-2000-22 Input Validation Problems in LPRng.”
27 Jan 2003.
URL:http://www.cert.org/advisories/CA-2000-22.html (14 Nov 2004)

[15] CERT/CC “CERT Advisory CA-2001-02 Multiple Vulnerabilities in BIND.”
7 Aug 2001.
URL:http://www.cert.org/advisories/CA-2001-02.html (14 Nov 2004)

[16] Chuvakin, A. “GCIA Practical Assignment.” 27 Jun 2002.
URL:http://www.giac.org/practical/GCIA/Anton Chuvakin GCIA.pdf
(15 Nov 2004)

[17] Holstein, M. “SANS GCIA Practical Assignment.”
URL:http://www.giac.org/practical/Michael Holstein GCIA.doc (15 Nov 2004)

[18] Caswell, B. & Roesch, M. “Snort Signature Database.”
URL:http://www.snort.org/snort-db/ (14 Nov 2004)

[19] Clark, C. “GCIA Practical Assignment.”
URL:http://www.giac.org/practical/Crist Clark GCIA.html (14 Nov 2004)

[20] Van Horenbeeck, M. “Intrusion Analysis.” 8 Jan 2003.
URL:http://www.giac.org/practical/GCIA/Maarten Vanhorenbeeck GCIA.pdf
(15 Nov 2004)

[21] Rekhter. Y et al. “Address Allocation for Private Internets.” Feb 1996.
URL:http://www.ietf.org/rfc/rfc1918.txt (15 Nov 2004)

[22] Ellis, J. “GCIA Practical Assignment” 14 May 2002.
URL:http://www.giac.org/practical/Joe Ellis GCIA.doc (15 Nov 2004)

[23] Bell, M. “GCIA Practical Assignment” 14 May 2002.
URL:http://www.giac.org/practical/Mike Bell GCIA.doc (15 Nov 2004)

[24] Gregory, D. “SANS GIAC Intrusion Detection In-Depth.”
URL:http://www.giac.org/practical/GCIA/Donald Gregory GCIA.pdf
(15 Nov 2004)

[25] SANS “The Twenty Most Critical Internet Security Vulnerabilities (Updated) –
The Experts Consensus.” Version 5.0 8 Oct 2004
URL:http://www.sans.org/top20/ (15 Nov 2004)

31

