
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)

Practical Assignment
Version 4.0

Adam Kliarsky

December, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

2

Part I – Executive Summary ... 3
Purpose..3
Scope ...3
Methods...3
Results ...3
Conclusions...3
Recommendations ..3

Part II – Detailed Analysis... 4
Summary of Alerts: ..12

Detect 1: BACKDOOR Q access..13
Description of detect: ...13
Reason this detect was selected:..13
Detect generated by:...13
Probability the source address was spoofed: ..15
Attack mechanism: ...15
Correlations:..16
Evidence of active targeting: ...16
Severity..17

Detect 2: WEBROOT DIRECTORY TRAVERSAL..18
Description of detect: ...18
Reason this detect was selected:..18
Detect generated by:...18
Probability the source address was spoofed: ..19
Attack mechanism: ...19
Correlations:..23
Evidence of active targeting: ...23
Severity..23

Detect 3: SHELLCODE x86 0xEB0C NOOP ...24
Description of detect: ...24
Reason this detect was selected:..24
Detect generated by:...24
Probability the source address was spoofed: ..25
Attack mechanism: ...25
Correlations:..28
Evidence of active targeting: ...28
Severity..29

Network Statistics ..30
Correlations ..33
Insights into internal machines..34
Defensive recommendations..34

Part III – Analysis Process.. 35
Works Cited ..36

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

3

Part I – Executive Summary
An investigative analysis was recently performed on the network of a University
campus. The analysis was conducted in a postmortem manner, using binary
capture files.

Purpose
This analysis was conducted to investigate and assess the types of network
traffic anomalies seen on the University’s local area network. An in-depth
analysis is vital to ensure the integrity of the internal systems, University
resources, and student records. Furthermore, a proactive approach to security is
essential due to new legislative requirements (SB1386 for example), requiring
the public disclosure of a compromise within an organization, a proactive
approach to security is essential.

Scope
The analysis was performed on binary network captures taken from an intrusion
detection system logging anomalous traffic between the ISP and the LAN. The
dates of the traffic captured span 11/15/2002 through 11/18/2002. It is important
to note that the scope of the analysis was limited to the capture files only, as no
other information was presented regarding the architecture and technology
deployed within the environment.

Methods
A combination of analytic methods was used, including both technical and non-
technical programs and utilities. These utilities range from network analyzers to
office productivity programs designed to structure and present the technical data
in a clear, concise format.

Results
There were 718 alerts (16 unique) generated during the three days, representing
a combination of malicious and benign traffic. High amounts of ingress traffic
passed the border router destined for the campus LAN, however limited egress
traffic was seen in response.

Conclusions
The University has several points of exposure on the network and needs to be
diligent in safeguarding its systems and information. The University’s technical
staff needs to implement strict measures on network systems to mitigate the
threats, including ingress/egress filtering on perimeter devices and system
hardening.

Recommendations
The technical staff needs to closely monitor the alerts and tune the IDS where
possible, as the time spent on false alarms can be overwhelming, and can
obfuscate potential true attacks. Extra attention should be given to the targets of
the attacks as well, to ensure systems are properly configured.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

4

Part II – Detailed Analysis

The analysis was performed on binary pcap files logged by an unknown
version of Snort Intrusion Detection System running in logging mode. The
following files were downloaded from http://isc.sans.org/logs/Raw.
• 2002.10.16 • 2002.10.17 • 2002.10.18

To effectively analyze the traffic in the files, the three individual files are
merged into one binary capture file using mergecap (figure 1). This provides a
better view on trends across the network among hosts and attacks alike.

Figure 1 – ‘mergecap –w [output file] [input file(s)]’

A network security analysis requires an understanding of hacker motives
and methods. Additionally, to assess critical assets and their vulnerabilities, a
fundamental knowledge of network and system architecture is essential. This
includes technologies and behaviors. Attacks against organizations target a
variety of platforms, from network devices, to servers and workstations. They can
be both structured (deliberately targeted) and unstructured (scripted
tools/worms). To effectively analyze the University’s network, it is essential to be
cognizant of this fact, and diligently learn the network and its capacities, which
includes topology, architecture, and technology.

The first step in the analysis is to break down the topology to get a feel for
the network layout. Tethereal1 is initially used to view the contents of the pcap
file, including the date, time and types of traffic. Tethereal provides fast results
via command line options – ideal for analysts – to get insight into the network and
its systems.

[analyst@recon ~]$ tethereal –nr pcap –t ad
1 2002-11-15 16:26:47.606507 255.255.255.255 -> 170.129.209.73 TCP
31337 > 515 [RST, ACK] Seq=0 Ack=0 Win=0 Len=3
2 2002-11-15 16:32:16.826507 64.28.86.231 -> 170.129.50.120 HTTP
Continuation
3 2002-11-15 16:41:53.666507 255.255.255.255 -> 170.129.146.14 TCP
31337 > 515 [RST, ACK] Seq=0 Ack=0 Win=0 Len=3
4 2002-11-15 16:52:05.286507 211.47.255.21 -> 170.129.156.144 TCP 40037
> 0 [SYN] Seq=0 Ack=0 Win=5840 Len=0 MSS=1460 WS=0
<snip> --------- truncated
3088 2002-11-18 05:44:59.736507 170.129.50.120 -> 64.154.80.50 HTTP
Continuation
3089 2002-11-18 05:45:22.156507 170.129.50.120 -> 64.154.80.50 HTTP
Continuation
3090 2002-11-18 05:45:22.416507 170.129.50.120 -> 64.154.80.50 HTTP
Continuation
3091 2002-11-18 05:45:48.656507 170.129.50.120 -> 64.154.80.49 HTTP
Continuation
Figure 2 – ‘tethereal –nr [file name] –t ad’ – first four and last four packets

1 Tethereal – text version of Ethereal protocol analyzer

[analyst@recon ~]$ mergecap –w pcap 2002.10.16 2002.10.17 2002.10.18

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

5

Tethereal syntax:

• n – suppress name resolution
• r file – read input from file (pcap)
• t options – timestamp, a for ‘absolute’, d for ‘with date’

This initial run through with tethereal gives an insight into the binary file,

showing the type of traffic and the timestamp of the capture. The first item to
notice is that the dates of the entries in the file show this to be a capture from
November rather than October, as the file names allude to.

To continue enumerating the network layout, tcpdump2 is used, adding the
‘e’ switch to print layer 2 information. Using awk, only the source and destination
MAC addresses are filtered out. This produces two MAC addresses consistent
throughout the capture (figure 3).

[analyst@recon ~]$ /usr/sbin/tcpdump -ner pcap | awk '{print $2,$4}' |
sort –u | uniq –u
reading from file pcap, link-type EN10MB (Ethernet)
00:00:0c:04:b2:33 00:03:e3:d9:26:c0,
00:03:e3:d9:26:c0 00:00:0c:04:b2:33,
Figure 3 – tcpdump output to awk

Tcpdump syntax:

• n – suppress name resolution
• e – print Ethernet headers
• r file – read in file

To glean more information on the devices, a search is conducted on the

vendor id of the MAC address (the first 24 bytes) on the IEEE OUI web page
(http://standards.ieee.org/regauth/oui/index.shtml)3.

Here are the results of your search through the public section of the IEEE Standards OUI
database report for 00-03-e3:

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.
 170 West Tasman Dr.
 San Jose CA 95134

 UNITED STATES
Here are the results of your search through the public section of the IEEE Standards OUI
database report for 00-00-0c:

00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.
 170 WEST TASMAN DRIVE

 SAN JOSE CA 95134-1706
Figure 4 – IEEE OUI Results

2 Tcpdump – popular network/protocol analyzer
3 IEEE OUI and Company_id Assignments

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

6

So now it is evident that the IDS is sitting between two Cisco routing

devices. Speculating on possibilities, this implementation could be between the
border router facing the ISP and the perimeter router (or firewall) facing the
internal network, but this can not be concluded just yet. Figure 5 depicts the
sensor’s location.

Figure 5 – Snort IDS sitting between two Cisco routing devices

To determine more about the setup, it is important to determine which
device of the two is the gateway to the LAN and which device is the gateway to
the ISP. Tethereal is used again to help determine the flow of traffic, starting with
the device at Ethernet address 00:03:e3:d9:26:c0. Figure 6 shows the tethereal
command checking the source device with MAC address 00:03:e3:d9:26:c0. Awk
takes the output of tethereal, strips it down, and prints the source addresses
associated with egress traffic on that device. Piping the output to ‘sort –u’ and
‘uniq –u’ sorts the IP addresses and shows only IPs which are unique. The
output is a wide range of IP address space.

[analyst@recon ~]$ tethereal -nr pcap eth.src == 00:03:e3:d9:26:c0 |
awk '{print $3}' |sort -u | uniq –u
12.235.101.66
128.167.120.13
129.94.6.30
130.65.152.46
142.166.56.130
153.33.24.3
161.69.201.238
163.15.105.152
163.20.176.1
163.22.229.253
163.23.238.9
163.24.239.8
164.109.62.87
165.154.7.2
168.191.214.120
<snip>
Figure 6 – tethereal filter on source MAC 00:03:e3:d9:26:c0, awk showing source IPs

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

7

Next, tethereal is run again, filtering this time for the destination IP

addresses. Figure 7 shows the output from this filter.

[analyst@recon ~]$ tethereal -nr pcap eth.src == 00:03:e3:d9:26:c0 |
awk '{print $5}' |sort –u | uniq –u
UNI.NET.100.206
UNI.NET.100.236
UNI.NET.100.243
UNI.NET.100.51
UNI.NET.10.221
UNI.NET.103.221
UNI.NET.104.249
UNI.NET.106.120
UNI.NET.106.86
UNI.NET.107.3
UNI.NET.107.88
UNI.NET.108.132
UNI.NET.108.46
UNI.NET.109.179
UNI.NET.111.141
UNI.NET.111.203
<snip>
Figure 7 – similar filter with awk printing the destination addresses

The output of this elicits IP space from what appears to be a Class B
network, which is modified (first two octets) as UNI.NET throughout the rest of
the analysis. The consistency produced by this last command implies that this is
the internal LAN, which is validated by checking the other MAC address using
the same filters (figures 8 and 9).

Figure 8 - tethereal filter on 00:00:0c:04:b2:33 to display source IPs

[analyst@recon ~]$ tethereal -nr pcap eth.src == 00:00:0c:04:b2:33 |
awk '{print $3}' |sort -u | uniq -u
Figure 9 - same filter using '{print $5}' to display destination IPs

It appears that the Cisco device with the MAC address 00:03:e3:d9:26:c0

is the external facing device (router). The internal network is attached to the
Cisco device with MAC address 00:00:0c:04:b2:33, either another router, or a
firewall. Since the egress traffic from this is limited to primarily http, it could very
well be a firewall performing at minimum basic packet filtering on limited traffic.

More analysis on the file shows that outbound traffic originates from two
internal hosts: UNI.NET.50.120 (making up the bulk of egress traffic) and
UNI.NET.50.3 (two egress packets). Ethereal is used next to filter on both hosts
to see if more insight into each of the two systems can be attained.

The host at UNI.NET.50.3 sends a couple of packets – error messages,
which provide some information. Looking at the two error messages sent (http

[analyst@recon ~]$ tethereal -nr pcap eth.src == 00:00:0c:04:b2:33 |
awk '{print $3}' |sort -u | uniq -u

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

8

403), the host at UNI.NET.50.3 appears to be a web server; Apache version
1.3.12 hosted on Red Hat Linux (figure 10).

Figure 10 - Apache HTTP 404 Error message

Looking at traffic targeting the server, there are a few items that stand out.

There are Code Red attempts – six to be exact – against this system, and
several requests for miscellaneous data, mostly web form requests.

The Code Red attempts stand out because of the unique signature they
have, with the string ‘GET /default.ida?NNNNNN...’. These attempts are against
a UNIX based server, and since Code Red is a worm that targets Microsoft’s IIS
web server (Cert Advisory CA-2001-19), they can be considered false alarms.

The web form requests primarily reference FormMail scripts; an html
based email utility that allows a form to be filled out on a website, and then sent
via email to the recipient. If this server is, in fact, functioning in this capacity it is
likely that there is sensitive data being stored either on the server or through a
trust relationship with a database server. Either way, the safeguard of this system
will be a priority to the University.

Attention is then focused on the other IP, UNI.NET.50.120. Traffic to/from
this IP is a mix of tcp/80 (http), tcp/6667 (IRC), tcp/1863 (Messenger), and
tcp/7000. Owning 1801 of 1803 egress packets, this IP either belongs to a proxy
server, or the perimeter firewall is running Network Address Translation (NAT)
using UNI.NET.50.120 as the public facing IP. Figure 11 shows both possibilities.

Continuing to look through the packets, more interesting items are noted.
First of all, packets with a source address of 255.255.255.255 (ip broadcast)-
these odd packets also have a source port of 31337 – something worth noting.
Also, some of the http packets have ‘cmd.exe’ in the payload – definitely
something to look at. Overall, there are several different protocols traversing the
wire. These include scattered SMB packets, proxy requests, RPC requests,
primarily http. Most of these are unidirectional packets, traffic coming in as
requests, but no return traffic (or at least not seen in the capture). There are also
inbound packets from a server that seem to be serving as a web proxy cache
server (figure 12 shows a link graph with relations between some of the hosts).

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

9

Figure 11 – Possible network configurations; Proxy versus NAT

Figure 12 - Link graph showing traffic hitting high priority University targets

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

10

The next step is to run through the pcap file to view anomalous traffic seen
on the network, using the popular open source IDS – Snort (figure 13).

[root@recon ~]# /usr/sbin/snort -r pcap -k none -c
/etc/snort/snort.conf
Figure 13 - Snort is run on the pcap file

Snort syntax:

• r pcap – read input from pcap
• k option – checksum mode, the option ‘none’ turns off checksum validation

since the binary files do not contain original information.
• c file – use the specified snort configuration file

Snort performs an initialization, reading configuration from snort.conf

(primary configuration file), which includes network parameters, variables and
other custom information. This is where the customization of Snort is configured.
After initialization, Snort produces a summary of the traffic, as figure 14 shows.
Of 2,999 packets, there are 718 alerts, 16 unique.

<snip>
Snort processed 2999 packets.
 Action Stats:
ALERTS: 718
LOGGED: 718
PASSED: 0
<snip>

Figure 14 - Summary statistics from Snort

With a high number of alerts, it helps to have an analyst console to view
the data. Chapter 9 of Network Intrusion Detection, 2nd edition (Northcutt, Novak),
reinforces this idea and lists some benefits:

• Better false positive management
• Display filters
• Ability to mark events that have been analyzed
• Ability to drill down
• Correlation
• Better reporting

ACID (Analysis Console for Intrusion Databases) provides a graphical

user interface that taps into the MySQL database where Snort is configured to
store alerts. The ACID console shows the alerts and statistical information of the
file in an easy-to-use console.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

11

Figure 15 – ACID displays alert statistics

ACID confirms the total number of alerts; 718 (16 unique alerts, 6 unique
categories). The first thing to notice is the listed classification of alerts. Figure 16
displays the ACID classification summary. This provides an opportunity to see
the types of attacks being seen on the University Campus network. ACID lists the
classification of each attack, along with some information on the number of alerts
(number of occurrences of each), how many different signatures are listed under
each of the classifications, and the source/destination IP information.

Figure 16 – The six classifications of alerts, the total number of each, and related information.

This visual summary can be useful in quickly triaging the events,
especially when dealing with an improperly configured IDS sensor alerting
indiscriminately. It is important to point out that this is not a conclusive response
method, as alerts will be firing on legitimate packets. In prioritizing events with
non-legitimate traffic, it is important to remember that a successful
reconnaissance attack is not as high of a priority as a successful exploit (root
access or privilege escalation) attack…unless of course the access attack proves
ineffective (Windows exploit attack on a UNIX server) and the reconnaissance
attack elicits critical information to the attacker. This could be a prelude to an
exploit based attack.

Table 1 shows the alerts by name followed by occurrences that were
detected on the University’s network.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

12

Summary of Alerts:
Alert Name Occurrences

BACKDOOR Q access 93

BAD-TRAFFIC tcp port 0 traffic 137

(http_inspect) NON-RFC HTTP DELIMITER 17

(http_inspect) WEBROOT DIRECTORY TRAVERSAL 76

(snort_decoder) WARNING: TCP Data Offset is less than 5! 2

BAD-TRAFFIC same SRC/DST 35

(http_inspect) OVERSIZE REQUEST-URI DIRECTORY 107

MISC Tiny Fragments 1

(http_inspect) BARE BYTE UNICODE ENCODING 205

SHELLCODE x86 0xEB0C NOOP 2

SCAN FIN 1

(snort_decoder): Tcp Options found with bad lengths 1

BAD-TRAFFIC ip reserved bit set 12

(http_inspect) DOUBLE DECODING ATTACK 5

RPC portmap mountd request UDP 16

(http_inspect) IIS UNICODE CODEPOINT ENCODING 8

Table 1 - Summary of Alerts

Sixteen different alerts are listed in the table, followed by the number of

occurrences. The alerts that have parenthesis are generated by Snort’s
preprocessors, while the others are detected by signatures.

Looking at the alerts, some appear as less of a priority than others. The
priorities here, with little known about the hosts residing on the internal network,
are alerts that signify an exploit, root access, or privilege escalation. The
Backdoor Q access, Web root directory traversal, and Shellcode alerts stand out
as such alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

13

Detect 1: BACKDOOR Q access

[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
11/17-17:11:56.686507 255.255.255.255:31337 -> UNI.NET.166.76:515
TCP TTL:14 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

Description of detect:
Q is a remote admin tool commonly associated as a backdoor utility, such

as Sub Seven, or Back Orifice. Q is described by its author, Mixter, as a “Remote
shell and admin tool with strong encryption”. Although Q was primary built for
UNIX, it could be compiled to run on the operating system of choice. This
program has the ability to run in a ‘stealth mode’, encrypting packets between the
attacker and victim. The stealth mode capability limits the need to establish a
valid TCP connection, which may provide the opportunity to bypass simple
packet filtering firewalls, or intrusion detection systems.

This has been given a candidate CVE entry - CVE# CAN-1999-0660
which is still under review. The description for this CVE entry is “A hacker utility,
back door, or Trojan Horse is installed on a system, e.g. NetBus, Back Orifice, Rootkit,
etc.”

Reason this detect was selected:
With a source address of 255.255.255.255, and source port of 31337, this

packet is at the top of the list of odd packets. The address, first of all, is not a
valid address; its primary use is as a destination address in a BOOTP packet.
The source port of 31337 is interesting also, as 31337 is hacker speak for elite
(31337 = ‘eleet’)4. Q is a program that, when run, can provide remote root access
to the target. Unsolicited access, especially root access to unknowing victim
systems, should be mitigated at all costs, as that is the primary goal of intrusion
detection/prevention. The traffic pattern that matches the alert was seen across
the wire ninety-three times, essentially ninety three potential victims. With just
one being too many, this alert needs to be investigated.

Detect generated by:
This alert (figure 17) was generated by Snort Intrusion Detection System,

version 2.2.0. The following backdoor alert was triggered on ninety three events.

4 The term ‘eleet’ or ‘leet’ is slang for hackers who are highly skilled (elite), usually written as ‘31337’ or

‘1337’.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

14

Figure 17- Backdoor Q alert

These alerts were triggered by a rule (figure 18) that incorporates
traditional signature features with preprocessor features. One of Snort’s features
is the ability to use preprocessor output for signature input. The purpose of this is
to normalize data (traffic) prior to alerting, thus reducing false positives. The alert
header attempts to match an address, and the alert options add preprocessor
functions (flow:stateless is part of the Flow preprocessor module).

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q
access"; dsize:>1; flags:A+; flow:stateless; reference:arachnids,203;
classtype:misc-activity; sid:184; rev:6;)
Figure 18 - Snort Q Signature

Breaking down the alert into four components, the features of the

signature are a little clearer.

alert tcp 255.255.255.0/24 any(1) -> $HOME_NET any(2) (msg:"BACKDOOR Q
access"(3); dsize:>1; flags:A+(4); flow:stateless; reference:arachnids,203; classtype:misc-
activity; sid:184; rev:6;)

1 Alert, on any TCP traffic from the 255.255.255.0 network, any source port
2 Destined to the internal network, any destination port
3 Message to display to console
4 The ‘ACK’ flag is set (to indicate a response)

Figure 19 - Breakdown of the 'Backdoor Q access' signature

The packets that violate the rule have a source address of

255.255.255.255, are destined for the internal network, and have ‘ACK’ flag set.
The flags in the TCP header are located in the 14th byte (figure 21), so a filter
using tcpdump (figure 20) on packets with a source belonging to the
255.255.255.0 network and with the ack flag set would look as follows:

[analyst@recon ~]$ /usr/sbin/tcpdump -nnvX -r pcap net 255.255.255.0/24 && (tcp[13]
& 0x05)
reading from file pcap, link-type EN10MB (Ethernet)
16:26:47.606507 IP (tos 0x0, ttl 14, id 0, offset 0, flags [none], proto 6, length: 43)
255.255.255.255.31337 > UNI.NET.209.73.515: R [tcp sum ok] 0:3(3) ack 0 win 0 [RST
cko]
 0x0000: 4500 002b 0000 0000 0e06 3103 ffff ffff E..+......1.....
 0x0010: aa81 d149 7a69 0203 0000 0000 0000 0000 ...Izi..........
 0x0020: 5014 0000 e52a 0000 636b 6f00 0000 P....*..cko...
<snip>
Figure 20 - TCP filter

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

15

tcpdump –nnvX –r pcap net 255.255.255.0/24 && (tcp[13] & 0x05)

Tcpdump syntax is as follows:

• - nn, no name resolution, including ports
• - v, verbose
• - X print ASCII
• - r pcap, read in from file pcap
• net 255.255.255.0/24 – any source or destination host belonging to that

network
• tcp[13] – check the 14th byte (starting from 0) of the tcp header
• 0x05 – match the fifth place (from right), which is the ack flag field

Figure 21 - TCP Header showing the ACK flag position

Probability the source address was spoofed:
There is a high probability that this source address is spoofed. This

address stands out as an IP broadcast address, or limited broadcast address
(Stevens, 217), usually seen as the destination address in client request packets
while bootstrapping (RFC 951, BOOTP); therefore it is likely a spoofed address.

Attack mechanism:
This attack targets victim hosts running the Q server (qd). As a backdoor

program, this may be part of a rootkit5 allowing an attacker running the Q client

5 A rootkit is one or more tools used by a hacker that is uploaded to a compromised system to hide evidence

of a system compromise, and to hide active hacker processes trojaned programs etc.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

16

(qs) to spawn a remote shell with root access on the target. According to the
readme file provided with Q version 2.4:
“…only qd and qs from the same
compilation will work with each other, because of hard-coded
random authenticity ID's generated by mkpasswd.”
This alludes to the fact that if any of the hosts were infected, then they would
have to be targeted by a client of the same build. This is a high possibility, given
the ubiquity of the internet, and an equal ubiquity of attack delivery mechanisms
(worms etc).

The purpose of Q is multifold. In the hands of malicious users, it can serve
as a method to compromise targeted computers. With root access to a system
(or multiple systems), new attacks can be launched from ‘owned’6, or
compromised computers. This is a popular method for several types of attacks,
including DDoS (Distributed Denial of Service) and relay attacks.

In the packets seen in the Q attacks, the RST and ACK flags were set. It is
unlikely that the targeted systems would reply to RST packets, since RST is the
signal to abort or abruptly cancel a connection. If the targeted systems were the
initiators of the traffic, then we might see a retransmission of packets, but this
was not the case.

Correlations:
This detect was analyzed in depth by Les Gordon (GCIA practical) in

2002, where he actually analyzed versions 0.9, 1.0, 2.0, and the most recent,
2.4. ArachNIDS lists the backdoor as IDS203, “Trojan-Active-Q-TCP”, referring
to Q as a Trojan. Computer Associates’ Pest Patrol also lists Q as a Trojan as
well on the website where it states:
“A Remote Administration Tool, or RAT, is a Trojan that when run, provides an attacker
with the capability of remotely controlling a machine via a ""client"" in the attacker's
machine, and a ""server"" in the victim's machine.”

The Common Vulnerabilities and Exposures entry CAN-1999-0660 (under
review) classifies this as “A hacker utility, back door, or Trojan Horse is installed on a
system, e.g. NetBus, Back Orifice, Rootkit, etc.”

Evidence of active targeting:
This attack targeted ninety-three victims in three days; this does not

appear to be a structured attack, hence no active targeting. Trojans, for the most
part, are attacks that start with a scan looking for vulnerable systems. The
vulnerable system, or victim, will reply back to the sender of the scan indicating
that it is infected. As the attacker scans IP addresses and finds vulnerable hosts,
it is likely attacks will be sent to those hosts to exploit the systems. These events
appear to be the initial scans. Furthermore, targeted attacks are usually executed
in stealthy manners to bypass intrusion detection systems and these attacks are
anything but stealthy.

6 The term ‘owned’, commonly written as ‘0wn3d’, is used to refer to hacked systems.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

17

Severity

Severity = (2+5) – (4+3) = 0

Severity = (criticality + lethality) – (system countermeasures + network

countermeasures)

Criticality: 2 – Although it is necessary to be vigilant here, the targets in this

attack appear as part of a scan, and do not elicit any response to the
attacker.

Lethality: 5 – Q provides root access to remote victims, the most lethal of attacks.

System Countermeasures: 4 – the targets in this case did not appear to be

vulnerable to this attack, and did not reply to the RST packets.

Network Countermeasures: 3 – The routers should not be routing packets

containing a limited broadcast address, unless the environment is using
bootp/dhcp relay. There was, however, no indicator that the packets were
successful in entering the private network, so the perimeter device could
have silently dropped the packets.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

18

Detect 2: WEBROOT DIRECTORY TRAVERSAL

[**] [119:18:1] (http_inspect) WEBROOT DIRECTORY TRAVERSAL [**]
11/15-19:25:58.326507 211.87.212.36:4061 -> UNI.NET.93.33:80
TCP TTL:100 TOS:0x0 ID:56820 IpLen:20 DgmLen:136 DF
AP Seq: 0x9241C916 Ack: 0x1235 Win: 0x4470 TcpLen: 20

Description of detect:
A directory traversal (file system traversal) is an attack that involves the

use of a web browser to execute commands on a remote web server. The goal is
to bypass the built-in security features of the server that restrict users to a web
root folder. The ability to break out of the web root folder can lead to full system
access. These types of attacks have been used to deface websites, steal
information, and exploit trust relationships with database servers to propagate
the theft of private data (credit card numbers etc).

The Snort Signature Database7 describes this attack as follows:
“This event is generated when the http_inspect pre-processor detects an
attempt to escape the root directory of a web server by an attacker
using a directory traversal technique.”
The US-CERT lists this as Vulnerability Note VU#111677, with direct reference to
Microsoft’s TechNet Security Bulletin MS00-78 “Microsoft IIS 4.0 / 5.0 vulnerable
to directory traversal via extended unicode in url (MS00-078)”. Two entries from
the CERT Coordination Center stem from MS00-78; Cert Incident Note IN-2001-
09: ‘"Code Red II:" Another Worm Exploiting Buffer Overflow In IIS Indexing
Service DLL’, and CERT Advisory CA-2001-26 Nimda Worm. Finally, the CVE
entry for this is CVE-2000-0884.

Reason this detect was selected:
Due to the ramifications of a successful directory traversal attack on a

web-server, it is critical to investigate potential attacks. Although this could very
well be a scripted attack, or a network worm, as seen with Code Red variants
and subsequent Nimda variants, it could also be a targeted attack.

Detect generated by:
This detect was generated by Snort Intrusion Detection System, version

2.2.0. The alert was not by triggered by a signature, but by one of Snort
preprocessors. Figure 22 shows the alert that was generated.

 [**] [119:18:1] (http_inspect) WEBROOT DIRECTORY TRAVERSAL [**]
11/15-19:25:58.326507 211.87.212.36:4061 -> UNI.NET.93.33:80
TCP TTL:100 TOS:0x0 ID:56820 IpLen:20 DgmLen:136 DF
AP Seq: 0x9241C916 Ack: 0x1235 Win: 0x4470 TcpLen: 20
Figure 22- http_inspect preprocessor alert

7 http://www.snort.org/snort-db/sid.html?sid=119:18

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

19

The preprocessor options are configured in Snort.conf, the primary
configuration file for Snort. There are two options in snort.conf as seen in figure
23.
preprocessor http_inspect: global \
 iis_unicode_map unicode.map 1252

preprocessor http_inspect_server: server default \
 profile all ports { 80 8080 8180 } oversize_dir_length 500
Figure 23 - http_inspect preprocessor entries in snort.conf

A note about preprocessors:

Snort uses preprocessors to make up for the shortcomings of attack
signatures. Preprocessors increase detection abilities beyond simple pattern-
matching signatures into more functional detection capabilities, including protocol
anomaly detection. This is especially helpful in complicated situations where a
generalized attack signature results in too many false positives, yet a specific
attack signature can miss attacks, resulting in numerous false negatives. The
preprocessor is invoked after Snort’s decoder has broken the packet into fields
and before the packet is matched against known attack signatures.
Decoder à Preprocessor à Signature engine

The http_inspect preprocessor, developed by Daniel Roelker of
Sourcefire, has the built-in capabilities to detect a number of http anomalies,
including IDS evasion techniques as well as web based http attacks.

Probability the source address was spoofed:
Given the nature of attack, it is not likely that the source address is

spoofed. The traffic appears to be worm attacks from infected source addresses
scanning for vulnerable hosts to propagate.

Attack mechanism:
Directory Traversals have different attack mechanisms as both structured

and unstructured attacks. In this case, the attack mechanism appears to be
related to network worms carrying a payload designed to exploit vulnerable web
server technologies, specifically Microsoft IIS vulnerabilities.

Looking at the data of the packet that triggered the first alert, there is an
http GET request for cmd.exe. This raises a flag, since cmd.exe is an
administrative utility for Windows systems. To look for the host initiating this
traffic, ngrep is used (figure 24), searching for packets matching 80.208.98.134:

[analyst@recon ~]$ ngrep -I pcap cmd.exe host 80.208.98.134
input: pcap
filter: ip and (host 80.208.98.134)
match: cmd.exe

T 80.208.98.134:2317 -> UNI.NET.50.3:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2319 -> UNI.NET.50.4:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

20

T 80.208.98.134:2323 -> UNI.NET.50.5:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2339 -> UNI.NET.50.14:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2341 -> UNI.NET.50.15:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2353 -> UNI.NET.50.21:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2359 -> UNI.NET.50.23:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2368 -> UNI.NET.50.28:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..

T 80.208.98.134:2359 -> UNI.NET.50.23:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir.dir.

T 80.208.98.134:2317 -> UNI.NET.50.3:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir.dir.

T 80.208.98.134:2353 -> UNI.NET.50.21:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir.dir.

T 80.208.98.134:2552 -> UNI.NET.50.120:80 [AP]
 GET /scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir..ir..
exit
Figure 24 - ngrep shows numerous matching packets

Ethereal is used to view the packet data (figure 25), as it provides a quick

method of reconstructing TCP streams, which is extremely useful in analysis of
large pcap files. The first attack contains the following payload:

Figure 25 - Part of a screen capture showing Ethereal's TCP stream reassembly

There are four source IP addresses that triggered these alerts. Filtering on

the attacker’s IP address of 80.208.98.134, there are 12 entries across 9 unique
IP destinations residing on the University LAN. The time deltas between the
packets are small, indicating that this is more of a scan than a targeted attack.
Further research on CERT reveals that this is likely to be a Nimda worm scan.
The packets each have the ‘P’ (tcp ‘push’) and ‘ACK’ (tcp ‘acknowledgement’)
flags set, which are set during the exchange of data (after the initial TCP
connection). However there were no previous connection indications, and this

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

21

trace shows a unidirectional data flow which is an indication of an infected host
scanning for vulnerable targets (figure 26).

[analyst@recon ~]$ /usr/sbin/tcpdump -nn -r pcap host 80.208.98.134 -
tttt
reading from file pcap, link-type EN10MB (Ethernet)
2002-11-17 19:58:41.176507 IP 80.208.98.134.2317 > UNI.NET.50.3.80: P
545794100:545794159(59) ack 3022993836 win 64620
2002-11-17 19:58:41.196507 IP 80.208.98.134.2319 > UNI.NET.50.4.80: P
545882922:545882981(59) ack 3022275420 win 64620
2002-11-17 19:58:41.246507 IP 80.208.98.134.2323 > UNI.NET.50.5.80: P
546112382:546112441(59) ack 3029926665 win 64620
2002-11-17 19:58:41.366507 IP 80.208.98.134.2339 > UNI.NET.50.14.80: P
546882327:546882386(59) ack 1470430696 win 64620
2002-11-17 19:58:41.376507 IP 80.208.98.134.2341 > UNI.NET.50.15.80: P
546975249:546975308(59) ack 2981604386 win 64620
2002-11-17 19:58:41.386507 IP 80.208.98.134.2353 > UNI.NET.50.21.80: P
547536443:547536502(59) ack 3030427244 win 64620
2002-11-17 19:58:41.396507 IP 80.208.98.134.2359 > UNI.NET.50.23.80: P
547811586:547811645(59) ack 3028618036 win 64620
2002-11-17 19:58:41.416507 IP 80.208.98.134.2368 > UNI.NET.50.28.80: P
548253445:548253504(59) ack 3303634675 win 64620
2002-11-17 19:58:41.596507 IP 80.208.98.134.2359 > UNI.NET.50.23.80: P
59:117(58) ack 2873 win 0
2002-11-17 19:58:41.616507 IP 80.208.98.134.2317 > UNI.NET.50.3.80: P
59:117(58) ack 5627073 win 0
2002-11-17 19:58:41.966507 IP 80.208.98.134.2353 > UNI.NET.50.21.80: P
59:117(58) ack 2873 win 0
2002-11-17 19:58:45.636507 IP 80.208.98.134.2552 > UNI.NET.50.120.80: P
558165330:558165389(59) ack 3681321655 win 64620
Figure 26 - tcpdump output for host 80.208.98.134

Looking at the next attacker IP (211.87.212.36), a similar pattern exists,

with a similar payload, and both ‘P’ and ‘ACK’ flags set (figure 27). With twenty-
two packets in this attack, there are only three targeted hosts. Two hosts are hit
with eight packets, and one is hit with six. As with the previous attack, the time
deltas on each victim are fast.

[analyst@recon ~]$ /usr/sbin/tcpdump -nn -r pcap host 211.87.212.36 -
tttt
reading from file pcap, link-type EN10MB (Ethernet)

2002-11-16 03:25:58.326507 IP 211.87.212.36.4061 > UNI.NET.93.33.80: P
2453784854:2453784950(96) ack 4661 win 17520
2002-11-16 03:25:58.426507 IP 211.87.212.36.4067 > UNI.NET.93.33.80: P
2454439935:2454440052(117) ack 4661 win 17520
2002-11-16 03:25:58.446507 IP 211.87.212.36.4084 > UNI.NET.93.33.80: P
2454736513:2454736630(117) ack 4661 win 17520
2002-11-16 03:25:58.536507 IP 211.87.212.36.4090 > UNI.NET.93.33.80: P
2455432209:2455432354(145) ack 4661 win 17520
2002-11-16 03:26:06.266507 IP 211.87.212.36.1426 > UNI.NET.93.33.80: P
2520477553:2520477651(98) ack 4661 win 17520
2002-11-16 03:26:06.326507 IP 211.87.212.36.1432 > UNI.NET.93.33.80: P
2521173002:2521173098(96) ack 4661 win 17520
2002-11-16 03:26:06.366507 IP 211.87.212.36.1445 > UNI.NET.93.33.80: P

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

22

2521409592:2521409692(100) ack 4661 win 17520
2002-11-16 03:26:06.446507 IP 211.87.212.36.1449 > UNI.NET.93.33.80: P
2522073604:2522073700(96) ack 4661 win 17520

2002-11-16 22:36:23.186507 IP 211.87.212.36.2268 > UNI.NET.113.11.80: P
3518162550:3518162646(96) ack 4661 win 17520
2002-11-16 22:36:23.186507 IP 211.87.212.36.2271 > UNI.NET.113.11.80: P
3518275784:3518275901(117) ack 4661 win 17520
2002-11-16 22:36:23.196507 IP 211.87.212.36.2273 > UNI.NET.113.11.80: P
3518445137:3518445254(117) ack 4661 win 17520
2002-11-16 22:36:23.216507 IP 211.87.212.36.2297 > UNI.NET.113.11.80: P
3519651267:3519651365(98) ack 4661 win 17520
2002-11-16 22:36:23.216507 IP 211.87.212.36.2302 > UNI.NET.113.11.80: P
3519886404:3519886500(96) ack 4661 win 17520
2002-11-16 22:36:23.226507 IP 211.87.212.36.2313 > UNI.NET.113.11.80: P
3520345658:3520345754(96) ack 4661 win 17520

2002-11-17 02:27:37.476507 IP 211.87.212.36.1393 > UNI.NET.130.226.80:
P 3747232701:3747232797(96) ack 4661 win 17520
2002-11-17 02:27:37.506507 IP 211.87.212.36.1412 > UNI.NET.130.226.80:
P 3748143833:3748143950(117) ack 4661 win 17520
2002-11-17 02:27:37.516507 IP 211.87.212.36.1429 > UNI.NET.130.226.80:
P 3749009714:3749009831(117) ack 4661 win 17520
2002-11-17 02:27:37.556507 IP 211.87.212.36.1450 > UNI.NET.130.226.80:
<snip>

Figure 27 - tcpdump output for host 211.87.212.36

Although very similar to the first attack, these are somewhat different.

Repeated attempts on the same victim and a slightly different payload (figure 28).

Figure 28 – Ethereal TCP reassembly showing HTTP payload: IIS worm

According to CERT Advisory CA-2001-26:

“The scanning activity of the Nimda worm produces the following log entries for any web server
listing on port 80/tcp:
GET /scripts/root.exe?/c+dir
GET /MSADC/root.exe?/c+dir
GET /c/winnt/system32/cmd.exe?/c+dir
GET /d/winnt/system32/cmd.exe?/c+dir
GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir
GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir
GET
/msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1c../win
nt/system32/cmd.exe?/c+dir
GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

23

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

Note: The first four entries in these sample logs denote attempts to connect to the
backdoor left by Code Red II, while the remaining log entries are examples of exploit attempts for
the Directory Traversal vulnerability.”

All four addresses have the same characteristics. These packets match up

to the CERT advisory showing that they are likely Nimda infected hosts scanning
for vulnerable targets.

Correlations:
This detect originated from a vulnerability noted in Microsoft’s IIS web

server product. It was discovered by Rain Forest Puppy, and Microsoft
subsequently released Security Bulletin (MS00-78), “Patch Available for 'Web
Server Folder Traversal' Vulnerability”. It has been given CVE entry CVE-2000-
0884.

Evidence of active targeting:
Given the primary means of propagating, these packets are not actively

targeting the victims. Instead, they are randomly scanning the victims for
vulnerable services.

Severity

Severity = (4+5) – (4+3) = 1

Severity = (criticality + lethality) – (system countermeasures + network

countermeasures)

Criticality: 4 – Although there was no indication of a successful attack, at least

one of the targets in this attack is a critical server. This is due to its
function as a web server, and other trust relationships it has with other
internal machines.

Lethality: 5 – This attack, if successful, can lead to a full directory traversal

resulting in a full system compromise.

System Countermeasures: 4 – Since the victims in these attacks did not appear

to respond, it is assumed they were not vulnerable to the specific attack
and/or had anti-virus software in place to protect them.

Network Countermeasures: 3 – Although filtering does not appear to be in place

on the internet facing device, the perimeter device appears to be filtering
for specific addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

24

Detect 3: SHELLCODE x86 0xEB0C NOOP

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/16-08:41:40.176507 163.24.239.8:2377 -> UNI.NET.50.5:21
TCP TTL:44 TOS:0x0 ID:35386 IpLen:20 DgmLen:560 DF
AP Seq: 0xAB7BA6BD Ack: 0xA5C3AABB Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4675704 5583989

Description of detect:
This attack involves the use of an exploit to compromise a vulnerable

system, or service, to gain root privileges. This particular attack is targeting a
vulnerable FTP service. If FTP is running as root (uid 0), the success of this
attack will allow the attacker to gain root privileges (the privileges of the targeted
service). According to Snort’s description of this event;

“This event is generated when suspicious shell code is detected. Many
buffer overflow attacks contain large numbers of NOOP instructions to pad
out the request. Other attacks contain specific shell code sequences
directed at certain applications or services.”
 Shellcode is essentially code written with the sole purpose of eliciting a
remote shell on the target system. As The Shellcoder’s Handbook states (Kozio,
3); “Shellcode is defined as a set of instructions injected and then executed by an
executable program. Shellcode is used to directly manipulate registers and the function of
a program, so it must be written in hexadecimal opcodes”

The term ‘NOOP’ (no-op), also called ‘NOP’, stands for ‘no operation’ and
refers to assembly instructions that instruct a computer’s processor to do nothing.
‘NOPping’ is commonly used in assembly programming to pad memory locations
around a set of actual useful instructions. This is beneficial to the attacker, when
the vulnerability being exploited exists at a specific point in memory. Trying to be
that accurate is a game of hit and miss, so padding the exploit with NOP
instructions gives a broader target. The CPU will return the stack pointer to the
attacker’s code, execute the NOP code (do nothing) until the actual exploit code
is reached. This is also called a NOP sled, because the stack pointer just slides
across the NOP commands until the desired code is executed.

Reason this detect was selected:
Shellcode attacks are potentially lethal by nature, as shellcode attacks

were designed to give a remote attacker a root shell on the targeted system.
Without any prior knowledge of the network systems and the types of software
being run, it is impossible to know what is vulnerable. Therefore, a shellcode
attack needs to be scrutinized.

Detect generated by:
This detect was generated again by Snort IDS version 2.2 on a Shellcode

signature. The following alert:

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

25

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/16-08:41:40.176507 163.24.239.8:2377 -> UNI.NET.50.5:21
TCP TTL:44 TOS:0x0 ID:35386 IpLen:20 DgmLen:560 DF
AP Seq: 0xAB7BA6BD Ack: 0xA5C3AABB Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4675704 5583989
Figure 29 - Shellcode Alert

was generated by the following signature:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 0xEB0C NOOP"; content:"|EB 0C EB 0C EB 0C EB 0C EB
0C EB 0C EB 0C EB 0C|"; classtype:shellcode-detect; sid:1424; rev:6;)
Figure 30 - Shellcode Signature

The signature alerts on repeated ‘EB 0C’ characters in the payload of the
datagram. The ‘content’ section of the signature looks for at least eight (8)
iterations of the ‘EB 0C’ characters, as such an array would be an indicator of a
NOP sled (figure 31).

alert ip1 $EXTERNAL_NET2 $SHELLCODE_PORTS3 -> $HOME_NET4 any3
(msg:"SHELLCODE x86 0xEB0C NOOP"; content:"|EB 0C EB 0C EB
0C EB 0C EB 0C EB 0C EB 0C EB 0C5|"; classtype:shellcode-
detect; sid:1424; rev:6;)

1
2

Alert, on any IP traffic (transport layer not regarded here)
From outside the internal (local) network (defined by $EXTERNAL_NET)

3 From source ports defined in snort.conf to any destination port
4 Destined to internal (local) network (defined by $HOME_NET)
5 Payload data containing NOOP commands (‘EB OC’)

Figure 31 - Breakdown of the Shellcode alert

The snort.conf file used in this analysis does not give specific definition to

the internal and external networks, as the full network layout was not known. The
definition for both was set to ‘any’, meaning any source to any destination. This
particular alert did not give cause to either the external or internal network
addresses, Snort alerted solely on the packets crossing the wire that contained
the data specified with the ‘content’ keyword EB 0C.

Probability the source address was spoofed:
This attack has a low probability that the address is spoofed. TCP based

attacks require that a valid connection be made, which requires a response from
both sides. Since both the source and destination have to send and received
packets to establish the connection, it follows that the IP addresses are valid

Attack mechanism:
This attack uses a NOP sled to employ an FTP exploit. To understand the

attack mechanism, it is necessary to determine exactly what exploit is being
used. For this, a detailed analysis of the payload of each of the packets is

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

26

needed. There are two separate attacks, each with a unique source and
destination (figure 32).

 Figure 32 - Two Shellcode Alerts

Looking at the two attacks, it is evident that each sent three packets.
Using tcpdump, the first packet in the attack is extracted. Figure 33 shows the
command and subsequent output.

 Figure 33 - Packet 1 of 3 of the first attack

The tcp[2:2] locates the destination port in the TCP header, starting at

byte 3, higher order nibble, spanning 2 bytes. Setting this equal to ‘0x15’
evaluates the value for port 21 (FTP) hexadecimal. The ‘-S’ keeps the sequence

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

27

numbers absolute, since it is essential to look for multiple packets of the same
session between the source and destination. The ‘-tttt’ option keeps the date in
the original format.

The content of this packet reveals some notable findings. First of all, the
NOP commands that fired this alert ‘eb0c’ are seen repeatedly in the packet.
Also note the trailing ‘9090’ references that follow, these are also NOP
commands. Looking at the payload also reveals the ‘CWD’ ftp command. This
packet reveals information, but to be conclusive, further exploration of the other
packets is necessary. The next two packets in this attack (figure 34) are smaller,
but similar:

Figure 34 - Packets 2 & 3 of first attack

Ethereal’s TCP stream reassembly function was used to see the payload
of the three consecutive packets (figure 35).

Figure 35 - Contents of packets

Looking at Ben Allen’s analysis of a similar attack, the signature was
alerting on a similar FTPd CWD attack. The packets he analyzed in his practical
on page 12 were almost identical to the initial ones seen in these attacks:

• TTL = 44
• ID = 35386
• Len = 560
• Size = 508

There are multiple known FTP exploits that could elicit this type of packet, two
popular ones being the Vermilion FTPd attack, and the WU-FTPd attack. The
Vermilion attack is one of the popular FTP exploits, however, looking at the code

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

28

provided by USSR Labs, the ‘CWD’ command should come after the ‘user’ and
‘pass’ requests, which is not seen in the two attacks. Also, in the packet, CWD is
succeeded by zeros, and according to the source code, it’s succeeded as
follows:
“'CWD aa'”.

The WU-FTPd attack (also popular), has several versions and exploits.
The shellcode in the WU-FTPd attacks use NOP sleds, however the NOPs is a
little different, implementing the ‘9090’ method of ‘NOP’ing as follows

unsigned char x86_wrx[] =
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

 "\x31\xdb\x43\xb8\x0b\x74\x51\x0b\x2d\x01\x01\x01"
 "\x01\x50\x89\xe1\x6a\x04\x58\x89\xc2\xcd\x80\xeb"
 "\x0e\x31\xdb\xf7\xe3\xfe\xca\x59\x6a\x03\x58\xcd"
 "\x80\xeb\x05\xe8\xed\xff\xff\xff";

According to CVE entry 2001-0550, there are implementations of Wu-

FTPd that do not correctly handle file name globbing. The characteristic that
entices a deeper investigation is the characters “~{“ which are passed as
command parameters to ‘CWD’. This was seen in the second and third packets
in each attack.

 Another detail to point out is the time between packets. The first two
packets have an almost identical time stamp – 15:41:40, the third packet is off by
00:00:15, which is still relatively quick. It can be concluded that the attack is not
specific to just one, but more of a general FTPd scan, looking for systems
running vulnerable FTP implementations.

Correlations:
This was analyzed by Ben Allen in his practical from April 2004, where

packets appeared to be similar to the packets in this analysis. He alluded to the
fact that his attack targeted Vermilion FTPd. This was again analyzed by Kam
Hung Ng in May 2004 leading to the conclusion that the similar attack was
targeting Wu FTPd.

This was given a CVE entry of CVE-2001-0550, and a US Cert
Vulnerability Note VU#886083.

Evidence of active targeting:
If this is, in fact, a scripted utility or scan, then active targeting can be

discounted. Scans like this are popular among unskilled attackers who download
utilities and perform scans on subnets in hope of finding a vulnerable system.
With only two packets in this trace, there is limited information to use to
determine targeting. Based on the analysis, it appears that active targeting can
be ruled out.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

29

Severity
Severity = (4+5) – (3+3) = 3

Severity = (criticality + lethality) – (system countermeasures + network

countermeasures)

Criticality: 4 – The systems targeted in this attack have given little indication that

they are running FTP processes, however the subnet UNI.NET.50.0/24
correspond to other hosts that are running Web services, and should be
an indicator to keep an eye on.

.
Lethality: 5 – This attack, if successful, can lead to root access of the target

system.

System Countermeasures: 3 – The targeted systems did not respond to the

attackers in the capture, however given the nature of attacks, it can be
assumed this system is running vulnerable software.

Network Countermeasures: 3 – Although filtering does not appear to be in place

on the internet facing device, the perimeter device appears to be filtering
for specific addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

30

Network Statistics
Using tcpdstat, a concise snapshot of information from the binary capture

file is shown (figure 36).

[root@recon analyst]# tcpdstat pcap

DumpFile: pcap
FileSize: 2.17MB
Id: 200211151626
StartTime: Fri Nov 15 16:26:47 2002
EndTime: Mon Nov 18 05:45:48 2002
TotalTime: 220741.05 seconds
TotalCapSize: 2.13MB CapLen: 1514 bytes
of packets: 3091 (2.57MB)
AvgRate: 372.44bps stddev:1758.85 PeakRate: 169.57Kbps

IP flow (unique src/dst pair) Information ###
of flows: 560 (avg. 5.52 pkts/flow)
Top 10 big flow size (bytes/total in %):
 15.3% 8.7% 7.3% 6.9% 6.2% 5.9% 5.7% 5.2% 3.1% 3.0%

IP address Information ###
of IPv4 addresses: 586
Top 10 bandwidth usage (bytes/total in %):
 91.9% 15.3% 8.7% 7.3% 6.9% 6.2% 5.9% 5.7% 5.2% 3.1%
Packet Size Distribution (including MAC headers) ###
<<<<
 [32- 63]: 596
 [64- 127]: 300
 [128- 255]: 330
 [256- 511]: 284
 [512- 1023]: 402
 [1024- 2047]: 898
 [2048- 4095]: 250
 [4096- 8191]: 31
>>>>

Protocol Breakdown ###
<<<<
 protocol packets bytes bytes/pkt
--
[0] total 3091 (100.00%) 2697979 (100.00%) 872.85
[1] ip 3091 (100.00%) 2697979 (100.00%) 872.85
[2] tcp 3040 (98.35%) 2694311 (99.86%) 886.29
[3] ftp 6 (0.19%) 1458 (0.05%) 243.00

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

31

[3] dns 1 (0.03%) 60 (0.00%) 60.00
[3] http(s) 385 (12.46%) 380991 (14.12%) 989.59
[3] http(c) 1874 (60.63%) 2233055 (82.77%) 1191.60
[3] netb-se 12 (0.39%) 1356 (0.05%) 113.00
[3] socks 107 (3.46%) 6448 (0.24%) 60.26
[3] squid 107 (3.46%) 6434 (0.24%) 60.13
[3] irc6667 1 (0.03%) 75 (0.00%) 75.00
[3] irc7000 12 (0.39%) 900 (0.03%) 75.00
[3] http-a 122 (3.95%) 7366 (0.27%) 60.38
[3] other 400 (12.94%) 55388 (2.05%) 138.47
[2] udp 16 (0.52%) 1568 (0.06%) 98.00
[3] sunrpc 16 (0.52%) 1568 (0.06%) 98.00
[2] igmp 35 (1.13%) 2100 (0.08%) 60.00
[2] frag 94 (3.04%) 119400 (4.43%) 1270.21
>>>>

Figure 36 - tcpdstat provides statistical network information

Top Five Talkers

To define the top talkers, the number of packets were transmitted was
used as criteria. To do that, of Ethereal’s statistical features was used (figure 37).
Based on the number of packets sent, the 5 top ‘talkers’ are as follows

UNI.NET.50.120 202.108.254.200 64.125.138.190 255.255.255.255 202.108.254.204

Address Packets Bytes
Tx
Packets

Tx
Bytes

Rx
Packets

Rx
Bytes

UNI.NET.50.120 1642 1359635 1371 989358 271 370277
202.108.254.200 221 13260 221 13260 0 0
64.125.138.190 112 140174 112 140174 0 0
255.255.255.255 93 5580 93 5580 0 0
202.108.254.204 86 5160 86 5160 0 0

Figure 37 - Ethereal produces helpful statistical information

Top Five Targeted services or ports

The top 5 targeted ports, based on the number of occurrences, are as
follows:
Port Protocol Occurrences
80 Tcp 420
0 Tcp 137
515 Tcp 93
111 Udp 16
21 Tcp 2
Figure 38 - Top 5 targeted ports

Three most suspicious external source addresses

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

32

Although there were quite a few ‘suspicious’ external IP addresses, there
were a few hosts that stood out as being more suspicious than others. Two of
these were proxy systems, and the third was an IRC server.

Table 2 lists the top three suspicious IP addresses.

IP Function
61.140.72.65 Squid Web Proxy Cache v 2.4
213.40.67.66 NetApp NetCache Appliance
216.12.211.209 IRC Server
Table 2 - Three most suspicious external hosts

The two external proxies were chosen due to the nature of a proxy
system. Attacks can be relayed through a proxy to the victim, eliminating traces
of the original attacker. The IRC, or Internet Relay Chat, server was also chosen
due to the nature of IRC communication. IRC is a popular method of
communication used by hackers to express information regarding new exploits
found or existing exploits used to target victims of choice.

The first IP (61.140.72.65) appeared to be a UNIX system running Squid
Web Proxy v 2.4 based on the http payload. The operating system is assumed to
be UNIX, since Squid only runs on UNIX based systems. The timestamp in the
http requests (GET and POST) shows a January date, although the packets
show a November timestamp, which could imply an improperly configured server.
An APNIC search shows that the following host is based in China:

inetnum: 61.140.72.64 - 61.140.72.79
netname: GUANGZHOU-ELEC-COMM-CENTER
descr: GUANGZHOU ELECTRIC COMMUNICATION CENTER
country: CN
admin-c: LW240-AP
tech-c: LW240-AP
mnt-by: MAINT-CHINANET-GD
changed: ipadm@gddc.com.cn 20010703
status: ASSIGNED NON-PORTABLE
source: APNIC
changed: hm-changed@apnic.net 20020827
Figure 39 - Squid Proxy host look up via APNIC

The host at IP 213.40.67.66 is also functioning as a proxy. Based on the
http requests, it appears to be running NetApp’s NetCache content delivery
appliance.

According to RIPE, this device resides in the UK (see figure 36).
inetnum: 213.40.0.0 - 213.40.255.255
role: The Internexus Group
address: Indigo House, Time Technology Park
address: Blackburn Road, Simonstone
address: Burnley, BB12 7NQ, UK
phone: +44 1282 681 320
e-mail: operations@internexusgroup.co.uk
trouble: abuse@supanet.com
admin-c: GA1249-RIPE
tech-c: GA1249-RIPE
nic-hdl: IG464-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

33

remarks: Please use abuse@internexusgroup.co.uk to report Abuse
changed: stephen.bailey@internexusgroup.co.uk 20040315
source: RIPE
Figure 40 - RIPE information on 213.40.67.66

The last IP, 216.12.211.209, appears to be an IRC server residing in

Texas (figure 37).

OrgName: Everyones Internet, Inc.
OrgID: EVRY
Address: 2600 Southwest Freeway
Address: Suite 500
City: Houston
StateProv: TX
PostalCode: 77098
Country: US

NetRange: 216.12.192.0 - 216.12.223.255
CIDR: 216.12.192.0/19
NetName: EVRY-BLK-4
NetHandle: NET-216-12-192-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.EV1.NET
NameServer: NS2.EV1.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-04-24
Updated: 2000-06-29
Figure 41 - ARIN output on 216.12.211.209

Thirteen packets were sent to this server on ports 6667 and 7000. Each
packet has the string “NICK [SVCDP]-XDCC-35” which, according to Marcus
Wu’s posting to the University of Stuttgart’s RUS CERT intrusion list, is an
attempt to switch nick handles to [SVCDP]-XDCC-35. The XDCC refers to an
IRC bot (or multiple) that use the DCC protocol for file sharing (Wikipedia).
Therefore it can be concluded that internal University hosts are file sharing via
IRC.

Correlations
In this analysis of the ‘Backdoor Q access’ detect, Les Gordon’s practical

was instrumental. Gordon conducted a thorough analysis of the known and
available versions of Q, and seemed to be reflected in a SANS Intrusion
Detection FAQ article regarding the Q Trojan. Detailed information was pulled
from the Q ‘readme’ file as well as some of the Q installation files.

Information was used from idsrearch.org on Web based attacks. Other
information was correlated with Snort’s primary configuration file (snort.conf) and
the main book used as a reference for Snort, Snort 2.1 Second Edition (Beale).

GCIA practicals from Ben Allen and Kam Hung Ng were used during the
analysis of the Shellcode FTP attacks. Both provide good insight, as well as a
cause and effect analysis to ensure related to the FTP attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

34

Insights into internal machines
There were at least two servers functioning in the capacity of web server.

Both UNI.NET.50.3 and UNI.NET.50.120 were noted sending and receiving web
traffic. The UNI.NET.50.0/24 subnet appears to be a web layer, given most of the
web communication (including the FTP attack) was targeting this subnet. The
host at UNI.NET.50.16 was targeted using tcp/139 indicating possible Microsoft
NetBIOS services running on the network, however this proved inconclusive due
to the lack of bi-directional traffic.

Defensive recommendations
Based on the analysis of the network traffic files, there are several points

of concern, in which defensive measures need to be taken. Starting from the
outside and working in, the following areas can be enhanced to protect both the
network and the systems on the network.

• External (border) Network Defenses
• DMZ
• Perimeter Network Defenses
• Internal Network Defenses
• System Defenses

External (border) network defenses: The first step in protecting the internal

local area network (LAN) is controlling the traffic hitting the border router/firewall.
Applying access control lists, ingress/egress filtering, and rate limiting on the
external router will prevent attacks such as Denial of Service (DoS) attacks that
affect internal machines and network bandwidth alike.

DMZ: Moving public facing servers, such as web servers, to the DMZ will
help prevent direct access into the internal network.

Perimeter network defenses: A stateful inspection firewall should be
placed as a border to the internal network. Since this is a University, and a wide
variety of traffic may be permitted on it, outbound connections will be permitted
on a stateful level, limiting inbound traffic to authorized packets only.

Internal network defenses: Internal VLANS (virtual local area networks)
should be employed to further segment internal hosts, adding once again another
layer of security. This would be beneficial to the University in separating student
activity from administrative activity. An additional sensor should be placed on the
internal network, monitoring internal VLANS, and should be tuned to mitigate
false positives.

System defenses: All critical systems on the network need to have
antivirus software installed and need to be regularly updated to current patch
levels, and current anti-virus definitions. Host based intrusion prevention should
be considered for deployment on critical servers (web, email, database) for an
added layer of security that is less intrusive to other hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

35

Part III – Analysis Process

The primary system used for the analysis was a Linux system running
Fedora Core 2. Tcpdump and Ethereal, two of the most popular network
analyzers used by analysts, were both installed and used. Each of the two had
benefits, and hence, each was used for different purposes.

Ethereal’s ‘follow tcp stream’ function was essential in reconstructing the
packets in the file, to see the human readable version of the payload. Ethereal’s
command line version, Tethereal, accepted the same filter syntax as Ethereal, so
it proved quite useful.

When using BPFs (Berkeley Packet Filters), tcpdump was the tool of
choice. With its speed and flexibility, tcpdump was able to quickly sort through
packets, producing the desired results. Tcpdump also has built in macros, which
saved time by providing quick filters by using keywords.

The meat of the analysis relied upon Snort Intrusion Detection System.
The version installed originally was 2.1.3, however upgraded to 2.2 during the
course of the analysis. Snort was configured to log to MySQL, which stored all of
the alerts and related information. To extract the alerts and to keep everything
somewhat organized, ACID was used, running on Apache, using PHP to query
the MySQL database.

Additional software included ngrep, and p0f. Ngrep has the ability to parse
both live traffic and pcap files, accepting BPF filters, as well as regular
expression matching. The regular expression matching was effective in this
analysis, permitting simple strings as arguments.

P0f is a passive fingerprinting utility, and like ngrep, can be used both on
live traffic and pcap files alike. P0f was used on the pcap file used in the analysis
to attempt to fingerprint hosts for an OS type, and although successful on some
hosts, was not able to fingerprint all.

Software Version
Linux, Fedora Core 2 default
Snort 2.2
MySQL 4
ACID 0.9.3
Apache 1.3
P0f 1.8.3
Ngrep 1.40.1, rev 1.23
Figure 42 – Analysis software and versions used.

A separate computer was used for the compilation of the practical itself.
Originally, Open Office 11 was used on the Fedora Core 2 system; however
compatibility issues kept arising when viewing the assignment on other
computers. It was eventually replaced by a Windows XP Professional, running
Office XP, and Visio 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

36

Works Cited

Allen, Ben. “Task-Optimized Operating Systems for Intrusion Detection.” GIAC Certified

Intrusion Analysts (GCIA) May 2004 GIAC

“Analysis Console for Intrusion Databases (ACID).” Analysis Console for Intrusion Databases.

0.9.6b23. 08 Jan 2003 SourceForge.net http://acidlab.sourceforge.net/

“American Registry for Internet Numbers.” ARIN.net November 2004 ARIN http://www.arin.net

“CAN-1999-0660 (under review).” Common Vulnerabilities and Exposures CVE 1999

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660

“CAN-2001-0550.” Common Vulnerabilities and Exposures CVE 2002 http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CAN-2001-0550

Caswell, Brian et al. Snort 2.1 Intrusion Detection, 2nd Edition Rockland: Syngress, 2004

“CERT Advisory CA-2001-26 Nimda Worm.” CERT.org. 19 Sep 2001.Cert Coordination

Center. October 2004 http://www.cert.org/advisories/CA-2001-26.html

“CERT Incident Note IN-2001-09.” CERT.org 17 Jan 2002. Cert Coordination Center. October

2004 http://www.cert.org/incident_notes/IN-2001-09.html

Dittrich, Dave. “Tools written/modified by Dave Dittrich.” September 2004

http://staff.washington.edu/dittrich/talks/core02/tools/tools.html

Gordon, Les M. “Intrusion Analysis – The Director’s Cut.” GIAC Certified Intrusion Analysts

(GCIA) November 22, 2002 GIAC

http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc

“IEEE OUI and Company_id Assignments.” IEEE 29 October 2004 IEEE

http://standards.ieee.org/regauth/oui/index.shtml

Kozio, Jack, et al. The Shellcoder’s Handbook, Discovering and Exploiting Security Holes.

Indianapolis: Wiley, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

37

“LOGS: GIAC GCIA Version 3.3 Practical (Marcus Wu).” RUS CERT January 16, 2003

Universitat Stuttgart

http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00120.html

“Microsoft Security Bulletin (MS00-78).” Microsoft TechNet 17 Oct 2000 Microsoft.com

October, 2004 http://www.microsoft.com/technet/security/bulletin/MS00-078.mspx

.mixter security | .code” mixter security 2002 by Mixter http://mixter.void.ru/code.html

Northcutt, Stephen, and Judy Novak. Network Intrusion Detection, An Analyst’s Handbook 2nd

Edition. Indianapolis: New Riders, 2001

“NSA/SNAC Router Security Configuration Guide.” NSA Version 1.1

http://www.nsa.gov/snac/routers/cisco_exec_sum.pdf

Stevens, W. Richard TCP/IP Illustrated, Volume 1: The Protocols Indianapolis: Addison-Wesley

1994

“Snort Signature Database.” Snort August 2004 http://www.snort.org/cgi-bin/done.cgi

 “TCPDUMP public repository.” Tcpdump/libcap. 22 Jun 2004. tcpdump.org. August 2004

http://www.tcpdump.org

“tethereal - The Ethereal Network Analyzer 0.10.7.” Ethereal September 2004

http://www.ethereal.com/docs/man-pages/tethereal.1.html

“US-CERT Vulnerability Note VU#111677.” Microsoft IIS 4.0 / 5.0 vulnerable to directory

traversal via extended unicode in url (MS00-078). December 04 2000 US-Cert. October

2004 http://www.kb.cert.org/vuls/id/111677

“US-CERT Vulnerability Note VU#886083.” WU-FTPD does not properly handle file name

globbing April 30, 2001 US-Cert October 2004 http://www.kb.cert.org/vuls/id/886083

Roelker, Daniel J. “HTTP IDS Evasions Revisited.” IDSResearch.org :: about intrusion detection

August 1, 2003 IDSResearch.org http://docs.idsresearch.org/http_ids_evasions.pdf

“XDCC.” Wikipedia, The Free Encyclopedia November 24, 2004 Wikipedia

http://en.wikipedia.org/wiki/XDCC

