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Chapter 1

Executive Summary

This report shows an in-depth analysis of intrusion detection logs gathered between the
months of August and November 2002.

The data analyzed shows signs of intrusions and machines compromised by backdoors
and worms. The following findings need immediate attention; the analysis in this report
gives the necessary details and support for calling the attention to these incidents:

e Multiple machines in the internal network are compromised by a worm. The compro-
mised machines are actively trying to infect other vulnerable machines (see Section
3.1).

e At least one machine is compromised by an FTP attack (see Section 3.1 under
“FTP CWD overflow attempt). We recommend taking these machines offline im-
mediately.

e External sources are utilizing reconnaissance mechanisms to gather information
about the internal networks (see Section 3.2).

e It seems that a DoS attack is targeting a number of internal machines (see Section
3.5'). These findings have to be confirmed with some additional source of infor-
mation. In case of a positive confirmation, ACLs on the border devices should be
configured to block all the aggressors.

e Peer to peer traffic was detected by the IDS (see Section 3.5). We recommend to
possibly block peer to peer traffic at the border. If this is not a possibility, an
awareness session with all the internal users should help reduce this type of activity.

Whereas the above finding should be immediately addressed, there are some more
recommendations that should be addressed:

1Sections 3.5 and 3.6 are published at http://raffy.ch/projects/
Raffael_Marty_GCIA_Additional_Chapters.pdf. The end of this Section explains the reason
for this.
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6 CHAPTER 1. EXECUTIVE SUMMARY

e The Snort signatures should be tuned. We will see all throughout the report, that
the number of false positives is immense.

e We were only given log files from one Snort instance. The amount and type of
attacks this sensor can capture is very limited. We recommend deploying more
sensors, especially in the internal network. We will see later how another sensor
could help us verifying some of the attacks.

e Given the high number of false positives, it would make sense to utilize some kind of
a correlation software or even a security information management (SIM) solution.
The additional context that a SIM could add to an event would greatly improve
their accuracy.

e As we will see later, there do not seem to be any access control devices deployed at
all. Even if this is an academic environment, where networks have to be as open
as possible, we recommend to filter certain traffic, such as peer to peer that can be
abused for illegal purposes (see Section 3.5).

e To limit the amount of malicious traffic (e.g., peer to peer, irc servers, etc.), we
recommend to first issue a security policy which disallows these services and second
to enforce the policy.

We found that the data sets were already analyzed by many other GCIA students.
Instead of repeating their analysis, we decided to approach the problem slightly different,
by emphasizing the ways of analyzing such a data set. The paper is therefore a little
weaker on the analysis of specific incidents and focuses more on the approach of getting
a handle of a big data set. We will first give a very generic overview of the data found in
the log files. After determining the topology, we will outline some anomalies (Chapter 2)
and then establish some hypotheses on how to find suspicious behavior in a generic way
(see Chapter 3).

We had to take two Sections out of this paper as it grew too big. We did not want
to loose our main Sections where we came up with interesting ways of analyzing the data
but put some of the “ordinary” analysis Sections on a Web page: http://raffy.ch/
projects/Raffael_Marty_GCIA_Additional_Chapters.pdf.

Before I forget: Thanks to Christian for helping me with AfterGlow[14] and Colby for
having a quick glance at the paper before submission.

© SANS Institute 2005 Author retains full rights.



Chapter 2

Analysis

The analysis for this paper was done on a Linux system, we used tcpdump|23] to read the
logs provided. Mergecap(1)[3] was used to combine multiple log files into one, in order to
facilitate the analysis of more than one file. To process output from tcpdump, standard
UNIX utilities like sed(1) and awk(1) were utilized. For all these tools, their respective
man pages will give more information on how exactly they can be used. In addition to
all of these tools, We decided to utilize graphical libraries and utilities to generate event
graphs for visual analysis.

This chapter will first set the stage for what exactly has been done and what files have
been analyzed. Then some first analysis steps are executed and event graphs introduced.
This first Chapter will give us a very good understanding of what type of traffic we are
dealing with in all the log files. Chapter 3 will then go into some in-depth analysis of a
few findings. The exact tools used during the analysis process are explained in Appendix
C. There we will walk through an elaborate example of how to graph events. Space
limitations for this paper did not allow us to show all the steps necessary to generate each
graph in this paper!.

2.1 Log Data

For the purpose of this analysis, we decided to use 52 log files (see Appendix A) out of
the collection that is made available by SANS[9]. All the files analyzed were recorded
by a Snort[16] instance running in binary logging mode. This means that only packets
triggering a signature appear in the logs. This fact is going to play an important role
later when we analyze the data and try to draw some conclusions.

To work with all the 52 log files, we merged them into one big tcpdump file using
mergecap(1).? The merging of the log files yielded 324.000 recorded packets as the fol-
lowing command shows:

Tt would probably also be boring to read through all of them.
2The command to generate the merged capture file is: mergecap -w /tmp/sans 2002.x*

© SANS Institute 2005 Author retains full rights.



8 CHAPTER 2. ANALYSIS

tcpdump -nnelr /tmp/sans | wc -1
324461

2.2 MAC Addresses

To start the analysis, we want to understand the environment in which the log files were
collected. A few simple queries should reveal some of the topology. Firstly it is interesting
to figure out what the network looks like that the snort instance was running on. To get
an idea of the topology, let us have a look at the MAC addresses®:

tcpdump -nnelr /tmp/sans | awk ’{print $2}’ | sort | uniq -c
141216 00:00:0c:04:b2:33
183245 00:03:€3:d9:26:c0

The output shows the source MAC addresses and the number of times they showed
up. It is important to understand that the number of packets from each of the two
devices does not have to be the same. It seems interesting that the number of packets
that triggered an alert from both devices are about the same. One would think that the
number of packets triggering a snort rule would be higher for connections coming into a
network and would therefore show a clear asymmetry in these numbers. This might be a
first clue about the network topology that we are dealing with. It might not be that we
have a clear internal vs. external situation, but something more complex. Let us continue
with some statistics and then see what these numbers can tell us.

The next step in our analysis is to find the destination MAC addresses and their

counts:

tcpdump -nnelr /tmp/sans | awk ’{print $4}’ | sort | uniq -c
183239 00:00:0c:04:b2:33
6 00:00:c0:6b:e9:c6

141216 00:03:e3:d9:26:c0

We have a new device showing up. We will see later what this device is. The other
two counts are directly linked to the counts we got before and we actually see that the
new device only received traffic and only from device 00:03:e3:d9:26:c0. Figure 2.1
summarizes our findings in a visual representation.

We can see that the snort sensor is surrounded by three other devices. To understand
the role of these three devices, we can try to look up what vendor produces them. The
IEEE OUI[8] assignments reveal the following:

00:00:0c:04:b2:33 Cisco Systems, Inc.
00:00:c0:6b:e9:c6 WESTERN DIGITAL CORPORATION
00:03:e3:d9:26:c0 Cisco Systems, Inc.

3The second field in the tcpdump output represents the source MAC address, see Appendix B.
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2.3 Subnets 9
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Figure 2.1: Source and destination MAC addresses showing up in the log files.

We cannot further break these assignments down to figure out what type of device
these MAC addresses represent. However, we learned that we are surrounded by two
network devices and most likely an end-systems. The western digital device is one that
is a little strange. The company is known to manufacture harddrives[25]. However, a
search on their Web page indicated that they also build firewire network interfaces. What
we could be dealing with here is a storage area network (SAN). We did not find any
further information about this device. None of the other GCIA practicals had a sound

explanation on what this device was. We have to leave it at the speculation of it being a
SAN.

2.3 Subnets

After spending a few hours issuing queries against tcpdump and trying to look at different
statistics of the data, we decided to develop a parser that would take tcpdump output
and put it into a MySQL[17] database. The parser can be found on the AfterGlow[14]
Web page along with all the scripts to generate the graphs in this paper.

To further understand the environment we are dealing with, it would be helpful to
know what subnets are behind all the three devices. Figure 2.2 shows a communication
graph. All IP addresses are aggregated into A classes. This gives us a first and rough
understanding of the address spaces and the topology*.

Looking at Figure 2.2°, we see a few interesting things:

e (0:00:c0:6b:€9:¢6 only shows packets that enter its network (arrows only point away
from the device). This supports our finding that this machine is an end system.
The mystery is that it has three different IP addresses.

e Some address spaces only show up as sources (red nodes), some as destinations
(white nodes) and most of them as both (blue nodes). This seems interesting in the
sense that we are looking at snort logs and would not expect to see rules triggering
for incoming and outgoing traffic to and from the same subnets. Normally we would
expect to get mainly incoming attack events from aggressors in the Internet.

4The choice to summarize the IP addresses into A classes was made to keep the graph legible and is
sufficient for the propose of determining the topology.
5As mentioned in the very beginning, Appendix C explains in detail how this graph was generated.

© SANS Institute 2005 Author retains full rights.



10 CHAPTER 2. ANALYSIS

00:00:c0:6h:e9:ch

Figure 2.2: Topology showing IP subnets (circles, summarized in A classes) and their
border devices (boxes). The arrows indicate the direction of traffic from the device. An
arrow leaving a device (box) indicates that traffic targeted this subnet. An arrow entering
a device (box) indicates traffic originating from this subnet (circle).

© SANS Institute 2005 Author retains full rights.



2.4 Topology 11

e Some subnets on the external network do only show up as targets (white nodes).
That means snort either generated false alarms or internal machines are attacking
the outside. In Section 3, we will further analyze this.

2.4 Topology

Putting all prior analysis together, we end up with a topology as it is shown in Figure
2.3.

00:00:c0:6b:e9:c6

00:03:€3:d9:26:c0 | 00:00:0c:04:b2:33

Snort IDS

Figure 2.3: Topology showing network devices, the snort IDS and the internal subnets.

2.5 Communications

Now that we have a rough idea of how the topology looks, we can try to further break
down the communications. Figure 2.4 shows the outbound connections. We see that only
ten machines are showing up. These are the number of destination that these machines
are connecting to°:

IP Count IP Count
207.166.87.157 6760 207.166.87.40 31
32.245.166.236 2972 32.245.166.119 31
138.97.18.88 2539 138.97.18.225 12
115.74.249.65 358 115.74.249.202 6
170.129.50.120 332 170.129.50.3 2

Figure 2.5 shows the inbound connections. After generating the first version of the
graph, it became apparent that there are too many IP addresses to be displayed:

select sourceip, count(distinct(destip)) from sans where sourcemac="00:00:0c:04:b2:33" group by sourceip

© SANS Institute 2005 Author retains full rights.



12 CHAPTER 2. ANALYSIS
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Figure 2.4: Outbound connections.

e Number of destination IPs:” 83634
e Number of destination IPs aggregated in C classes:® 1208

e Number of destination IPs aggregated in B classes:” 5

These numbers also suggest that there are five class B networks protected by this
device.

2.6 Top Talkers

Figure 2.6 shows the top talkers on each of the networks. To see whether there are
machines on the network that need special attention, either because they show up as
targets of many attack attempts or they seem to be unusual aggressors.

The ten machines in Figure 2.6 are machines on the internal network. There are

potentially compromised systems, as already mentioned in Section 2.3. We will have a
closer look at this in Section 3.3.

select count(distinct(destip)) from sans where sourcemac="00:03:e3:d9:26:c0"
8select count (distinct (substring_index(destip,".",3))) from sans where sourcemac="00:03:e3:d9:26:c0"

select count(distinct(substring_index(destip,".",2))) from sans where sourcemac="00:03:e3:d9:26:c0"
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2.6 Top Talkers 13

Figure 2.5: Inbound connections.

v e s e e e e e

207.166.87.157 32245]66236 138.97.18.88

115.74.249.65 170.129.50.120 207.166.87.40 32245166119 138.97.18.225 115.74.249.202 170.129.50.3

00:00:0c:04:b2:33

Figure 2.6: Top 10 sources (green nodes) originating behind source MAC address
00:00:0c:04:b2:33, i.e., events triggered by internal machines. The red nodes show the
number of times the source shows up.

64.154.80.51 64.12.137.56 64.12.184.14 64.154.80.50 64.12.180.148 64.154.80.49 64.154.80.44 64 154.80.45 209 11.34.129 64\154 B0.47

R

Figure 2.7: Top 10 targets (green nodes) in the external network targeted by machines
situated behind MAC address 00:00:0c:04:b2:33. These are all the internally originating
events targeting systems in the Internet. The red nodes show the number of times the
target occurs.
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14 CHAPTER 2. ANALYSIS

e el e e e e

210.243213238 61.172.246.78 2419048235

217228210.78 24 22022720

66 123,116,234 24.90.122.137 24 154202158 6628 100,206 24 101114 84

Figure 2.8: Top 10 sources originating behind source MAC address 00:03:e3:d9:26:c0.
These are the top 10 systems on the external network attacking internal machines. The
red nodes show the number of times the source shows up.

32245166236 207.166.87.157 32245]66]]9 138.97.18.88 207.166.87.40 170.129.50.120

ER S

Figure 2.9: Top 10 targets (green nodes) originating from source MAC address
00:03:€3:d9:26:c0. This shows the top 10 machines in the internal network, targeted
by external machine. The red nodes show the number of times the source shows up.

115.74.249.65 207.166,135.150 138.97.18.225 207.166.48,48
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2.7 Gateway’s Role 15

2.7 Gateway’s Role

We still do not know much about the topology we are dealing with. The fact that only
ten machines show up as sources (Figure 2.4) lets us speculate that the device with
the MAC address 00:00:0c:04:b2:33 is a network address translation (NAT) gateway.
To support this claim, we ran a query that shows the IP time to live (TTL) values
per source IP addresses. We would expect exactly one TTL per IP address, except
for a network address translation (NAT) gateway which guards machines with different
operating systems. Why different operating systems? Assuming that the NAT gateway
protects a non-routed network, the resulting TTLs for packets leaving the network would
be the same for all the packets, unless machines used different initial TTL values. As
[24] shows, different operating systems utilize different initial TTL numbers. Therefore
our claim that a NAT gateway shows a variety of TTLs if it protects different operating
systems. Let us verify whether this is the case in our data set. Figure 2.10 shows the
TTLs per source IP.

Figure 2.10: TTLs per source IP for traffic originating behind 00:00:0c:04:b2:33.

The result supports our speculation that we are dealing with a NAT device. As a next
step we tried to determine the operating systems associated with the IP addresses. Using
[24], we mapped these addresses to operating systems, which turned out to be impossible.
The initial TTL vales for operating systems are commonly 30, 32, 60, 64, 128 or 255.
Assuming the end systems are not too far away from the gateway, most of the values
showing up should be in close proximity to these numbers. What we see in the logs is
very different though. There are values like 36, which has to be associated with either
60 or 64. This would result in a hop count of (60-36=24). This does not seems right.
Someone must be playing with these values.

The fact that we have TTLs that are in a contiguous range, suggests that there is a
routed network behind the gateway. However, the chain of 122, 123, 124 and 125 would
indicate that there is a machine in each of the subnets. Something seems to be wrong.
We will later investigate this along with the strange TTLs discussed in the last paragraph
(see Section 3.6 in [15]).

Another fact that remains unclear is why there are ten different IP addresses showing
up as sources from device 00:00:0c:04:b2:33. That would indicate that we have a firewall
with ten translated IP addresses. However, the IP addresses are in very different networks.
This leads to the speculation that the firewall has ten interfaces. Another explanation

© SANS Institute 2005 Author retains full rights.



16 CHAPTER 2. ANALYSIS

would be that the log files were tempered with to present this very picture.

2.8 Services

The next step in our analysis is to figure out what services the machines behind the NAT
gateway are offering. We are first interested in how many snort signatures require the
destination machine to accept connections in order to fire (i.e., meaning that the service
exists on the target system). The flow keyword in snort signatures makes sure that the
signature only triggers after a connection to the destination service has been established.
In addition, snort signatures have a content keyword, which looks at packet contents.
This can, to a certain extent, make sure that snort does not trigger on bogus traffic where
no destination service is present. Assuming that TCP SYN packets do not carry any
content (this is not always true), we can argue that only after a successful handshake
between the attacker and the target service, content can be transmitted over the wire.
This would require the target service to be present. Here are some numbers we collected:

e Total number of rules: 2510,
e Number of rules checking the flow: 2045,
e Number of rules not checking the flow: 425'2.

e Number of rules not checking the flow and not checking for content: 132 3.

The fact that 425 signatures are triggering without making sure that a flow is estab-
lished, is somewhat disappointing. The 132 signatures which do not check for a flow nor
do they check the content, are even worse. Firstly these signatures are very prone to false
positives. Even if the destination machine does not offer the service these signatures are
still going to trigger. Secondly, when we are going determine what services the destination
machines offer, we cannot take these signatures into account. We will continue on the
idea of mapping out destination services for machines a little later.

To quickly see whether it makes sense to map the destination services to machines,
despite the findings from above, we ran a couple of queries to see what target ports
are accessed. The results in Table 2.1 are again very interesting and nicely support our
findings from before. The top signatures triggering are those with very simple definitions
and only look at the destination port along with some other properties'*. In some cases
source and destination are inverted. Normally a TCP connection is initiated from a source

10grep alert *.rules | wc -1

Hegrep ““flow:’’ *.rules | grep -v ‘‘stateless’’ | wc -1

R2grep -v ‘‘flow:’’ *.rules | grep alert | wc -1

Bgrep -v ‘‘flow’’ *.rules | grep alert | grep -v content | wc -1

14Gee the following signatures: SCAN Squid Proxy attempt, SCAN Proxy Port 8080 attempt,
SCAN SOCKS Proxy attempt, ...

¢
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2.8 Services 17

port that is bigger than 1024. In the case of Linux, it’s even above 32768 and services
offered by a machine are typically below 1024. The ports in Table 2.1, however, show
some quite anomalous ports. Destination ports above 60000 are very uncommon.

Query Count | Port

Number of distinct destination ports on 2556
the internal network

Top destination ports 64493 21

45931 | 3128

45001 | 8080

11901 | 1080

4402 80

1917 515

840 0

424 | 9511

352 53

282 | 62513

213 | 2673

203 139

131 137

84 | 6346

55 | 61310

52 | 63414

52 | 62830

39 | 61939

Table 2.1: Destination port statistics.

Figure 2.11 shows a few source, destination port combinations after filtering out the
most common destination ports. Again, very uncommon port pairs show up. For example,
there are many source ports of 80. This probably indicates that there are snort signatures
which trigger on Web responses as opposed to Web requests.

Taking the data from Figure 2.11 and adding the count per connection yields Figure
2.12. Some interesting port pairs suddenly show up. After filtering out the most frequent
connections, connections from port 6666 to port 62513 are surfacing. There are also
connections from port 0 to port 0, as well as connections from port 53 to port 53. Some
of the connections from port 0 to port 0 are there because we used a database and the
ports show up as zero, if they are not set. These are most likely ICMP packets or 1P
fragments. We also have 53 packets that are from an FTP data connection (source port
of 20). A lot of the connections in Figure 2.12 expose very strange port pairs, which do
not make much sense.

5cat /proc/sys/net/ipv4/ip_local_port_range

© SANS Institute 2005 Author retains full rights.



18 CHAPTER 2. ANALYSIS

Figure 2.11: Source and destination port pairs after filtering the most common destination
ports.
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2.8 Services 19

Figure 2.12: Connections and their number of occurrence where the most frequent target
ports and source ports of 80 are filtered out.

More interesting packets resulted when we generated a graph of all the communications
from a port below 1024 to a port below 1024 (see Figure 2.13. This is not something that
normally happens.

Figure 2.13: Connections and their number of occurrence where source and destionation
ports are below 1024.

We now have some understanding of what is going on, but still have no idea what
services are running on the machines. To address this problem, we first generated a snort
alert file:

snort -c /etc/snort/snort.conf.complete -UDek none -r /tmp/sans -1 snortlog

Note that the configuration file we passed to Snort is one that includes all the .rules
files. By default this is not the case. We removed all the flow: parameters from the rules.
Otherwise only a fraction of all the log entries will generate a snort alert, because snort
is expecting a flow to be established. This will never be the case, because the logs only
contain the packets immediately triggering the rules. The -U flag in the snort command
changes the time format to use UTC. This is used to match the timestamps with the
alerts in the database. The database with the packet information was then updated with
the additional snort alerts.!S. In a next step, we flagged all the entries in the database

16Check snortalerts.pl at [14] for the exact script to annotate the snort log entries with their corre-
sponding alerts.

© SANS Institute 2005 Author retains full rights.



20 CHAPTER 2. ANALYSIS

that were generated by rules requiring an established flow!”. All this helpts to make
a statement about what services the machines really offer. Figure 2.14 is a first pass
on showing the services available on target machines'®. As you can see, there are some
strange services showing up:

e All events associated with X11 outbound client connection detected have the
ports inverted because the snort alert triggers on the response packets.
e For the following alerts, the source and targets are inverted:
WEB-CLIENT readme.eml autoload attempt
P2P Napster Client data
Virus - Possible MyRomeo Worm
CHAT AIM receive message
Virus - SnowWhite Trojan Incoming
CHAT IRC message

e P2P GNUTella client request packets are associated with varying high ports.
These ports cannot be associated with services.

All the information combined results in Figure 2.15, which shows a corrected version
of the graph, with the real services exposed by the machines.

17Check snortservice.pl at [14] to see how exactly the database was updated.

18The query for the graph was: select destip,destport,replace(snort_alert," ","_") from sans
where service=1 and destmac="00:00:0c:04:b2:33 combined with select destip,sourceport,
replace(snort_alert," ","_") from sans where service=2 and destmac="00:00:0c:04:b2:33.
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2.8 Services

"SOUITDRUWL J981Ie) oY) UO SUIUUNI IR SIOIAISS JRUM N0 oINSy 0) jdurejye ISIy Y :F°g 2In3ig

201

Tl

el

1zl
v

82079

sortg 180

TLOE

SHIT

SOET

1 war

181
osLt

ser ey

LT

1 22un0 U punoqne | [X STl (]

ILED.

ES: OI8€9.
TROPO

FE089

Eliee) I

wsanbaiTma TR BLOAND dzd [9:er < 1]

96679

1156

Cl)

uzdox™ I\ Tpog 1]

K pwisi o 5

prowssud—ou™g 1 £ OANI[Li68H 1]

i J =R g amodid ez
[~

OM -8 L8821 1]

— T T

S

onadwoa 2~ prq"dy-na g L Fr ez T

020z
TEHEY
ceh|
176
A AT o34 LT TERH ]
O 659
= 1 ] IR
j 659
cosead] 00559
19659
(]
Gl €IsT9

9
i

e

T
iz poo B e u_:EuﬂEeﬁmm»&:_gmﬁ

6659
SR R LN R R )

'K sfus auan 222 NIV IVAD 196591 1]

€919

wriop "oRuoN AN RIS 0d S IIA IO ) - -,

SN CET

Author retains full rights.

© SANS Institute 2005



22 CHAPTER 2. ANALYSIS

During the process of identifying the role of machines, we found two of them which
need some further investigation. Both machines are running some kind of a server and X11
outbound connections were identified to the machines. It seems that the security policy
should prohibit such behavior. We will investigate those two machines (32.245.166.236
and 138.97.18.88) in Section 3.4.

To determine the operating systems running on the machines, we ran the dataset
through p0f[26]. The results were both interesting as well as disappointing. pOf heavily
relies on analyzing TCP SYN packets. In our logs, however, there are not very many
of those and the analysis fails for all the hosts of interest. We already tried to identify
the operating systems via the TTLs in the network traffic, which also failed. This pretty
much leaves us in the dark with regards to the OSes of the machines.

All this information taken together, we were able to build Table 2.2 that shows the
machines in the protected network and their probable roles.

2.9 Missing Snort Alerts

There is still one issue we have not resolved. Why are there about 324461 log entries, but
for about 70,000 of them we were not able to generate a snort alert. Out of these 70,000
events, more than 69.000 are related to Web traffic (targeting or originating from port
80).

There are multiple possible reasons for this:

e Our snort rules were different, either because the original snort was tuned, custom
signatures were used or the signatures got updated over time.

e We did not have the same settings for the preprocessors or originally, other prepro-
cessors were used.

e We set the HOME_NET or other variables differently.
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Figure 2.15: The definite list of services running on the target machines showing also the
snort rules that lead to the detection.
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CHAPTER 2. ANALYSIS
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Role

Machine

Web, DNS, X Server and more

138.97.18.88

Web, DNS, POP and more

32.245.166.236

DNS Server 207.166.87.157
DNS Server 207.166.87.159
DNS Server 32.245.166.238
FTP Server 170.129.50.5
FTP Server 207.166.87.40
FTP Server 207.166.87.41
FTP Server 207.166.87.42

Web and FTP Server
Web and FTP Server
Web and FTP Server
Web and FTP Server
Web and FTP Server

115.74.249.202
170.129.50.4
207.166.87.58
207.166.87.60
32.245.166.119

Web Server 115.74.249.220
Web Server 115.74.249.222
Web Server 138.97.103.39
Web Server 138.97.18.225
Web Server 138.97.18.226
Web Server 138.97.18.227
Web Server 138.97.18.237
Web Server 138.97.18.243
Web Server 138.97.18.245
Web Server 138.97.18.250
Web Server 170.129.50.21
Web Server 170.129.50.23
Web Server 170.129.50.3
Web Server 170.129.97.11
Web Server 207.166.153.27
Web Server 207.166.242.119
Web Server 207.166.8.195
Web Server 207.166.87.40
Web Server 207.166.91.57
Web Server 32.245.116.116
Web Server 32.245.228.137
Web Server 32.245.229.244
RPC Server 207.166.87.157
X Server a few

Table 2.2: Machines and their roles.
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Chapter 3

Investigations

In this Chapter we will first have a glance at all snort alerts we were able to generate with
the log files analyzed. This will help us understand the trends in the data set. In the
following sections we will then have a closer look at some of the issues we identified in the
first Chapter. In addition to the discussion of those findings we will come up with different
methods to analyze datasets. We will see that there are a number of machines utilizing
automated ways of attacking machines. We also found a lot of false positives in the alerts
triggered by snort. A rough guess is probably around 50%. This is very disappointing
and shows that something fundamental is wrong in the world of network-based intrusion
detection systems. We will suggest a possible fix at the end of the next Section.

3.1 Snort Alert Investigations

Table 3.1 shows a complete list of the snort alerts triggered by the data analyzed. These
alerts were generated using the method discussed in Section 2.8. The alerts in bold are
the ones we will have a closer look at. The selection of events was done based on three
criteria:

1. The severity of the snort alert triggered (e.g., a buffer overflow event is more severe
than the detection of IRC traffic).

2. The level of precision of the snort rule (e.g., some snort rules only look for certain
port numbers in the traffic, which is very prone to false positives).

3. Some analysis of the packets triggering the snort rules (e.g., most of the rules looking
for Web traffic related attacks, are false positives; they are very loosely written and
merely check for the presence of a certain string in the HTTP protocol).

A lot of GIAC students have already analyzed these datasets and have published their

findings[10]. We do not want to repeat their findings here. We will however provide a
short list of the most important activities found in the log data. We will quickly describe
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Count Alert Count Alert

64466 SCAN synscan portscan 64466 SCAN SYN FIN

45820 SCAN Squid Proxy attempt 44872 SCAN Proxy Port 8080 attempt

29008 WEB-IIS header field buffer overflow attempt 21102 P2P GNUTella client request

21082 P2P Outbound GNUTella client request 20714 P2P Inbound GNUTella client request

11790 SCAN SOCKS Proxy attempt 9188 (http-inspect) BARE BYTE UNICODE ENCODING
3690 (http-inspect) OVERSIZE REQUEST-URI DIRECTORY 1813 (http-inspect) IIS UNICODE CODEPOINT ENCODING
1801 BACKDOOR Q access 1485 SCAN nmap TCP

1470 P2P Napster Client Data 1137 CHAT IRC nick change

835 CHAT MSN message 775 BAD-TRAFFIC tcp port 0 traffic

690 WEB-IIS view source via translate header 528 (http-inspect) APACHE WHITESPACE (TAB)
446 WEB-FRONTPAGE /_vti_bin/ access 402 WEB-MISC http directory traversal

385 SHELLCODE x86 NOOP 379 WEB-CGI formmail access

366 (http-inspect) NON-RFC HTTP DELIMITER 351 (http-inspect) DOUBLE DECODING ATTACK
330 WEB-FRONTPAGE _vti_rpc access 325 WEB-FRONTPAGE _vti-inf.html access

324 WEB-FRONTPAGE shtml.exe access 257 WEB-IIS %2E-asp access

246 WEB-IIS cmd.exe access 237 WEB-CGI redirect access

180 (http_inspect) WEBROOT DIRECTORY TRAVERSAL 169 ATTACK-RESPONSES 403 Forbidden

111 BAD-TRAFFIC same SRC/DST 93 X11 outbound client connection detected

93 WEB-MISC Invalid HTTP Version String 86 WEB-CGI formmail arbitrary command execution attempt
7 SHELLCODE x86 inc ebx NOOP 75 DNS zone transfer TCP

65 WEB-MISC weblogic/tomcat .jsp view source attempt 52 (snort_decoder) WARNING: TCP Data Offset is less than 5!
43 BAD-TRAFFIC ip reserved bit set 41 WEB-IIS ISAPI .ida access

40 WEB-IIS ISAPI .ida attempt 33 BAD-TRAFFIC data in TCP SYN packet

32 MISC Tiny Fragments 24 BAD TRAFFIC Non-Standard IP protocol

22 SHELLCODE x86 setuid 0 21 WEB-CLIENT readme.eml autoload attempt

14 WEB-MISC search.dll access 13 WEB-CGI calendar access

12 SHELLCODE x86 setgid 0 12 SCAN FIN

10 WEB-ATTACKS id command attempt 10 INFO Outbound GNUTella client request

10 FTP CWD attempt 8 WEB-CGI search.cgi access

8 WEB-ATTACKS cc command attempt 8 (snort_decoder): Short UDP packet, length field > payload length
8 RPC portmap mountd request UDP 7 WEB-CGI campus access

6 WEB-MISC /doc/ access 6 WEB-FRONTPAGE shtml.dll access

6 RPC portmap pcnfsd request UDP 6 INFO FTP no password

5 X11 xopen 5 SHELLCODE x86 0xEBOC NOOP

5 RPC rstatd query 5 FTP wu-ftp bad file completion attempt

5 FTP CWD overflow attempt 5 FTP command overflow attempt

5 BACKDOOR NetMetro File List 4 WEB-MISC 7open access

4 MISC source port 53 to {1024 3 WEB-MISC Domino log.nsf access

3 WEB-CGI eXtropia webstore access 2 WEB-MISC .htaccess access

2 WEB-MISC /home/www access 2 WEB-IIS encoding access

2 WEB-CGI phf access 2 WEB-ATTACKS rm command attempt

2 Virus - Possible MyRomeo Worm 2 MISC xdmcp query

2 (http-inspect) OVERSIZE CHUNK ENCODING 2 CHAT IRC message

1 WEB-MISC sadmind worm access 1 WEB-MISC intranet access

1 WEB-MISC ICQ Webfront HTTP DOS 1 WEB-MISC handler access

1 WEB-MISC cross site scripting attempt 1 WEB-MISC apache directory disclosure attempt
1 WEB-IIS CodeRed v2 root.exe access 1 WEB-IIS asp-dot attempt

1 WEB-CGI zsh access 1 Virus - SnowWhite Trojan Incoming

1 SHELLCODE x86 stealth NOOP 1 SHELLCODE x86 0x90 unicode NOOP

1 MISC Source Port 20 to j1024 1 (http-inspect) U ENCODING

1 CHAT AIM receive message 1 ATTACK-RESPONSES id check returned userid
1 ATTACK-RESPONSES id check returned root

Table 3.1: All the snort alerts triggered by the data analyzed. The alerts in bold are the
ones that will be further investigated.

the findings, do a severity analysis and give a reference to more information (potentially
to other GCIA practicals that have analyzed this type of traffic). In some cases we will
do a quick analysis and show that snort generated false positives.
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There is worm traffic (e.g., Nimda and Code Red) showing up in the log files. We do
not discuss this here, but direct the interested reader to [13]. For a short description of
how the severities can be computed see Appendix D.

¢ BACKDOOR Q access

Description: Pete Storm[21] did a great job of analyzing this backdoor traffic.
However, there is one point where we disagree with him. On page 15 of his paper, he
talks about the snort signature for the backdoor, which checks for packets coming
from the 255.255.255.0/24 subnet. He tries to explain why packets coming from this
subnet show up in the log files. We believe that these addresses are not sources,
but destinations! The snort rule looking at the backdoor traffic does not look for
incoming connections, but for the responses:

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access";
dsize:>1; flags:A+; flow:stateless; reference:arachnids,203;
classtype:misc-activity; sid:184; rev:6;)

Our hypothesis is that the backdoor sends traffic to one of the broadcast addresses
to see whether any machine answers. If an answer comes back from one of the
machines, the packet will be a response coming from the 255.255.255.0/24 subnet.

Severity: 3

Criticality: 2, we do not have any further information about this asset. This
machine did not seem to be involved in any other important traffic either.

Lethality: 5, if the Q" trojan is on a system, anything could have happened
to it and potentially other systems.

System Countermeasures: 2, we do not have information about the pro-
tection mechanisms on the host and therefore assume a two.

Network Countermeasures: 2, there seem to be no firewalls or ACLs on
the routers; however, an IDS is deployed.

Reference: Pete Storm, GCIA Practical[21]

e SHELLCODE x86

Description: Possible shellcode discovered on the wire. These snort rules are
very prone to false positives. They only check for sequences of certain bytes which
could show up in benign traffic such as emails, ftp transfers, .... Here are the
conditions the rules trigger on:

SHELLCODE x86 setgid 0 content:"|BO B5 CD 80|"

SHELLCODE x86 setuid O content:"|BO 17 CD 80|"

SHELLCODE x86 NOOP content:" |90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128
SHELLCODE x86 stealth NOOP content:"|EB 02 EB 02 EB 02]|"

SHELLCODE x86 0x90 unicode NOOP content:"|90 00 90 00 90 00 90 00 90 0O|"

SHELLCODE x86 inc ebx NOOP" content : "CCCCCCCCCCCCCCCCCCCCCCCC"

SHELLCODE x86 NOOP" content:'"aaaaaaaaaaaaaaaaaaaaa'

SHELLCODE x86 O0xEBOC NOOP content:"|EB 0C EB 0C EB OC EB OC EB 0C EB OC EB OC EB OC|"
SHELLCODE x86 0x71FB7BAB NOOP content:"q|FBI|{|ABIq|FBI{|ABIq|FBI{|ABIq|FB|{|AB|"

SHELLCODE x86 0x71FB7BAB NOOP unicode content:"ql|00 FB 00/{|00 AB 00/ql00 FB 00|{100 AB 00/q|00 FB 00|{|00 AB 00|ql00 FB 00|/{|00 AB 00|"
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Some of the traffic triggering these rules is HT'TPS (which is a false positive because
the traffic is encrypted and the signatures are written to match the unencrypted
traffic. Analyzing the traffic triggering these alerts, we found that almost all of the
connections were from very high port numbers to other very high port numbers.
If these were real shellcodes, we would expect the traffic to target well-known port
numbers in order to exploit a certain service running on a target system. It does not
make sense that this traffic would target high port numbers. We therefore conclude
that the traffic represents false positives except for the ones targeting port 20, which
are 72 of them. Even among this traffic, we suspect to find a high number of false
positives. This is all binary traffic and is very likely to contain some of the sequences
in the signatures. If the raw tcpdump logs would be available, we could make sure
that prior to the FTP data connections, there was a command connection that
requested a certain file or started an upload of a file. That would show that this
traffic did not contain shell code. It is also possible that somebody is transferring
shellcode via FTP and is not actively trying to exploit a system. This could be
verified by looking at the offset of the traffic in the data connection. If the offset
is a high one, we are dealing with someone potentially transferring shellcode in an
FTP connection. If the offset is very small, it is a potential buffer overflow attack.

It would be worthwile figuring out what the rest of this traffic represents (the one
from high port numbers to other high port numbers). However, with the data given,
this was impossible. A hypothesis is that the traffic is RPC traffic and the shellcode
tries to exploit an RCP service. Again, this would have to be verified with other
sources of information.

Severity: 3

Criticality: 3, we do not have any further information about these assets.
We do not know whether the attacks were successful.

Lethality: 4, if this is indeed shellcode an no false positives, the attack could
potentially execute commands on the target systems. Although, it is not clear what
the capabilities of executing code would be.

System Countermeasures: 2, we do not have information about the pro-
tection mechanisms on the host and therefore assume a two.

Network Countermeasures: 2, there seem to be no firewalls or ACLs on the
routers. Firewalls do not seem to be present either. Otherwise the communications
underlying this attack might have been blocked. However, an IDS is deployed.)

e FTP CWD overflow attempt

Description: This is an attempt to use the FTP CWD command to overflow a
buffer. Analyzing some packets, we found that there are some real buffer overflow
attempts and the rule triggered correctly. This is the snort rule:
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alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP CWD overflow attempt";
flow:to_server,established; content:"CWD"; nocase; isdataat:100,relative;
pcre:"/"CWD\s["\n]{100}/smi"; sid:1919; rev:19;)

And this is the offending packet:

03:09:06.526507 00:03:e3:d49:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4 (0x0800),
length 574: IP (tos 0x0, ttl 45, id 55450, offset O, flags [DF], length: 560,
bad cksum 9bb8 (->516e)!) 195.232.55.6.1701 > 207.166.87.42.21: P

[bad tcp cksum 7135 (->25e2)!] 2184450005:2184450513(508) ack 1127458918 win
5840 <nop,nop,timestamp 1040178 3948516>

0x0000: 0000 0c04 b233 0003 e3d9 26cO0 0800 4500 ..... 3....&%...E.
0x0010: 0230 d89a 4000 2d06 9bb8 c3e8 3706 cfa6 .0..0.-..... T...
0x0020: 572a 06ab5 0015 8234 0fd5 4333 a866 8018 Wx..... 4..C3.f..
0x0030: 1640 7135 0000 0101 080a 000f df32 003c ..g5......... 2.<

0x0040: 3fe4 4357 4420 3030 3030 3030 3030 3030 7.CWD.0000000000
0x0050: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0060: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0070: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0080: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0090: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00a0: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00b0O: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00c0O: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00d0: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00e0: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00£0: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0100: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0110: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0120: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130: 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0140: 3030 3030 3030 fOfc 4031 0708 985f 0808 000000..0@1..._..
0x0150: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x0160: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x0170: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x0180: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x0190: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x01a0: ebOc ebOc ebOc ebOc ebOc eblOc ebOc ebOc ................
0x01b0: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x01c0O: ebOc ebOc ebOc ebOc ebOc eblOc ebOc ebOc ................
0x01d0: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x01e0: ebOc ebOc ebOc ebOc ebOc ebOc ebOc ebOc ................
0x01f0: ebOc ebOc ebOc 9090 9090 9090 9090 9090 ................
0x0200: 9090 31db 43b8 Ob74 510b 2401 0101 0150 ..1.C..tQ.-....P
0x0210: 89el 6a04 5889 c2cd 80eb 0e31 dbf7 e3fe ..j.X...... 1....
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0x0220: cab9 6a03 58cd 80eb 05e8 edla cab9 6a03 .Yj.X........ Yj.
0x0230: 58cd 80eb 05e8 edff ffff ffff ffOa 1. G

The packet contains shell code at address 0x0202. Disassembling the hex code yields
the following assembly code:

00000000:
00000002:
00000003
00000006
00000007 :
00000009
0000000B:
0000000D:
0OOOOO000E:
00000010:
00000012:
00000013:
00000015:
00000017
00000019:
0000001B:
0000001D:
0000001F:
00000020:
00000022:
00000023
00000025
00000027 :
00000024
0000002D:
00000030:
00000033:
00000036
00000038
0000003A:

31DB
43
B80B74
51
0B2D
0101
0101
50
89E1
6A04
58
89C2
CD80
EBOE
31DB
F7E3
FECA
59
6A03
58
CD80
EBO5
ES8EDOA
CA596A
0358CD
80EBOS
ESEDFF
FFFF
FFFF
FFOA

xXor
inc

mov
push

or

add

add
push
mov
push (w)
pop

mov

int

jmps
xor

mul (w)
dec

pop
push (w)
pop

int

jmps
calln
retf
add

sub
calln
777 (w)
777 (w)

dec

bx,bx

bx

ax,740B

CX

bp, [di]
[bx+di] ,ax
[bx+di] ,ax

ax

cx,sp
+04

ax

dx,ax

80

£ile:00000027

bx,bx

bx
dl
cx

+03

ax
80

£il1e:0000002C

+0AED
6A59

bx, [bx+si-33]

bl,+05

£ile:00000023

di
di

[bp+sil

Obviously, this shellcode is from the TESO 7350wurm.c[22] exploit. We found an
in-depth analysis of this very attack on the dshield mailinglist. Stephen Hall[12]
has done a very thorough analysis of this exploit for his GCIH practical. We do not
repeat his elaborate findings here, but want to also mention Way Farers’s post on
dshield.org[7]. He mentions that the FTP exploit has two possible outcomes. Firstly
a DoS attack can be launched by sending three packets of 504 bytes each. Secondly a
buffer overflow can be caused, given that a prior login to the ftp service was possible;
for example with an anonymous account. The packet we found was not trying to
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crash the service as no three packets with the size of 504 bytes were detected. Due
to the fact that we already found the shellcode embedded in one of the FTP packets,
this was an attack of the latter kind, trying to gain root-access on the remote system.
The source was probably not spoofed as otherwise the FTP connection would not
have been established!. This system should definitely be taken offline and analyzed
for a successful intrusion. To protect other machines, they should all be patched
and updated to the latest FTP daemons. We also recommend installing a local
firewall and only allow people to access the FTP server who should have access to
it. This might not be possible for a public FTP server. In such a case, the FTP
server should only serves the content it needs to and t should not serve any other
purposes. This ensures that a compromised FTP server does not leak any other
information.

Severity: 7

Criticality: 4, this is an FTP server. It is possible that the access to this
system is business critical.

Lethality: 5, this is a root access attempt, therefore possibly compromising
the system.

System Countermeasures: 2, we do not have information about the pro-
tection mechanisms on the host and therefore assume a two.

Network Countermeasures: 2, there seem to be no firewalls or ACLs on
the routers, according to the traffic in the logs. However, an IDS is deployed.)

References: Bugtraq ID 1227[1], TESO 7350wurm[22], dshield.org posting[7].

e BACKDOOR NetMetro File List

Description: This is most likely a false positive triggered by FTP traffic. The
snort signature is very loosely defined:

alert tcp $EXTERNAL_NET any -> $HOME_NET 5032 (msg:"BACKDOOR NetMetro
File List"; flow:to_server,established; content:"--";

The traffic triggering this alert has source ports of 20 and 80, and a destination port
of 5032. These are therefore valid FTP data and HTTP connections?. Matching
the contents-part of the signature (”--") easily happens in this type of data.

Severity: 0 (false positive)

e Virus - Possible MyRomeo Worm

Description: This alert is a false positive again. The rule triggers on an email
which contains the string specified in the snort signature:

Tt is very hard to actually spoof sources and simulate a successful communication.
2Replies, to be correct.
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alert tcp any 110 -> any any (msg:"Virus - Possible MyRomeo Worm";
flow:established; content:"ble bla"; nocase; classtype:misc-activity;
$id:725; rev:6;)

The signature looks for POP connections containing the characters "ble bla”. The
email triggering the rule contained the following sentence:

with the purchase of an eligible Blast motorcycle.

Severity: 0 (false positive)

e ATTACK-RESPONSES id check returned root

Description: Another false positive triggered by a Web page containing infor-
mation about a SITE EXEC vulnerability. The snort rule for this:

alert ip any any -> any any (msg:"ATTACK-RESPONSES id check returned root";
content:"uid=0|28|root|29|"; classtype:bad-unknown; sid:498; rev:6;)

And the packet triggering the alert (note the uid=0(root) part):

23:59:56.156507 00:03:e3:d9:26:c0 > 00:00:0c:04:b2:33, ethertype IPv4 (0x0800),
length 1514: IP (tos 0x0, ttl 46, id 25786, offset 0, flags [DF], length: 1500,
bad cksum 898a (->9ea2)!) 65.118.58.104.80 > 32.245.166.236.64857: P

[bad tcp cksum a34e (->b866)!] 382268946:382270406(1460) ack 2266701906 win 6432

[snip]

To test for this hole, type (when logged in as a real user, not anonymous)

<BR>

<tt>ftp&gt; SITE EXEC bash -c id</tt>

<P>

If you get a return with ’200-uid=0(root) gid=0(root)’ in it, you have the problem.

Severity: 0 (false positive)

After all this analysis, it is quite disappointing how many false positives snort gen-
erated. And this was after we already sorted out some of the events because we either
knew or suspected that they are false positives. Our initial recommendation for having
some kind of context along with the intrusion detection system starts to make more and
more sense. It would help a great deal to reduce the number of false positives. Another
suggestion would be to improve snort such that it is aware of the protocol the traffic rep-
resents. In the case of the BACKDOOR NetMetro File List, the rule could be rewritten
to not just look for a target port of 5032, but also make sure that the traffic is not FTP,
nor HTTP, nor any other known protocol, but some kind of proprietary backdoor traffic.
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3.2 Scripted and Automated Activity

To identify which attacks (i.e., the corresponding snort alerts) are generated by someone
executing a script or some sort of automated program, we wrote a tool[14] to calculate the
time differences between alerts of the same connection. In most cases, automated tasks
are highly predictable. Authors of attack scripts hardly ever build randomness into their
tools. This normally reflects in the network traffic from those attack tools. Especially
scanners often leave packet traces that are very monotonous. They can often be identified
inside traffic trace by looking at timestamps of packets. Packets of the same connection
arriving at constant intervals are probably related to some kind of automated behavior.
An attempt to detect automated activity was made by looking at the target machines,
target ports, source machines and their packet inter arrival times. The source ports are
neglected as they change during a connection. The time resolution we chose was one
second. Anything below one second would have included too much noise and not resulted
in clean deltas. For the following analysis we decided to drop the target ports as well and
just looked at the connections between machines and their packet inter arrival times.

3.2.1 The Automated Behavior

It is very interesting to see that our method uncovered most of the SCAN alerts. Here is
a list of snort alerts found?:

WEB-IIS view source via translate header
WEB-MISC http directory traversal

P2P GNUTella client request

WEB-IIS header field buffer overflow attempt
(http_inspect) OVERSIZE REQUEST-URI DIRECTORY
(http_inspect) DOUBLE DECODING ATTACK
(http_inspect) BARE BYTE UNICODE ENCODING
(http_inspect) IIS UNICODE CODEPOINT ENCODING
BAD-TRAFFIC tcp port O traffic

CHAT MSN message

P2P Napster Client Data

SCAN SOCKS Proxy attempt

SCAN Squid Proxy attempt

SCAN Proxy Port 8080 attempt

SCAN nmap TCP

SCAN synscan portscan

For some of these events, we expected monotony. We therefore discarded all the SCAN,
CHAT and P2P events. The remaining list looks very impressive. There are a few sources
(most of them even on the internal network) which are showing automated behavior.

3select snort_alert, count(*) c from sans where delta2>0 group by sourceip,delta2
having c>20
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A quick look at the coverage we achieved with our method: There are a total of 168558
SCAN alerts in the logs. Out of those, we uncovered 50466, which seems pretty good. One
might object that this does not really help much. This is right, but we only want to show
that our method has a certain amount of success. It would be very interesting to test our
method with raw tcpdump logs to detect automated behavior!

Four of the top sources utilizing automated techniques are on the internal network.

Count IP Count IP
67 32.245.166.236 23 148.64.16.128
40 207.166.87.157 13 170.129.50.120
25 138.97.18.88 11 115.74.249.65

Graphs summarizing the activity are shown in Figure 3.1, which shows per target
port what snort alerts were triggered, and Figure 3.2 showing the deltas and correspond-
ing snort alerts. The packets for which we could not associate a snort alert (NULL-
nodes) were eliminated in this graph. It is interesting to see that the delta times for the
SCAN Proxy Ports are very high. These deltas do not just show up once or twice, but
several hundred times. This very nicely shows that our method of finding automated
behavior works!

3.2.2 First Event

After removing some of the obvious alerts, one of the remaining alerts is the (http_inspect)
BARE BYTE UNICODE ENCODING. The snort documentation[19] describes this as follows:

"bare byte encoding is an iis trick that uses non-ascii chars as valid values in
decoding utf-8 values. this is not in the http standard, as all non-ascii values
have to be encoded with a %. bare byte encoding allows the user to emulate
an iis server and interpret non-standard encodings correctly.”

Looking at this traffic in ASCII* yields only gibberish for the entire payload. Possibly,
this traffic is not Web traffic (although targeting port 80), but some kind of tunneled
traffic. We do not think the traffic is encrypted because encrypted HT'TP traffic would use
port 443, not port 80. To find the reason for the scrambled payloads, we tried to correlate
this traffic with the other traffic these machines generate. This was unfortunately not
very successful. Looking at the events, it turned out that all the machines were incredibly
active and there was no obvious correlation with other types of traffic. We were not able
to uncover what this traffic really represents. It could be tunneled traffic, a false positive
of the snort preprocessor, be non-HTTP traffic. In Section 3.5 we will revisit this traffic
and see that there are some very interesting anomalies in this traffic (changing TTLs for
the same connection, etc).

4tcpdump -s 0 -A -nnevr /tmp/sans src host 115.74.249.65 and dst port 80 and src
port 62785
5To be found at http://raffy.ch/projects/Raffael_Marty_GCIA_Additional_Chapters.pdf
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>
:

- ) -

Figure 3.1: Snort alerts identified to be generated by automated behavior. Per target port
the snort alerts are drawn. Only detects with an occurrence of 20 or more are shown.
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P

ODE_ENCODING

Figure 3.2: Snort alerts identified to be generated by automated behavior. Per snort alert
the delta time between packets that triggered this traffic, are shown.
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3.2.3 Second and Third Event

Moving on in the list of automated activity, there are two http_inspect messages: IIS UNICODE
CODEPOINT ENCODING and OVERSIZE REQUEST-URI DIRECTORY. The former alert triggers

on unicode encoded characters embedded in HTTP requests. The latter indicates an
overly long directory name in a URL. The machines triggering these events are a subset

of the ones triggering the (http_inspect) BARE BYTE UNICODE ENCODING event. This
traffic might be related to it. It turned out that some of the offending payload was from
the Cookie: entries in the HT'TP headers. These entries seem to be huge and unicode en-
coded. Hence, probably a false positive! What is a little strange however, is the regularity

in which these packets show up.

3.2.4 Fourth Event

The next three events we found to be automated behavior are from external machines
trying to access internal IP addresses:

WEB-IIS view source via translate header
WEB-IIS header field buffer overflow attempt
WEB-MISC http directory traversal

Investigating the first event we found that it represents real HT'TP traffic. The packet
capture shows most of the HTTP headers (unlike in the last case where only part of the
header was captured). The user-agents used in the HTTP requests are the following®:

User—Agent: Microsoft Data Access Internet Publishing Provider Protocol Discovery
User-Agent: Mozilla/2.0 (compatible; MS FrontPage 5.0)

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)
User-Agent: MSFrontPage/5.0

The Host:-field of the HT'TP traffic has one interesting value: Host: www.XXXXXXXX
We assume this is part of the obfuscation that was done by SANS and in reality this
would show a valid host name. The requests sent in these packets are as follows:

GET /../images/bullet. jpg HTTP/1.1

GET /_vti_inf.html HTTP/1.1

OPTIONS /emc/eval.html HTTP/1.1

OPTIONS / HTTP/1.1

OPTIONS /main/catalog/usb97c210.html HTTP/1.1
OPTIONS /main/catalog/usbprods.html HTTP/1.1
OPTIONS /usb/eval210.html HTTP/1.1

Stcpdump -Annr /tmp/sans src host 68.36.170.9 and dst port 80 | grep User-Agent |
sort | uniq

"tcpdump -Alnnevr /tmp/sans src host 68.36.170.9 and dst port 80 | grep -E
" (OPTIONS|GET|POST)" | sed -e ’s/.*\(OPTIONS\|GET\|POST\)/\1/g’ | sort | uniq
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OPTIONS /usb/eval3000.html HTTP/1.1
OPTIONS /usb/evs3000.html HTTP/1.1

OPTIONS /usb HTTP/1.1

OPTIONS /usb/ HTTP/1.1

OPTIONS /usb/usbprods.html HTTP/1.1

POST /_vti_bin/shtml.exe/_vti_rpc HTTP/1.1

The targets of these events are only two: 32.245.166.119 and 207.166.87.40

It is hard to tell whether this traffic is normal behavior or worm traffic. The regular
intervals of the alerts lets us believe that we are dealing with a worm. We found a posting
on the ARIS list[18] inquiring about very similar log entries. The sender also suggests
that the traffic is automated. Unfortunately there are no responses available. This traffic
could also stem from people using either WebDAV or Frontpage to upload Web content
to a server.

3.2.5 Fifth Event

The WEB-IIS header field buffer overflow attempt alerts are all associated with
traffic that was generated by Internet Explorer (see User-Agent field in HTTP request).
However, a lot of this traffic is gibberish again. We think that this might be images or
zipped content embedded in the HTTP connections! For the traffic which is legible, we
found that firstly, the snort the triggering on a false positive. The traffic revealed some
absolutely benign HTTP requests. The snort rule is very weak and only checks whether
three specific bytes are in the HTTP traffic. Secondly, we concluded that the traffic does
not indicate automated or scripted behavior. The detection as automated behavior is
merely a statistical failure due to the vast amount of HT'TP traffic in the logs.

3.2.6 Sixth Event

The last snort alert we identified to be automated behavior is BAD-TRAFFIC tcp port O
traffic. The sources triggering the alerts are only five:

211.47.255.20 211.47.255.24
211.47.255.21 66.250.114.252
211.47.255.22

All these addresses did not trigger any other alerts. Something seems to be wrong
with the network stacks of these machines; or a firewall/gateway in the network-path
garbled the port numbers in some strange way. Another possibility for this type of traffic
is fingerprinting[20] activity using port 0. This type of fingerprinting requires sending
different packets to a machine from and to port zero. The responses from the targeted
machines are then analyzed for specific behavior. Although port 0 is a valid TCP / UDP
port number, it is highly recommend that one should block any traffic using this port.
No program should be listening on port 0 and no program should connect from port 0. A
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tool called gobbler-2.0.1-alpha[11] can be used to perform port 0 fingerprinting and might
be the source for these detects.

It would be interesting to do a similar analysis we did but instead of using packet
inter arrival times, calculating the difference between IP IDs of packets from the same
connection. One problem with only having the packets triggered by snort alerts is that
this type of analysis would not be very successful as the gaps in the IDs would not be
monotonous enough. This analysis would make more sense on raw tcpdump logs.

3.3 Attack Chains

Finding attacks in a large amount of snort alerts turned out to be a real challenge. Almost
all the events investigated seemed to be a side-effect of some sort of benign (or at least
quite harmless) traffic. However, we have one more idea which seems to be interesting
to pursue: Assume we are not interested in users in the internal network attacking other
users on the inside. This assumption seems legitimate because the deployment of the snort
sensor already excludes the monitoring of this type of activity. The chosen deployment
of snort only reveals attacks either entering or leaving the internal networks (see also
Section 2.4). To identify an attack, we use the following hypothesis: An attacker triggers
a snort alert while he tries to break into a machine on the internal network. This alert
does not necessarily have to be an attack. It might simply be reconnaissance activity.
Recording the time of this inbound attack, we can search the rest of the snort alerts
for alerts showing up at a later time originating from the machine that was targeted in
the first alert. This method reveals internal machines that were either compromised or
an attack response triggered an alert (e.g., id check returned root). We hope to find
activity where an external machine attacks an internal one, compromises it and launches
some follow-up activity from that machine. A disadvantage of this method is that using
the data captures given, this method will not return a great amount of activity. The
reasons for that are twofold:

1. An attacker might compromise an internal machine and not use that machine to
issue any further attacks; therefore leaving no traces after the initial attack.

2. If an external attacker compromises an internal system and never launches an attack
targeting an outside machine the snort logs will not reveal anything.

Despite the limitations of this approach, it seemed worthwhile generating some graphs.

Figure 3.3 shows the output of a script we wrote to detect attack-chains[14]. It turns out
to be quite difficult to analyze the findings:
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e A total of six machines were identified launching attacks against internal machines
and then showing up as sources of other snort alerts (red nodes).

e Four machines were targets of the attacks (blue nodes).

e Only a small number of machines were involved in traffic originating from targeted
machines (white nodes). We expected to see machines that were first compromised
and then started some kind of scanning activity, resulting in more end-points con-
tacted. The expected scanning activity could be anything from nessus or nmap scan
to scans for specific cgi scripts on Web servers.

e One chain can be eliminated from the graph in Figure 3.3. It shows a Web request
(FRONTPAGE _vti rpc access) followed by a ATTACK-RESPONSES 403 Forbidden.
This seems to be normal traffic showing someone uploading a Web page via frontpage
and then getting a response back indicating that his privileges did not allow for the
action. (This traffic is shown on the lower right of Figure 3.3.)

e The chain of events on the lower left of the graph, which is completely disconnected
from the rest, can be removed as well. It shows a DNS zone transfer TCP followed
by a P2P Napster Client Data event. The zone transfers are real zone transfer
attempts. However, the subsequent P2P message is not related to the zone transfer
at all. Therefore we decided to remove these nodes from the investigation as well.

e Some snort alerts triggered by one “compromised” machine (32.245.166.236) are
quite strange. For example the CGI phf access. The PHF attack is a very old one
which exploited a vulnerability in the phf cgi script [2]. This cgi has been removed
from Web server distributions for years already. Nessus[6] has a built-in check which
checks for the presence of the phf cgi script. This could be an indicator that the
machine launched some kind of vulnerability scan against other machines. However,
it seems strange that only one machine was targeted with this event. Investigating
this event showed that the URL triggering the alert was: www.health.state.ny.
us/nysdoh/phforum/jobs/hriload.htm. This turns out to be a false positive. The
snort rule is too loose and triggers on all the uricontent:"/phf";.

e The machines 207.68.185.58, 207.68.176.190, 207.68.176.250 resolve to “msnsearch.com”.
This explains all the other events targeting this machine. They are all false positives,
triggering on either the HT'TP requests or the responses from the search engine.

Figure 3.4 shows a sanitized version of the attack-chain graph, where all the nodes
identified to be unimportant or even false positives, were removed.

There are three different initial attack events: SCAN nmap TCP, ISS header field
buffer overflow attempt and SHELLCODE x86 setgid 0. All of these events represent
quite aggressive attacks and seem to be good indicators for a successful compromise of
an internal system. To finish an analysis of all events in Figure 3.4, we need some more
information about the topology and the role of the single machines. As an immediate
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x86_setgid 0

BACKDOOR_NetMetra_File_List

11S_header_field_buffer_overflow_attempt

Figure 3.4: Attack-chain graph with false positives and other unimportant nodes removed.

remedial step, we recommend having a look at the two remaining stepping stone machines:
“32.245.166.236” and “32.245.166.119”. Especially because it is not the first time that we
tripped over them during our analysis.

3.4 Proxy Servers

During all the analysis we realized that only a small number (10) of machines from the
internal network triggered rules®:

115.74.249.202 170.129.50.120 32.245.166.119
115.74.249.65 170.129.50.3 32.245.166.236
138.97.18.225 207.166.87.157

138.97.18.88 207.166.87.40

A very interesting fact is that two machines are located in each of the internal subnets.
Furthermore, the snort alerts for all the machines look very much the same. Having ana-
lyzed some of the traffic already earlier, we issue a new hypothesis about these machines.
They are prozy servers. A few reasons to support this claim:

e All of the 10 machines trigger about the same variety of events.

8select distinct(sourceip) from sans where sourcemac="00:00:0c:04:b2:33"’

© SANS Institute 2005 Author retains full rights.



3.4 Proxy Servers 43

e Only 10 machines, out of a total of 83634 machines were contacted, show up as
sources of events. The others are only targets.

e It seems very unlikely that no other machine in the internal network would trigger
a single event.

e The internal machines (i.e., the proxies) seem to have many roles. One of them
triggers AOL instant messenger events, participates in DNS zone transfers and offers
Web pages. This seems very unlikely.

We can unfortunately not further support this claim without knowing more about the
topology.
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Appendix A

Log Files Analyzed

This is the list of logs files from http://isc.sans.org/logs/Raw, which were analyzed

for this paper:
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Appendix B
TCPDump Output

To understand the tecpdump(1) output throughout the paper, we provide a simple key
here. tcpdump(1l) generates the following kind of output if invoked via tcpdump -nne.
The first -n tells tcpdump not to resolve hostnames and the second does prevent it from
resolving the ports to service names. The parameter —e is used to get the MAC addresses
of the traffic in the output.

19:27:01.454488 00:00:0c:04:b2:33 > 00:03:e3:d9:26:c0, ethertype IPv4 (0x0800),

[1] [2] [3] [4]

length 1687: IP 138.97.18.88.63259 > 64.154.80.51.80: P 0: 1633(1633) ack 1634 win 33580
[5] (6] [7] [8l (9] [10] [11] [12] [13] [14]

[1] TimeStamp [8] Destination IP

[2] SourceMac [9] Destination Port

[3] DestinationMac [10] TCP Flags

[4] Network Protocol [11] TCP Sequence Number

[6] IP Packet Length [12] TCP Last Sequence Number
[6] Source IP [13] TCP Length

[7] Source Port [14] ACK flag

A parser for tcpdump(1) output can be found in afterglow-database.tar.gz at
http://sourceforge.net/project/showfiles.php?group_id=125211. The script is
called tcpdump2sql.pl. It is jsed to populate our MySQL database with the events in
order to easier access them (see also Appendix C).
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Appendix C

Graphing Event Data

Event graphs like the ones we showed throughout the paper are generated by following
these steps:

1. Creating MySQL database for all the details of the snort alerts.

2. Populating database with snort (tcpdump) output.

3. Extracting fields from database to generate comma separated lists.

4. Convert the lists into a format that is readable by the graphic library.

5. Run a graphical interpreter on the data to produce a graph.

Step one requires a database schema that can be populated with the information from
snort. Our schema is the following:

# MySQL Server version: 4.1.6
# The Schema contains some extra entries utilized for certain
# steps of our analysis
CREATE TABLE sans (
id int(11) NOT NULL auto_increment,
‘timestamp‘ datetime NOT NULL default ’0000-00-00 00:00:00°,
sourcemac varchar(17) NOT NULL default ’’,
destmac varchar(17) NOT NULL default ’’,
sourceip varchar(15) NOT NULL default ’’,
destip varchar(15) NOT NULL default ’°’,
sourceport int(5) NOT NULL default ’0’,
destport int(5) NOT NULL default ’0’,
proto varchar(10) default NULL,
tcpflags varchar(10) default NULL,
length int(11) NOT NULL default ’0’,
ttl int(11) default NULL,
ipid int(11) default NULL,
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output to the script: tcpdump -vttttnnelr /tmp/sans | tcpdump2sql.pl.

we used Linux and some command-line tools. The final command we used:

ecC

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

iptos varchar(10) default NULL,
ipflags varchar(5) default NULL,
‘offset int(11) default NULL,
snort_alert varchar(100) default NULL,
service int(11) default NULL,
delta int(11) default NULL,
delta2 int(7) default NULL,
PRIMARY KEY (id),

KEY ‘timestamp‘ (‘timestamp‘),
KEY id (id),

KEY sourceip (sourceip),

KEY destip (destip),

KEY snort_alert (snort_alert)

The database keys greatly help to improve the speed when issuing queries to the
database.
Step two, the population of the database can be done with a script that is available in
afterglow-database.tar.gz at http://sourceforge.net/project/showfiles.php?
group_id=125211. To start it, point tcpdump to your snort binary log and pipe the

Step three requires an example. Let us assume we want to graph the source MAC
addresses and the IP addresses that are located behind them. The SQL query for this
would be: select sourcemac, sourceip from sans. This output should now be con-
verted into a comma separated form in order to feed it to the graphical library. To do so,

ho ’select sourcemac, sourceip’ | mysql -s -u root -ppass tcpdump
| awk ’{printf "Us,%s\n",$1,$2}’> > list.csv

The file list.csv now contains the following lines:

03:e3:d9:26:c0,255.255.2565.
00:0c:04:02:33,138.97.144.
03:e3:d9:26:¢c0,255.255.2565.
00:0c:04:b2:33,138.97.82.
03:e3:d9:26:¢c0,24.84.106.
00:0c:04:b2:33,138.97.18.
03:3:d9:26:¢0,24.84.106.
00:0c:04:2:33,138.97.18.
03:3:d9:26:c0,24.84.106.
00:0c:04:02:33,138.97.18.
03:3:d9:26:c0,24.84.106.
00:0c:04:02:33,138.97.18.
03:e3:d9:26:c0,24.84.106.
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For step five, we need to explain some more things: We decided to use a package called
GraphViz[4] from AT&T Research to generate all the graphs in this paper. GraphViz
requires the input to be in a specific language that expresses a graph. A very simple
example of a graph definition is the following:

digraph G {
a->b ->c

}

Passing this to the graphviz libraries', will generate the graph shown in Figure C.1.
For a complete description of the language, have a look at the GraphViz documentation[5].

Figure C.1: Simple GraphViz example graph: digraph G {a— > b— > c}.

Now that we know how the input to the graphical library looks and we know how
to generate comma separated output from entries in our database, we need a module
that translates the CSV output into GraphViz’s language. In order to facilitate this
process, we utilized a tool called AfterGlow[14]%. AfterGlow expects two values on each
line. Each line then represents two nodes and a connection between the nodes® Using the
input, AfterGlow will produce output that can be passed on to one of the utilities from
GraphViz.

Continuing on our example, we would now pass the information from list.csv into
AfterGlow: cat list.csv | ./afterglow.pl -t > list.dot. The output is a file that
can then be passed into neato*: cat list.dot | neato -Tgif -o list.gif.

This is the full process of generating graphs. All the steps can be taken together and
executed as follows:

echo ’select sourcemac, sourceip from sans’ | mysql -s -u root -ppass tcpdump |
awk ’{printf "%s,%s\n",$1,$2}’ | ./afterglow.pl -t | neato -Tgif -o list.gif

!The command to generate the graph: echo ‘‘digraph G{a->b->c}’’ | neato -Tgif -o list.gif

2The tool was written by Christian Beedgen and myself for the purpose of graphing security events.
More information about the project can be found on the Web page: http://afterglow.sourceforge.
net/

3This is for the two-node mode of AfterGlow.

4Neato is one of the tools provided by GraphViz, which takes a GraphViz description of a graph and
generates an image as output.
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Appendix D

Severity Analysis

The severity of an attack is a measurement for how severe an attack is. Not all attacks
have the same impact on an organization. There are multiple factors which have an im-
pact on how an attack potentially impacts the targeted machine. The formula defining
the severity is the following:

severity = (criticality+lethality)—(systemcountermeasures+networkcountermeasures)

The single elements making up the severity are:

Criticality How critical is the target system to the organization. It is important to note
that this factor has to be viewed from a business perspective. The more important
the target is for the business, the higher this value should be. 5 indicates a very
critical system.

Lethality How likely is it that the attack will do harm to the target machine? This
factor can potentially be used to reduce the impact of false positives generated by
an IDS. Assume for example that an attack targets port 80. Assume further that
the port is not open on the target machine. If the IDS does still generate an alarm
for this attack, the lethality helps decrease the importance for this event. 5 indicates
that an attacker could gain root access to the entire network and is therefore very

lethal.

System Countermeasures What countermeasures are in place on the target system?
A patched and up to date system with extra hardening tasks performed will get a
high number (5). A system which is missing some patches or runs an older operating
system will get a lower number.

Network Countermeasures What network countermeasures are deployed? Is there a
firewall on the attack path? Is an IPS system in place? Are there multiple access
paths to the target system? Do they all employ the same security standards? Again,
a b illustrates good countermeasures.

© SANS Institute 2005 Author retains full rights.



54 APPENDIX D. SEVERITY ANALYSIS

© SANS Institute 2005 Author retains full rights.



Bibliography

[1] ArGoSoft FTP Server 1.0 Multiple Buffer Overflow Vulnerabilities
http://www.securityfocus.com/bid/1227/info/. 31

2] CERT Advisory CA 1996-06, Cert Coordination Center,
http://www.networkpenetration.com/Gobbler-2.0.1-Alphal.tar.gz. 41

[3] Ethereal - Network Protocol Analyzer http://www.ethereal.com. 7
[4] ATET GraphViz http://www.research.att.com/ erg/graphviz. 51

[5] AT&T GraphViz - Documentation
http://www.research.att.com/"erg/graphviz/info/lang.html. 51

[6] Renaud Deraison, Nessus, http://www.nessu.org. 41

[7] Post on dshield.org about FTP EXPLOIT CWD overflow

http://www.dshield.org/pipermail/intrusions/2002-0ctober/005497 . php.
30, 31

8] IEEFE OUI assignments http://standards.ieee.org/regauth/oui. 8
g/reg
9] GIAC Certification Practical Logs, http://isc.sans.org/logs/Raw. 7
p g/Log
10] GCIA Practicals http://wuw.giac.org/GCIA.php. 25
P g g pap

[11] Gobbler 2.0.1alpha
http://www.networkpenetration.com/Gobbler-2.0.1-Alphal.tar.gz. 39

[12] Stephen Hall, GCIH Practical
http://www.giac.org/practical/GCIH/Stephen_Hall_GCIH.pdf. 30

[13] Tan Martin - GCIA practical http://www.giac.org/practical/GCIA/Ian_
Martin_GCIA.pdf. 27

[14] Raffael Marty and Christian Beedgen, AfterGlow
http://afterglow.sourceforge.net. 6,9, 19, 20, 33, 39, 51

© SANS Institute 2005 Author retains full rights.



56 BIBLIOGRAPHY

[15] Raffael Marty, GCIA Practical Additional Chapters
http://raffy.ch/projects/Raffael_Marty_GCIA_Additional_Chapters.pdf
15

[16] Martin Roesch, Snort IDS, http://www.snort.org. 7
[17] MySQL Database http://www.mysql.org. 9

[18] New Virus/Worm - Frontpage?
http://lists.jammed.com/incidents/2002/01/0203.html. 38

[19] Snort User Documentation
http://www.snort.org/docs/snort_manual/nodel0.html. 34

[20] Port 0 OS Fingerprinting by Ste Jones NetworkPenetration.com
http://www.networkpenetration.com/port0.html. 38

[21] Pete Storm - GCIA practical http://www.giac.org/practical/GCIA/Pete_
Storm_GCIA.pdf. 27

[22] TESO 7350wurm http://wuw.packetstormsecurity.org/removed/7350wurm. c.
30, 31

[23] tepdump/libpcap, http://www.tcpdump.org. 7

[24] Default TTL Values in TCP/IP, http://secfr.nerim.net/docs/fingerprint/
en/ttl_default.html, 15

[25] Western Digital http://www.wdc.com. 9

[26] Michal Zalewski POf v2, http://lcamtuf.coredump.cx/p0f. 22

© SANS Institute 2005 Author retains full rights.



