
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Table of Contents ...1
Craig_Bartels_GCIA.doc ..2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 4.0

Craig Bartels

Submitted: April 17, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Executive Summary 3

Detailed Analysis 4

Detect #1 BackDoor Q access (CAN-1999-0660) 4
Source of detect: 4
Network topology: 4
Link graph: 5
Description of detect: 6
Reason detect was selected: 6
Detect was generated by: 6
Probability the source was spoofed: 8
Attack mechanism 8
Correlations 9
Evidence of active targeting: 9
Severity 10
Defensive Recommendation 10

Detect #2 BAD-TRAFFIC tcp port 0 traffic 11
Source of trace: 11
Network topology: 11
Link graph: 11
Description of detect: 11
Reason detect was selected: 12
Detect was generated by: 12
Probability the source was spoofed: 13
Attack mechanism: 13
Correlations 13
Evidence of active targeting 13
Severity 14
Defensive Recommendation 14

Detect #3 WEBROOT DIRECTORY TRAVERSAL 14
Source of trace: 14
Network topology: 15
Link graph: 15
Description of detect: 15
Reason detect was selected: 16
Detect was generated by: 16
Probability the source was spoofed: 17
Attack mechanism 18
Correlations: 18
Evidence of active targeting 19
Severity 19
Defensive Recommendation: 20

Network Statistics 20
Top Talkers. 20
Top Five Targeted Ports 21

Analysis Process 25

References: 27

Executive Summary

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Below are the findings of a detailed analysis of capture files taken from
the University’s network. This is a shorted discussion of the findings discussed
in more detail below. The files used for these findings are 2002.10.10,
2002.10.11, and 2002.10.12. They show network traffic from October 10th to
October 12th.

After careful analysis of the capture files provided there seems to be very
little evidence to support the network having been compromised during this
period. There does not appear to be any active scanning of the network during
this timeframe as well. However, there is no way to determine if there was a
successful attack prior to October 10th.

From the files provided a total of 1322 alerts were generated. The alerts
were from a limited number of sources, only 49. Many of the alerts generated
are from the same internal based host. In most cases these alerts are caused
by the alerting system looking too closely at each packet and causing what is
called a false positive alert. By removing these from the total alerts, only 315
alerts were generated. It is not unusual to see such a high number of alerts for
just a few days. The internet is filled with packets caused by both virus and
malicious users that generate similar packets. However both are hoping to
stumble upon networks that have not taken the proper precautions to protect
their systems.

It appears this local network is missing a few of these precautions.
Based on the traffic seen, it appears there is no firewall in between the local
network and the external network. This is a concern, as a firewall is the first line
of a defense against the same attacks seen in the packet captures. A properly
configured firewall would keep many of these attacks from ever reaching their
intended target, and make this network less of a target for potential attackers.
The routers in use on the network also look to have almost no restrictions in
place.

My first recommendation would be implement a more restrictive policy on
the edge firewall if one is in place, if not place a firewall at the edge of the
network. This firewall should allow inbound only the service ports needed. If
inbound services are needed, then the servers these services reside on should
be placed into a DMZ. A DMZ is a network that is segmented off from the
internal network. By segmenting the internal network off from all inbound traffic
attackers have are less likely to gain access into the internal network. I would
also recommend limiting all outbound traffic to only the services / ports needed
by the university. As for internal routers, additional steps should be taken to
limit RFC1918 space that is not being used. This type of traffic is not routed via
the internet and does not look to be used on the local network. There looks to
be no reason to stop this traffic from being routed on the local network. Without
further information, I cannot make a recommendation on the status of the host
based security. None of the hosts targeted looked to send an answer to the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

attacking machine. However, best practice for host based systems would be to
close any unnecessary ports on each host, especially those hosts that are
running a service used by hosts on the internet. My last recommendation
would be to expand the segments watched by the IDS / packet sniffer. And IDS
can only perform as good as the information it gathers, in this case there is too
little information to determine the level of security for the network. Additional
IDS machines can only improve how well the IDS performs.

Detailed Analysis

Detect #1 BackDoor Q access (CAN-1999-0660)

Source of detect:
The alert was generated from the raw pcap file 2002.10.12. The file was
obtained from http://isc.sans.org/logs/raw as outlined in practical guidelines.

Network topology:
The network topology was not provided, however some information can be
gathered from the packet captures. To get a better overall understanding of the
local network a capture file was created by merging all the pcap files for the
month of October (2002.10.1-2002.10.13) into a file named 2002.10.all.
Analyzing this file showed the sensor used to create the capture file is sniffing
traffic between two Cisco devices.

The source and destination mac addresses can be found using both ethereal
and tcpdump. In ethereal (Version 0.10.8) choosing Statistics -> Endpoint List -
> Ethernet will create a table showing all mac address found in the capture.
The same information can be found with tcpdump using the –e flag as
demonstrated below:

Tcpdump –e –nr 2002.10.all
Output:
01:53:45.836507 00:00:0c:04:b2:33 > 00:03:e3:d9:26:c0, ethertype IPv4

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

(0x0800), length 2974: IP 207.166.87.157.62559 > 64.12.137.56.80: P
0:2920(2920) ack 3346149 win 24820

Using the mac address header (the first 6 characters found in address) it is
possible to determine the manufacturer of the device. Each manufacturer is
assigned a specific range they use for the mac addresses header of all the
devices they build. By looking up these ranges on websites such as
http://www.coffer.com/mac_find, it can be determined that both of these mac
address are associated with devices manufactured by Cisco Systems.
Based on this information, the packet captures provided were taken from
between two Cisco devices. Unfortunately, there is no way to determine if this
is default path for all traffic on the inside network, or what the purpose of this
connection might be. Based on the network traffic analyzed for this paper an
assumption has been made this is indeed the default route to the internet for all
traffic on the inside network.

Link graph:

Above is the link graph for the detect detailed below. Only a sample of hosts
where chosen based on the size this graph would require to include all hosts
receiving the suspicious packet.

Description of detect:
” Q is a primarily Unix-based remote-access tool that provides stealth
capabilities to make it's presence less obvious both on the host, and in network

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

traffic, “as described by Les Gordon
(http://www.sans.org/resources/idfaq/qtrojan.php). Many of the descriptions for
the Q Trojan are learned from Mr. Gordon’s paper. The purpose of the Q Trojan
is to allow a remote user to execute commands on remote hosts as root. The
program acts much like netcat in that it does not require a typical tcp session to
be established. “Newer versions of the Q Trojan allows the attacker to assign
the source IP or to choose the source IP randomly, also randomly choose the
source port number and initial TTL (>=200). This Trojan also chooses what
protocol to use randomly between TCP, ICMP, and UDP” (Gordon) The
corresponding CVE is CAN-1999-0660 found at http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-1999-0660 and is currently listed as “Under
Review”. Other descriptions of the Q Trojan can be found at
http://www.whitehats.com/info/IDS203.

Reason detect was selected:
The evidence of Q traffic suggests local machines may have been
compromised. The Q Trojan allows an attacker to remotely control UNIX based
machines to further their infiltration into the local network, garner information off
the local machine and use the host as a tool to attack other networks. As this
tool is not used as for reconnaissance but as a control tool for a compromised
machine, it was chosen for further investigation.

Detect was generated by:
This detect was generated by Snort Version 2.2.0 (Build 30), all rules have been
enabled.
The command run was:

snort -k none -r 2002.10.12 -c /etc/snort/snort.conf -l /home/giac1/logs/

Flags used:
“-k none” flag was used to ignore checksum verification in the pcap file as
the files have been changed
“-r $path” tells snort which pcap file to use as input.
“-c $path” gives the path to the snort configuration file
“-l $path” gives snort the location to place the log files.

The alert:
[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
11/11-17:26:59.016507 255.255.255.255:31337 -> 207.166.51.236:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

The signature that triggered the attack is:
alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Q access"; flow:stateless; dsize:>1; flags:A+; reference:arachnids,203;
classtype:misc-activity; sid:184; rev:7;)

The alert triggers when the following events occur in a TCP packet:
Any source IP within the ranges of 255.255.255.0-255
(255.255.255.0/24).
The packet is considered valid regardless of stream state (flow:stateless).
The payload must be greater than 1 byte (dsize:>1).
Lastly the ACK flag must be set plus any others.

For further reading and additional definitions for reading snort rules can be found
in the snort documentation under writing rules.

The alert also gives the following information.
[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
11/11-17:26:59.016507 255.255.255.255:31337 -> 207.166.51.236:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

The first number 1 (highlighted above) is actually the generatorid. This value is
found in the gen-msg.map in the ./snort/ directory. This value tells the users
what part of snort generated the alert, be it a general alert, tagged packet, or an
alert from the preprocessor. SID 184 is the alert triggered (found in both
backdoor.rules and sid-msg.map. The SID is the Snort Signature ID and each
alert is assigned and ID. This is also the 6th revision of this particular rule as
denoted by the 6 in 1:184:6. This usually implies that this rule has been
improved over previous rules. This alert has been given a Priority of 3, this field
can be edited at the engineer’s discretion. The purpose in changing the priority
would be to rank more import alerts higher based on the local architecture.
Lastly we are given the arachNIDS number as a reference, IDS203.

One of the packets to generate the alert is shown below:
15:32:19.606507 IP (tos 0x0, ttl 15, id 0, offset 0, flags [none], length: 43,
bad cksum 4718 (->fccd)!) 255.255.255.255.31337 >
207.166.223.89.515: R [bad tcp cksum fc3f (->b1f5)!] 0:3(3) ack 0 win 0
[RST cko]
(note: the bad cksum errors are caused by the original packet having
been altered)

Snort found 44 alerts for 2002.10.12 and for each alert a new the only thing to
change for each packet was the destination IP. 44 different IP were targeted
with this packet. Each packet has a source of 255.255.255.255 with a source
port of 31337. The destination address changes, however the destination port
515 (typically used for UNIX printing) does not change. Each packet has the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

ACK and RST flags set. There does not appear to be a trend based on the time
each scan was started.

Probability the source was spoofed:
The probability the source was spoofed is high. 255.255.255.255 is used for
network broadcast traffic. As stated in RFC 919 "The address 255.255.255.255
denotes a broadcast on a local hardware network, which must not be forwarded.
This address may be used, for example, by hosts that do not know their network
number and are asking some server for it." (http://www.cse.ohio-state.edu/cgi-
bin/rfc/rfc0919.html) There is some question if the Q Trojan would use the
broadcast address to respond the packets received via broadcast. To validate
exactly how the Q Trojan would react to a source address of 255.255.255.255, a
test environment was created. Q was set up to listen on port 515 on the victim
machine. A Q packet was sent to the victim machine with a source address of
255.255.255.255 to port 515, the victim machine did not respond to this packet.

Attack mechanism
The packets snort found to generate this alert have many things in common.
All packets have a source IP of 255.255.255.255 with a source port of 31337.
They also contain the same destination port of 515 typically used for UNIX
printing, targeting various local networks all within the 207.166.0.0/16 network.
As described above this alone does not trigger the alert the packets also have
the ACK flag set. It is interesting to note that each packet has the RST flag set
and all have the same payload of “CKO”

As the source IP of all the packets is 255.255.255.255 we can assume this
packet is might be used as the control packet. Meaning the attacker may be
using this as a means to find hosts that have been previously compromised with
the Q Trojan. If CKO is indeed a control packet the victim host may respond to
a predetermined IP. An inference can also be made that the same machine is
being used to create the packets as each packet is identical to each other. This
includes a TTL of 15 and a starting sequence number of 0. The packets also
share the same payload of CKO. It is important to note that “client/server
versions of the Q Trojan are not cross-compatible by default” (Meyer, Amanda
p.23). This would significantly reduce the possibility of an attacker trying to
probe the network for victim hosts the attacker did not install.

The payload of CKO by itself does not give us much information, this could be
encrypted traffic or a specific command that the compromised host may
understand or the user is just learning the tool and has miss configured the
packet being sent. However as the RST flag is also set made these packets
more interesting. Further searching on the web provided more information;
Dustin Decker found that a SonicWall firewall may have generated this traffic.
The SonicOS will send various types of resets; one of the reset codes is “CKO”
which matches the payload found in our capture (Decker,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

http://www.ethereal.com/lists/ethereal-users/200409/msg00057.html)

To determine if these packets are Q control packets, or reset packets from a
firewall or something else altogether it is necessary to gather more data. For
the packets to be a reset from a firewall an established session should be seen
in previous captures. Looking at the merged capture file 2002.10.all sorting on
just the IP targeted in the alerts there are no signs that any host had any active
connections that traversed the sensor. There is also no evidence that any of the
hosts targeted in the alerts have responded to any possible Q Trojan control
packets. Once again we are limited to packets generated at the sensor and do
not know if there are other network routes to the internet machines on the
internal network can utilize. A better understanding of the architecture of the
network is needed. There is also insufficient traffic to garner the type the OS of
the target machines, as only UNIX systems are susceptible to the Q Trojan.

Correlations
Les Gordon has written an excellent paper on the Q Trojan
(http://www.sans.org/resources/idfaq/qtrojan.php). Detailed in this paper are
many packet captures from various versions of the Q Trojan. Fortunately there
are no response packets within our capture to correlate to packets contained
within the paper. This paper was used to further my knowledge of the Q Trojan
as source for many of the conclusions for this detect.

There is a CVE for the Q Trojan CAN-1999-0660 (http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-1999-0660). There was very little information
included in the CVE, however the CVE was useful in further web searches.

Amanda Meyer’s paper was used to verify the findings for this detect
(http://www.giac.org/practical/GCIA/Amanda_Meyer_GCIA.pdf). Within her
paper she mentions that different client/server versions of the Q Trojan will not
function with each other. I had originally overlooked this in my original
evaluation of this detect.

Dustin Decker’s online post was highly informational as he determined that the
payload of CKO (found in our packets) may actually be a reset from a SonicWall
firewall (http://www.ethereal.com/lists/ethereal-users/200409/msg00057.html).
Without further information about the local network there is no way to validate
this finding.

Evidence of active targeting:
Looking that the merged pcap file 2002.10.all it is evident that this is not active
targeting but rather a random scan of the network. No host is targeted more
than once, and hosts seem to be chosen at random.

Severity

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Severity = (Criticality + Lethality)(System Countermeasures + Network
Countermeasures) (note: in V4.0 it does not appear that the two are subtracted
from each other but rather multiplied, this is different than other practical
submissions)
64 = (3+5)(3+5)

Criticality --3
As there is not much known about the type of systems being targeted a rank of
3 would seem appropriate. If the systems being targeted are solely windows
boxes or student machines sitting in a DMZ at the university this number would
be lower. If the systems are UNIX based systems or critical servers this number
would increase.
Lethality --5
If the boxes have indeed been compromised the attacker has full control of the
compromised host(s). The attacker would have unrestricted access on both the
system and network a rank of 5 is required.
System Countermeasures --3
There is no evidence that any host has been compromised however there is no
information if there has been any attempt to lock down the systems in question
or any system within the network. The victim hosts did not respond to this
attack based on our capture; however that does not mean they did not have a
predetermined response to a host on the local network based on the CKO
payload. A rank of 3 is practical till more information can be gathered.
Network Countermeasures --5
Again there is no information has been given in regards to the network
architecture. There is no evidence of network acls being placed on the network
devices or any evidence of a network firewall as both are allowing the broadcast
address to be used. Based solely on this capture there does not seem to be
much filtering of IP’s or ports on the Cisco devices in this environment, there
also does not appear to be an active firewall. Based on this observation a value
of 5 is given.

Defensive Recommendation
All though we are uncertain of the network topology, some assumptions can be
made. Both of the Cisco devices noted in the network diagram should be
reconfigured to be more restrictive. Acl’s should be places on the Cisco devices
to restrict RFC 1918 and RFC 3171 reserved IP space unless needed for
network connectivity. Edge routers and firewalls should also be configured not
to route this same network space based on both source and destination. In this
case port 515 is being targeted; this port is associated with Unix Printing.
Based on the location of the IDS there does not appear to be a need to allow
printing across this network. It would also seem prudent to limit all inbound
traffic to only the ports needed for any services being offered on the internal
segment.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Detect #2 BAD-TRAFFIC tcp port 0 traffic

Source of trace:
The alert was generated from the raw pcap file 2002.10.11. The file was
obtained from http://isc.sans.org/logs/raw as outlined in practical guidelines.

Network topology:
The network topology is the same as the topology discussed for Detect #1
BackDoor Q access (CAN-1999-0660)

Link graph:

The detect above shows one of the eight connection attempts made for this
detect. This represents the time interval between each attempt outlined below.

Description of detect:
This detect is a series (29) of attempts to connect to port 0 on two internal hosts.
Each packet is attempting to establish a tcp connection with a SYN. This is
unusual traffic in that the destination port is port 0, a port not used in normal tcp
traffic. What makes this detect even more unusual is that 29 alerts were
generated for only 2 sources IP’s trying to connect to only 2 destination IP’s.
Using tcpdump to single out the attacker IP’s 211.47.255.22 and 211.47.255.21
showed an interesting increment for the scans.

~/working/4 $ tcpdump -r 2002.10.11 host 211.47.255.22
18:00:18.616507 IP 211.47.255.22.60086 > 207.166.237.132.0: S
2614277515:2614277515(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0>
18:00:21.616507 IP 211.47.255.22.60086 > 207.166.237.132.0: S
2614277515:2614277515(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0>
18:00:27.616507 IP 211.47.255.22.60086 > 207.166.237.132.0: S
2614277515:2614277515(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0>
18:00:39.616507 IP 211.47.255.22.60086 > 207.166.237.132.0: S
2614277515:2614277515(0) win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 0>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Looking at the numbers in bold we notice typical tcp behavior for a session that
is timing out. At 18:00:18 we see the first packet, at 18:00:21, 3 seconds later
we see the same packet, again at 18:00:27, 6 seconds later we see the same
packet, and finally at 18:00:39, 12 seconds later we see the final attempt. This
is similar behavior for normal tcp traffic that is unable to make a connection to
the port specified, it will try 4 times at an interval of 0,3,6.and 12 seconds apart.
Yet another unusual part of this detect is that in the same capture as above the
IP ID does not change but rather stays the same with a value in this example of
616507. This is not normal behavior. Below is an example of proper behavior,
the IP add (in bold) in increased with each attempt.

20:01:32.318706 IP 192.168.2.33.44582 > 10.2.22.22.23: S
4126933886:4126933886(0)
20:01:35.318209 IP 192.168.2.33.44582 > 10.2.22.22.23: S
4126933886:4126933886(0)
20:01:41.317297 IP 192.168.2.33.44582 > 10.2.22.22.23: S
4126933886:4126933886(0) 20:01:53.315474 IP 192.168.2.33.44582 > 10.2.22.22.23:
S 4126933886:4126933886(0)

The last piece of this detect that should be examined would be the source port
number of each packet The source port only changes after the previous packet
looks to have timed out. By looking at the source port number we can quickly
gather that the attacker attempted to connect to each target host
207.166.155.132 and 207.166.237.132 for a total of 4 times each. So the detect
of 29 alerts is actually 8 separate tcp SYN connects. The only reasoning for the
IP ID not to change would be that the attacker crafted each originating packet by
hand. It can also be inferred that these packets have been crafted for a
purpose. The snort alert references snort SID 1:524 which describes this alert
as “possible reconnaissance activity” (Snort, http://www.snort.org/snort-
db/sid.html?sid=524). In a successful attempt the attacker would expect to see
an ACK or in other words a response to the SYN as per a typical 3 way tcpip
handshake. This would give the attacker knowledge that there is a machine
listening at this IP, the attacker can also garner the type of OS based on its
response. Sorting the merged capture file 2002.10.for all traffic from
211.47.255.21 and 211.47.255.22, no internal host responded.

Reason detect was selected:
This detect was chosen due in part to the curious use of port 0. Under normal
circumstances this port is not used, and should be investigated.

Detect was generated by:
This detect was generated by Snort Version 2.2.0 (Build 30), all rules have been
enabled.
The command run was:

snort -k none -r 2002.10.11 -c /etc/snort/snort.conf -l /home/giac/logs/

Explanations of the various switches used are explained above.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The alert:
[**] [1:524:8] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
11/10-18:00:18.616507 211.47.255.22:60086 -> 207.166.237.132:0
TCP TTL:47 TOS:0x0 ID:0 IpLen:20 DgmLen:52 DF
******S* Seq: 0x9BD2B58B Ack: 0x0 Win: 0x16D0 TcpLen: 32
TCP Options (6) => MSS: 1460 NOP NOP SackOK NOP WS: 0

The signature that triggered the attack is:
alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC
tcp port 0 traffic"; flow:stateless; classtype:misc-activity; sid:524; rev:8;)

The alert triggers when the following events occur in a TCP packet:
Packet must be a TCP packet.
Destination port must be 0.
The packet is considered valid regardless of stream state (flow:stateless).

The SID (Snort Signature ID) for this alert is 524, and has been revised 8 times.
This alert has a default priority of 3. The SID from snort can be found at:
http://www.snort.org/snort-db/sid.html?id=524. There are no arachNIDS or
BUGTRAQ references for this alert.

Probability the source was spoofed:
The probability that the source IP’s have been spoofed is very low. For the
attacker to gain the information they are seeking, the attack requires the victim
host to respond to the SYN sent by the attacker’s machine with a SYN, ACK. If
the address in spoofed this information would not reach the attacker but rather
the spoofed address. For the attacker to see the victim hosts SYN, ACK sent
back to the spoofed host, the attacker would need to be able to sniff packets on
a host on the return path of the packet.

Attack mechanism:
The attacker is sending specially crafted packets into the local network in hopes
of receiving a response. With this response the attacker can identify that the
host in live and attempt to determine the OS of the victim machine. This would
allow our attacker to learn which hosts to target for further probing and filter
down the vulnerabilities to use for each host.

Correlations
Saro Hayan used a similar detect in his GIAC practical
(http://www.giac.org/practical/GCIA/Saro_Hayan_GCIA.pdf). Mr. Hayan’s
findings were very similar to my own.

Evidence of active targeting

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Using the merged pcap file 2002.10.all, it is difficult to determine a pattern in the
attackers failed network probes. The attacker has yet to find an active host
within the network as well. At this time the scans look to be random, which
would mean the attacker is not currently targeting this network. Once the
attacker stumbles upon an active host to their liking this may change and should
be monitored.

Severity
Severity = (Criticality + Lethality)(System Countermeasures + Network
Countermeasures)
30 = (3+2)(1+5)

Criticality --3
As there is not much known about the type of systems being targeted a rank of
3 would seem appropriate. The attacker’s choice of IP’s looks to be random
and is not actively targeting any one type of machine.

Lethality --2
At this time the attacker is simply probing each IP at random. Depending on the
intention of the attacker this value could change however probing does not
cause damage to the target machine. At this time assigning a value of 2 seems
adequate.

System Countermeasures --1
It is very difficult to asses the system countermeasures without knowing if the
hosts being probed were on the network. As the systems did not respond to the
probes it appears they may have some sort of host based firewall. It is typical for
a machine to respond to this type of probing under normal circumstances.
However, it may be that there was no machine with the host IP’s assigned. In
either event, the host existent or not has some countermeasures in place.

Network Countermeasures --5
Again there is no information has been given in regards to the network
architecture. However if a firewall is in place, it seems very unusual that port 0
would be allowed past. A rank of 5 is given.

Defensive Recommendation
A few simple countermeasures can be taken to aid in keeping erroneous traffic
as this from getting into the network. The firewalls should be configured to
allow only ports required by the hosts with the service. ICMP traffic (ping)
should also be configured to be blocked for all hosts where it is not needed.
Servers offering up services to the world may need this allowed however any
host without a service running on it

Detect #3 WEBROOT DIRECTORY TRAVERSAL

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Source of trace:
The alert was generated from the raw pcap file 2002.10.11. The file was
obtained from http://isc.sans.org/logs/raw as outlined in practical guidelines.

Network topology:
The network topology is the same as the topology discussed for Detect #1 BackDoor Q
access (CAN-1999-0660)

Link graph:

The graph above shows the single host 206.231.93.66 trying to connect with a
source port of 4863 to victim host 207.166.91.57 on port 80.

Description of detect:
This detect looks to be an attempt by a tool or script to gain access to an IIS
server using a well known exploit to unpatched systems. In this capture there
are only two alerts for the day. Both have a source IP of 206.231.93.66 with a
destination address of 207.166.91.57. It should be noted that the attacks are 3
seconds apart which could mean it was one attack but simply a typical retry as
the attacking host did not get a response to the initial request. The victim host in
this case did not look to be active as it did not respond to the attack. There is
also no evidence found of this host being active on the network for the month of
October as well. Interestingly, the attacking IP is only seen in the merged pcap
file 2002.10.all twice, the packets generating the alert. A whois was performed
at http://samespade.org and resulted in the following results:

OrgName: JAMES SEXTON
OrgID: JAMESS-5
Address: 5140 SOUTH 450 EAST
City: PERU
StateProv: IN
PostalCode: 46970
Country: US
NetRange: 206.231.93.0 - 206.231.93.127
CIDR: 206.231.93.0/25
NetName: FON-347126912094242
NetHandle: NET-206-231-93-0-1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Parent: NET-206-228-0-0-1
NetType: Reassigned
Comment:
RegDate: 2002-02-14
Updated: 2002-02-14
TechHandle: JS3208-ARIN
TechName: SEXTON JAMES
TechPhone: 1-765-473-9695
TechEmail: CNK30@hotmail.com

Oddly this address range is assigned to a single person James Sexton, however
it appears he did own this IP range during the same timeframe of the alert.

Reason detect was selected:
The reason this detect was chosen was based on the implications of a
successful attack. As I will explain below, if this attack is successful the
attacker could assume control of the victim machine. Without knowing the local
network environment the assumption must be made that there are vulnerable
machines within the local network and should be investigated. The second
reason for choosing this attack was based on the type of alert; this alert was
generated with Snort’s preprocessor. My understanding of the Snort’s
preprocessors was limited and this alert gave me the opportunity to dig deeper
into how these types of alerts are generated.

Detect was generated by:
This detect was generated by Snort Version 2.2.0 (Build 30), all rules have been
enabled.
The command run was:

snort -k none -r 2002.10.11 -c /etc/snort/snort.conf -l /home/giac/logs/

Explanations of the various switches used are explained above.

The alert:
[**] [119:18:1] (http_inspect) WEBROOT DIRECTORY TRAVERSAL [**]
11/10-01:28:28.196507 206.231.93.66:4863 -> 207.166.91.57:80
TCP TTL:106 TOS:0x0 ID:26945 IpLen:20 DgmLen:185 DF
AP Seq: 0x8BCFF5D6 Ack: 0xFEEFAE66 Win: 0x4470 TcpLen:
20

There are two parts to this signature the first is found below:
preprocessor http_inspect: global \

iis_unicode_map unicode.map 1252

The preprocessors allow snort to manipulate incoming traffic prior to the packets
being handed off to the detection engine. In this case the preprocessor will try
to normalize all http packets. By normalizing the packet the preprocessor

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

attempts to reformat each http packet to a standard format. This means the
preprocessor will attempt to decode an http packet based on the unicode.map
file. In the case of this detect, the unicode.map will see the %5c and decode
this to be \. By normalizing the packet to a standard format fewer rules need to
be created and snort is able to analyze packets quicker.

The alert is generated by a second preprocessor:
preprocessor http_inspect_server: server default \

profile all ports { 80 8080 8180 } oversize_dir_length 500

The configuration string is enabling the preprocessor to look at http packets,
with a default server type (types include, IIS and Apache). The default profile
has all profiles enabled which includes a setting for webroot traversals. All
packets are examined for ports 80, 8080, and 8180. It is important to note the
preprocessor is unable to monitor port 433 or https traffic as the traffic is
encrypted.

The alert also gives us some additional information about how the
preprocessors generate the alert.

[**] [119:18:1] (http_inspect) WEBROOT DIRECTORY TRAVERSAL [**]
11/10-01:28:28.196507 206.231.93.66:4863 -> 207.166.91.57:80
TCP TTL:106 TOS:0x0 ID:26945 IpLen:20 DgmLen:185 DF
AP Seq: 0x8BCFF5D6 Ack: 0xFEEFAE66 Win: 0x4470 TcpLen:
20

A typical alert is generated based on the rules found in the ./snort/*.rules file.
This file tells snort the SID, Rev, Priority, Name, and some additional information
covered above. For alerts generated by the preprocessors they do not use these
same files, but instead use a file called gen-msg.map. The gen-msg.map
contains the basic alert information similar to normal snort rule files. To use our
alert as an example, the 119 correlates to the generator that generated the alert,
in this case http_inspect. All rules being triggered by an http_inspect rule will
have this same number. The next number is 18, this is the alertid for this alert.
Looking at a portion of the gen-msg.map file this becomes clearer.

Format: generatorid || alertid || MSG
1 || 1 || snort general alert
2 || 1 || tag: Tagged Packet
(snip)
119 || 16 || http_inspect: OVERSIZE CHUNK ENCODING
119 || 17 || http_inspect: UNAUTHORIZED PROXY USE DETECTED
119 || 18 || http_inspect: WEBROOT DIRECTORY TRAVERSAL
120 || 1 || http_inspect: ANOMALOUS HTTP SERVER ON UNDEFINED
HTTP PORT
121 || 1 || flow-portscan: Fixed Scale Scanner Limit Exceeded
121 || 2 || flow-portscan: Sliding Scale Scanner Limit Exceeded

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

121 || 3 || flow-portscan: Fixed Scale Talker Limit Exceeded
(snip)

Probability the source was spoofed:
It is highly unlikely that the source IP is spoofed. For this attack to be
successful the attacking hosts requires a fully established tcp handshake to
occur. The attacking machine sends the exploit to the victim machine, if
successful the victim machine will send the results of the exploit back to the
attacking machine. If this address is spoofed the attacker will not receive the
results of the exploit, the packets will instead be sent to the real owner of the
spoofed IP. There is always the possibility that the attacker has control of a
device capable of sniffing the traffic between the spoofed address and the victim
host. This would allow the attacker to receive the results of the exploit by simply
sniffing the traffic as it passes on the network.

Attack mechanism
The attack attempts to gain access by tricking the web server into executing a
program outside of the web directory structure. In this case the attacker is trying
to run: /winnt/system32/cmd.exe?/c+dir which would give the attacker a listing of
all the files in the directory. The attacker tricks the web server by using a well
known exploit of IIS (Internet Information Services), Microsoft’s web server. The
attacker crafts a custom GET request; within this request are specially encoded
commands. The commands are encoded with standard UTF-8 Unicode that the
web server will decode automatically. In the case of this packet the attacker is
sending the following sequence:

..%5c../..%5c../..%5c/..55../..c1..
This decodes as:

..\../..\../..\/..55../..c1..
The web server will try to follow this link which on most vulnerable servers will
place the attacker at the root of the system C:\. From this location the attacker
attempts to run:

/winnt/system32/cmd.exe?/c+dir
By running cmd.exe the user will get a file listing of the C:\ directory. This
output gives the attacker the knowledge the server he has targeted is
susceptible to further exploits, though by itself is not harmful. The ..55.. and
..c1.. look be errors as neither would accomplish any added value as they are.
The ..55.. is probably a mistype for ..%5... And the ..c1.. is also a mistype and
should be ..%c1.. which decoded with the Chinese u Unicode as found by
Ernest Eustace in his GIAC practical (Eustace P.30). Further investigation of
the merged pcap file 2002.10.all there seems to be no evidence that this attack
was successful. Beyond the 2 packets sent from 206.231.93.66 there is no
further communication from either the source or destination IP. This attack
could be an early variant of the rather widespread virus Nimda. Nimda utilizes
the same exploit to gain access to vulnerable IIS. Nimda typically encodes its

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

payload twice. In our packet the \ is encoded as %5c, Nimda typically encodes
this one more time to %255. Nimda typically tries to connect too many hosts at
a time. In this case we see no other attempts from this host for the month of
October. For these reasons ruling out these packets as Nimda seems logical.
The packets could be web vulnerability tools such as nickto or Nessus. In
looking at captures for the month of October we do see this same attack
executed from other hosts, albeit unsuccessfully. This leads me to believe that
this attack is part of a probing/ vulnerability tool.

Correlations:
As cited above, Ernest Eustace’s paper was used as a reference
(http://www.giac.org/practical/GCIA/Ernest_Eustace_GCIA.doc). Mr. Eustace
detailed the correlations between the packet he analyzed and a typical Nimda
packet more so than done in this paper. Mr. Eustace noted the use of
“Connnection: close” in the packet. From his research he determined that the
misspelling of the word “Connnection” was a known signature of Nimda. Mr.
Eustace also noted the use of the “Host: www” which also a known signature of
Nimda. However, he also came to the conclusion that this capture is not
Nimda.

Jeremy Junginger posted a question on Insecure.org requesting more
information on a web traversal attack against his web servers. The attack
payload was near identical to the one found in our alert. Nick FitzGerald
responded to Mr. Junginger’s question, validating much of the information
provided above (http://seclists.org/lists/incidents/2002/Nov/0076.html). Mr.
Fitzgerald also believes this scan to be that of a “Unicode vulnerability scanner”.
However, his response was used to help validate the conclusions found in this
paper.

Tom Rodriguez has written a rather extensive paper on “What are Unicode
vulnerabilities on Internet Information Server (IIS)?”. This paper can be found on
the Sans.org website at: http://www.sans.org/resources/idfaq/iis_unicode.php.
Mr. Rodriguez goes into far more detail on how the directory traversal works and
additional ways this vulnerability can be utilized. This paper was also used to
validate the conclusions found above.

Evidence of active targeting
Based on this alert alone, there is no evidence of active targeting. There were
only two packets for the month of October from this source IP, and they were
directed at only one host. The victim host does not look to be an active server
as we have not seen packets from this host during the month of October. The
2nd packet also seemed to be a retransmitted of the first packet as it occurred 3
seconds after the original packet.

Severity

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Severity = (Criticality + Lethality)(System Countermeasures + Network
Countermeasures)
48 = (5+1)(3+5)

Criticality --3
As there is not much known about the type of systems being targeted a rank of
3 would seem appropriate. Depending on the type of environment the ids is
watching this value would increase. It is known the captures are from a
university, if the captures are from a subnet only accessed by students,
computer lab, dorm room network access, this value would decrease as these
systems would not be critical to the university. However if the university web
servers or servers with student records are within this local network this number
would increase. More information about the local network is needed to judge an
acceptable value.

Lethality --5
Had this attack succeed the attacker may have been able to gain root level
access to this machine. The value for Lethality if the attack were indeed
successful would need to placed at 5.

System Countermeasures --1
From the logs given, it looks as though this victim is not susceptible to this type
of attack or does not have a web server installed. The attack will only work
against unpatched IIS servers and as the attack was unsuccessful it would
seem appropriate to give this a value of 1.

Network Countermeasures --5
Assuming the packets captured are not from in front of the universities firewall, it
appears as though there is a very liberal rulebase on the Cisco devices as well
as any firewall if any. Without more information, it would seem prudent to rate
the network countermeasures with a high score of 5.

Defensive Recommendation:
It would be good practice to audit all IIS servers within the environment to
validate they have the proper patches applied. An added step would be to
change the default path web files are stored on all machines. Many of the web
traversal exploits take advantage of default installs where the starting directories
are known. By renaming these directories the attacker can no longer rely on
basic scripts to gain access to the host. Additional steps should be taken to
limit both inbound and outbound traffic. An edge firewall should be put in place,
and all unused inbound ports should be blocked at the edge to limit traffic such
as this. All outbound traffic should be limited to only what is needed as well. By
limiting outbound traffic with proxy servers or a firewall with only a few select
ports open, this limits the avenues attackers have exploit vulnerable machines.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Network Statistics

Top Talkers.

Rank Total #
Alerts

Source IP #
Signatures
triggered

Destinations involved

rank
#1

1007 alerts 207.166.87.157 6
signatures

(48 destination IPs)

rank
#2

132 alerts 255.255.255.25
5

1
signatures

(132 destination IPs)

rank
#3

36 alerts 192.77.15.39 1
signatures

207.166.87.40

rank
#4

32 alerts 211.47.255.20 1
signatures

207.166.184.92,
207.166.93.224

32 alerts 211.47.255.22 1
signatures

207.166.237.132,
207.166.12.203

Table 1a.

Table 1a above is a list as compiled by snortsnarf of the top 5 Source IP's
generating Alerts for the dates 10.10.2002 through 10.12.2002. To generate the
table above, the pcap files 2002.10.10 through 2002.10.12 were merged
together using ethereal to create one file. This file was then analyzed using
snort to generate a single alert file. Snortnarf is a freely available perl script that
will analyze a snort alert file and create a set of HTML pages that aid in sorting
through a large number of alerts quickly. The program also creates three
summary pages: list of signatures generated, top 20 source IP's and lastly the
top 20 destination IP's.

The top 10 sources generating alerts was chosen as the criteria for "Top
Talkers" because these IP's are causing the most load on the IDS sensors. In
most cases the hosts generating the most alerts is not an attacker but rather is
an opportunity to tune the IDS better as these alerts are typically false positives.
In this case we see that an internal host is generating far more events than all
the other IP's combined. Taking a closer look at each of the alerts, each of the
1007 alerts were http_inspect alerts generated by the preprocessor. In large
environments the top offending source IP's generally are alerting on poorly
constructed rules or IDS that is not configured properly for the environment it is
watching. A brief scan of the traffic in this capture shows the end user surfing
to a few sites that use Unicode within the URL. Correlating that back to the
alerts being generated we see many of the alerts are trigged due to the use of
Unicode in the URL. The snort.conf file used to generate this alert file was not
tuned, rather had every rule enabled, and the default setting for preprocessor
settings.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Top Five Targeted Ports
Signature #

Alerts

Sources

Dests
(http_inspect) WEBROOT DIRECTORY TRAVERSAL 10 2 10
BACKDOOR Q access [sid] [arachNIDS] 132 1 132
BAD-TRAFFIC tcp port 0 traffic [sid] 93 4 6
(snort_decoder) WARNING: TCP Data Offset is less than 5! 8 4 8
(snort_decoder): Short UDP packet, length field > payload
length

1 1 1

Table 2a

Table 2a above shows what I believe to be the top five targeted services or ports.
The top three are the three detects I choose to examine as they are what I
believe to be the more important alerts. The top two alerts were chosen
because; if successful it is possible for the attacker to assume control of the
server. The third alert is important as this it is not common to see port 0 being
used in normal traffic; this could be an attempt to probe for active hosts. The
second to last attack made the list because a large number of sources
generated the same alert. The last alert is interesting as there is very little UDP
traffic in the capture files and I found it interesting that an alert was generated.
Based only on the three days of captures, it is difficult to determine what service
is truly being targeted. However based on the table above, IIS web servers are
being probed for more than the other services.

Top 3 external source IP's

The first IP I choose to look closer into was 192.77.15.39. I choose this IP as it
was the 3rd highest IP on the top source IP's with alerts found in table 1a above.
The alert generated by the IP 192.77.15.39 is a preprocessor http_inspect alert:

[**] [119:13:1] (http_inspect) NON-RFC HTTP DELIMITER [**]
11/10-16:15:01.266507 192.77.15.39:50656 -> 207.166.87.40:80
TCP TTL:239 TOS:0x0 ID:51883 IpLen:20 DgmLen:115 DF
AP Seq: 0x72F035C0 Ack: 0xE8B02201 Win: 0x2238 TcpLen: 20.

The source IP generated 132 alerts all with the same destination IP of
207.166.87.40 to port 80 (http). A quick scan of the traffic generating the logs
shows what looks to be normal web traffic. The source hosts appears to be
attempting to access web pages on the destination host, however there does
not appear to be an active web server on the destination host. The IDS could
be tuned to ignore this type of traffic by changing the default setting of the
http_inspect preprocessor not to include the non_rfc_char setting.
To determine more about the host itself I conducted a whois search from
http://www.samspade.org/. The output of this query is below:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 OrgName: Information Handling Services
OrgID: IHS-7
Address: 15 Inverness Way East
City: Englewood
StateProv: CO
PostalCode: 80112
Country: US
NetRange: 192.77.15.0 - 192.77.15.255
CIDR: 192.77.15.0/24
NetName: IHSNET
NetHandle: NET-192-77-15-0-1
Parent: NET-192-0-0-0-0
NetType: Direct Assignment
NameServer: NS1.IHS.COM
NameServer: NS2.IHS.COM
Comment:
RegDate: 1990-10-17
Updated: 2002-06-12
TechHandle: DA35-ARIN
TechName: Anderson David
TechPhone: 1-303-397-2835
TechEmail: dave.anderson@ihs.com

By using the whois database we can learn many facts. In this case the IP is
registered to Information Handling Services (IHS) in Englewood CO. The
company owns the entire class C, 192.77.15.0-199.77.15.255. We also know
that this company has owned this IP range since 1990-10-17. If necessary we
can contact the technical contact provided. However, we should first determine
what type of service Information Handling Services provides to their customers.
Quoting from the "About IHS" webpage "Information Handling Services (IHS) is
the leading worldwide provider of technical content and information solutions for
standards, regulations, parts data, design guides, and other technical
information.' (http://ihs.com/engineering/index.html) Taking this information and
examining the original packet captures we see the pages the source host was
trying to access might be technical documents. While there is no way to
validate the intent of the user it looks as though this may have been a mistyped
URL or bad DNS entry. We can garner one more piece of information however;
we can try to learn the OS using a program called P0F. P0F is a passive
network analyzer that will analyze a packet capture to try to determine OS of all
IP's in the capture. The program uses the following values to attempt to
determine the type of OS:

wwww - window size (can be * or %nnn or Sxx or Txx)
"Snn" (multiple of MSS) and "Tnn" (multiple of MTU) are allowed.
ttt - initial TTL
D - don't fragment bit (0 - not set, 1 - set)
ss - overall SYN packet size (* has a special meaning)
OOO - option value and order specification
QQ - quirks list

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The program will then take these values and try to match them up to a database
file included with the program. However the program was unable to determine
the type of OS.

The second IP chosen was 211.47.255.22. The IP was chosen for further review
based on the probing activity seen above for the detect BAD-TRAFFIC tcp port 0
traffic. This source IP was also 2nd highest on the list of top talkers for external
IP address. Based on the analysis already done we know that most of the alerts
generated by this host are actually the same packet being resent. Using the
same techniques as used above we learn that KRNIC has current ownership of
this IP range:

211.47.255.22 = []
(www.nic.or.kr) Whois
query: 211.47.255.22
ENGLISH

KRNIC is not a ISP but a National Internet Registry similar to APNIC.
 The IPv4 address is allocated from APNIC to KRNIC.
KRNIC is holding the IPv4 address for further allocation to its member ISPs
in the future. If you have any question with the IPv4 address
Please contact at hostmaster@nic.or.kr

KOREAN
KRNIC IPv4 APNIC
KRNIC KRNIC ISP KRNIC
IPv4 IPv4 ISP
IPv4 hostmaster@nic.or.kr

- KRNIC Whois Service -

A query of the KRNIC whois website (http://whois.nic.or.kr/english/) gave us
what looks to be the same output:

?????????(www.nic.or.kr)?? ???? Whois ??? ???.
query: 211.47.255.0
ENGLISH
KRNIC is not a ISP but a National Internet Registry similar to APNIC.
The IPv4 address is allocated from APNIC to KRNIC.
KRNIC is holding the IPv4 address for further allocation to its member ISPs
in the furture. If you have any question with the IPv4 address,
Please contact at hostmaster@nic.or.kr
KOREAN
KRNIC? ?? ??? ????? ???? ?????. ???? IPv4??? APNIC
???? KRNIC? ??? ????, KRNIC? ??ISP?? ???? ?? KRNIC
?? IPv4?? ???? ?? IPv4??? ??? ?? ??ISP?? ??? ????. ????
???? IPv4??? ?? ????? ?? hostmaster@nic.or.kr? ????? ????.
- KRNIC Whois Service -

Under normal circumstances it would be prudent to try the same lookup under
the Korean site and not the English version to see if there is any difference.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

However my understanding of Korean is non-existent and it would be necessary
to utilize additional resources to decipher the site. Using p0f to determine the
OS of this IP did not return a valid answer. I did however Saro Hayan's GIAC
practical paper does an excellent job of describing how to determine the OS
type by hand. His results listed this OS as a “Linux 2.4.1-14 (1) kernel OS”
(Hayan p.11)

The last IP chosen is 208.45.79.122. The IP was chosen based on the type of
attack conducted, a WEBROOT DIRECTORY TRAVERSAL. This alert is similar
to the detect analyzed above however the exploit used is not the same. The
payload, the attacker is trying to execute
/scripts/..%5c%5c../winnt/system32/cmd.exe?/c+dir. As we learned above this
once decoded translates to: /scripts/..\\../winnt/system32/cmd.exe?/c+dir. This
attack was chosen for further review based on the type of alert that was
generated. This attacker is actively trying to execute an exploit against the local
network. If successful this attack may gain the attacker the ability to take
ownership of the victim host. A whois lookup of the address garnered the
following results:

OrgName: Qwest Communications
OrgID: QWST
Address: 950 17th Street
Address: Suite 1900
City: Denver
StateProv: CO
PostalCode: 80202
Country: US
NetRange: 208.44.0.0 - 208.47.255.255
CIDR: 208.44.0.0/14
NetName: NET-QWEST-BLK
NetHandle: NET-208-44-0-0-1
Parent: NET-208-0-0-0-0
NetType: Direct Allocation
NameServer: DCA-ANS-01.INET.QWEST.NET
NameServer: SVL-ANS-01.INET.QWEST.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-

PORTABLE
Comment: NOTE: For abuse issues please email abuse@qwest.net.

(snip)

The address is assigned to Qwest Communications in Denver Colorado. Qwest
is an internet provider for the Denver/Metro area. As the alert was generated in
2002 there is little chance of contacting Qwest to determine who held the
address at the time of the alert. We can see that Qwest held this range of IP’s
during the time of the alert, the IP range was registered in 1999-06-24. If the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

alert had occurred more recently, checking Dshield for previous reports from this
IP should be conducted. A request could be made to Qwest to try and learn
who had the address assigned to them during the attack, and if additional
attacks were logged, a request to have the IP investigated by Qwest. P0f was
unable to determine the type of machine generating the logs.

Analysis Process
The platform used for all the analysis was a Dell GX270 i686 Intel(R)
Pentium(R) 4 CPU 2.80GHz running Linux 2.6.8-gentoo-r3.

The first step I took was to merge all the relevant pcap files into one file. This
helped me see the large picture, and allowed me to gain an idea of what IP
ranges would be needed for the local network. These files were merged into a
file named 2002.10.all. A combination of ethereal and tcpdump were used to
merge the files, and later to analyze the basic network structure.

The next step taken was to configure snort. Settings such as the $HOME_NET
needed to be configured. The only other configuration change made to the
snort.conf file was to enable all the rules available. In a production IDS enabling
everything would have been a bad choice, causing many false positives.
However, for the purpose of this practical the more information the better.

With snort configured I choose three concurrent files at random and created
separate directories for each. After that was completed I ran snort on each file, I
also included the 2002.10.all file as a reference.

Reading text based alert logs is not always fun so I ran snortsnarf on each of the
newly generated alert files. Snortsnarf is a perl program that takes snort alert
files and creates easily read html files. Snortsnarf also creates a nice summary
page giving the user a quick rundown of the events logged.

The last tool I used prior to evaluating the alerts was p0f. Typically this tool
generates a great deal of information with very little however it came up with
very little usable information from these protocols.

Having some familiarity with some snort alert files, deciding on which alerts to
choose from was not difficult. I choose the two I felt were the biggest risk and
one that was out of place. Snortsnarf was a valuable tool to help quickly sort the
many alerts that were generated.

Ethereal and tcpdump were both used to analyze individual log files. I found
ethereal very useful to conduct quick sorting of the files.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

References:

Decker, Dustin. "Reset Cause and further info (SonicOS Specific)." Online
Posting. ethereal.com. 6 Sep 2004 URL: http://www.ethereal.com/lists/ethereal-
users/200409/msg00057.html.

Eustace, Ernest. ""SANS Intrusion Detection & Analysis Certification." GIAC
Certified Intrusion Analysts (GCIA). URL:
http://www.giac.org/practical/GCIA/Ernest_Eustace_GCIA.doc.

FitzGerald, Nick. "Security Incidents: Re: Unicode Attack." Online Posting.
Seclists.org. 13 Nov 2002 URL:
http://seclists.org/lists/incidents/2002/Nov/0076.html.

Gordon, Les. "What is the Q Trojan?." GIAC Website. URL:
http://www.sans.org/resources/idfaq/qtrojan.php.

Hayan, Saro. "SANS Intrusion Detection & Analysis Certification." GIAC
Certified Intrusion Analysts (GCIA). URL:
http://www.giac.org/practical/GCIA/Saro_Hayan_GCIA.pdf.

Meyer, Amanda. "SANS Intrusion Detection & Analysis Certification." GIAC
Certified Intrusion Analysts (GCIA). URL:
http://www.giac.org/practical/GCIA/Amanda_Meyer_GCIA.pdf.

Mogul, Jeffery. “Broadcasting Internet Datagrams”. October 1984. URL:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc0919.html

SID 524. “BAD-TRAFFIC tcp port 0 traffic.” Snort Signature Database. URL:
http://www.snort.org/snort-db/sid.html?sid=524.

Rodriguez, Tom. “What are Unicode vulnerabilities on Internet Information
Server (IIS)?.” URL: http://www.sans.org/resources/idfaq/iis_unicode.php.

vision@whitehats.com. "IDS203 "TROJAN-ACTIVE-Q-TCP"." URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids203&view=research.

Wagoner, Andrew. "SANS Intrusion Detection & Analysis Certification." GIAC
Certified Intrusion Analysts (GCIA). URL:
http://www.giac.org/practical/GCIA/Andrew_J_Wagoner_GCIA.pdf.

Whitehats Network Security Resource. “IDS203 "TROJAN-ACTIVE-Q-TCP"”.
arachNIDS Intrusion Detection Database. URL:
http://www.whitehats.com/info/IDS203.

