
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Open Source Host Based Intrusion Detections
System (OHIDS)

GIAC (GCIA) Gold Certification

Author:(Tom(Webb,Tcw3bb@gmail.com(
Advisor:(MANUEL(HUMBERTO(SANTANDER(PELAEZ(

Accepted:(8th(June(2013(
(

Abstract(
Responding(to(incidents(in(an(efficient(manner(is(critical(for(all(CIRTS.(This(paper(
presents(a(new(open(source(tool(for(the(enterprise.(With(this(tool,(responders(will(
be(able(to(detect(incidents(using(aggregated(data(collected(from(hosts(and(applying(
anomaly(detection.(OHIDS(includes(a(sensitive(data(finder(to(allow(appropriate(
escalation(of(the(incident.(This(software(can(be(utilized(in(a(proactive(manner(by(
removing(SSNs(and(credit(card(data(before(incidents(occur(or(by(detecting(
unauthorized(software(running.((
(
((

OHIDS! 2
(

Tom(Webb,(tcw3bb@gmail.com(

1. Overview
 Detecting and analyzing intrusion based solely on network traffic gives you an

incomplete picture, especially if you are lacking full packet captures or if you have a

large number of mobile users who do not always use your Internet connection. This is a

common struggle with most Computer Incident Response Teams (CIRTs) and they need

a fast way to determine if the system is compromised no matter the location. A host based

IDS (HIDS) for Windows that feeds into a central database and uses the power of base

lining and comparison can meet these needs. OHIDS collects running processes and other

key detection mechanisms, along with a sensitive data scanner. By using this HIDS in

conjunction with network based alerting, it should allow CIRTs to assess if not only the

attack was successful, but also the impact based on what data is on the system.

According to Caswell, Beale and Baker (2007), Snort introduction to the world

was on December 22, 1988 (Chapter 2, what is Snort). Network IDS can detect many

different malicious activities including exploits, port scans, non-compliant protocols and

brute force attacks. Network IDS is also a great way to detect malware infection because

most malware needs a way to communicate back to the attacker. This method of analysis

is called extrusion detection (Bejtlich, 2006, p. 4).

One of the main draw backs of traditional network analysis is that malware can

easily encrypt, obfuscate or purposefully mangle its communication over the network. In

a resent GCIA Gold, “Beating the IPS”, Michael Dyrmose (2013) discusses how easy it is

to bypass IPS technologies (p. 59). To combat just encrypted traffic, you will need to

force all traffic to be decrypt before it enters or exits your network. In many

environments, this is not possible due to privacy concerns, which enables malware to

sneak past with ease.

How do you detect malware when we do not have a signature? How do you detect

a laptop compromised at home? Base lining the network and hosts is the best defense

against this, but is a difficult thing to accomplish in large distributed environment.

What we are missing is determining the impact of the infection on the system.

Depending on your environment, you may be able to segment departments into different

subnets. This would give you some indication that a system in the human resource

OHIDS! 3
(

Tom(Webb,(tcw3bb@gmail.com(

department, but you still do not know if the individuals computer has personally

identifiable information (PII) or how much of it.

To fill this gap an open source HIDS will help determine anomalous activity on

the system. Some of the more common features in HIDS include log monitoring, process

monitoring and network traffic analysis. These features can be used to help detect basic

malware, intelligent advisories or even configuration management. Once detected from

the network, the information gathered from forensics analysis can be used to query

OHIDS to find additional infections.

According to Innella (2001), Haystack Labs released a product name Stalker in

1989 (A Brief History, para. 5). This appears to be the first commercial version of a

HIDS. A presentation from Steve Smaha (1996), the president Haystack Labs, states the

patent pending technology includes gather data from “Processing system audit trail

records, system log file data, and system security state data” (slide 7). While OHIDS is

collecting a lot more information, the basic ideas from the Stalker software still apply

today.

OSSEC is a great open source project that does log analysis and can detect

changes to the registry, file system changes and many other things. The main difference

between OSSEC and OHIDS is that you cannot easily use OSSEC as an incident

response tool to collect live data from a large number of hosts.

2. Introduction to OHIDS
The first version of OHIDS started in 2007 and it was a batch script to collect

basic information. An intern, Maryam Jafari in 2009, wrote the second generation in VB

script. This version added a few additional items to collect and the output was dumped to

a network share. Another intern, Vipul Gupta in 2010, ported the third version to VB.net.

Additional functionality of hashing of processes and loaded modules was added. In the

fourth version, output was converted to CSV and imported into a database. This, the fifth

version, has the capability to connect to the database making it the first true version

where others can easily deploy it in their own environment.

OHIDS! 4
(

Tom(Webb,(tcw3bb@gmail.com(

2.1. Architecture
The OHIDS client is written in VB.net using the 4.0 framework. It will collect the

following critical system stats: running processes, loaded DLLs, network connections,

firewall rule set, services, startup items and scheduled tasks. Each of these stats can be

used to determine what is currently running on the system and what functionality the

application may have. These items will allow us to differentiate what is normal and what

is abnormal for systems on the network.

 Each system will connect back to a database server, currently on a daily interval,

were the data will be processed and correlated. Additionally, every seven days, the

OHIDS client will run a sensitive data scan, using a modified version of

Find_SSN(Find_SSN, 2009), on pre-defined directories and insert the results into a table

on the database server. Find_SSN is a python script compiled for windows, which scans

for social security numbers and credit card numbers. The version packaged with the

system is modified to reset the access times to any file that it reads. This prevents

stomping on any potential forensics evidence in case a full investigation is required.

2.2. Known Weaknesses
The VB.net client collects data from the system using the Windows API calls and

built-in windows utilities. While this technique is convenient and allows for fast

development, malware can bypass this method of detection by hooking API calls,

injecting DLL’s or using a rootkit to manipulate the data OHIDS is collecting. Lots of

malware still does not use these techniques and OHIDS is able to find them.

To detect hooks, rootkits or injected DLLs you can use a malware scanner like

Malwarebytes Anti-rootkit or GMER that looks at program anomalies. My preferred

method for detecting this kind of malware is memory analysis using Mandiants’ Redline

to detect anomalies by directly accessing windows memory.

OHIDS! 5
(

Tom(Webb,(tcw3bb@gmail.com(

2.3. Use Cases
2.3.1. Sensitive Data, Malware Type, and Incident Classification

In most enterprise environments, network IDS detects infections many times an

hour. Each of these infections must be prioritized and categorized appropriately to use the

incident responders’ efficiently.

According to Cichonski, Millar, Grance, and Scarfone (2012) your incident

response policy should include your expected response time based on assets criticality

and threat level of the malware (p. 32). If you are lucky enough to have an enterprise

data loss prevention software deployed, then you should be leveraging this information to

set response priority. If not, you will need to rely on the helpdesk or have your responder

contact the user to determine what information they use on a daily basis. Based on my

experience, this method has proven to be very unreliable. Users generally do not want to

“Get into Trouble” if they use sensitive data and therefore downplay the data they access.

Other users do not want to lose productivity time and have been less truthful. Some users

have a hard time actually determining what sensitive data means, even after several

discussions. With OHIDS, you have data pre-populated in a database to query. This can

be a huge time saver and enable your organization to have consistent data to reference.

2.3.2. Detecting Unknown Malware
Malware is a difficult problem that IT professionals have been fighting for a long

time, but after doing incident response for a while one thing seem to be the same. Most

malware wants to have a persistence mechanism to insure the system is infected as long

as possible. This seems to be one of the fastest and easiest ways of detecting most

unknown malware, especially if you have a large list of data to compare. While this

method will not catch rootkits or other techniques, it should work well for run-of-the-mill

infections.

Finding unknown malware requires a basic understanding of malware and

analytics to identify places where it is hiding. The following is a list of simple but

powerful techniques that will be used for detecting malware.

1. Least occurrence analysis of registry settings, running processes, and

loaded DLL’s when compared to all known PC in your infrastructure.

OHIDS! 6
(

Tom(Webb,(tcw3bb@gmail.com(

2. Look for common locations where malware hides

3. Compare daily system changes in the registry, running processes and

services to help focus analysis.

Least occurrence analysis can be used to determine unique settings or process

running on systems. With a large number of systems in the database, most systems will

have the same applications running. Individual computers running a unique process stand

out. Many version of malware still generate random file names, which can be detected

quickly using this method. Additionally, by reducing the dataset, you can scrutinize these

items more by searching for MD5 and other signs to detect malware.

Malware has a few common places that it likes to hide, and looking at these

specific places can quickly detect infection. Some examples are anything running in

temporary folders. According to Niemelä (2012), some of the common locations are

C:\Users\USER\Documents\, C:\system volume information\, and c:\$Recycle.Bin\

(slide 22).

Once you have used the first to techniques for detecting malware, you should

have confidence that you have found at least the obvious infections on your systems.

Now we can compare the “known good” configuration of these systems each day and

determine what is new. This will greatly reduce the amount of data that needs analysis. It

is still good to re-establish a baseline on a monthly basis to make sure nothing has slipped

through.

2.3.3. Using Indicators of Compromise
When performing malware analysis on new sample you should catalog changes

made to the system by the infection. Once there is a good understanding of the malware,

you can generate an indicator(s) of compromise (Frazier, 2010). Indicators can be as

simple as a file name or just a hash of a file. Other indicators may include file paths,

process mutexes, or a service ran as a different user. To track these items and make them

easily shareable, Mandiant has create an open XML framework called openIOC

(http://openioc.org). They have a GUI tool that makes it easy to use the predefined

OHIDS! 7
(

Tom(Webb,(tcw3bb@gmail.com(

schema for creating new entries. This allows for consistent sharing of data to different

groups.

Once these items have been found, they can be queried against the database

indicating other infected systems. By leveraging OHIDS, you may find systems that are

lying. By definition, network IDS fails to detect anything that does not send traffic over

the network.

3. Client coding designs
3.1. Client Configuration

There are several things to configure on the client before you can get started. To

make these changes, you will need to edit the app.conf file in the directory where the

main executable is located. The following items can be changed for your deployment:

Database IP, Database Name, Database UserID, PASSWD, Registry Path to store basic

information and path for the temp directory. This is covered in more detail in section 4.0

3.2. Main Function
The main function of the program has only a couple of checks and then calls the

critical sub functions Analysis. Figure 1 is a map of the main function of the program.

Figure 1. Main function flow in OHIDS client.

Temp
Dir(Exists Connect(to(DB(Port?

Terminate
Process

No

Process(Started

Completed

Yes
Check(App.config(

For(settings

Create(
Temp(
DIr

No

Write(Event(
Log

Analysis(
Function

Cleanup
Function

Close(
Connection

OHIDS! 8
(

Tom(Webb,(tcw3bb@gmail.com(

3.3. Input
This section will cover collecting data from the PC. The client is not allowed to

read any table in the MySQL database directly (e.g. the user has limited rights to only

insert) and must use stored procedures for any queries. Additionally, they can only insert

into temporary tables and not in the permanent tables.

3.3.1. Analysis Function
This function collects the majority of the data for the application. The PC_Id is

the unique number that is stored in the PC_Info table for each computer as the primary

key. Before we can start generating results from the data, we need to know the PC_Id for

this system. To do this, we call the function comid_sql that uses a stored procedure

(Appendix B) to query the table and determine if an entry for the computer name already

exists, if so, it will respond with the corresponding ID. If no name exists in the table, it

creates a new ID and placeholder information. Once the client has determined its PC_Id,

it will then proceed to collect data. Figure 2 shows how the analysis function flows.

To make sure OHIDS does not greatly effect performance, a sensitive data scan

runs on a weekly basis and is set to a low priority. The last date Find_SSN.exe is run gets

stored in the registry key defined in the app.config file in HKLM hive.

OHIDS! 9
(

Tom(Webb,(tcw3bb@gmail.com(

Figure 2. Analysis function flow in OHIDS client.

Analysis

Netstat Netsh schtasks

ProcinformNetstatInformServListInform

StartListInform FirewallConfigI
nform PCInform

SchTasksInfor
m

7=days=since=last
Find_SSN_Scan? New_Find_SSN

No

End=Function Find_SSN_Prep

Write=registry=key

End=Function

Get=PC_Id

OHIDS! 10
(

Tom(Webb,(tcw3bb@gmail.com(

3.3.2. Netstat
To get a list of programs that have current connections and listening ports open,

we use the netstat –nao command. The output redirects to a temporary file and parsed

using the NetstatInform function.

3.3.3. Process list, MD5 and MAC Times
The ProcInform function collects information about the process running on the

system. Additionally, it collects information on the modules loaded including MD5, PID,

Parent PID and MACtimes for each process and module.

To gather a list of processes, the windows API

System.Diagnostics.Process.GetProcesses() is used. WMI is used to get the parent

process id (PPID) and modules for each process and results are written to a file. MAC

times will be gathered for each file, using windows API, along with MD5 and File

version information. Figure 3 gives a breakdown of how the function collects data.

Figure 3. ProcInform function application flow in OHIDS client.

OHIDS! 11
(

Tom(Webb,(tcw3bb@gmail.com(

3.3.4. Schedule Tasks
The list of scheduled tasks are generated via the built-in utility schtasks /query /v

/fo csv. The output lists items any item scheduled with task scheduler or the command

line at.exe. The csv file is parses and loads into the database.

3.3.5. Services
Service information is gathered using ServiceController.GetServices vb.net call.

This information writes to a file, parses and loads into the database.

3.3.6. Startup List
Startup information is gathered using the WMI call Select * from

Win32_StartupCommand for StartupCommand. This list includes many different items

that start when the system boots or the current user logs into the system. The results are

placed directly into the table using a SQL insert statement eliminating the need for a

temporary file written to the host.

3.3.7. Firewall
The windows firewall rules are collected using the built-in command netsh

firewall show allowed program. According to Microsoft, the policy description standard

means these rules are applied when the computer is not connected to the same network as

the domain. The domain description means these are applied when the system is on the

same network as the domain (Microsoft, 2005). This output is redirected to a file and

based on the on which OS the file is broken up into the proper format to be loaded into

the database.

3.3.8. Sensitive Data Scan
OHIDS calls the sensitive data scanner find_ssn.exe two times, once for scanning

the My Documents folder and the other to scan the current users’ desktop, and create two

separate logs. The entire user directory is not scanned due to the large number of false

positives when looking at the user’s temporary Internet cache and other file types stored

in the folder.

OHIDS! 12
(

Tom(Webb,(tcw3bb@gmail.com(

3.3.9. Error Log
Error logging is straightforward. If the system cannot connect to the database,

then an event log is created in the application event log with the source of OHIDS and

event ID 234. If the database can be reached, all other logs are input into the Error_Log

table for troubleshooting.

3.4. Output
All functions that have output use a function with the same name and ends in sql.

These functions sends the output to the database and one example of this is the

netstat_sql function.

4. Database
The database should be running on MySQL 5.1 or greater on a Linux server with

at least 4GB of RAM. Storage should be approximately 1GB per every 2000 PC put into

the system.

4.1. Main Tables
The main table, PC_Info, is where each computer in the database must have an

entry. This table contains the PC name, IP, OS version, first and last time checked in and

other overall information on the system. The primary key is the PC_Id that uniquely

identifies each computer that communicates to the system.

To update data in the PC_Info table, a stored procedure compares the PC_Name

with the PC_Id and hashes it. This is the only table that never has any data purged from it

and additional checking helps with integrity.

The Process table includes information about each process and modules loaded.

The Netstat table contains results from the netstat command. Service, Startup_List,

Schd_Tasks tables all contain information to detect persistence in malware. The PC_Hash

table contains a list of all process and DLLs running and hashes. The Error_Log table

contains errors generated by the agents when running on the systems to help with

troubleshooting.

OHIDS! 13
(

Tom(Webb,(tcw3bb@gmail.com(

4.2. Additional Tables
Several additional tables exist for whitelisting information; this will reduce the

noise in the reports. The Good_Serv table is a list of default services installed on

Windows XP and Windows 7 that was created. The Good_Hash table can be loaded with

external lists of hashes or you can generate your own based on the company image. Using

this table is covered in more detail in section 5.1.3. The Good_File table is used to weed

out other items that you have investigated and want to remove from future reports. Items

in this table must contain the full path of the executable. (e.g. insert into Good_File

(Name) Value ('C:/Program Files/Trend Micro/OfficeScan Client/TmProxy.exe');)

Currently, due to speed, wildcards are not supported for filtering. This makes it

impossible to filter out applications installed in the user folder. To get around this, you

can use the grep –v option on your output if needed.

4.3. Temp Tables
All major tables, except PC_Info, have a temporary version of the tables. This is a

loading stage for comparisons, and is used to compare previous results to each other. A

cron is setup to move the data daily from the temp table to the main table for storage.

4.4. Permissions needed
The SQL user for the client should have very little permissions. It should only be

given insert permission to the temp tables and the ability to execute the two stored

procedures used for the PC_Info table. This limits the client the ability to read any

information from the tables except for what the stored procedures allow.

4.5. Stored Procedures
OHIDS has two stored procedures, get_com_id and update_comp_info. The

specific code for each procedure is in Appendix B and Appendix C.

4.6. Daily Tasks
The ohids-daily-rotate script should have a link placed in the /etc/cron.daily.

Before data is moved, the script purges all data in the long-term tables that is older than

45 days. The information in the PC_Info table is never removed. This script dumps the

data, in CSV format, from the temp tables to the specified directory in the

OHIDS! 14
(

Tom(Webb,(tcw3bb@gmail.com(

DATA_DUMP_DIR variable. This data is for historical reasons to help with incident

response when a compromise is not detected for long period.

5. Deployment
5.1. Client

You may deploy the application to a folder on a network share or to a local

directory. The application and dependencies will all be in one flat folder directory. Copy

this directory to the place where you want it to run from. To change the default settings

for the temporary file location, registry settings, and database username use the XML file

in the same folder. A scheduled task should be setup via GPO and have it run daily as the

System user to run the ohids.exe file.

OHIDS creates application events logs with the event id of 234 if it cannot

establish a connection to the MySQL database. If you are experiencing any addition

errors, you will need to check the Error_log table in the database.

5.2. Requirements and options
For most external commands run via command prompt, the results create

temporary files in the specified folder on the system. The following windows utilities are

used to collect data: netstat.exe, netsh.exe, schtasks.exe. Server Install

To get started, you will need a Linux system that is running MySQL. The ohids-

install script is a simple script that will create the MySQL database, load the schema for

the database and move scripts into the directory /usr/local/ohids. You will need to create

a .my.conf in the home directory for the user you plan to run the script. You only need to

include the username and password in the file for admin access to the OHIDS database.

Make sure you set the permissions to 400 on this file. Edit the variables in ohids-daily-

rotate.sh to make sure the script is working as intended.

OHIDS! 15
(

Tom(Webb,(tcw3bb@gmail.com(

6. Mining Data
6.1. Looking for signs of compromise

As previously mentioned in the use cases, we are going to use analysis of what

has changed on the computers each day. We will also use analysis of unique process

running in a large environment and using known hiding places to find malware.

6.1.1. Malicious process
When detecting a malicious process, you need to know what a normal place for

processes to run from is. As mentioned previously, temporary directories and system

volume info is commonly used by malware. To get a list of common reports use the

OHIDS report script. Make sure the Linux user has a .my.conf file in the user directory

with a username and password for the database. To run the report, use ohids-reporter.sh –

proc_odd. This report (Figure 4) also looks up the process hash using Team Cymru hash

lookup (http://www.team-cymru.org/Services/MHR/). The Cymru results shows the

percentage of Anti-virus software that detected the hash as malicious. If the results

contain NO_DATA, no AV has determined the software is malicious.

Figure 4. Sample report from Proc_Odd.

(
To determine unique processes running in your environment the Proc_Uniq report

(Figure 5) will help you find possible random malware named processes. The report lists

process in your environment that has less than five computers running the process.

(
!

Figure 5. Sample report from Proc_Uniq.

One of the most powerful ways to query this data is to compare the previous day’s

results to illuminate a lot of noise. The Proc_Diff report will show you only new

processes running on each computer that were not running on the previous day.

Proc_Name**Proc_File****cat_num*
ODSAgent(((C:/Program(Files/DVD(or(CD(Sharing/ODSAgent.exe(((((((3((

PC_ID,*Process*Path,*MD5,*Cymru_Results*
"972"("C:/WINDOWS/TEMP/DK9423.EXE"("cd6798a36930f0e224253c5db3c92d4f"(NO_DATA(

OHIDS! 16
(

Tom(Webb,(tcw3bb@gmail.com(

Reviewing all the various Diff reports should be part of your daily security operations

process.

Figure 6. Sample report from Proc_Diff.
(

The Proc_Date report looks for processes that are running with a file create and/or

modified date of less than 48 hours. This report differs from the Proc_Diff report as

malware can use the same name as another process, but the malware may not have

manipulated the file dates.

Figure 7. Sample report from Proc_Date.

If you want to dig deeper into possible malicious process with OHIDS, querying

the process ID in the Process table will give you a list of all the DLLS. According to

Sikorski and Honig (2012), you can use the loaded DLLs to determine some of the

capabilities of the malware (p. 17).

6.1.2. Detecting Persistence
The Start_List table, Sch_Tasks and Service_List are the key tables when looking

for items where the malware will reload when the system restarts. The Start_Loc report,

queries the Start_List table, is the lowest volume and tends to have the highest accuracy

for detecting infections. Like the process version of this report, the Start_Diff looks for

typical places where malware likes to hide but only shows the difference between the

same computers for the past 48 hours.

Figure 8. Sample report from Start_Loc.

PC_Id* Proc_File*
83(C:/Program(Files/Juniper(Networks/Common(Files/dsNcService.exe(
83(C:/Windows/system32/svchost.exe(
(

PC_Id* Command*
15(Facebook(Messenger.lnk(
15(OneNote(2007(Screen(Clipper(and(Launcher.lnk(

PC_Id* File_Name* MD5*
1187(
C:/WINDOWS/ASSEMBLY/NATIVEIMAGES_V2.0.50727_64/SYSTEM.MANAGEMENT/C54FC0CAC648A174C5E35BD
6589C9390/SYSTEM.MANAGEMENT.NI.DLL(0181b4c10f409299e0d8ee130ef87353(
(

OHIDS! 17
(

Tom(Webb,(tcw3bb@gmail.com(

Figure 9. Sample report from Start_Diff.

6.1.3. Compare Software Hashes
Looking for software that is running the same reported version, but a different

hash, can be tricky. You are relying on the developers to update the file version metadata

any time a change is made. The Hash_Comp report (Figure 10) compares MD5 hashes of

running exes and DLL’s with the same version number. If a hash does not match, it will

display the name. I use this report as a final effort when other analysis is not working out.

The success rate for detection has been very low on this report in my uses.

Figure 10. Sample report from Hash_Comp.

(
The most well known hash dataset is the National Institute of Standards and

Technology’s National Software Reference Library(2009). You can also use their

Knoppix CD to create your own list from you standard desktop image. By loading this

information into the Good_Hash table, you can use it to reduce the noise in these reports.

This can be done by comparing the results of the MD5s to the items listed in the

Good_Hash table and only displaying items that do not match. If you want to have any

your queries filter based on this table, you can add “WHERE MD5 not in (select

DISTINCT MD5 from Good_Hash)” to the end of the query. This is already done in the

Hash_Comp report.

If you are allowed to send data offsite or if you want to uses these hashes with

other tools, the nsrllookup (nsrllookup, 2013) software allows you to send hashes to a

database for lookups. The project is hosting a copy of the NSRL hashes to query for free,

but if you use a third party, make sure you verify these results. By dumping the results of

PC_Id****Cname**********Command*****************************
1252((1D5N1((C:/PROGRA~1/SAFECO~1/scClient.exe(((

Filename*** *****Version* MD5*
ADL.FOUNDATION.DLL(2.0.3299.28586(0a8e6b6caac2d01de4c56b15022a6b3b(
ADL.FOUNDATION.DLL(2.0.3299.28586(1bbdbd33cde07ba454923247a9b0be12(
ADL.FOUNDATION.DLL(2.0.3299.28586(1d5a364193eed5a97803b95377ac15ee(

OHIDS! 18
(

Tom(Webb,(tcw3bb@gmail.com(

the Hash_Comp report into a file and then running the following command “nsrllookup -s

nsrl.kyr.us <hash” you get a list of only unknown hashes from the database.

6.2. Personally Identifiable Information Scan results
As mentioned previously in the use case 1.6.1, finding out which system has

sensitive data is critical to determine what level of response you should provide to a

compromised system. To get a list of sensitive data for a specific computer, use the –

Ssn_Comp switch followed by the computer name (e.g. –Ssn_Comp ‘PC_ID’). The total

includes the total number of SSNs and/or credit card numbers found on the system. The

SSN_Top report include the top 25 highs totals.

Figure 11. Sample report from SSN_Top.

This report will give you a list of files that contain possible social security

numbers and/or credit card number count on the system. We do not keep track of the

actual SSN/CCN found on the system. An additional indicator, if these are false positives,

are location of the files and file names. For example, if you have a file that shows 5,000

PII count and it’s called mathematical_analysis_of_water_sample.xls chances are this is a

false positive. The spreadsheet likely has many numbers in it for data samples. However,

if the file name is Q3_finance_dept.xls it is likely to be a true positive and escalate this

incident appropriately. You can also call the individual armed with this information and

ask specific questions about these files. In this case, you will likely get an accurate

response from the user.

7. Proactive Steps to prevent breaches
7.1. Remove Unnecessary Sensitive data

Incidents will continue to happen in every environment and the best protection

from data loss is to remove unnecessary data completely from system. A very effective

way to remediating this issue is generating a top 25-user report on a weekly basis (e.g. –

SSN_TOP). With this data, you can create a helpdesk ticket and have them contact the

Date*** **PC_Id****Cname**** *********Total***IP*
2013e03e01((((((586(((((KDJFLWGQ1(((12644(((1.2.3.4(
2013e03e08((((((271(((((KLDJFLOEIU(((10730(((1.2.3.5(

OHIDS! 19
(

Tom(Webb,(tcw3bb@gmail.com(

user about the data in the specific report. In addition, you can have this report sent to

management so they understand the higher risk areas. In many cases, the user had

forgotten the data was there or did not need to keep it on their system. If they need to

keep it, you should work to determine acceptable recommendation to mitigate risks

7.2. Audit for unauthorized software
The Proc_Date report gives you a list of new software installed in the last 48

hours that was running on the system. This report can detect malware, but also detecting

programs that are not allowed by policy (e.g., P2P applications, Cloud file sharing). If

you have users running portable apps you will be able to detect this by looking at the path

where the executable is running from.

8. Future plans
8.1. Gather Specific Event logs

Anyone who has looked at Windows event logs know they are very noisy. If you

do not already have a centralized logging, then gathering a small number of events can be

useful. Placing the event IDs you want to capture into the xml config will allow you to

specify what logs you want to get back into the system. The NSA white paper “Spotting

the Adversary with Windows Event Log Monitoring” contains a comprehensive listing of

what event logs should be monitored (NSA, 2013). For Windows 7 systems, the

following event ID’s will initially be the items of interest to collect: 4740, 4624, 4625,

865, 8003, 8004, 8006, and 8007.

8.2. On demand Scanning/Service
Having OHIDS run as a service would allow it to check-in at a short interval to

the database and determine if it should run a new scan. This would then allow me to build

a simple API to be used by an IDS to request data to be gathered on the host immediately.

The data could then be quickly reviewed to determine if a network attack was successful.

8.3. API Hooking
Software like El Jefe (El Jafe, 2013), which hooks the create process API and

records the information to a MySQL server, has been around for a couple of years. By

OHIDS! 20
(

Tom(Webb,(tcw3bb@gmail.com(

logging these specific calls, incident responders will know what processes are ran on a

system and what started the process. Adding a similar functionality to this code would

give CIRTs near real-time data on what is running in the environment. This is a much

longer goal, as the on demand scanning will be easier to implement.

9. Conclusion
Network IDS will continue to be used for a long time, while integrating NIDS

information into security information and event management(SIEM) systems has made

correlation of successful attacks easier, but collecting key information from the hosts is

still the most beneficial information for CIRTs. Using OHIDS in conjunction with NIDS

makes it possible to detect an incident via the NIDS then gather detailed analysis and

determine the amount of sensitive data stored on the system. With the hash of the

malware, other online resources may have already performed an analysis of the

executable. If so, you can quickly determine if the capabilities of the malware allows

access to any sensitive data found on the system. All this can be completed before you

start your forensics collection of evidence. With the provided data, you can determine if

it is necessary to do any additional investigation or begin the clean up process. By

eliminating the need for in-depth analysis in some incidents or speeding up the forensics

process, OHIDS enables CIRTs to handle incidents more efficiently and enable them to

spend resources on the more complicated cases.

OHIDS! 21
(

Tom(Webb,(tcw3bb@gmail.com(

10. References
Bejtlich, R. (2006). Extrusion Detection. Upper Saddle River, NJ: Pearson Education,

Inc.

Caswell, B., Beale, J., & Baker, A. R. (2007). Snort®: IDS and IPS Toolkit.

Burlington, MA: Syngress Publishing, Inc.

Dyrmose, M. (2013, January 5). Beating the IPS. Retrieved from

http://www.sans.org/reading_room/whitepapers/intrusion/beating-ips_34137

El Jefe (2013). Retrieved from http://www.immunityinc.com/products-eljefe.shtml

Frazier, M. (2010, January 26). Combat the APT by Sharing Indicators of Compromise.

Retrieved from https://www.mandiant.com/blog/combat-apt-sharing-indicators-
compromise

Find_SSNs (2009). Retrieved from

http://www.security.vt.edu/resources_and_information/find_ssns.html

Help: Understanding Windows Firewall Profiles. (2005, January 25). Retrieved from

http://technet.microsoft.com/eneus/library/cc739685(v=ws.10).aspx(

Innella, P. (2001, November 16). The Evolution of Intrusion Detection Systems. Retrieved

from http://www.symantec.com/connect/articles/evolution-intrusion-detection-
systems

National Security Agency, Central Security Services. (2013). Spotting the Adversary with

Windows Event Log Monitoring (TSA-13-1004-SG). Retrieved from website
http://www.nsa.gov/ia/_files/app/Spotting_the_Adversary_with_Windows_Event
_Log_Monitoring.pdf

Niemelä, J. (2012). Making Life Difficult for Malware. Retrieved from

http://www.blackhat.com/docs/webcast/bh-wb-May12-
Making_Life_Difficult_for_Malware.pdf

Nsrllookup (2013). Retrieved from http://rjhansen.github.io/nsrllookup/

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis. San Francisco, CA: No

Starch Press, Inc.

Smaha, S. (1996). Computer Misuse and Anomaly Detection – IV. Retrieved from

http://seclab.cs.ucdavis.edu/projects/cmad/4-1996/pdfs/Smaha.pdf

U.S. Department of Commerce, National Institute of Standard and Technology. (2009).

National Software Reference Library. Retrieved from
http://www.nsrl.nist.gov/Downloads.htm#isos

OHIDS! 22
(

Tom(Webb,(tcw3bb@gmail.com(

(

OHIDS! 23
(

Tom(Webb,(tcw3bb@gmail.com(

Appendix A Database table layout
(
(

((

OHIDS! 24
(

Tom(Webb,(tcw3bb@gmail.com(

(

Appendix B get_com_id
‘Latest(version(of(the(code(is(available(at(https://code.google.com/p/openesourcee
hostebasedeids/(
(
DROP PROCEDURE IF EXISTS `OHIDS`.`get_com_id`;
DELIMITER $$
CREATE PROCEDURE `OHIDS`.`get_com_id`(IN input VARCHAR(30), OUT
compidnum INT)
READS SQL DATA
BEGIN
DECLARE curdate_val DATETIME;
DECLARE compidnum int;
SET @input=input;
SET @compidnum= NULL;

prepare compid from
 'select PC_Id INTO @compidnum from PC_Info where Cname= ? limit 1' ;

execute compid USING @input;

IF @compidnum IS NULL THEN
 SELECT NOW() INTO curdate_val;
 INSERT INTO ITSO_PC_IR.PC_Info
(PC_Id,Last_Seen,Cname,IP,MAC,OS_Name,OS_Ver,Arch,User,Admin,First_Seen,Ena
bled_Users)
VALUES('0',curdate_val,INPUT,'0.0.0.0','::','Windows','unknown','unknown','unknown','
unknown',curdate_val,'me');
END IF;

execute compid USING @input;

select @compidnum;

DEALLOCATE PREPARE compid;
*
(
(

OHIDS! 25
(

Tom(Webb,(tcw3bb@gmail.com(

Appendix C Update_comp_info
‘Latest(version(of(the(code(is(available(at(https://code.google.com/p/openesourcee
hostebasedeids/(
(
DROP PROCEDURE IF EXISTS `OHIDS`.`update_comp_info`;
DELIMITER $$

CREATE DEFINER=`root`@`localhost` PROCEDURE `update_comp_info`(IN
authcode CHAR(32), IN PCid text, IN PCdate datetime, IN IP varchar(15), IN MAC
varchar(17),
IN OS_NAME tinytext, IN OS_VER tinytext, IN Arch tinytext, IN PCUser text, IN
Admin varchar(1), IN Enabled_Users text)
 READS SQL DATA
BEGIN
prepare getcompname from
'select Cname INTO @mysqlcompname from PC_Info where PC_Id= ? limit 1' ;

SET @PCid=PCid;
execute getcompname USING @PCid;

select md5(CONCAT (@mysqlcompname , @PCid)) into @sql_auth_code;

SET @PCdate=PCdate;
SET @IP=IP;
SET @MAC=MAC;
SET @OS_Name=OS_Name;
SET @OS_VER=OS_VER;
SET @Arch=Arch;
SET @PCUser=PCUser;
SET @Admin=Admin;
SET @Enabled_Users=Enabled_Users;
SET @PCid=PCid;

IF authcode LIKE @sql_auth_code THEN
 prepare compupdate from
'UPDATE PC_Info SET Last_Seen= ?, IP= ?, MAC=?, OS_Name= ?, OS_Ver= ?,
Arch= ?, User= ?, Admin= ?, Enabled_Users= ? WHERE PC_ID= ?';
execute compupdate USING @PCdate, @IP, @MAC, @OS_Name, @OS_VER,
@Arch, @PCUser, @Admin, @Enabled_Users, @PCid ;

DEALLOCATE PREPARE compupdate;
else
select "No Match";

OHIDS! 26
(

Tom(Webb,(tcw3bb@gmail.com(

END IF;
DEALLOCATE PREPARE getcompname;
END

OHIDS! 27
(

Tom(Webb,(tcw3bb@gmail.com(

Appendix D OHIDS Client Code
'***
‘OHIDS 1.0
'Authors - Tom Webb (tcw3bb@gmail.com),
‘Previous Contributer Vipul Gupta (vipulgupta0@gmail.com)
'This script collects system specific data for forensic analysis
'This script will work on vb.net 4.0.
‘https://code.google.com/p/openesourceehostebasedeids/
'***
'***
'Importing required modules
'***
Imports System.Net.NetworkInformation
Imports System.Management
Imports System.Security.Principal
Imports System.Text.RegularExpressions
Imports System.Threading
Imports System.IO
Imports System.ServiceProcess
Imports Microsoft.Win32
Imports MySql.Data.MySqlClient
Imports System.Diagnostics

Module Module1
 '***
 'Declare constants
 '***
 Dim Machine As String = System.Environment.MachineName
 'Dim mydate = DateTime.Now.ToString("yyyy-MM-dd") 'new
 Dim mydate = Format(System.DateTime.Now, "yyyy-MM-dd HH:mm:ss")
 Const ForReading = 1
 Const ForAppending = 8
 Const ForOverWriting = 2
 Const OpenAsASCII = 0
 Const OpenAsUnicode = -1
 Const OpenUsingDefault = -2
 Const OverWriteExisting = True
 Const HKLM = &H80000002 'HKEY_LOCAL_MACHINE

 Dim nowdate As Date = System.DateTime.Now.Date
 Dim RunCmds As Boolean
 Dim wshNetwork As Object = CreateObject("WScript.Network")
 Dim strComputerName As String = Machine
 Dim oShell As Object = CreateObject("WScript.Shell")

OHIDS! 28
(

Tom(Webb,(tcw3bb@gmail.com(

 Dim dir = AppDomain.CurrentDomain.BaseDirectory

 Dim strOutPutStream
 Dim strDate As Date
 Dim LocalUserName As String
 Dim osArch As String = ""
 Dim PC_ID As Int32
 Dim Registery_Path As String =
System.Configuration.ConfigurationManager.AppSettings("Registery_Path")
 Dim Temp_Path As String =
System.Configuration.ConfigurationManager.AppSettings("Temp_Path")
 '**
 'MYSQL Variables
 '**
 Dim server As String =
System.Configuration.ConfigurationManager.AppSettings("DB_SERVER")
 Dim database As String =
System.Configuration.ConfigurationManager.AppSettings("DB_Database_Name")
 Dim userid As String =
System.Configuration.ConfigurationManager.AppSettings("DB_UserId")
 Dim password As String =
System.Configuration.ConfigurationManager.AppSettings("DB_PASSWD")
 Dim ConnectionString = "server=" & server & ";" & "user id=" & userid & ";" &
"password=" & password & ";" & "database=" & database & ";" & "SSL
Mode=Required" & ";" & "check parameters=false"

 Dim MysqlConn As MySqlConnection

 '***
 'Main Module, entry to the program
 '***
 Sub Main()

 If (Not System.IO.Directory.Exists(Temp_Path)) Then
 System.IO.Directory.CreateDirectory(Temp_Path)
 End If

 If QueryPort() = True Then
 Analyze()
 'After data collection, if no errors are encountered (the flag
 'is True), then write to registry
 Cleanup() 'Cleanup, Rename Files and Copy to destination
 MySQLCloseConnection() ' last thing to run

OHIDS! 29
(

Tom(Webb,(tcw3bb@gmail.com(

 Else
 'Bow out because server is not open."
 End If

 End Sub

 '***
 'The main data collection and analysis module, makes necessary
 'function calls and starts data collection tools
 '***
 Function Analyze()
 MySQLOpenConnection(ConnectionString) 'open sql connection
 comid_sql(Machine) ' Get PC_ID from the data to use in output

 'Starting netstat, netsh, and schtasks
 Process.Start("cmd", "/c netstat -nao >" & Temp_Path & "\netstat.txt")
 Process.Start("cmd", "/c netsh firewall show allowedprogram >" & Temp_Path &
"\firewall.txt")
 Process.Start("cmd", "/c schtasks /query /v /fo csv > " & Temp_Path & "\s.csv")

 ProcInform() 'Get the Running Processes Related Information
 NetstatInform() 'Get the Netstat Information
 ServListInform() 'Get the Service List Information
 StartListInform() 'Get the Startup List Information
 FirewallConfigInform() 'Get the Windows Firewall Configuration Information
 PCInform() 'Get the PC Information
 SchTasksInform() 'Get the Schedule Tasks Information

 Dim oReg As Object = GetObject("winmgmts://" & strComputerName &
"/root/default:StdRegProv")
 Dim strError = oReg.CreateKey(HKLM, Registery_Path) 'Create Key

 If ReadRegistry(HKLM, Registery_Path, "LastFindSSN", strDate) IsNot "False"
Then
 If DateDiff("d", ReadRegistry(HKLM, Registery_Path, "LastFindSSN", strDate),
nowdate) >= 7 Then
 New_FindSSNs()
 find_ssn_prep() 'Prep Files for upload
 WriteRegistry("HKLM\" & Registery_Path & "LastFindSSN", nowdate,
"REG_SZ")

 Else
 'Bow out.
 End If
 End If

OHIDS! 30
(

Tom(Webb,(tcw3bb@gmail.com(

 Return Err()
 End Function

 Function New_FindSSNs()

 If (My.Computer.Info.OSFullName.Contains("Windows XP")) Then
 Dim WinXPFindSSN As New System.Diagnostics.Process
 Dim ssnargs As String = " -p " & """c:\Documents and Settings\" &
LocalUserName & "\My Documents""" & " -o " & Temp_Path & " -t csv -a"
 Try

 Dim SI As New ProcessStartInfo(dir & "Find_SSNs.exe", ssnargs)

 WinXPFindSSN.StartInfo = SI
 WinXPFindSSN.Start()
 WinXPFindSSN.WaitForExit()

 'Rename the file before its over written for the second scan of desktop

 Dim OldName, NewName As String
 OldName = Temp_Path & "\Find_SSNs.csv"
 NewName = Temp_Path & "Find_SSNs1.csv" ' Define file names.
 Rename(OldName, NewName) ' Rename file.
 ' System.IO.File.Delete("c:\temp\Find_SSN.txt")

 Catch ex As Exception
 error_sql("Error in findssn function file rename to Find_SSN1.csv:" &
ex.Message)
 End Try

 Dim WinXPFindSSNDekstop As New System.Diagnostics.Process
 Dim ssnargsdesk As String = " -p " & """c:\Documents and Settings\" &
LocalUserName & "\Desktop""" & " -o " & Temp_Path & " -t csv -a"
 Dim SI2 As New ProcessStartInfo(dir & "Find_SSNs.exe", ssnargsdesk)

 WinXPFindSSNDekstop.StartInfo = SI2
 WinXPFindSSNDekstop.Start()
 WinXPFindSSNDekstop.WaitForExit()

 Else ' Windows Vista or greater

 Dim Win7FindSSN32 As New System.Diagnostics.Process
 Dim ssnargs32 As String = " -p " & """c:\Users\" & LocalUserName & "\Local
Documents""" & " -o " & Temp_Path & " -t csv -a"

OHIDS! 31
(

Tom(Webb,(tcw3bb@gmail.com(

 Try
 Dim SI As New ProcessStartInfo(dir & "Find_SSNs.exe", ssnargs32)

 ' Console.WriteLine(dir & "Find_SSNs.exe" & ssnargs32)
 ' Console.ReadLine()

 Win7FindSSN32.StartInfo = SI
 Win7FindSSN32.Start()
 Win7FindSSN32.WaitForExit()

 'Rename the file before its over written

 Dim OldName, NewName As String
 OldName = Temp_Path & "\Find_SSNs.csv"
 NewName = Temp_Path & "\Find_SSNs1.csv" ' Define file names.
 Rename(OldName, NewName) ' Rename file.

 Catch ex As Exception
 error_sql("Error in findssn function file rename to Find_SSN1.csv:" &
ex.Message)
 End Try

 Dim Win7FindSSN32desk As New System.Diagnostics.Process
 Dim ssnargs32desk As String = " -p " & """c:\Users\" & LocalUserName &
"\Desktop""" & " -o " & Temp_Path & " -t csv -a"
 Try
 Dim SI2 As New ProcessStartInfo(dir & "Find_SSNs.exe", ssnargs32desk)

 Win7FindSSN32.StartInfo = SI2
 Win7FindSSN32.Start()
 Win7FindSSN32.WaitForExit()
 Catch ex As Exception
 error_sql("Error in findssn function file rename to Find_SSN1.csv:" &
ex.Message)
 End Try

 End If

 Return Err()

 End Function
 '***
 'FIND_SSN_PREP
 'Gets the results from ssn find ready for SQL insertion
 '***

OHIDS! 32
(

Tom(Webb,(tcw3bb@gmail.com(

 Function find_ssn_prep()
 Try
 If File.Exists(Temp_Path & "\Find_SSNs1.csv") Then
 text_combine(Temp_Path & "\Find_SSNs.csv", Temp_Path &
"\Find_SSNs1.csv") 'Combine the two results file into one find_ssn1.csv
 Else
 Dim oldname = Temp_Path & "\Find_SSNs.csv"
 Dim newname = Temp_Path & "\Find_SSNs1.csv"
 Rename(oldname, newname) ' Always have a file named Find_SSNs1.csv it
results from the other scan
 End If

 Dim ssnline As StreamReader
 Dim myline As String

 ssnline = New StreamReader(Temp_Path & "\Find_SSNs1.csv", FileMode.Open)

 Do While ssnline.Peek >= 0
 myline = ssnline.ReadLine() ' set myline as varible for each line read
 ' Console.WriteLine(myline)
 ' Console.Read()
 If Not myline.Contains("#") Then ' remove file header of #
 If Not myline.Contains("NO") Then ' Removes lines where no data found
 Dim Values() As String = Split(myline, ",")
 ' Console.WriteLine(Values(0) + Values(2)) ' we only need the 1st and
3rd values
 findssn_sql(mydate, Values(0), Values(2))
 End If
 End If
 Loop
 ssnline.Close()
 ssnline.Dispose()
 Catch ex As Exception
 error_sql("Error in findssn_prep function:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function
 '***
 'Cleanup, Rename Files and Copy to destination
 '***
 Function Cleanup()

 Try
 System.IO.File.Delete(Temp_Path & "\s.csv")
 System.IO.File.Delete(Temp_Path & "\s_distinct.csv")
 System.IO.File.Delete(Temp_Path & "\firewall.txt")

OHIDS! 33
(

Tom(Webb,(tcw3bb@gmail.com(

 System.IO.File.Delete(Temp_Path & "\ua.csv")
 System.IO.File.Delete(Temp_Path & "\schTaskFinal.csv")
 System.IO.File.Delete(Temp_Path & "\Find_SSNs")
 System.IO.File.Delete(Temp_Path & "md5sum.csv")
 System.IO.File.Delete(Temp_Path & "\process.csv")
 System.IO.File.Delete(Temp_Path & "\Find_SSNs.csv")
 System.IO.File.Delete(Temp_Path & "\Find_SSNs1.csv")
 Catch ex As Exception

 End Try

 Dim sdatafile2 As String
 sdatafile2 = Temp_Path + Machine + ".File_Content.csv"
 'Delete any older file with the same name
 If System.IO.File.Exists(sdatafile2) Then
 System.IO.File.Delete(sdatafile2)
 End If

 'If errors are encountered during data collection, set flag to False so that registry
 'is not written, else set it to True
 If Err.Number <> 0 Then
 RunCmds = False
 Else
 RunCmds = True
 End If
 Return RunCmds
 End Function

 '***
 'Get the Schedule Tasks Information
 '***
 Function SchTasksInform()
 Thread.Sleep(8000)
 Dim slines As String() = IO.File.ReadAllLines(Temp_Path & "\s.csv")
 Dim dlines As String() = slines.Distinct.ToArray()
 'Get unique Scheduled tasks and write to a temp file
 IO.File.WriteAllLines(Temp_Path & "\s_distinct.csv", dlines)
 Dim schTaskFinal As String = Temp_Path & "\schTaskFinal.csv"
 Dim schTaskFinalWriter As New System.IO.StreamWriter(schTaskFinal)
 'From the temp file, write in proper format to be written to the final file
 Dim tasklines As String() = IO.File.ReadAllLines(Temp_Path & "\s_distinct.csv")
 Dim schcount As Integer = 0
 Dim schline As String()

 'Scheduled Tasks are differently arranged in Windows 7 and Windows XP
 'Following code does the formatting based on the OS

OHIDS! 34
(

Tom(Webb,(tcw3bb@gmail.com(

 'For Windows 7
 If (My.Computer.Info.OSFullName.Contains("Windows 7")) Then
 For schcount = 1 To tasklines.Count - 1
 'The scheduled task fields are surrounded by double quotes, split them
 'based on the double quotes
 schline = Regex.Split(tasklines(schcount), """")
 If schline(19).StartsWith(" ") Then
 schtask_sql(mydate, PC_ID, schline(3), schline(17), schline(5), schline(11),
schline(15), schline(25), schline(39), schline(31))
 Else
 schtask_sql(mydate, PC_ID, schline(3), schline(17), schline(5), schline(11),
schline(15), schline(23), schline(37), schline(29))
 End If
 Next
 'For Windows XP
 ElseIf My.Computer.Info.OSFullName.Contains("Windows XP") Then
 For schcount = 2 To tasklines.Count - 1
 schline = Regex.Split(tasklines(schcount), """")
 Dim ldate As String
 Dim ndate As String
 Try
 'If the dates are in a different format, convert them to maintain consistency
 Dim mdate As Date = CDate(schline(9))
 Dim ntime As Date = CDate(schline(5))
 ndate = ntime.ToString
 ldate = mdate.ToString
 Catch ex As Exception
 ndate = schline(9).ToString
 ldate = schline(5).ToString
 End Try
 schtask_sql(mydate, PC_ID, schline(3), schline(17), ndate, ldate, schline(13),
schline(23), schline(25), schline(37))
 Next
 End If
 schTaskFinalWriter.Close()

 Return Err()
 End Function
 '***
 'Get the Windows Firewall Configuration Information
 '***
 Function FirewallConfigInform()
 'Windows Firewall Configuration Information
 Dim Machine As String = System.Environment.MachineName
 Thread.Sleep(8000)

OHIDS! 35
(

Tom(Webb,(tcw3bb@gmail.com(

 Dim sfresult As String()
 Dim dors As String = ""
 Dim bline() As String
 Dim sr As String()
 Dim sep() As String

 'Formatting is different in Windows 7 and XP
 'Windows XP does not return the Traffic Direction Information

 If (My.Computer.Info.OSFullName.Contains("Windows 7")) Then
 Try
 Dim rflines As String() = IO.File.ReadAllLines(Temp_Path & "\firewall.txt")
 For i = 0 To rflines.Length - 1
 sfresult = Split(rflines(i), " ")
 If sfresult(0).ToString = "Allowed" Then
 i = i + 3
 dors = sfresult(4)
 sr = Split(rflines(i), " ")
 If sr(0).ToString = "Enable" Or sr(0).ToString = "Disable" Then
 bline = Regex.Split(rflines(i), "\s\s+")
 sep = Regex.Split(bline(2), " / ")
 'This writes the first line that matches criteria
 firewall_sql(mydate, PC_ID, dors, bline(0), sep(0), sep(1), bline(1))
 End If
 End If
 If sfresult(0).ToString = "Enable" Or sfresult(0).ToString = "Disable" Then

 bline = Regex.Split(rflines(i), "\s\s+")
 If bline(1).ToString = "Inbound" Or bline(1).ToString = "Outbound" Then
 sep = Regex.Split(bline(2), " / ")
 'This writes the subsequent lines that match the criteria
 firewall_sql(mydate, PC_ID, dors, bline(0), sep(0), sep(1), bline(1))
 End If
 End If
 Next
 Catch ex As Exception
 error_sql("Error in FirewallconfigInform function:" & ex.Message)
 End Try

 ElseIf My.Computer.Info.OSFullName.Contains("Windows XP") Then
 Try
 Dim rflines As String() = IO.File.ReadAllLines(Temp_Path & "\firewall.txt")
 For i = 0 To rflines.Length - 1
 sfresult = Split(rflines(i), " ")
 If sfresult(0).ToString = "Allowed" Then
 i = i + 3

OHIDS! 36
(

Tom(Webb,(tcw3bb@gmail.com(

 dors = sfresult(4)
 sr = Split(rflines(i), " ")
 If sr(0).ToString = "Enable" Or sr(0).ToString = "Disable" Then
 bline = Regex.Split(rflines(i), "\s\s+")
 sep = Regex.Split(bline(1), " / ")
 'This writes the first line that matches the criteria
 firewall_sql(mydate, PC_ID, dors, bline(0), sep(0), sep(1), bline(1))
 End If
 End If
 If sfresult(0).ToString = "Enable" Or sfresult(0).ToString = "Disable" Then
 bline = Regex.Split(rflines(i), "\s\s+")
 sep = Regex.Split(bline(1), " / ")
 'This writes the subsequent lines that match the criteria
 firewall_sql(mydate, PC_ID, dors, bline(0), sep(0), sep(1), bline(1))
 End If
 Next
 Catch ex As Exception
 error_sql("Error in FirewallconfigInform function:" & ex.Message)
 End Try
 End If

 Return Err()
 End Function
 '***
 'Get the Startup List Information
 '***
 Function StartListInform()
 Dim obj_WMI, objStartup, rQuery
 'Creating a WMI object
 'impersonate means that the current user's permissions will be used by WMI
 'We will be running the script as a whole with elevated permissions, so that is what
 'matters in the end, this is why defaults used here
 'In a nutshell, connecting to WMI using defaults
 obj_WMI =
GetObject("winmgmts:{impersonationLevel=impersonate}!\\.\root\cimv2")
 rQuery = obj_WMI.ExecQuery("Select * from Win32_StartupCommand")

 For Each objStartup In rQuery
 start_list_sql(mydate, PC_ID, objStartup.Caption(), objStartup.Command(),
objStartup.Description(), objStartup.Location(), objStartup.SettingID(),
objStartup.User())
 'Console.Write(start_list_sql)
 'Console.Read()
 Next
 ' startListCsvWriter.Close()

OHIDS! 37
(

Tom(Webb,(tcw3bb@gmail.com(

 Return Err()
 End Function
 '***
 'Get the Service List Information
 '***
 Function ServListInform()

 Dim scServices() As ServiceController
 scServices = ServiceController.GetServices()
 Dim scTemp As ServiceController
 For Each scTemp In scServices
 Dim wmiService As ManagementObject
 wmiService = New ManagementObject("Win32_Service.Name='" +
scTemp.ServiceName + "'")
 wmiService.Get()
 service_list_sql(mydate, wmiService("Name").ToString,
wmiService("ProcessID").ToString, wmiService("PathName").ToString,
wmiService("StartMode").ToString, wmiService("State").ToString,
wmiService("Status").ToString, wmiService("ServiceType").ToString,
wmiService("StartName").ToString, wmiService("ExitCode").ToString)

 Next scTemp
 Return Err()

 End Function
 '***
 'Get the Netstat Information
 '***
 Function NetstatInform()

 Thread.Sleep(5000)
 Try
 Dim rlines As String() = IO.File.ReadAllLines(Temp_Path & "\netstat.txt")
 Dim sResult As String()
 'Formatting as needed
 For Each rline In rlines
 rline = Trim(rline)
 sResult = Split(rline, " ")
 If (sResult(0).ToString = "TCP") Then
 Dim tcpr As String = rline
 Dim tarr As String() = SplitFields(tcpr)
 netstat_sql(mydate, PC_ID, tarr(0), tarr(1), tarr(2), tarr(3), tarr(4))

OHIDS! 38
(

Tom(Webb,(tcw3bb@gmail.com(

 ElseIf (sResult(0).ToString = "UDP") Then
 Dim udpr As String = rline
 Dim uarr As String() = SplitFields(udpr)
 netstat_sql(mydate, PC_ID, uarr(0), uarr(1), uarr(2), "", uarr(3))

 End If
 Next
 System.IO.File.Delete(Temp_Path & "\netstat.txt")
 Catch ex As Exception
 error_sql("Error in NetstatInform function:" & ex.Message)
 End Try
 Return Err()

 End Function
 '***
 'Get the Running Processes Related Information
 '***
 Function ProcInform()
 Dim oProcesses() As Process = System.Diagnostics.Process.GetProcesses()
 Dim pro As New Process()
 Dim csvFile As String = Temp_Path & "\process.csv"
 Dim md5values As String = Temp_Path & "\md5sum.csv"
 Dim md5writer As New System.IO.StreamWriter(md5values)
 'A temp file that will contain module names for all processes
 'later we will select the uniques out of it
 Dim tempHashFile As String = Temp_Path & "\thash.csv"
 Dim thFile As New System.IO.StreamWriter(tempHashFile)
 Dim outFile As New System.IO.StreamWriter(csvFile)
 'Formatting as needed
 Dim proModule As ProcessModule
 Dim comLine As String = ""
 Dim sPath As String
 Dim i As Integer

 For Each oProc As Process In oProcesses
 If Not (oProc.Id = 0) And Not (oProc.Id = 4) Then
 Dim Parent_ID As Integer
 Dim objWMI, objProc, resQuery
 'Creating a WMI object
 'impersonate means that the current user's permissions will be used by WMI
 'In a nutshell, connecting to WMI using defaults
 objWMI =
GetObject("winmgmts:{impersonationLevel=impersonate}!\\.\root\cimv2")
 resQuery = objWMI.ExecQuery("Select * from Win32_Process where
ProcessID=" & oProc.Id)

OHIDS! 39
(

Tom(Webb,(tcw3bb@gmail.com(

 For Each objProc In resQuery
 'For each process, get the parent ID
 Parent_ID = objProc.ParentProcessID()
 ' To handle the DBNULL to string conversion exception, add a space
 comLine = objProc.CommandLine() & Space(1)
 Next
 Try
 'For each process, get the module names
 Dim args(1) As Object
 Dim ms As New ManagementObjectSearcher("SELECT * FROM
Win32_Process WHERE ProcessId = " & oProc.Id)
 Dim usname As String
 For Each mo As ManagementObject In ms.Get
 If CUInt(mo.InvokeMethod("GetOwner", args)) = 0 Then
 usname = args(1).ToString & ": " & args(0).ToString
 sPath = oProc.MainModule.FileName
 Dim proStartInfo As New ProcessStartInfo(oProc.ProcessName)
 oProc.StartInfo = proStartInfo
 Dim proModuleCollection As ProcessModuleCollection
 proModuleCollection = oProc.Modules
 Dim UCFilename As String
 For i = 0 To proModuleCollection.Count() - 1
 proModule = proModuleCollection(i)
 Proc_sql(mydate, PC_ID, oProc.ProcessName,
oProc.HandleCount.ToString, sPath, oProc.Id.ToString, oProc.Threads.Count.ToString,
comLine, Parent_ID.ToString, proModule.FileName, usname)
 'Changing case to maintain consistency
 UCFilename = UCase(proModule.FileName.ToString)
 thFile.WriteLine(UCFilename)
 Next i

 End If
 Next
 Catch ex As Exception
 error_sql("Error in process function:" & ex.Message)
 End Try
 End If
 Next
 outFile.Close()
 thFile.Close()
 Dim tlines As String() = IO.File.ReadAllLines(Temp_Path & "\thash.csv")
 'Getting the distinct names of loaded modules (to avoid recalculation of
 'hash for the same file.
 Dim distinctlines As String() = tlines.Distinct.ToArray()
 IO.File.WriteAllLines(Temp_Path & "\hash.csv", distinctlines)
 Dim hlines As String() = IO.File.ReadAllLines(Temp_Path & "\hash.csv")

OHIDS! 40
(

Tom(Webb,(tcw3bb@gmail.com(

 'Formatting as needed
 For Each hline In hlines

 'XP does raises error on some characters in filenames while Win 7 ignores them
 'So remove invalid characters altogether from filenames
 'If no invalid characters present, no harm done
 hline = hline.Trim(Path.GetInvalidFileNameChars())
 hline = hline.Trim(Path.GetInvalidPathChars())
 Dim theFile As New FileInfo(hline)
 Dim theFileVInfo As FileVersionInfo
 theFileVInfo = FileVersionInfo.GetVersionInfo(hline)
 MD5_sql(mydate, PC_ID, hline, MD5CalcFile(hline),
theFile.LastWriteTime.ToString("yyyy-MM-dd HH:mm:ss"),
theFile.LastAccessTime.ToString("yyyy-MM-dd HH:mm:ss"),
theFile.CreationTime.ToString("yyyy-MM-dd HH:mm:ss"),
theFileVInfo.CompanyName, theFileVInfo.FileVersion)
 Next
 md5writer.Close()
 System.IO.File.Delete(tempHashFile)
 System.IO.File.Delete(Temp_Path & "\hash.csv")
 Return Err()

 End Function

 '***
 'Get the PC Information
 '***
 Function PCInform()

 Dim ip() As System.Net.IPAddress =
System.Net.Dns.GetHostAddresses(System.Net.Dns.GetHostName())
 Dim ipadd As String = ""
 Dim mac As String = ""
 Dim Wmi As New System.Management.ManagementObjectSearcher("SELECT *
FROM Win32_NetworkAdapterConfiguration")
 'Windows 7 returns IP addresses differently than Windows XP
 'Collecting IP addresses based on the OS
 If (My.Computer.Info.OSFullName.Contains("Windows 7")) Then
 Try
 ipadd = ip(2).ToString
 Catch ex As Exception
 ipadd = ip(1).ToString
 End Try
 ElseIf My.Computer.Info.OSFullName.Contains("Windows XP") Then
 ipadd = ip(0).ToString
 End If

OHIDS! 41
(

Tom(Webb,(tcw3bb@gmail.com(

 For Each WmiObj As ManagementObject In Wmi.Get
 If CBool(WmiObj("IPEnabled")) Then
 If (WmiObj("IPAddress")(0)) = ipadd Then
 mac = WmiObj("MACAddress")
 End If
 End If
 Next
 '
 'Determine What users is currently logged into the system by getting the user that is
running explorer.exe shell
 Dim ActualUserName As String = ""
 Dim CurrentProcesses As Management.ManagementObjectCollection
 Dim ProcessSearch As Management.ManagementObjectSearcher
 Dim ProcessItem As Management.ManagementObject
 ProcessSearch = New Management.ManagementObjectSearcher("Select * from
Win32_Process")
 CurrentProcesses = ProcessSearch.Get
 For Each ProcessItem In CurrentProcesses
 Dim ProcessOwner(2) As String
 ProcessItem.InvokeMethod("GetOwner", ProcessOwner)
 If (ProcessItem("Name").ToString = "explorer.exe") Then
 ActualUserName = ProcessOwner(0).ToString
 LocalUserName = ProcessOwner(0).ToString
 ' Console.WriteLine(ActualUserName)
 Exit For
 End If
 Next
 '
 'Determine if the Users logged in is part of the local computer admin user group
 Dim serverName = "."
 Dim oGroup As Object = GetObject("WinNT://" & serverName &
"/Administrators") 'Get list of local users that are part of admin group
 Dim isadmin As String = ""
 If Err.Number = 0 Then
 Dim bUserExist As Boolean = False ' init value
 Dim oUser As Object

 'Console.WriteLine("COMPUTER: " & serverName)
 'Console.WriteLine("*************************************")

 For Each oUser In oGroup.Members
 ' Console.WriteLine(oUser.Name)
 If ActualUserName = oUser.Name Then ' Both Logged in user and admin
group user are the same
 isadmin = "Y"
 ' Console.WriteLine(isadmin)

OHIDS! 42
(

Tom(Webb,(tcw3bb@gmail.com(

 Exit For 'If yes exit for loop
 Else
 isadmin = "N"
 ' Console.WriteLine(isadmin)
 End If
 Next

 End If

 'Getting the OS Architecture - 32 or 64 bit
 osArch = IntPtr.Size * 8

 Dim useraccounts As String = Temp_Path & "\ua.csv"
 Dim uaWriter As New System.IO.StreamWriter(useraccounts)
 Dim objWshNet As Object = CreateObject("WScript.Network")
 Dim strComputer As String = objWshNet.ComputerName ' local computer
 Dim objWMIService, colItems, obj
 objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")
 colItems = objWMIService.ExecQuery _
 ("Select * from Win32_UserAccount Where Domain = '" & strComputer & "'")
 For Each obj In colItems
 If obj.Disabled = "False" Then
 uaWriter.WriteLine(obj.Caption)
 End If
 Next
 uaWriter.Close()

 'Listing all enabled users
 Dim readusers As String() = IO.File.ReadAllLines(useraccounts)
 Dim readuser As String
 Dim mystring As String = ""
 For Each readuser In readusers
 mystring = mystring + readuser + " "
 Next
 PCinfo_sql(PC_ID, mydate, Machine, ipadd, mac, My.Computer.Info.OSFullName,
System.Environment.OSVersion.ToString, osArch + "bit", ActualUserName, isadmin,
mystring)
 Return Err()

 End Function

 '***
 'Query Port 3306 on selected server to see if it is available.
 '***
 Function QueryPort()

OHIDS! 43
(

Tom(Webb,(tcw3bb@gmail.com(

 Dim servip = System.Net.IPAddress.Parse(server)
 Dim hostadd As System.Net.IPAddress = servip 'users server from SQL server ip
declaired at top
 Dim EPhost As New System.Net.IPEndPoint(hostadd, 3306)
 Dim s As New
System.Net.Sockets.Socket(System.Net.Sockets.AddressFamily.InterNetwork,
System.Net.Sockets.SocketType.Stream, System.Net.Sockets.ProtocolType.Tcp)
 Try
 s.Connect(EPhost)
 Catch
 End Try
 If Not s.Connected Then
 QueryPort = False

 '****************Write TO Eventlog
 Dim sSource As String
 Dim sLog As String
 Dim sEvent As String
 Dim sMachine As String

 sSource = "OHIDS"
 sLog = "Application"
 sEvent = "Network Connection Failed to Database Server"
 sMachine = "."

 Dim ELog As New EventLog(sLog, sMachine, sSource)
 ELog.WriteEntry(sEvent)
 ELog.WriteEntry(sEvent, EventLogEntryType.Warning, 234, CType(3, Short))

 Else
 QueryPort = True
 End If

 End Function

 '***
 'RegRead function
 '***
 Function ReadRegistry(ByVal strHive, ByVal strKeyPath, ByVal strValueName,
ByVal strValue)
 Dim readval As String
 On Error Resume Next
 Err.Clear()
 'oReg.GetStringValue(strHive, strKeyPath, strValueName, strValue)

OHIDS! 44
(

Tom(Webb,(tcw3bb@gmail.com(

 If Err.Number = 0 Then
 ReadRegistry = My.Computer.Registry.GetValue("HKEY_LOCAL_MACHINE"
& Registery_Path, "LastFindSSN", Nothing)
 Else
 ReadRegistry = False
 End If
 Return ReadRegistry
 End Function
 '***
 'RegWrite function
 '***
 Function WriteRegistry(ByVal strKey, ByVal strValue, ByVal strRegType)
 Try
 Return oShell.RegWrite(strKey, strValue, strRegType)
 Catch ex As Exception
 error_sql("Error writing registery:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function
 '***
 ' Specify the path to a file and this routine will calculate your hash
 '***
 Public Function MD5CalcFile(ByVal filepath As String) As String
 ' open file (as read-only)
 Using reader As New System.IO.FileStream(filepath, IO.FileMode.Open,
IO.FileAccess.Read)
 Using md5 As New System.Security.Cryptography.MD5CryptoServiceProvider
 ' hash contents of this stream
 Dim hash() As Byte = md5.ComputeHash(reader)
 ' return formatted hash
 Return ByteArrayToString(hash)
 End Using
 End Using
 End Function
 '***
 ' Utility function to convert a byte array into a hex string
 '***
 Private Function ByteArrayToString(ByVal arrInput() As Byte) As String
 Dim sb As New System.Text.StringBuilder(arrInput.Length * 2)
 For i As Integer = 0 To arrInput.Length - 1
 sb.Append(arrInput(i).ToString("X2"))
 Next
 Return sb.ToString().ToLower
 End Function
 Private Function SplitFields(ByVal s As String) As String()
 Return Regex.Split(s, "\s+")

OHIDS! 45
(

Tom(Webb,(tcw3bb@gmail.com(

 End Function

 Public Sub MySQLOpenConnection(ByVal pConnectionString As String)
 MysqlConn = New MySqlConnection()
 MysqlConn.ConnectionString = pConnectionString
 Try
 Dim Insert As New MySqlCommand
 MysqlConn.Open()
 Catch myerror As MySqlException
 ' Console.Write("Cannot connect to database: " & myerror.Message)
 ' Console.Read() ' Pauses the box for errors

 '****************Write TO Eventlog
 Dim sSource As String
 Dim sLog As String
 Dim sEvent As String
 Dim sMachine As String

 sSource = "OHIDS"
 sLog = "Application"
 sEvent = "Failed to Authenicate the Database Server"
 sMachine = "."

 Dim ELog As New EventLog(sLog, sMachine, sSource)
 ELog.WriteEntry(sEvent)
 ELog.WriteEntry(sEvent, EventLogEntryType.Warning, 234, CType(3, Short))

 End Try
 End Sub

 Public Sub MySQLCloseConnection()
 'Dim MysqlConn As MySqlConnection
 Try
 If Not MysqlConn Is Nothing Then
 If MysqlConn.State = ConnectionState.Open Then
 MysqlConn.Close()
 MysqlConn.Dispose()
 End If
 End If
 Catch ex As MySqlException
 error_sql("Error chould not close connection:" & ex.Message)
 End Try
 End Sub

OHIDS! 46
(

Tom(Webb,(tcw3bb@gmail.com(

 Function netstat_sql(ByVal Ndate As String, ByVal Ncname As String, ByVal
Nprotocol As String, ByVal Nlocaladdress As String, ByVal Nforeignaddress As String,
ByVal Nstate As String, ByVal Npid As String)
 Dim Insert As New MySqlCommand
 Try
 Insert.Connection = MysqlConn
 Insert.CommandText = "Insert into Netstat_Temp
(UID,Date,PC_Id,Protocol,LocalIP,DstIP,Status,PID)" & "VALUES (0," & Chr(34) &
Ndate & Chr(34) & "," & Chr(34) & Ncname & Chr(34) & "," & Chr(34) & Nprotocol &
Chr(34) & "," & Chr(34) & Nlocaladdress & Chr(34) & "," & Chr(34) &
Nforeignaddress & Chr(34) & "," & Chr(34) & Nstate & Chr(34) & "," & Chr(34) &
Npid & Chr(34) & ")"
 ' Console.Write(Insert.CommandText)
 'Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch ex As MySqlException
 error_sql("Error in netstat_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function firewall_sql(ByVal FWdate As String, ByVal FWcname As String, ByVal
FWpolicy As String, ByVal FWmode As String, ByVal FWprog_name As String, ByVal
FWprog_path As String, ByVal FWtraffic_dir As String)
 Dim Insert As New MySqlCommand
 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Firewall_Temp
(UID,Date,PC_Id,Policy,Mode,Prog_Name,Prog_Path,Traffic_Dir)" & "VALUES (0," &
Chr(34) & FWdate & Chr(34) & "," & Chr(34) & FWcname & Chr(34) & "," & Chr(34)
& FWpolicy & Chr(34) & "," & Chr(34) & FWmode & Chr(34) & "," & Chr(34) &
FWprog_name & Chr(34) & "," & Chr(34) & FWprog_path & Chr(34) & "," & Chr(34)
& FWtraffic_dir & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/")
 Insert.CommandText = command_replace
 'Console.Write(Insert.CommandText)
 ' Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch ex As MySqlException
 error_sql("Error in firewall_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

OHIDS! 47
(

Tom(Webb,(tcw3bb@gmail.com(

 Function schtask_sql(ByVal STdate As String, ByVal STcname As String, ByVal
STtask_name As String, ByVal STtask_run As String, ByVal STnext_time_run As
String, ByVal STlast_time_run As String, ByVal STauthor As String, ByVal STstate As
String, ByVal STtype As String, ByVal STrun_as As String)
 Dim Insert As New MySqlCommand
 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Sch_Tasks_Temp
(UID,Date,PC_Id,Task_Name,Task_Run,Next_Run_Time,Last_Run_Time,Author,State,
Type,Run_As)" & "VALUES (0," & Chr(34) & STdate & Chr(34) & "," & Chr(34) &
STcname & Chr(34) & "," & Chr(34) & STtask_name & Chr(34) & "," & Chr(34) &
STtask_run & Chr(34) & "," & Chr(34) & STnext_time_run & Chr(34) & "," & Chr(34)
& STlast_time_run & Chr(34) & "," & Chr(34) & STauthor & Chr(34) & "," & Chr(34)
& STstate & Chr(34) & "," & Chr(34) & STtype & Chr(34) & "," & Chr(34) & STrun_as
& Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/")
 Insert.CommandText = command_replace
 ' Console.Write(Insert.CommandText)
 ' Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch ex As MySqlException
 error_sql("Error in schtask_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function start_list_sql(ByVal SLdate As String, ByVal SLname As String, ByVal
SLcaption As Object, ByVal SLcommand As Object, ByVal SLdescription As Object,
ByVal SLlocation As Object, ByVal SLSettingID As Object, ByVal SLuser As Object)
 Dim Insert As New MySqlCommand
 Dim SLcommand_nq = Regex.Replace(SLcommand, """", "") ' remove quote

 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Start_List_Temp
(UID,Date,PC_Id,Caption,Command,Description,Location,SettingID,User)" &
"VALUES (0," & Chr(34) & SLdate & Chr(34) & "," & Chr(34) & SLname & Chr(34) &
"," & Chr(34) & SLcaption & Chr(34) & "," & Chr(34) & SLcommand_nq & Chr(34) &
"," & Chr(34) & SLdescription & Chr(34) & "," & Chr(34) & SLlocation & Chr(34) &
"," & Chr(34) & SLSettingID & Chr(34) & "," & Chr(34) & SLuser & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/") ' this changed the
back slash to forward slash
 Insert.CommandText = command_replace ' set variable to run
 ' Console.Write(Insert.CommandText)
 ' Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert

OHIDS! 48
(

Tom(Webb,(tcw3bb@gmail.com(

 Catch ex As MySqlException
 error_sql("Error in start_list_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function service_list_sql(ByVal Svdate As String, ByVal Svname As Object, ByVal
Svpid As Object, ByVal Svpathname As Object, ByVal Svstartmode As Object, ByVal
Svstate As Object, ByVal Svstatus As Object, ByVal Svtype As Object, ByVal
Svstartname As Object, ByVal Svexitcode As Object)
 Dim Insert As New MySqlCommand
 Dim Svpathname_nq = Regex.Replace(Svpathname, """", "") ' remove quote
 ' Console.Write(Svpathname_nq)
 ' Console.Read()
 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Service_List_Temp
(UID,Date,PC_Id,Name,PID,PathName,StartMode,State,Status,ServiceType,StartName,
Exitcode)" & "VALUES (0," & Chr(34) & Svdate & Chr(34) & "," & Chr(34) & PC_ID
& Chr(34) & "," & Chr(34) & Svname & Chr(34) & "," & Chr(34) & Svpid & Chr(34) &
"," & Chr(34) & Svpathname_nq & Chr(34) & "," & Chr(34) & Svstartmode & Chr(34)
& "," & Chr(34) & Svstate & Chr(34) & "," & Chr(34) & Svstatus & Chr(34) & "," &
Chr(34) & Svtype & Chr(34) & "," & Chr(34) & Svstartname & Chr(34) & "," & Chr(34)
& Svexitcode & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/") ' this changed the
back slash to forward slash
 ' Console.WriteLine(command_replace)
 Insert.CommandText = command_replace ' set variable to run
 ' Console.Write(Insert.CommandText)
 ' Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch ex As MySqlException
 error_sql("Error in service_list_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function Proc_sql(ByVal Pdate As String, ByVal Pname As String, ByVal Pprocname
As Object, ByVal Phandlecount As Object, ByVal Pprocfile As Object, ByVal Ppid As
Object, ByVal Pthreadcount As Object, ByVal Pcommandline As Object, ByVal Pppid
As Object, ByVal Pprocmod As Object, ByVal Powner As Object)
 Dim Insert As New MySqlCommand
 Pcommandline = Regex.Replace(Pcommandline, """", "") ' remove quote

OHIDS! 49
(

Tom(Webb,(tcw3bb@gmail.com(

 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Process_Temp
(UID,Date,PC_Id,Proc_Name,Handelcount,Proc_File,PID,Threadcount,Commandline,PP
ID,Proc_Mod,Owner)" & "VALUES (0," & Chr(34) & Pdate & Chr(34) & "," & Chr(34)
& Pname & Chr(34) & "," & Chr(34) & Pprocname & Chr(34) & "," & Chr(34) &
Phandlecount & Chr(34) & "," & Chr(34) & Pprocfile & Chr(34) & "," & Chr(34) & Ppid
& Chr(34) & "," & Chr(34) & Pthreadcount & Chr(34) & "," & Chr(34) &
Pcommandline & Chr(34) & "," & Chr(34) & Pppid & Chr(34) & "," & Chr(34) &
Pprocmod & Chr(34) & "," & Chr(34) & Powner & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/") ' this changed the
back slash to forward slash
 Insert.CommandText = command_replace ' set variable to run
 'Console.Write(Insert.CommandText)
 'Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch ex As MySqlException
 error_sql("Error in Proc_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function MD5_sql(ByVal Hdate As String, ByVal Hname As String, ByVal
Hfilename As Object, ByVal Hmd5 As Object, ByVal Hmdate As Object, ByVal Hadate
As Object, ByVal Hcdate As Object, ByVal Hcompanyname As Object, ByVal Hversion
As Object)
 Dim Insert As New MySqlCommand
 ' Pcommandline = Regex.Replace(Pcommandline, """", "") ' remove quote

 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into PC_Hash_Temp
(UID,Date,PC_Id,File_Name,MD5,Mdate,Adate,Cdate,Company_Name,Version)" &
"VALUES (0," & Chr(34) & Hdate & Chr(34) & "," & Chr(34) & Hname & Chr(34) &
"," & Chr(34) & Hfilename & Chr(34) & "," & Chr(34) & Hmd5 & Chr(34) & "," &
Chr(34) & Hmdate & Chr(34) & "," & Chr(34) & Hadate & Chr(34) & "," & Chr(34) &
Hcdate & Chr(34) & "," & Chr(34) & Hcompanyname & Chr(34) & "," & Chr(34) &
Hversion & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/") ' this changed the
back slash to forward slash
 Insert.CommandText = command_replace ' set variable to run
 ' Console.Write(Insert.CommandText)
 'Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch Ex As MySqlException

OHIDS! 50
(

Tom(Webb,(tcw3bb@gmail.com(

 error_sql("Error in MD5_sql:" & Ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function comid_sql(ByVal Compname As Object)

 Dim Q As New MySqlCommand
 Try
 Dim myname As MySqlParameter
 Dim PCID As MySqlParameter
 Dim PCIDreader As MySqlDataReader
 Q = New MySqlCommand("get_com_id", MysqlConn)
 Q.CommandType = CommandType.StoredProcedure
 myname = Q.Parameters.Add("Compname_id", MySqlDbType.Text)
 PCID = Q.Parameters.Add("out", MySqlDbType.Text)
 PCID.Direction = ParameterDirection.Output
 myname.Value = Compname
 PCIDreader = Q.ExecuteReader()

 While PCIDreader.Read()
 PC_ID = PCIDreader.GetString(0)
 ' Console.WriteLine(PC_ID)
 ' Console.Read()
 End While
 PCIDreader.Close()
 Catch ex As MySqlException
 error_sql("Error in comid_sql:" & ex.Message)
 End Try

 Return vbNullString 'stops vb.net error
 End Function

 Function PCinfo_sql(ByVal PpcID As Integer, ByVal Pcdate As String, ByVal
Pcname As String, ByVal Pcip As String, ByVal Pcmac As String, ByVal Pcosname As
Object, ByVal Pcosver As String, ByVal PCarch As String, ByVal Pcuser As Object,
ByVal Pcadmin As Object, ByVal Pcenabledusers As String)

 Dim Update As New MySqlCommand
 ' Pcommandline = Regex.Replace(Pcommandline, """", "") ' remove quote
 Try
 Update = New MySqlCommand("update_comp_info", MysqlConn)
 Update.CommandType = CommandType.StoredProcedure
 Dim Auth_Key As String = getMD5Hash(Machine & PC_ID) ' this is used to
prevenet people from guessing and overwriting records

OHIDS! 51
(

Tom(Webb,(tcw3bb@gmail.com(

 Update.Parameters.Add("Auth_Key", MySqlDbType.Text)
 Update.Parameters.Add("PpcID", MySqlDbType.Text)
 Update.Parameters.Add("Pcdate", MySqlDbType.Text)
 Update.Parameters.Add("Pcip", MySqlDbType.Text)
 Update.Parameters.Add("Pcmac", MySqlDbType.Text)
 Update.Parameters.Add("Pcosname", MySqlDbType.Text)
 Update.Parameters.Add("Pcosver", MySqlDbType.Text)
 Update.Parameters.Add("Pcarch", MySqlDbType.Text)
 Update.Parameters.Add("Pcuser", MySqlDbType.Text)
 Update.Parameters.Add("Pcadmin", MySqlDbType.Text)
 Update.Parameters.Add("Pcenabledusers", MySqlDbType.Text)
 '
 Update.Parameters("Auth_Key").Value = Auth_Key
 Update.Parameters("PpcID").Value = PpcID
 Update.Parameters("Pcdate").Value = Pcdate
 Update.Parameters("Pcip").Value = Pcip
 Update.Parameters("Pcmac").Value = Pcmac
 Update.Parameters("Pcosname").Value = Pcosname
 Update.Parameters("Pcosver").Value = Pcosver
 Update.Parameters("Pcarch").Value = PCarch
 Update.Parameters("Pcuser").Value = Pcuser
 Update.Parameters("Pcadmin").Value = Pcadmin
 Update.Parameters("Pcenabledusers").Value = Pcenabledusers
 Update.ExecuteNonQuery()

 Catch ex As MySqlException
 error_sql("Error in PCINfo_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error

 End Function
 Function getMD5Hash(ByVal strToHash As String) As String
 Dim md5Obj As New Security.Cryptography.MD5CryptoServiceProvider
 Dim bytesToHash() As Byte = System.Text.Encoding.ASCII.GetBytes(strToHash)

 bytesToHash = md5Obj.ComputeHash(bytesToHash)

 Dim strResult As String = ""

 For Each b As Byte In bytesToHash
 strResult += b.ToString("x2")
 Next

OHIDS! 52
(

Tom(Webb,(tcw3bb@gmail.com(

 Return strResult
 End Function

 Public Function text_combine(_
 ByVal path_to_read_file As String, _
 ByVal path_to_append_file As String _
) As Boolean

 'Console.Write(path_to_append_file)
 'Console.Read()
 If (_
 (IO.File.Exists(path_to_read_file)) _
 And (IO.File.Exists(path_to_append_file)) _
) Then
 Try
 System.IO.File.AppendAllText(_
 path_to_append_file, _
 System.IO.File.ReadAllText(path_to_read_file) _
)
 text_combine = True
 Catch ex As Exception
 text_combine = False
 error_sql("Error in text_combine:" & ex.Message)
 End Try
 Else
 text_combine = False
 End If

 End Function

 Function findssn_sql(ByVal ssndate As String, ByVal ssncount As Integer, ByVal
ssnfile As String)
 Dim Insert As New MySqlCommand
 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Find_SSN_Temp
(UID,Date,PC_Id,Count,File)" & "VALUES (0," & Chr(34) & ssndate & Chr(34) & ","
& Chr(34) & PC_ID & Chr(34) & "," & Chr(34) & ssncount & Chr(34) & "," & Chr(34)
& ssnfile & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/") ' this changed the
back slash to forward slash
 Insert.CommandText = command_replace ' set variable to run

 'Console.Write(Insert.CommandText)
 ' Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert

OHIDS! 53
(

Tom(Webb,(tcw3bb@gmail.com(

 Catch ex As MySqlException
 error_sql("Error in findssn_sql:" & ex.Message)
 End Try
 Return vbNullString 'stops vb.net error
 End Function

 Function error_sql(ByVal strError As String) ' input errors into the SQL database for
troubleshooting
 Dim strError_nq = Regex.Replace(strError, """", "") ' remove quote
 Dim Insert As New MySqlCommand
 Try
 Insert.Connection = MysqlConn
 Dim command As String = "Insert into Error_Log (UID,Date,PC_Id,Error)" &
"VALUES (0," & Chr(34) & Format(System.DateTime.Now, "yyyy-MM-dd
HH:mm:ss") & Chr(34) & "," & Chr(34) & PC_ID & Chr(34) & "," & Chr(34) &
strError_nq & Chr(34) & ")"
 Dim command_replace = Regex.Replace(command, "\\", "/") ' this changed the
back slash to forward slash
 Insert.CommandText = command_replace ' set variable to run
 'Console.Write(Insert.CommandText)
 'Console.Read()
 Insert.ExecuteNonQuery() 'runs the query Insert
 Catch ex As MySqlException
 'Console.Write("database insert error for errorlog : " & ex.Message)
 'Console.Read()
 End Try
 Return vbNullString 'stops vb.net error
 Return vbNullString 'stops vb.net error
 End Function

End Module
(
(
(
(
(
(
(
(
(

Appendix E ohids-report.sh
(

OHIDS! 54
(

Tom(Webb,(tcw3bb@gmail.com(

#!/bin/bash
#0.1
#OHIDS REPORTING ENGINE
#Tom Webb
#Latest(version(of(the(code(is(available(at(https://code.google.com/p/openesourcee
hostebasedeids/(

WORKINGDIR=$(/bin/mktemp -d)
DATE=`date -d "-0 day" +%F`
cd $WORKINGDIR
DB_USER=client
DB_NAME=OHIDS
PC_ID=$3
if [$# -eq 0]; then
 echo
 echo "Usage: $0 -t type "
 echo ""
 echo "By Default the TEMP table will be used for most recent data"
 echo "Common reports:"
 echo "-t Proc_Odd Get processes that are odd. Also has AV hash results"
 echo "-t Proc_Loc Get processes run from temp directories."
 echo "-t Proc_Diff Shows new Processes running different from previous day"
 echo "-t Proc_Date Shows Files running that have a modified or create date in that
last 48 hours"
 echo "-t Start_Diff New items in Computers startup list from the previous day"
 echo "-t Start_Loc shows process in startup in temp directories"
 echo "-t Service_Diff new services on Computers compared to previous day"
 echo "-t Hash_Comp compare hashs of exe to version numbers"
 echo "-t Firewall_Diff Shows firewall changes between different days"
 echo "-t SSN_Top will display top 25 highest SSN Count per Computer"
 echo "-t SSN_Comp will display the top 50 file for a give PC_ID"
 exit
fi

case $1 in
#-t) type=$2; shift 2;;
-t) type=$2;
esac

query_proc_loc()
{
echo "select DISTINCT PC_Id,Proc_File from Process_Temp where Proc_File not like
'%Program Files%' and Proc_File not like '%system32%' and Proc_File not like

OHIDS! 55
(

Tom(Webb,(tcw3bb@gmail.com(

'%sysWow64%' and Proc_File not like '%windows%' and Proc_File not like
'%PROGRA%' and Proc_File not like '%Google% and Proc_File not like in (select
DISTINCT Name from Good_File)';" >sql.statement

mysql -u $DB_USER $DB_NAME < sql.statement | sed 's/\t/","/g;s/^/"/;s/$/"/;s/\n//g'>
results.csv

cat results.csv
}

query_proc_odd()
{
echo "select DISTINCT PC_Id,Proc_File from Process_Temp where Proc_File like
'%recyler%' or Proc_File like '%system volume information%' or Proc_File like
'%temp%' or Proc_File like '%tmp%' and Proc_File not in (select DISTINCT Name from
Good_File);" >sql.statement

mysql -u $DB_USER $DB_NAME < sql.statement | sed 's/\t/","/g;s/^/"/;s/$/"/;s/\n//g' >
results.csv

while IFS=',' read ID File
do
 echo "select PC_Id,File_Name,MD5 from PC_Hash_Temp where PC_Id=$ID and
File_Name=$File;" >hash.sql
 mysql --skip-column-names -u $DB_USER $DB_NAME < hash.sql | sed
's/\t/,/g;s/\n//g' >> hash.csv
done <results.csv

#Prep file for bulk load
echo "begin" >mal-hash
cut -d ',' -f3 hash.csv |sort |uniq >>mal-hash #TRIM DOWN TO UNIQ RESULTS TO
PLAY NICE
echo "end" >>mal-hash
netcat hash.cymru.com 43 <mal-hash >malhash-result
grep -v '#' malhash-result >mal-filtered

while IFS=',' read ID File Hash
do
 av_result=`grep -m1 $Hash mal-filtered`
 echo $ID $File $av_result >>final
done <hash.csv

cat final

OHIDS! 56
(

Tom(Webb,(tcw3bb@gmail.com(

}

query_start_diff()
{
#determine last PCID
mysql -B --skip-column-names -u $DB_USER $DB_NAME -e "SELECT DISTINCT
PC_Id from Start_List_Temp;" >pcid #Get PC_Ids from previous day PC's

while read i
do #FOR Each PC GET A DIFF

mysql -B -u $DB_USER $DB_NAME -e "SELECT PC_Info.PC_Id, Cname ,Command
from Start_List_Temp, PC_Info where PC_Info.PC_Id=$i and PC_Info.PC_Id =
Start_List_Temp.PC_Id and PC_Info.Last_Seen != PC_Info.First_Seen and Command
not in (select DISTINCT Command from Start_List where PC_ID=$i);"

done<pcid
}

query_service_diff()
{
mysql -B --skip-column-names -u $DB_USER $DB_NAME -e "SELECT DISTINCT
PC_Id from Service_Temp;" >pcid #Get PC_Ids from previous day PC's
while read i
 do #FOR Each PC GET A DIFF

mysql -B -u $DB_USER $DB_NAME -e "SELECT PC_Info.PC_Id, Cname ,Name
from Service_List_Temp, PC_Info where PC_Info.PC_Id=$i and PC_Info.PC_Id =
Service_List_Temp.PC_Id and PC_Info.Last_Seen != PC_Info.First_Seen and Name not
in (select DISTINCT Name from Service_List where PC_ID=$i)";
done<pcid
}

query_proc_diff()
{
mysql -B --skip-column-names -u $DB_USER $DB_NAME -e "SELECT DISTINCT
PC_Id from Process_Temp;" >pcid #Get PC_Ids from previous day PC's
while read i
 do
mysql -B -u $DB_USER $DB_NAME -e "SELECT DISTINCT PC_Id, Proc_File from
Process where PC_Id=$i and Proc_File not in (select DISTINCT Proc_File from
Process_Temp where PC_ID=$i);"
done<pcid
}

OHIDS! 57
(

Tom(Webb,(tcw3bb@gmail.com(

query_proc_date()
{
qdate=`date -d "2 day ago" +%Y-%m-%d`
mysql -B -u $DB_USER $DB_NAME -e "SELECT PC_Id, File_Name,MD5 FROM
PC_Hash_Temp where CDATE >='$qdate 00:00:00'OR MDATE >='$qdate 00:00:00'
order by MD5;"

}

query_start_loc()
{
mysql -B -u $DB_USER $DB_NAME -e "select DISTINCT PC_Id,Command from
Start_List_Temp where Command not like '%Program Files%' and Command not like
'%/AppData/Local/Google%' and Command not like '%system32%' and Command not
like '%sysWow64%' and Command not like '%windows%' and Command not like
'%PROGRA%' and Command not in (select DISTINCT Name from Good_File);"
}

query_hash_comp()
{
#C:/WINDOWS/SYSTEM32/NLSLEXICONS0011.DLL 6.1.7600.16385
(win7_rtm.090713-1255) f95bef6d4afb35cacb8daf5ff1df8769

mysql -B -u slapc ITSO_PC_IR -e "select File_Name,Version,MD5 from PC_Hash
WHERE MD5 not in (select DISTINCT MD5 from Good_Hash)" >hash
cat hash |awk -F '/' '{ print $NF}'|sort |uniq >hash.sort

IFS=`printf '\n\t'`
while read file ver hash ; do

count=`awk '{ if ($1 == "'$file'" && $2 == "'$ver'") print $0}' hash.sort |wc -l`

if [$count -gt 1];
 then
 echo $file $ver $hash
fi

done<hash.sort

}

query_firewall_diff()
{
mysql -B --skip-column-names -u $DB_USER $DB_NAME -e "SELECT DISTINCT
PC_Id from Firewall_Temp;" >pcid #Get PC_Ids from previous day PC's

OHIDS! 58
(

Tom(Webb,(tcw3bb@gmail.com(

while read i
do
 mysql -B -u $DB_USER $DB_NAME -e "SELECT PC_Info.PC_Id, Cname ,Prog_Path
from Firewall_Temp, PC_Info where PC_Info.PC_Id=$i and PC_Info.PC_Id =
Firewall_Temp.PC_Id and PC_Info.Last_Seen != PC_Info.First_Seen and Prog_Path not
in (select DISTINCT Prog_Path from Firewall where PC_ID=$i)";
done<pcid
}

query_top_ssn()
{

mysql -B -u $DB_USER $DB_NAME -e "select
Find_SSN.Date,Find_SSN.PC_Id,PC_Info.Cname, SUM(count) as Total, PC_Info.IP
FROM Find_SSN, PC_Info where PC_Info.PC_ID=Find_SSN.PC_Id and
Find_SSN.Date >= DATE_SUB(NOW(), INTERVAL 14 DAY) GROUP by PC_ID
order by total desc limit 25;"

}

query_ssn_comp()
{
#PC_ID from Global $3

if [-z $PC_ID]; then #IF PC_ID is blank
 echo "Please enter a PC_Id"
fi

mysql -B -u $DB_USER $DB_NAME -e "select Count, File from Find_SSN where
PC_Id=\"$PC_ID\" and count > 50 order by count DESC;"

}

clean ()
{
rm -rf $WORKINGDIR
}

##################################
#Determine QUERY
##################################
if [$type = "Proc_Loc"]; then #Process locaion lookup
query_proc_loc
fi

OHIDS! 59
(

Tom(Webb,(tcw3bb@gmail.com(

if [$type = "Proc_Odd"]; then
query_proc_odd
fi
if [$type = "Start_Diff"]; then
query_start_diff
fi
if [$type = "Service_Diff"]; then
query_service_diff
fi

if [$type = "Proc_Diff"]; then
query_proc_diff
fi

if [$type = "Proc_Date"]; then
query_proc_date
fi

if [$type = "Start_Loc"]; then
query_start_loc
fi
if [$type = "Hash_Comp"]; then
query_hash_comp
fi

if [$type = "Firewall_Diff"]; then
query_firewall_diff
fi

if [$type = "SSN_Top"]; then
query_top_ssn
fi

if [$type = "SSN_Comp"]; then
query_ssn_comp
fi

clean

