
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 GCIA (GIAC Certified Intrusion Analyst)
 Practical Assignment v4.0

 Chris Sia

 December 24, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Contents

Abstract……………………………………………………………………..….3
Part I Executive Summary………………………………………………...….4
Part II Detailed Analysis…………………………………………………...….6
 Detect 1 – Code Red Worm………………………………………….6-10
 Detect 2 – Backdoor Q Access…………………………………….10-13
 Detect 3 – Formmail Access……………………………………....13 -17
Network Statistics………………………………………………………..17-19
 Top 5 Hosts…………………………………………………………..18-20
 Top 5 Talkers………………………………………………………........20
 Top 5 Targeted Services……………………………………………20-21
 3 Most Suspicious Hosts…………………………………………...…..21
Correlations from Previous Practicals…………………………………21-22
Insights………………………………………………………………………..22
Defensive Recommendations…………………………………………..22-23
Part III Analysis Process………………………………………………...23-24
Bibliography……………………………………………………………….25-26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Abstract

The goal of this practical assignment is to demonstrate my ability to use the tools
and tactics that have been created by those who have gone before me, to the
level of proficiency that is required of an intrusion analyst. This paper outlines
the general security stature of an organization and breaks down the various
levels of responsibility that are vital to the security health of a network. The first
portion of this practical is an executive summary. Geared to the executive
mindset, it strives to convey the importance of these interlocking security
components in a straightforward and clear format, devoid of confusing technical
jargon.

The second portion of this practical is an in-depth decode of three traces picked
from the binary snort alerts posted on http://isc.sans.org/logs/raw. In these
decodes, I attempt to show how using only alerts, and not having an in-depth
knowledge of the network, an analyst can use traces not only to determine what
is being targeted, but also to glean information about the network and specific
services running.

In this second section I also show various other metrics obtainable from the alert
traces, as well as defensive recommendations based on not only the alerts I
have chosen to decode, but on other observed traffic. It is part of any and all
analyst’s duties not only to be able to detect when malicious activity has taken
place, but to respond to and mitigate the incident in an effective and efficient
manner. This demonstrates the analyst’s deep understanding of exactly what
technically has occurred.

In the final section I walk the reader through the process I took to analyze the
detects that I have decoded in this paper. I will discuss the initial steps taken to
identify the alerts, and the thought process involved in selecting the three alerts
included in this paper.

The next sequence will go into detail about the process taken to analyze the
individual detects in depth to extract as much information from not only the alert
packets themselves but other related and non-related network activity.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Part I – Executive Summary

The role of the security analyst in an organization is a very
specialized one. Understanding how normal and malicious activity appears from
the network perspective is not a skill many possess, not even many system
Administrators. Dedicating the resources and time to such measures is usually
overlooked and under-appreciated, yet is always the first thought on everyone’s
mind when something does go wrong.

In reviewing the logs generated from your perimeter Intrusion Detection Systems
(IDS's), several key areas of interest should be noted. The logs revealed several
known exploits and policy violations present in your internal network such as
worm activity, Peer-To-Peer file sharing, and possible pornographic web
browsing. Although the placement of IDS’s is a key component of a sound
network security architecture, many more improvements are necessary to ensure
the future integrity of the network. Proper network security is a multi-tiered
architecture in which each component is reliant on the other to function properly
and efficiently. First of all, IDS logs are not the be all and end all of network
security analysis. Although IDS logs play a vital role in determining if any
“known” malicious activity is present on your network, they are not the security
“silver bullet” that will keep your network safe from intruders or malicious logic.
Although much can be gathered from the snort alerts that were reviewed in this
paper, further investigation would be required to validate most of the conclusions,
simply because the information is not present. Access to firewall logs,
router/switch logs, web logs and syslog/eventlogs allow a more in-depth and
thorough analysis. These logs will aid in the correlation of multiple events to
piece together the entire story of an attack. Think of it this way, if you had a
single shot camera situated outside the door to your home that was configured to
snap a shot every time a suspicious person came to your porch, you would know
who was possibly trying to break into your home. But what else would you
know? Would you know if they successfully broke into your home, or if they even
intended on breaking into your home? This would be your IDS, a system that
simply flags packets based on pre-defined rules.

Let’s say now you need to know everyone that made it into your home. You
would need a second camera to capture this, right? Well, depending on where
your IDS is placed this would be your firewall, or an additional IDS on the internal
side of your firewall. Now, wouldn't you also like to see what they did once they
got in? Of course, who wouldn’t? This would require all sorts of other cameras
placed at key locations snapping shots whenever anyone tried to access what
the cameras were watching. These represent your syslog or NT event logs.

With all of these snapshots put together you create a complete story of who tried
to get in, who got in, and what mischievous things they did after they got in.
Now, let me add this, how would you feel about having a video camera follow
and record everything that occurred both in and right outside your house, twenty-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

four hours a day? Now everything that happens is caught on film, and little is left
to the imagination. These are very good things to have in the event that any
legal matters should arise. Sounds great right, actually sounds like physical
security measures already put in place for your company. Well, such measures
for information security are called “full content data” (Bejtlich 119).

To ensure that as much information can be ascertained from the network without
the analyst having to touch the systems on it, it is recommended that “full content
data” be captured and analyzed on regular cycles. Allowing the analyst to see
the “big picture” will not only speed up and make more thorough the analysis
process, but it will also allow analysis on everything your IDS does not capture,
such as possible malicious activity that has gone undetected for one reason or
another. If full content data is not a feasible possibility due to the complexities of
your network, then perhaps utilizing session data with tools such as Argus or
Cisco Net-Flow would be a good alternative. This will at least allow security
analysts to audit who is talking on your network, where and how they were
talking, and how much was said. All of this data can provide many useful clues
to troubleshoot and investigate security issues.

Lastly, having a staff of well-trained and dedicated security analysts is a must.
The ones who are viewing the logs on a regular basis should know, or should be
taught the many methods and procedures that go into security monitoring, as
well as how known exploits appear from the network and packet perspective.

Network and computer security can be a hard concept for management to define.
It is also intangible and impossible to predict. It is not only when the latest
Microsoft worm hits everyone, or when a hacker is discovered perusing your
businesses’ sensitive files that the security staff is hard at work, it’s also when
end users and management have access to the resources they use an a daily
basis to make critical business decisions amid the daily barrage of malicious
activity circling the Internet. It is during these seemingly quiet times to end users
that the network security analysts are at their peak, because only they know that
the integrity of their network can change for the worse in a matter of seconds.

The types of measures I have described here, take time and resources to
implement well, but setting a strong security foundation will save time and money
in the long run.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Part II – Detailed Analysis

Detect #1 - Code Red worm.

Description of the Detect
This detect was analyzed from the http://isc.sans.org/logs/raw/2002.9.3,
2002.9.9, and 2002.9.10 snort alert logs. I reviewed several days’ worth of logs
to get a better understanding of what alerts were unique and what alerts were
daily and ongoing. The method involved taking the pcap alert files and using a
tool bundled with Ethereal called mergecap to merge all the individual pcap files
into one. The command syntax is:

$ mergecap -w {output file name} {pcap file1} {pcapfile2}

Once all three days had been merged, I ran the merged pcap file through snort
and ethereal. While looking through the http_inspect alerts, this one jumped out:

[**] (http_inspect) BARE BYTE UNICODE ENCODING [**]
10/10-09:32:32.736507 200.196.246.91:4341 -> 32.245.166.119:80
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1504
AP Seq: 0xD3384408 Ack: 0x531A4C30 Win: 0x7D78 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 10 3....&...E.
0x0010: 05 E0 00 00 00 00 F0 06 00 00 C8 C4 F6 5B 20 F5 [.
0x0020: A6 77 10 F5 00 50 D3 38 44 08 53 1A 4C 30 50 18 .w...P.8D.S.L0P.
0x0030: 7D 78 00 00 00 00 47 45 54 20 2F 64 65 66 61 75 }x....GET /defau
0x0040: 6C 74 2E 69 64 61 3F 4E 4E 4E 4E 4E 4E 4E 4E 4E lt.ida?NNNNNNNNN
0x0050: 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
.........
0x0130: 00 00 00 00 00 00 C3 03 00 00 00 78 00 FA 20 25 x.. %
0x0140: 75 39 30 39 30 25 75 36 38 35 38 25 75 63 62 64 u9090%u6858%ucbd
0x0150: 33 25 75 37 38 30 31 25 75 39 30 39 30 25 75 36 3%u7801%u9090%u6
0x0160: 38 35 38 25 75 63 62 64 33 25 75 37 38 30 31 25 858%ucbd3%u7801%
0x0170: 75 39 30 39 30 25 75 39 30 39 30 25 75 38 31 39 u9090%u9090%u819
0x0180: 30 25 75 30 30 63 33 25 75 30 30 30 33 25 75 38 0%u00c3%u0003%u8
0x0190: 62 30 30 25 75 35 33 31 62 25 75 35 33 66 66 25 b00%u531b%u53ff%
0x01A0: 75 30 30 37 38 25 75 30 30 30 30 25 75 30 30 3D u0078%u0000%u00=
0x01B0: 61 20 20 48 54 54 50 2F 31 2E 30 0D 0A 43 6F 6E a HTTP/1.0..Con
0x01C0: 74 65 6E 74 2D 74 79 70 65 3A 20 74 65 78 74 2F tent-type: text/
0x01D0: 78 6D 6C 0A 48 4F 53 54 3A 77 77 77 2E 77 6F 72 xml.HOST:www.wor
0x01E0: 6D 2E 63 6F 6D 0A 20 41 63 63 65 70 74 3A 20 2A m.com. Accept: *
0x01F0: 2F 2A 0A 43 6F 6E 74 65 6E 74 2D 6C 65 6E 67 74 /*.Content-lengt

Here we see the default.ida? String followed by a series of N's which is indicative
of the Code Red worm signature CVE-2001-0500. The alert logs flagged several
packets with this signature, all originating from different external hosts. This is
indicative of infected web servers attempting to spread the worm to uninfected
hosts.

Once a web server is infected with Code Red, it will attempt to spread to other
web servers via a buffer overrun. Each individual instance of Code Red wound
up scanning the same IP addresses due to a bug in the code.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Reason Detect was Selected

Although in the days I chose to analyze the Code Red signatures were few, upon
my initial review of all alerts generated I noticed a large majority of the traffic was
web-related. Not knowing anything else about the network, I chose to look at
one of the hardest hitting web based worms in history.

Detect was generated by:
The alert was generated by snort 2.2.0 running on Red Hat Linux kernel version
2.4.20-6. The snort http_inspect preprocessor caught the attack. The trace was
also detected while running the raw packets through Ethereal. The interesting
thing about the alert is that it was detected by the Snort http_inspect
preprocessor and not a specific rule. The http_inspect preprocessor normalizes
and inspects all defined http port traffic in an effort to detect http anomalies. The
alert generated was non-specific and the actual Code Red worm packets were
mixed in with other miscellaneous web traffic alerts. It was easier to detect these
packets while viewing them in ethereal due to the
default.ida?NNNNNNNNNNNNNNNN payload that stuck out like a sore thumb.
To cross check my results, I downloaded and ran the binary alert file against
snort 1.9.0. This had an interesting effect. The “WEB-IIS ISAPI .ida attempt”
alert was triggered which matched the “.ida?” string with a data size of greater
than 239 bytes.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS ISAPI .ida attempt";
uricontent:".ida?"; nocase; dsize:>239; flow:to_server,established; reference:arachnids,552; classtype:web-
application-attack; reference:bugtraq,1065; reference:cve,CAN-2000-0071; sid:1243; rev:6;)

Probability the source address was spoofed:
Unlikely. The Code Red worm relies on an established TCP connection to infect
the victim host. Most likely these are real infected web servers scanning the
internet for propagation opportunities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Attack Mechanism:

The Code Red worm exploits a buffer overflow in the IIS indexing services
IDQ.DLL. The attacking host sends a crafted GET request to the IIS default.ida
file overrunning its buffer with the “NNNNNN…” payload.

Correlations:

Of the four hosts that were targeted, only one had generated any logs that were
traceable via snort alerts.

Below is a tcpdump output of a 403 Forbidden packet coming from the victim
web server. It is clear in this example that the victim is an Apache web server
running on Linux. (Note: the packet TTL of 63 and the packet data content.) This
gives overwhelming evidence of the victim host running a non-vulnerable OS and
web server for this particular exploit.

19:12:07.466507 32.245.166.119.80 > 212.62.35.225.1168: P [bad tcp cksum 1815!]
582037703:582038239(536) ack 1357129 win
32696 (DF) (ttl 63, id 672, len 576, bad cksum 6274!)
0x0000 4500 0240 02a0 4000 3f06 6274 20f5 a677 E..@..@.?.bt...w
0x0010 d43e 23e1 0050 0490 22b1 30c7 0014 b549 .>#..P..".0....I
0x0020 5018 7fb8 42e6 0000 4854 5450 2f31 2e31 P...B...HTTP/1.1
0x0030 2034 3033 2046 6f72 6269 6464 656e 0d0a .403.Forbidden..
0x0040 4461 7465 3a20 5468 752c 2031 3020 4f63 Date:.Thu,.10.Oc
0x0050 7420 3230 3032 2030 343a 3032 3a31 3020 t.2002.04:02:10.
0x0060 474d 540d 0a53 6572 7665 723a 2041 7061 GMT..Server:.Apa
0x0070 6368 652f 312e 332e 3132 2028 556e 6978 che/1.3.12.(Unix
0x0080 2920 2028 5265 6420 4861 742f 4c69 6e75)..(Red.Hat/Linu
0x0090 7829 2046 726f 6e74 5061 6765 2f34 2e30 x).FrontPage/4.0
......

Since this exploit is only known to affect Windows hosts running IIS it is clear that
the victim (32.245.166.119) web server is not adversely affected. From this we
can also identify the placement of the Snort IDS sensor. It is one hop away from
the targeted web server.

To filter on all packets that had the Code Red exploit signature, I ran ngrep on
the binary alert file looking for the string “default.ida”. I have only included a
portion of each packet that is relevant to this section.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

$ ngrep -q -I <cap file> 'default.ida'

-203.252.131.140:1569 -> 32.245.166.119:80 [AP] GET /default.ida?NNNNNNNNNNNNNN...
-80.5.120.153:1441 -> 32.245.219.105:80 [AP] 26524@0:1448 ...P+....."oP.Dp%...GET
/default.ida?NNNNNNNNNN...
-213.105.254.245:3617 -> 32.245.142.94:80 [AP] 2480@0:1448 .!.P.V.../.WP.Dp....GET
/default.ida?NNNNNNNNNN...
-165.247.214.29:1423 -> 32.245.166.119:80 [AP] GET /default.ida?NNNNNNNNNNNNNNN...
-218.41.167.83:61855 -> 32.245.166.119:80 [AP] GET/default.ida?NNNNNNNNNNNNNNN...
-200.196.246.91:4341 -> 32.245.166.119:80 [AP] GET /default.ida?NNNNNNNNNNNNNNN...
-62.253.36.216:1294 -> 32.245.240.15:80 [AP] 3031@0:1448 ...P..C=v...P."8....GET
/default.ida?NNNNNNNNNN...

As you can see there are four unique targeted hosts with seven attacking hosts.
Only one of the target hosts can be determined to actually be running a web
server due to the presence of return traffic in the form of 403 error messages (not
Code Red related).

It is not possible for us to make any assumptions about the other three hosts
targeted due to the lack of captured return traffic. It is possible due to this fact
that they may be Windows hosts running IIS.

Evidence of active targeting:

This exploit scans attached networks for hosts with port 80 open. This scanning
by infected hosts is random. The infected hosts do target port 80 specifically.

Severity

To determine the severity we use the equation:

Severity = (Criticality + Lethality) – (System Countermeasures + Network
Countermeasures)

Criticality = 4
The Code Red worm was one of the fastest spreading Internet worms of all time.

Lethality = 1
The Code Red worm did nothing to damage data, and it did not install any type of
backdoor. The worst thing it did was at a given time perform a Denial of Service
(DoS) attack against a specific website and scanning would slow down the
infected systems. It ran in memory so most times a reboot would clean the
system.

System Countermeasures = 5

The production web server is a Linux OS running Apache which is not vulnerable
to the ISAPI buffer overflow.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Network Countermeasures = 3
It seems that the IDS system did have signatures for the Code Red worm so it
was detectable. It is difficult to tell if the router past the IDS was filtering for this
particular worm payload.

Severity = (4 + 1) - (5 + 3) = -3

Detect # 2 – Backdoor Q Access

Description of the Detect
This detect was analyzed from the http://isc.sans.org/logs/raw/2002.9.3,
2002.9.9, and 2002.9.10 snort alert logs. I reviewed several days’ worth of logs
to get a better understanding of what alerts were unique and what alerts were
daily and ongoing.

[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
10/02-19:03:23.286507 255.255.255.255:31337 -> 115.74.48.253:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]
--
[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
10/02-19:43:56.296507 255.255.255.255:31337 -> 115.74.8.227:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]
--
[**] [1:184:6] BACKDOOR Q access [**]
[Classification: Misc activity] [Priority: 3]
10/02-20:48:33.286507 255.255.255.255:31337 -> 115.74.76.210:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS203]

Notice the source port 31337, the IP ID of 0 as well as the Sequence, Ack and
window size numbers all being 0. Port 31337 “Eleet” is a common port
associated with hackers. The presence of the repetitive port 31337 and the
repetitive occurrence of the null value in the other packet fields indicate a clear
case of packet crafting.

This alert is indicating that an attacker is attempting to open a backdoor with an
imbedded command of “cko” on random machines in our home network.
However, while investigating the attributes of the Backdoor Q Trojan, and the
“cko” payload, I came across some interesting findings. First, I could not identify
any occurrences of this actual packet being a direct match to any of the reported

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Q Trojan activity. Second, I came across an interesting article on SonicWALL
OS resets <http://www.sonicwall.com/services/pdfs/technotes/
SonicOS_TCP_RST.pdf>. It seems that the SonicOS generates “cko” and “cki”
RST packets for connection cache cleanup. The “cko” payload is indicative of
the SonicOS resetting the connection to the responder.

This article is interesting because it most closely matches the actual structure
and content of the packets that generated the alert. Without further analysis it
would seem that these were in fact a response to spoofed hosts, however it does
appear that other tell tale signs of something more are present. The IP ID, for
instance, is a clear sign that these packets were crafted rather than generated
from the SonicWALL firewall. If the packets had been actual RST packets the IP
ID would have incremented.

Backdoor Q can be referenced via CVE number CAN-1999-0660.

Reason detect was selected
Upon my initial analysis of the alert data in ethereal, the 255.255.255.255 source
address stood out, and the packets fascinated me. It is not common to see such
activity. Due to its most anomalous nature, I felt it an important detect to
investigate.

Detect was generated by:
The alert was generated by snort 2.2.0 running on Red Hat Linux kernel version
2.4.20-6. The snort http_inspect preprocessor caught the attack. The trace was
also detected while running the raw packets through Ethereal and tcpdump.

The tcpdump command to sort through the capture file is:
#tcpdump -nnqX -r {file} 'host 255.255.255.255'

19:03:23.286507 255.255.255.255.31337 > 115.74.48.253.515: tcp 3
0x0000 4500 002b 0000 0000 0f06 9a16 ffff ffff E..+............
0x0010 734a 30fd 7a69 0203 0000 0000 0000 0000 sJ0.zi..........
0x0020 5014 0000 4f3e 0000 636b 6f00 0000 P...O>..cko...
19:43:56.296507 255.255.255.255.31337 > 115.74.8.227.515: tcp 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

0x0000 4500 002b 0000 0000 0f06 c230 ffff ffff E..+.......0....
0x0010 734a 08e3 7a69 0203 0000 0000 0000 0000 sJ..zi..........
0x0020 5014 0000 7758 0000 636b 6f00 0000 P...wX..cko...
20:48:33.286507 255.255.255.255.31337 > 115.74.76.210.515: tcp 3
0x0000 4500 002b 0000 0000 0f06 7e41 ffff ffff E..+......~A....
0x0010 734a 4cd2 7a69 0203 0000 0000 0000 0000 sJL.zi..........
0x0020 5014 0000 3369 0000 636b 6f00 0000 P...3i..cko...

The alert generated was triggered by this snort rule:

alert tcp 255.255.255.0/24 any -> $HOME_NET any (msg:"BACKDOOR Q access"; dsize:>1; flags:A+;
flow:stateless; reference:arachnids,203; classtype:misc-activity; sid:184; rev:6;)

In this rule we see the source address of 255.255.255.0/24 which means any
host in the 255.255.255.X range, which our packets match. Second it is looking
for a payload size greater than one byte, which we have a well with the “cko…”
(0x636b6f) which is three bytes with three bytes of trailing data.

Probability the source address was spoofed:

High. The sources of the packets are the broadcast address 255.255.255.255.
This packet was not sent with the hope of establishing a TCP session.

Attack Mechanism:

Originally thought of as a backdoor attempt, this can also be a part of a DoS
attempt for hosts that rely on SonicWall firewalls, or a response to such activity.

Correlations:

While researching these strange series of packets, I came across an article by
searching the string “cko rst” by SonicWall firewalls. The article explains that
their firewalls will send TCP resets to a responder host if certain conditions were
met. In addition to learning that this payload may be attributed to SonicWall, I
could not find any other supporting documentation that Q backdoor had ever
used this particular form of attack.

Evidence of active targeting:

The packets seem to be targeting random hosts on our internal network. All
packets are however structured the same so scanning for a particular backdoor
cannot be ruled out.

Severity:

Severity = (Criticality + Lethality) – (System Countermeasures + Network
Countermeasures)

Criticality = 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Because this activity is unknown and anomalous in nature, it should be
investigated. For this reason I have assigned a value of 2.

Lethality = 3
The objective of the packets is unknown. If this is an attempt to open a backdoor
on any of the targeted hosts, then the host would already have to be
compromised. For this reason, a value of 3 is appropriate.

System Countermeasures = 1
There are no normal sessions that can be established with such activity, however
it is not known if the systems targeted are running any software that would alert
on Trojan activity.

Network Countermeasures = 2
Our IDS did pick up this strange activity, however it seems that the broadcast
addresses are not filtered before the IDS. It is unknown if any network controls
are in place to filter these packets after the IDS. None of the hosts were
recorded responding to these packets, but we cannot be sure unless session or
full content data is recorded.

Severity = (2 + 3) – (1 + 2) = 2

Detect # 3 – Formmail Exploit

Description of the detect
This detect was analyzed from http://isc.sans.org/logs/raw/2002.9.2, 2002.9.3,
2002.9.9, and 2002.9.10 snort alert logs. I reviewed several days’ worth of logs
to get a better understanding of what alerts were unique and what alerts were
daily and ongoing.

[**] [1:1610:5] WEB-CGI formmail arbitrary command execution attempt [**]
[Classification: Web Application Attack] [Priority: 1]
10/02-19:45:08.176507 64.50.23.162:52980 -> 115.74.249.202:80
TCP TTL:110 TOS:0x0 ID:15408 IpLen:20 DgmLen:619 DF
AP Seq: 0x11872EF9 Ack: 0xEE2ABEFE Win: 0x1800 TcpLen: 20
[Xref => arachnids 226][Xref => cve CVE-1999-0172][Xref => bugtraq 1187][Xref => nessus 10076][Xref =>
nessus 10782]

Above is the POST packet used to verify the existence of the formmail.pl file on
the web server and determine environmental variables.

[**] [1:884:8] WEB-CGI formmail access [**]
[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/03-03:45:08.716507 208.187.195.123:50094 -> 115.74.249.202:80
TCP TTL:46 TOS:0x0 ID:32721 IpLen:20 DgmLen:369 DF
AP Seq: 0xB2750819 Ack: 0x2BF2668 Win: 0x60F4 TcpLen: 20

[**] [1:884:8] WEB-CGI formmail access [**]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[Classification: access to a potentially vulnerable web application] [Priority: 2]
10/09-11:38:29.956507 200.30.148.202:4356 -> 32.245.166.119:80
TCP TTL:108 TOS:0x0 ID:16497 IpLen:20 DgmLen:323 DF
AP Seq: 0xAADA5F9 Ack: 0x71A82244 Win: 0x2238 TcpLen: 20

These are actual “GET” packets sent to the web server for spam relay, and
below is an example of the packet content of the alert above.

[**] WEB-CGI formmail access [**]
10/09-11:38:29.956507 200.30.148.202:4356 -> 32.245.166.119:80
TCP TTL:108 TOS:0x0 ID:16497 IpLen:20 DgmLen:323 DF
AP Seq: 0xAADA5F9 Ack: 0x71A82244 Win: 0x2238 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 01 43 40 71 40 00 6C 06 93 D6 C8 1E 94 CA 20 F5 .C@q@.l....... .
0x0020: A6 77 11 04 00 50 0A AD A5 F9 71 A8 22 44 50 18 .w...P....q."DP.
0x0030: 22 38 6B C4 00 00 47 45 54 20 2F 63 67 69 2D 62 "8k...GET /cgi-b
0x0040: 69 6E 2F 46 6F 72 6D 4D 61 69 6C 2E 63 67 69 3F in/FormMail.cgi?
0x0050: 65 6D 61 69 6C 3D 72 6F 63 6B 73 74 61 72 40 6D email=rockstar@m
0x0060: 61 69 6C 2E 63 6F 6D 26 73 75 62 6A 65 63 74 3D ail.com&subject=
0x0070: 77 77 77 2E 58 58 58 58 58 58 58 58 2F 63 67 69 www.XXXXXXXX/cgi
0x0080: 2D 62 69 6E 2F 46 6F 72 6D 4D 61 69 6C 2E 63 67 -bin/FormMail.cg
0x0090: 69 26 6D 65 73 73 61 67 65 3D 72 6F 63 6B 73 74 i&message=rockst
0x00A0: 61 72 26 72 65 63 69 70 69 65 6E 74 3D 73 6F 6C ar&recipient=sol
0x00B0: 69 64 73 74 69 68 6C 40 61 6F 6C 2E 63 6F 6D 20 idstihl@aol.com
0x00C0: 48 54 54 50 2F 31 2E 30 0D 0A 56 69 61 3A 20 31 HTTP/1.0..Via: 1
0x00D0: 2E 30 20 43 41 52 45 2D 4E 54 2D 30 31 0D 0A 43 .0 CARE-NT-01..C
0x00E0: 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D onnection: Keep-
0x00F0: 41 6C 69 76 65 0D 0A 55 73 65 72 2D 41 67 65 6E Alive..User-Agen
0x0100: 74 3A 20 4D 6F 7A 69 6C 6C 61 2F 34 2E 30 20 28 t: Mozilla/4.0 (
0x0110: 63 6F 6D 70 61 74 69 62 6C 65 3B 20 4D 53 49 45 compatible; MSIE
0x0120: 20 36 2E 30 3B 20 57 69 6E 64 6F 77 73 20 4E 54 6.0; Windows NT
0x0130: 20 35 2E 31 29 0D 0A 48 6F 73 74 3A 20 6D 61 69 5.1)..Host: mai
0x0140: 6C 2E 63 61 72 65 2E 6F 72 67 2E 67 74 0D 0A 0D l.care.org.gt...
0x0150: 0A .

=+

The two targeted IP's were 115.74.249.202 and 32.245.166.119. As stated
above, the 32.245.166.119 host is a *nix server running Apache 1.3.12. To make
sure that the 115.74.249.202 host was the same host, I analyzed alerts from the
2002.9.2 file to see if any packets contained this IP as the source address.
Identical 403 Forbidden alerts were observed:

11:31:18.036507 115.74.249.202.80 > 213.191.138.153.1697: P [bad tcp cksum 6f6f!]
2765902940:2765903476(536) ack 3917771 win 32696 (DF) (ttl 63, id 23437, len 576, bad cksum a14d!)
0x0000 4500 0240 5b8d 4000 3f06 a14d 734a f9ca E..@[.@.?..MsJ..
0x0010 d5bf 8a99 0050 06a1 a4dc 545c 003b c7cb P....T\.;..
0x0020 5018 7fb8 9253 0000 4854 5450 2f31 2e31 P....S..HTTP/1.1
0x0030 2034 3033 2046 6f72 6269 6464 656e 0d0a .403.Forbidden..
0x0040 4461 7465 3a20 5765 642c 2030 3220 4f63 Date:.Wed,.02.Oc
0x0050 7420 3230 3032 2032 303a 3231 3a31 3520 t.2002.20:21:15.
0x0060 474d 540d 0a53 6572 7665 723a 2041 7061 GMT..Server:.Apa
0x0070 6368 652f 312e 332e 3132 2028 556e 6978 che/1.3.12.(Unix
0x0080 2920 2028 5265 6420 4861 742f 4c69 6e75)..(Red.Hat/Linu
0x0090 7829 2046 726f 6e74 5061 6765 2f34 2e30 x).FrontPage/4.0
0x00a0 2e34 2e33 0d0a 4b65 6570 2d41 6c69 7665 .4.3..Keep-Alive
0x00b0 3a20 7469 6d65 6f75 743d 3135 2c20 6d61 :.timeout=15,.ma
.....<rest of packet omitted>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The attacking host sends a crafted HTTP “Get” to the vulnerable formmail script.
This is used as a relay to send spam from the vulnerable Web server. The
original IP is hidden from the recipient of the spam. It looks as if the exploited
Web server is the source.

The Formmail exploit can be referenced via CVE number CAN-2001-0357 and
CVE-2000-0411.

Reason detect was selected

Keeping in mind that a large majority of alert data was web-related, I chose to do
my final analysis on an exploit of a perl script that was used to relay spam
anonymously. Being in charge of a sight that is publicly accessible, it is the
responsibility of the system and security administrators to maintain the integrity of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

their sight. The formmail alerts stood out to me because of the fact that so many
different hosts were accessing this script. Once initial research was done on the
exploitable script, I knew, given the timeframe of the alerts (i.e. 2002) that this
was a serious concern.

Detect was generated by:
The alert was generated by snort 2.2.0 running on Red Hat Linux kernel version
2.4.20-6. The snort http_inspect preprocessor caught the attack. The binary
alert file was also run through snort 1.9.0 to cross check any alert results. Much
like Code Red alerts, snort 2.2.0 flagged these packets with the http_inspect
preprocessor. Snort 1.9.0 flagged the formmail as two different alerts shown
below. The trace was also detected while running the raw packets through
Ethereal and tcpdump.

The snort 1.9.0 rules that triggered the alerts were:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI formmail arbitrary
command execution attempt"; flow:to_server,established; uricontent:"/formmail"; nocase; content:"%0a";
nocase; reference:nessus,10782; reference:nessus,10076; reference:bugtraq,1187; reference:cve,CVE-
1999-0172; reference:arachnids,226; classtype:web-application-attack; sid:1610; rev:5;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI formmail access";
flow:to_server,established; uricontent:"/formmail"; nocase; reference:nessus,10782;
reference:nessus,10076; reference:bugtraq,1187; reference:cve,CVE-1999-0172; reference:arachnids,226;
classtype:web-application-activity; sid:884; rev:8;)

Both rules are looking for the “formmail” string in the URL, which all the alerts
contained. In addition the first rule is also matching the “%0a” which is
representative of newline characters used to execute a command in a new line.

Probability the source address was spoofed:

Unlikely. An established TCP session needs to be established to exploit this
vulnerability. It is possible however that the IP recorded by both the IDS and the
Web server logs is a proxied IP.

Attack Mechanism:

The formmail scripts up to and including version 1.9 were vulnerable to a mail
forwarding exploit used by spammers for mail relay. The spammer can supply
any recipient email address in the crafted URL to forward any message of their
choosing. The formmail script has a flaw in that it does not properly validate the
referrer field. A malicious spammer can bypass this check in three ways. One
way to do so is to omit the referrer field all together in the URL. This allows the
attacker to execute the recipient portion of the code and inject an address of her
choosing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Correlations:

It seems that a handful of Formmail POST requests were sent to the
115.74.249.202 host most likely looking for a vulnerable version of formmail.
This is one method for spammers to determine if a vulnerable version of
Formmail is evident on a victim web server.

Evidence of active targeting:

The offending IP's are actively searching explicitly for an exploitable version of
formmail. This attack is most obviously directed towards this script running on a
web server.

Severity:

Severity = (Criticality + Lethality) – (System Countermeasures + Network
Countermeasures)

Criticality = 3
It can be bad business if this script is exploited and your company is accused of
being the propagator of annoying spam emails. If a hacker manages to utilize
this script, it should be discovered and the exploit mitigated as soon as possible.

Lethality = 2
This exploit does not corrupt data, but it does cause all spam recipients to
contact your company with nasty messages of spam complaints, and can
consume company bandwidth. It is therefore suitable to assign a value of two to
this category.

System Countermeasures = 1
It is not possible to determine what controls are in place if any. If this script is to
be used on a production web server, one of the methods for securing the script
should be implemented. Since no information regarding the version, or even the
existence of the script is discernable, therefore a value of one is assigned.

Network Countermeasures = 3
From the alert traces it is impossible to determine if any type of content filtering is
being performed, however a well placed Network based IDS (all hail Snort!) with
current signatures caught the misuse attempt. For this reason a value of three is
assigned, due to the successful detect of this activity.

Severity = (3 + 2) - (1 + 3) = 1

4 – Network Statistics

A quick look through tcpdstat shows some protocol usage statistics. Seen here

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

we can see over 97% of all traffic associated with the Snort alerts were Web
activity (http). All alerts logged in the three days I chose to analyze were TCP
based traffic. This is interesting, as no UDP or ICMP traffic triggered any snort
alerts on those days. Another interesting thing that tcpdstat picked up is the
gnutella P2P traffic. This also triggered snort alerts, but a quick run through
tcpdstat and clear signs of possible policy violations are evident.

The syntax for this is:

$ tcpdstat <cap file>

.............(Cut)...............
Protocol Breakdown
<<<<
 protocol packets bytes bytes/pkt
--
[0] total 7404 (100.00%) 8885397 (100.00%) 1200.08
[1] ip 7404 (100.00%) 8885397 (100.00%) 1200.08
[2] tcp 7404 (100.00%) 8885397 (100.00%) 1200.08
[3] ftpdata 53 (0.72%) 75066 (0.84%) 1416.34
[3] ftp 1 (0.01%) 61 (0.00%) 61.00
[3] dns 10 (0.14%) 600 (0.01%) 60.00
[3] http(s) 367 (4.96%) 415487 (4.68%) 1132.12
[3] http(c) 5441 (73.49%) 8215667 (92.46%) 1509.96
[3] netb-se 8 (0.11%) 904 (0.01%) 113.00
[3] icecast 3 (0.04%) 4542 (0.05%) 1514.00
[3] gnu6346 9 (0.12%) 1341 (0.02%) 149.00
[3] gnu6347 114 (1.54%) 12312 (0.14%) 108.00
[3] gnu6348 27 (0.36%) 2916 (0.03%) 108.00
[3] gnu6349 5 (0.07%) 540 (0.01%) 108.00
[3] gnu6350 11 (0.15%) 1188 (0.01%) 108.00
[3] gnu6355 1 (0.01%) 108 (0.00%) 108.00
[3] http-a 35 (0.47%) 2216 (0.02%) 63.31
[3] other 1317 (17.79%) 152329 (1.71%) 115.66
[2] frag 56 (0.76%) 80148 (0.90%) 1431.21

Top talkers:

To determine statistics about top talkers and chattiest hosts, I ran the combined
three day alert file through a commercial sniffer. The reports generated show top
ten in each category. The categories I filtered on were Top Hosts by Packets,
either source or destination. Top hosts in bytes, source or destination and Top
talkers by total packets. The results are as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Top Hosts (Total Packets)
IP Address # of Packets Percentage
1 32.245.166.236 4,255 41.1%
2 115.74.249.65 2,687 25.9%
3 64.154.80.51 788 7.6%
4 147.208.133.112 764 7.4%
5 64.154.80.50 393 3.8%

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Top Hosts (total bytes)
IP Address # of Bytes Percentage
1 32.245.166.236 3,230,906 31%
2 115.74.249.65 3,196,888 30.6%
3 147.208.133.112 1,122,030 10.8%
4 64.154.80.51 744,109 7.1%
5 64.154.80.50 449,777 4.3%

Top Talkers (Total Packets)
IP Address # of Packets Percentage
1 115.74.249.65 <-> 147.208.133.112 764 23.7%
2 115.74.249.65 <-> 64.154.80.51 424 13.2%
3 32.245.166.236 <-> 208.33.48.101 384 11.9%
4 32.245.166.236 <-> 64.154.80.51 364 11.3%
5 115.74.249.65 <-> 64.12.137.56 280 8.7%

Top 5 targeted services (from above):

The top targeted service from the alerts I reviewed was port 80 (http). This
seems to be the most active service that generates alerts for the placement of
our IDS.

Top 5 Targeted Services

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Protocol Percentage
1 http 78.9%
2 Gnutella 2.3%
3 FTP .7%
4 DNS .14%
5 Net Bios .11%

3 most suspicious hosts:

It is difficult to limit the number of suspicious hosts to three, because any one of
the three detects that are covered here have the potential to be devastating to a
network. The most suspicious hosts for the detects I chose to write on were
mostly Formmail related. The source hosts involved in the Code Red alerts were
compromised Web servers, responding to their exploit code. However, the
culprit behind the Formmail requests are people who look to utilize vulnerabilities
for profit (spammers). It is this activity that worries me most due to the fact that if
they are looking for Formmail spam relaying vulnerabilities, they may be looking
at other things in the future. True, many spammers run scripts that automate the
discovery process and spiders that actually send the spam, but this is a
deliberate act. For this reason the hosts involved in the Formmail post requests
were the first set of hosts I looked into further. I checked all IP’s to determine if
they were involved in any future traffic directed to the target network. The
addresses 194.52.70.96 and 62.1.0.104 were but two of six address that tried to
POST data to the Formmail script. Unfortunately it can be assumed that the
spammers use an open proxy to obscure their own IP. It is difficult to determine
the OS running on each of these hosts by the ttl (39 and 48 respectively), but my
best guess would be some form of Linux OS, due to their proximity to the default
ttl of Linux (64). However it is not outside the realm of possibility that these hosts
are Windows based, (ttl of 128 for NT or 2000). A traceroute would be beneficial
to obtaining a more accurate representation of how far the ttl decremented.

The last external IP I was concerned with was the broadcast address coming into
our network with 31337 as its source port. Although not an official host IP, I
attempted to sort on other aspects of the packet, such as ttl, however it seems all
aspects of the packet are crafted, and untraceable to the real source of the
activity. What worries me about this trace is that the router/firewall that is directly
in front of the IDS does not filter for broadcast traffic. Also since this activity is so
noisy and overtly odd, it could be a form of misdirection.

5 – Correlations from previous GCIA Practicals:

Correlations from previous practicals is a requirement for this version of the
GCIA, however I found myself using previous practicals off the bat, because of
the work and insight that many students put into their papers. This encompassed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

not only the analysis on the specific types of packets I chose, but the
methodology with which they analyzed their detects regardless of which detects
they chose. In searching the Internet I found many links to snippets of practical
assignments done by GCIA students. The practicals that stood out in my
research were Greg Bassett’s paper outlining the Q Trojan, as well as Pete
Storm’s research done on the strange packets. These papers were very
insightful and informative. They gave me a groundwork for starting my analysis
for the popular packets.

Gregg Bassett mentioned that he had noticed a small TCP session that was
established after the flood of “cko” packets. With this in mind I searched through
the traces with ethereal and tcpdump, but no results for suspicious connections
were gathered. The conclusions they came up with were solid, and very
plausible, however after discovering the SonicWall article, and reading the article
at www.sans.org/resources/idfaq/qtrojan.php I was unconvinced that the Q
Trojan was the most suitable explanation for this packet. I do believe that it was
a crafted packet of some sort, but its origins may be linked to the SonicWall
resets, or some failed attempt to exploit them.

As for analytical insight, I drew much inspiration from Jorge Perez’s analysis of
the shell code NOOP alerts. His in-depth detail into packet header analysis
prompted me to look even harder into my own detects, as well as in the
workplace.

6 – Insights

The main web server is an Apache 1.3.12 running on Linux as is observable from
traffic originating from this host, both 32.245.166.119 and 115.74.249.202. As
much as I can tell these two IP's are the same server, knowing that the IP
addresses for these alerts have been changed. Being as such, the production
web server is not vulnerable to Code Red, however it most likely is running a
vulnerable version of Formmail, due to the fact that these traces are from 2002
and Formmail was a very popular script in this year.

Checking the output from tcpdump filtering on the 32.245 net and the 115.74 net
it seems as if it is possible based on the ttl values being so close to the default
128, that some of the hosts could be Windows-based. If this is the case then
Code Red could possibly make its way into the network and infect a user’s
workstation that is unwittingly running IIS with their install of Windows.

7 – Defensive Recommendations:

For the Code Red detect, I would recommend several preventative measures.
Although it did not affect the production Web server, it is possible and probable
that other hosts on your network could be running Windows with IIS installed.
Make sure all Anti Virus signatures are up to date, and verify all instances of IIS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

on your network by using a network scanner. Also, ensure all instances of IIS
are patched against the Microsoft ISAPI buffer overflow vulnerability, because
variants of worms are known to change their signatures while targeting the same
vulnerability.

In addition to that, border routers can also scrub for known payloads. I would
recommend investing in a scrubbing router that can match the Code Red
signature and filter all related packets as well as all new and existing exploits.

For the Backdoor Q detect, block all packets at your firewall with network or
broadcast addresses as the source or destination, as well as all reserved IP
address blocks (10.0.0.0/24 192.168.0.0/16 and 172.16-31.0.0/16. These
packets are not meant to traverse the Internet, and have no place entering your
network. All targeted hosts should be inspected for signs of compromise and for
a period of time all communications from and to the targeted hosts should be
monitored.

In reference to the Formmail detect, ensure that your production web server is
not running a vulnerable version of Formmail. If so, either upgrade or hardcode
the recipient IP address into the script to prevent malicious spammers from
inserting their own.

The review of the traffic also shows some clear signs of P2P traffic that can
easily be blocked from the perimeter firewall. Although this was not a detect that
was covered above, it is important that common P2P ports be blocked at the
perimeter firewall to prevent file sharing, and possibly an avenue for introducing
malicious code into your network.

Part III – Analysis Process

The first step in reviewing the alerts from isc.sans.org/logs/raw was to pick a
starting point. The logs I chose first were the 9-9-2002 logs. From this point I
wanted to get a feel of what traffic was like prior to and after the day I settled on.
This meant the earliest day before which was 9-3-2002 and the day after, 9-10-
2002.

The first step in my analysis process was to take a quick glance at these binary
alert files through ethereal. Before a single alert was pushed back through Snort,
I picked out the Code Red signature due to its distinctive buffer overflow. I feel
that a quick glance with a protocol analysis tool gets the analyst more familiar
with the types of traffic that he/she will be dealing with in an alert setting.
Next I took the three days worth of files and used a tool bundled with ethereal
called mergecap to merge the three files into one big file, so it could be
manipulated a little easier. Once I had a file that could be pushed through a
number of tools in one operation, I chose to send it through my instance of snort

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

that I had set up on one of my dual boot Linux/Windows2000 laptop. I use snort
with a MySQL database and ACID to view alerts (Pretty standard). I have an
instance running both on my Linux partition and on my Windows partition. I
created a separate database to store alerts from the SANS logs as to not
confuse them with alerts gathered previously.

First, the alerts were tested against snort 2.2.0 with all rule sets turned on. The
results were a little confusing in that most of the alerts generated for the Code
Red and Formmail were picked up by the http_inspect preprocessor, and not the
individual rules written to detect them. I found that they were buried in with false
positive alerts generated by miscellaneous web traffic. To cross check my
results I downloaded and compiled snort 1.9.0 (not a version suitable for
production IDS’s). Running the alert file through an older version of snort I
generated different results. In these alerts I was able to trigger the Formmail and
ISAPI specific alerts. In these alerts were the same packets I picked up while
looking through ethereal.

Once the specifics were picked out I used tcpdump, tcpslice and ngrep to sort
through and narrow in on specifics that were used in this paper. Along with
straight packet analysis, I used Google to learn as much about each individual
exploit to better interpret the packets that were being analyzed.

To gather statistical information I used tcpdstat for protocol distribution
information and Sniffer Portable for host and session information. These tools
were invaluable for in depth statistical data. To run the merged pcap file through
the Sniffer Portable engine, I had to utilize the editcap utility also bundled with
ethereal. This tool allowed me to change the pcap format into a format
compatible with Sniffer Portable. To cross check my results, I also set up a test
lab, consisting of a FreeBSD host running tcpreplay, and a Windows host running
Sniffer Portable connected to a hub. I ran the merged pcap file through tcpreplay
by issuing the command:

$ tcpreplay –i <interface> –r .5 <capfile>

Listening with Sniffer Portable I came up with the same results as when I opened
the converted capture file directly into Sniffer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References:

Bejtlich, Richard. The TAO of Network Security Monitoring. Boston: Addison-
 Wesley, 2005.

Larson, Eric and Brian Stevens. Web Servers, Security, And Maintenance. New
 Jersey: Prentice Hall, 2000.

Castro, Elizabeth. HTML For the World Wide Web. California: Peachpit Press,
 2000.

Skoudis, Ed. Malware Fighting Malicious Code. New Jersey: Prentice Hall, 2004.

Stevens, Richard. TCP/IP Illustrated Volume 1, Boston: Addison-Wesley, 1994.

“FormMail hall of shame.” Softwolves.pp.se. 12 Nov. 2004
<http://www.softwolves.pp.se/internet/formmail_hall_of_shame/0209>

Gordon, Less. “SANS: Intrusion Detection FAQ What is the Q Trojan?”. 24 Oct.
2004 <http://www.sans.org/resources/idfaq/qtrojan.php>

“WEB-IIS ISAPI .ida attempt”, Snort Signature Database. 2 Oct. 2004
<http://www.snort.org/snort-db/sid.html?sid=1243>

“BACKDOOR Q access”, Snort Signature Database. 20 Nov. 2004
<http://www.snort.org/snort-db/sid.html?sid=184>

“WEB-CGI formmail arbitrary command execution attempt”, Snort Signature
Database. 26 Nov. 2004 <http://www.snort.org/snort-db/sid.html?sid=1610>

“WEB-CGI formmail access”, Snort Signature Database. 26 Nov 2004
<http://www.snort.org/snort-db/sid.html?sid=884>

“FormMail Exploit” Linux/Unix Tutorial Site. 14 Dec. 2004
<http://www.ctssn.com/linux/formMailExploit.html>

“SonicWall Tech Note: SonicOS TCP RST Codes Ver. 1.1” SonicWall. 23 Oct.
2004 <http://www.sonicwall.com/services/pdfs/technotes/
SonicOS_TCP_RST.pdf>

Palamar, Michael. “Formmail.pl Can Be Used As An Open Mail Relay”. 24 Nov.
2004 <http://www.securiteam.com/securitynews/Formmail_pl_Can_Be_

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Used_As_An_Open_Mail_Relay.html>

“Backdoor Q”. McAfee Security HQ. 15 Oct. 2004
<http://vil.nai.com/vil/content/v_100468.htm>

“Trojan-Active-Q-TCP”. Whitehats. arachnids – Intrusion Event Database.
IDS203. 20 Oct. 2004 <http://www.whitehats.com/info/IDS203>

Perez, Jorge. “SANS GIAC GCIA Practical Version 3.3”.
<http://www.giac.org/practical/GCIA/Jorge_Perez_GCIA.pdf>

Bassett, Greg. “Intrusion Detection: An Inside Look”.
<http://www.giac.org/practical/GCIA/Greg_Bassett_GCIA.pdf>

Storm, Pete. “GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
Version 3.3”. <http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf>

United States Computer Emergency Response Team. CERT Advisory CA-2001-
19 “Code Red” Worm Exploiting Buffer Overflow In IIS Indexing Service DLL. 19
July 2001. 29 Sept. 2004 <http://www.cert.org/advisories/CA-2001-19.html>

“Analysis: .ida “Code Red” Worm.” eEye Digital Security. 2 Oct 2004
<http://www.eeye.com/html/Research/Advisories/AL20010717.html>

“Code Red requests for /default.ida.” ApacheWeek. 14 Oct 2004
<http://www.apacheweek.com/features/codered>

