
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

GCIA Training and Certification

Practical Assignment

Version 4.1

Richard Sillito

Tuesday, March 08, 2005



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 2
Print Date 3/8/2005

Table of Contents

Executive Summary 1
Detailed Analysis 2

Files used in this analysis 2
Detect 1 - NETBIOS NT NULL session 2

Description 2
Reason this detect was selected 3
Detect was generated by 3
Probability the source address was spoofed 3
Attack mechanism 3
Link Diagram 4
Evidence of Active Targeting 4
Severity 4
Recommended Action 5

Detect 2 - DDOS mstream handler to client 6
Description 6
Reason this detect was selected 6
Detect was generated by 7
Probability the source address was spoofed 7
Attack mechanism 7
Link Diagram 8
Correlations 8
Evidence of Active Targeting 9
Severity 9
Recommended Action 9

Detect 3 – Null scan! (Stealth) of POP3 Mail Server 10
Description 10
Reason this detect was selected 11
Detect was generated by 12
Probability the source address was spoofed 13
Attack mechanism 13
Link Diagram 14
Correlations 14
Evidence of Active Targeting 14
Severity 15
Recommended Action 15

Network Statistics 16
Top five talkers 16
Top targeted ports 17

Profile of three most suspicious external Addresses 20
67.104.112.42 20
213.180.193.68 21
220.197.192.39 22



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 3
Print Date 3/8/2005

Analysis Process 23
Hardware 23
Software 23
Approach 23
Advantages 23
Disadvantages 24

List of References 25
Appendix A (Snort’s SID 530- NETBIOS NT NULL session) 26
Appendix B (Snort’s SID 248-DDOS mstream handler to client) 27
Appendix C (Snort’s SID 230-DDOS shaft client login to handler) 28
Appendix D (Source Listing for IPOP3D) 29
Appendix E (SQL – Table Creation) 45
Appendix F (PERL Scripts for parsing) 47
Appendix G (SQL Script to load database tables ) 51
Appendix H (SQL Script to generate the events table) 52



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 4
Print Date 3/8/2005

Executive Summary

There has been a healthy note of pessimism regarding Intrusion Detection 
Systems and their role in network security. They certainly are easy to install, 
hard to tune (properly) and easy to ignore. But despite their short comings IDS’s 
still provide functions that other devices simply can’t. As an audit and warning 
system they do and will continue to play an important role in network security.

Evidence of this is obvious as your organization is currently seeing the benefits. 
After completing this report it was obvious that without this tool your organization 
would be oblivious to the attacks, scans and other malicious traffic that is 
happening on your network everyday.

Although this type of network traffic is evident in all Internet connections, the 
open learning environment of a University seems to attract even more of this 
activity. This dynamic makes securing these types of networks especially 
challenging.

But like any good craftsman the right tool is only the start. Along with the tool, 
care, attention and patients is needed and an IDS is no different. While 
reviewing the logs from your IDS environment I was able to ascertain the 
following information:

Strengths:
Your organization has IDSs in place. This is a step up from many •
organizations.
With a sensor on the Internet connection and another on the inside, it is •
obvious that your organization took some time to think about an effective
implementation.
Your organizations choice of Snort represents a cost effective solution•
that will be easy to ROI.

Opportunities for improvements:
IDS Rules evolve over time, an older rule set will be less effective. It is •
advisable to ensure that your rule set and IDS software is current.
Some of the rules (ECN aware traffic as an example) are appearing as •
noisy rules, tuning of the rules would be advisable.
There is evidence that incidences are not being responded to, detect 3 •
has been occurring for over a year. An IDS is only as effective as the 
Analyst behind it. This could be a people resource issue or also a training 
issue.
Rules on the firewall appear to be quite loose (again this could be the •
result of the “Open Nature” of educational resources) more aggressive 
rules on the firewall would block many of the attacks your organization is 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 5
Print Date 3/8/2005

seeing. 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 6
Print Date 3/8/2005

Detailed Analysis

Files used in this analysis

Alerts Size Scans Size Oos Size
alert.040420 14003972 scans.040420 135564540 oos_report_040416 352256
alert.040421 27966087 scans.040421 271798176 oos_report_040417 327680
alert.040422 26644195 scans.040422 191550994 oos_report_040418 1735680

There were some issues with the files. The oos_report_ files contained a 
different day than that show in the file name. The dates covered in the files listed 
above were from 04/20 to 04/22. Also there was some corruption in the files as 
is shown below:

:4416 -> MY.NET.30.404/20-13:42:18.152264  [**] spp_portscan: portscan status from 
213.180.193.68: 5 connections across 1 hosts: TCP(5), UDP(0) [**]

This corruption was likely caused by the sanitizing process, however this should 
be verified. It is possible this was the result of someone removing portions of the 
logs to cover their tracks.

Detect 1 - NETBIOS NT NULL session

Description
This attack involves using a feature in Microsoft Windows referred to as 
Interprocess Control. This feature allows connections, to Microsoft Windows 
machines, that query for a list of available resources. By default Microsoft 
Windows systems allow this to occur with a blank user name and password.
The service that will listen for the request is the SMB (also referred to as the 
Server Service) . The attacker connects to a special built in share called IPC$. 
Once connected the attacker can get a list of users, machines, shares and 
much more (maybe even a set of Ginsu Knives). For a good example of the type 
of information available try out Jordan Ritter’s enum program.

http://www.bindview.com/Support/RAZOR/Utilities/Windows/enum_readme.cfm

Looking at the logs we can see evidence of attempts to exploit this feature. 
Combining both alert and scan logs shows the attackers intend to gather 
reconnaissance information. In order to conserve space I have truncated down 
the entries:

Apr 22 21:14:15 67.104.112.42:1937 -> 130.85.70.18:57 SYN ******S*
Apr 22 21:14:15 67.104.112.42:4433 -> 130.85.70.27:57 SYN ******S*



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 7
Print Date 3/8/2005

Apr 22 21:14:15 67.104.112.42:3064 -> 130.85.70.41:57 SYN ******S*
.
.
.
Apr 22 21:14:23 67.104.112.42:1685 -> 130.85.70.50:57 SYN ******S*
Apr 22 21:14:25 67.104.112.42:2331 -> 130.85.70.187:57 SYN ******S*
Apr 22 21:14:26 67.104.112.42:2243 -> 130.85.70.154:57 SYN ******S*
Apr 22 21:14:26 67.104.112.42:4335 -> 130.85.70.185:57 SYN ******S*
04/22-21:30:45.893536  [**] NETBIOS NT NULL session [**] 67.104.112.42:3940 -> MY.NET.190.95:139

Reason this detect was selected
Without the full packet capture it is difficult to tell what the attacker was able to 
ascertain if anything at all. However, if they had connected to the domain
controller and the domain controller allowed null sessions then the attacker 
would have been able to gain very valuable information, starting with a list of all 
user accounts.

However more concerning is that the SMB request resulted in a connection 
being established. SMB is a difficult protocol to secure and a Google search for 
“SMB Vulnerabilities” resulted in about 162,000 results.

Also by combining the scan log and the alert log we can see that this attacker 
was scanning for many machines at a fast pace. Basically we know this 
attacker is certainly not up to anything good and has established a connection to 
the inside network to a service that is hard to secure.

Detect was generated by
The rule that tripped the alert is shown below:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS NT NULL session"; flow:to_server,established; 
content:"|00 00 00 00|W|00|i|00|n|00|d|00|o|00|w|00|s|00| |00|N|00|T|00| |00|1|00|3|00|8|00|1"; reference:arachnids,204; 
reference:bugtraq,1163; reference:cve,2000-0347; classtype:attempted-recon; sid:530; rev:10;)

For a detailed description of this rule go to http://www.snort.org/snort-
db/sid.html?sid=530 or see Appendix A)

The bolded parts of the above rule indicate that the rule will only trigger if there 
is an established session between the attacker and the server and that the 
content was seen going from the attacker to the server.

Probability the source address was spoofed
It is very unlikely that the source address was spoofed. In this attack the attacker 
would require both the port unreachable and the connection to the port 139 
packets to be returned to them. Otherwise the attack would not have been 
successful.

Attack mechanism
It is difficult to determine what generated the Null Session as many tools even 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 8
Print Date 3/8/2005

the Microsoft Windows Command prompts are capable of this type of activity. 
However, the scan is likely to have originated from fx-tools, this scanner tool 
typically uses port 57, as this port usually has no service running. This indicates 
that the attacker is using inverse mapping. They are expecting to get back a port 
unreachable message which tells the attacker a live host is on the other end.

Link Diagram

Evidence of Active Targeting
The attacker appeared to randomly search IP address on port 57. This indicates 
that the attacker is in the early stages. The attacker did find a responding service 
and did connect to the service. No other activity has been detected coming from 
this attacker (within the three days reviewed).

Severity
3 Criticality

Although it is not obvious what the targets systems function is. The SMB 
service on any inside machine is a great launching point for any attacker.

2 Lethality
Connection to the SMB service and gaining a list of resources does not in 
itself mean a compromise is immanent. This is still at the reconnaissance 
phase.

1 System countermeasures
As is typically the case with SMB there is little prevention on the client 
side. The assumption is that SMB would not likely be made available from 
the internet to the inside network.

1 Network countermeasures
The evidence of the continued scans indicate that port unreachable 
message made it to the attacker and the fact that a connection existed on 
port 139 indicates the firewall did not block this activity.

3 Severity
(Criticality + Lethality) – (System countermeasures + Network countermeasures)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 9
Print Date 3/8/2005

Recommended Action
First recommendation would be to block any incoming traffic on ports 137-139 
(SMB Ports), however being a “Open Resource” environment such as a 
University this may not be possible. If that is the case, all Windows systems 
should have the Null Session disabled. The link below explains the procedure:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xpehelp/html/xeconreducenullsessionvulnerability.asp



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 10
Print Date 3/8/2005

Detect 2 - DDOS mstream handler to client

Description
After looking at the activity on MY.NET.84.235 it became obvious that something 
wasn’t right. This system was (may still be) a client to a DDOS attacker for the 
time period which I evaluated the logs and looks to have participated in at least 
some scanning activity. Stepping through the log entries we can see quite the 
picture here:

First we see lots of DDOS shaft client to handler activity. Which, based on 
Snort.org description of the rule (see Appendix C or go to http://www.snort.org/snort-
db/sid.html?sid=230) could be a false positive if MY.NET.84.235 is running a 
legitimate service on destination port 20432 or selects 20432 as an FTP data 
port (not likely the case given all the other alerts on this IP address):
04/20-14:45:09.171005  [**] DDOS shaft client to handler [**] 81.220.163.126:4662 -> MY.NET.84.235:20432
04/20-14:42:38.799893  [**] DDOS shaft client to handler [**] 81.220.163.126:4662 -> MY.NET.84.235:20432
.
.
.
04/20-14:43:20.615257  [**] DDOS shaft client to handler [**] 81.220.163.126:4662 -> MY.NET.84.235:20432
04/20-14:44:31.800532  [**] DDOS shaft client to handler [**] 81.220.163.126:4662 -> MY.NET.84.235:20432

Then we see this system perform a lot of scanning, I have included only a 
snippet of the log file for the sake of space:
04/20-20:28:19.267637  [**] spp_portscan: PORTSCAN DETECTED from MY.NET.84.235 (THRESHOLD 12 connections exceeded in 2 seconds) [**]
04/20-20:28:23.489296  [**] spp_portscan: portscan status from MY.NET.84.235: 13 connections across 13 hosts: TCP(12), UDP(1) [**]
04/20-20:28:26.954717  [**] spp_portscan: portscan status from MY.NET.84.235: 1 connections across 1 hosts: TCP(1), UDP(0) [**]

Then we see this alert log entry indicating possible Trojan server activity. Noting 
the port number of 27374 this shows possible infection of MY.NET.84.235 with 
the subseven Trojan. Possibly the tool used to setup the node in the DDOS 
network.
04/20-20:29:58.577139  [**] Possible trojan server activity [**] MY.NET.84.235:27374 -> 83.30.0.226:4662

Now we see MY.NET.84.235 talking as a handler to several different 
destinations. Snort.org has no false positives listed on this rule:
04/20-22:19:55.972148  [**] DDOS mstream handler to client [**] MY.NET.84.235:15104 -> 128.12.76.48:4662
04/20-22:20:01.320086  [**] DDOS mstream handler to client [**] MY.NET.84.235:15104 -> 128.12.76.48:4662
04/21-03:39:35.713651  [**] DDOS mstream handler to client [**] MY.NET.84.235:12754 -> 172.174.69.186:1164
04/21-03:39:46.241262  [**] DDOS mstream client to handler [**] 172.174.69.186:1164 -> MY.NET.84.235:12754
04/21-15:45:54.296147  [**] DDOS mstream client to handler [**] 63.166.3.20:80 -> MY.NET.84.235:12754

The lack of explanation for a false positive on the last set of alerts substantiates 
the concerns relating to the other log entries observed. It is reasonable to 
assume this machine has been compromised. Snort.org recommendation was 
to quarantine the machine and reload the system.

Reason this detect was selected
This machine is showing signs participating in questionable actions. The 
excessive scanning activity and the connections to DDOS clients and the 
possible sub seven Trojan activities all indicates that this system has been 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 11
Print Date 3/8/2005

compromised.

Detect was generated by
The rule that tripped the alert is shown below (Also see Appendix B):

alert tcp $HOME_NET 12754 -> $EXTERNAL_NET any (msg:"DDOS mstream handler to client"; 
flow:to_client,established; content:">"; reference:cve,2000-0138; classtype:attempted-dos; sid:248; rev:4;)

For a detailed description of this rule go to http://www.snort.org/snort-
db/sid.html?sid=248 or see Appendix B)

The bolded parts show the rule will only trigger if a connection was established 
from the host towards the client. In this case the host was MY.NET.84.235 and 
the client was, among others, 128.12.76.48. Note the existence of a connect 
option as well to help reduce false positives. Snort.org reports no known false 
positive situation for this rule.

Probability the source address was spoofed
It is unlikely the address is spoofed as the DDOS client requires a response
from the handlers in order to retrieve reconnaissance information.

Attack mechanism
Because the machine was compromised before the date of the logs, some 
assumptions will have to be made. The machine in question was either installed 
with or a service was added that was vulnerable to an attack. The attacker found 
this vulnerability and was able to use it. This usually occurs because security 
patches have not been applied in a timely fashion.

Once the attacker discovered this, they used it to install “Subseven”, a program 
that makes your machine a slave to the attackers commands. Using this 
program they sent the software and the commands to install it. This established 
your machine in their Distributed Denial of Service network. A Distributed Denial 
of Service network is a collection of machines that act as one force. Much like 
an army of soldiers, they obey commands from the attacker, commands that 
perform reconnaissance and attacks. Your machine is acting as both a soldier 
and leader in the army, both receiving commands and passing commands onto 
other soldiers.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 12
Print Date 3/8/2005

Link Diagram

Correlations
Doug Kite, in his paper on “Intrusion Detection in Depth GCIA Practical 
Assignment, v3.3, SANS Virginia Beach, July 2002”
(http://www.giac.org/certified_professionals/practicals/gcia/0609.php) observed similar 
activity in his investigation. Although the attack that he is describing differs you 
can see by his log trace that the machine he is investigating has similar alert 
entries:

“Since a trojaned machine would be listening on port 27374 and responding 
with 
that as its source port, the most interesting entry above is the one from 
MY.NET.140.47, especially considering that the destination port (7777) is 
another known trojan port. This machine does appear to have been trojaned and 
should be quarantined. This was confirmed by searching alerts for other entries 
involving MY.NET.140.47, which revealed many portscans originating from this 
host, and the following:”

12/20-22:26:01.667209 [**] DDOS shaft client to handler [**] 64.230.128.142:3456 -> MY.NET.140.47:20432
12/20-22:26:06.560561 [**] DDOS shaft client to handler [**] 64.230.128.142:3456 -> MY.NET.140.47:20432

This indicates this problem has existed for sometime, a review of network 
countermeasures would be in order.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 13
Print Date 3/8/2005

Evidence of Active Targeting
Of the IP addresses listed above there was no other activity found for the three 
days evaluated. This indicates that the DDOS node was already established and 
all participants where aware of its existence.

Severity
3 Criticality

No other activity was noted so it is difficult to tell what function this system 
is performing. Therefore I gave this a moderate score.

5 Lethality
The DDOS shaft activity and likely Subseven activities indicate that this 
system has a known vulnerability that is likely not patched. This machine 
is also in the control of the attacker.

1 System countermeasures
As there is established connection from the outside to this machine and it 
appears to be under the control of outside influences I would say any 
system countermeasures have failed.

2 Network countermeasures
It should be noted that the network sensor did pick up the attack, however 
there was no egress blocking on known bad ports. Of particular interest is 
the subseven port, 27343, being permitted from the inside towards the 
outside. However, the activity only appears in one of the three days I 
evaluated, indicating that the incident could have been responded to.

5 Severity
(Criticality + Lethality) – (System countermeasures + Network countermeasures)

Recommended Action
Several steps should be taken here:

Start by enabling firewall rules to contain the situation.1.
Evaluate the system in question to determine if the system will require 2.
rebuilding.
If this is a student resource, there should be a review of the Policy 3.
permitting the students access. This policy should clearly state that they 
must have all security patches installed and be running anti-virus 
software with a current signature database.
If this is not a student resource it should be rebuild, anti-virus software 4.
installed, a policy created that identifies how and when signature updates 
are to occur. Also a policy created that identifies how and when security 
patches should be installed.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 14
Print Date 3/8/2005

Detect 3 – Null scan! (Stealth) of POP3 Mail Server

Description
While reviewing the oos (Out of Specification) file I noticed IP address 
68.121.194.43 with some suspicious traffic directed to 130.85.12.4. Of the given 
traffic Null Scan, packets that contain no TCP flag set at all, make up most of 
the traffic. I have pieced together portions of the oos, alert and scan logs to 
show the related activity. 

Let’s start with some of the snippets from the oos log, here we can see the 
elapsed time between the first entry and the second entry is approximately 40 
minutes apart. Also note the duplication of the IP ID 4660. Both characteristics
are consistent with oos activity from 68.121.194.43. Finally note the ******** flag 
setting, this is not in accordance with RFC and is referred to as a Null Scan:

04/20-00:21:36.980980 68.121.194.43:27401 -> MY.NET.12.4:110
TCP TTL:78 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0xB24F001  Ack: 0x38122EE4  Win: 0x800  TcpLen: 20

04/20-01:05:23.770837 68.121.194.43:27913 -> MY.NET.12.4:110
TCP TTL:78 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0xB462001  Ack: 0xDCDA562C  Win: 0x800 TcpLen: 20

Simply put a Null Scan comes from a packet that has all of the TCP Flags 
turned off. When this packet is received by the intended target they will respond 
one of two ways. If they have no listening service on the given port then the 
target will respond using a packet with the Reset Flag set. If the target has a 
listening service then it will not respond at all. This is referred to as inverse 
scanning. Even though there is a predictable response to Null Scan packets 
these packets do not conform to RFC and should never be seen in regular 
network traffic.

Next let’s review some output from a summary report. It shows very clearly the 
correlation of the events from the oos, alert and scans files. Note the long delay
between sets of activity indicating that the attacker is attempting to stay low and 
slow, trying not to be noticed:

Source IP    Src Port Date Time    Event       Dest. IP     Dst Port  log   
=============   ======== ======= ========== =============================== ============= ========= ========

| 68.121.194.43 | 37385   | 04/20 | 14:37:50 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 37385   | 04/20 | 14:37:50 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 37385   | 04/20 | 14:38:12 | UNKNOWN *2*A**** RESERVEDBITS | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 37641   | 04/20 | 15:00:59 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 37641   | 04/20 | 15:00:59 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 37897   | 04/20 | 15:22:53 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 37897   | 04/20 | 15:22:53 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 39945   | 04/20 | 18:19:00 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 39945   | 04/20 | 18:19:00 | NULL ********               | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 40457   | 04/20 | 19:02:48 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 40457   | 04/20 | 19:02:48 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 40713   | 04/20 | 19:24:41 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 40713   | 04/20 | 19:24:41 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 40969   | 04/20 | 19:46:35 | Null scan!                    | MY.NET.12.4 | 110     | alert  |



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 15
Print Date 3/8/2005

| 68.121.194.43 | 40969   | 04/20 | 19:46:35 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 41481   | 04/20 | 20:30:22 | SYN ******S*     | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 41481   | 04/20 | 20:30:23 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 41481   | 04/20 | 20:30:23 | NULL ********                 | 130.85.12.4 | 110 | scans  |
| 68.121.194.43 | 41737   | 04/20 | 20:53:07 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 41737   | 04/20 | 20:53:07 | SYN ******S*                  | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 41737   | 04/20 | 20:53:07 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 41993   | 04/20 | 21:15:01 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 41993   | 04/20 | 21:15:01 | SYN ******S*                  | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 41993   | 04/20 | 21:15:01 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 42249   | 04/20 | 21:36:55 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 42249   | 04/20 | 21:36:55 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 42505   | 04/20 | 21:58:48 | SYN ******S*                  | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 42505   | 04/20 | 21:58:49 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 42505   | 04/20 | 21:58:49 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 42761   | 04/20 | 22:20:43 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 42761   | 04/20 | 22:20:43 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 44041   | 04/21 | 00:10:52 | Null scan!       | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 44041   | 04/21 | 00:10:52 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 44041   | 04/21 | 00:10:52 | oos                           | MY.NET.12.4 | 110 | oos    |
| 68.121.194.43 | 44553   | 04/21 | 00:54:45 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 44553   | 04/21 | 00:54:45 | SYN ******S*                  | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 44553   | 04/21 | 00:54:45 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 44553   | 04/21 | 00:54:45 | oos                           | MY.NET.12.4 | 110     | oos    |
| 68.121.194.43 | 44809   | 04/21 | 01:16:38 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 44809   | 04/21 | 01:16:38 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 44809   | 04/21 | 01:16:38 | oos                           | MY.NET.12.4 | 110     | oos    |
| 68.121.194.43 | 45065   | 04/21 | 01:38:32 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 45065   | 04/21 | 01:38:32 | SYN ******S*                  | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 45065   | 04/21 | 01:38:32 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 45065   | 04/21 | 01:38:32 | oos                           | MY.NET.12.4 | 110     | oos    |
| 68.121.194.43 | 45321   | 04/21 | 02:00:26 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 45321   | 04/21 | 02:00:26 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 45321   | 04/21 | 02:00:26 | oos              | MY.NET.12.4 | 110     | oos    |
| 68.121.194.43 | 45577   | 04/21 | 02:22:20 | Null scan!                    | MY.NET.12.4 | 110     | alert  |
| 68.121.194.43 | 45577   | 04/21 | 02:22:20 | NULL ********                 | 130.85.12.4 | 110     | scans  |
| 68.121.194.43 | 45577   | 04/21 | 02:22:20 | oos                           | MY.NET.12.4 | 110     | oos    |
| 68.121.194.43 | 45833   | 04/21 | 02:44:13 | oos                           | MY.NET.12.4 | 110     | oos    |
| 68.121.194.43 | 46089   | 04/21 | 03:06:07 | oos              | MY.NET.12.4 | 110     | oos    |

Next let’s review the Apr 21 00:10:52 events. This is what I call “stumbling home 
at 2:00 AM events” where you knock over everything in sight. The attacker has 
tripped an entry in all three logs. Looking at the entries below, once again we 
see evidence of a Null scan. Also it becomes obvious that 130.85.12.4 and 
MY.NET.12.4 are IP addresses to the same machine. One interesting note is 
that looking at the summary report above not all scan attempts generated an
entry in the oos file (as is noted below):

04/21-00:10:52.460379  [**] Null scan! [**] 68.121.194.43:44041 -> MY.NET.12.4:110

Apr 21 00:10:52 68.121.194.43:44041 -> 130.85.12.4:110 NULL ********

04/21-00:10:52.460370 68.121.194.43:44041 -> MY.NET.12.4:110
TCP TTL:78 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0x8C4E001  Ack: 0x4C8CFF27  Win: 0x800  TcpLen: 20

There are a few likely reasons, the sensor generating the oos file was not 
listening at the time, or the sensor was overrun with packets and simply dropped
them. Another explanation is the attacker may have found a way to evade the 
IDS sensor. Performing a network capture would be the best approach to 
answering this question.

It should be noted that this attack could simply be a miss-configured client 
sending bad packets. However there is enough compelling evidence to warrant 
a further investigation.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 16
Print Date 3/8/2005

Reason this detect was selected
I struggled with selecting this detect as there is no clear sign of a compromise 
and no one sign of an attack. There is however a lot of circumstantial evidence 
that either the machine is compromised or that one is imminent. First we have a 
1 to 1 attack meaning that 68.121.194.43 is working on 130.85.12.4 and only 
that machine. The attacker is keeping their activity low and slow meaning they 
are being patient. They could be trying to brute force a password, or might be 
trying different vulnerabilities, in hopes of finding one that works.

It is reasonable to assume that the attacker knows what pop server is being 
used. Although the banner is somewhat generic “+OK POP3 mr5.umbc.edu 
v2003.83 server ready” the error message resulting from the lack of connection 
is not. The message “-ERR Autologout; idle for too long” easily pointed to this 
application:

/*
* Program: IPOP3D - IMAP to POP3 conversion server
*
* Author: Mark Crispin
* Networks and Distributed Computing
* Computing & Communications
* University of Washington
* Administration Building, AG-44
* Seattle, WA  98195
* Internet: MRC@CAC.Washington.EDU
*
* Date: 1 November 1990
* Last Edited: 17 January 2003
* 
* The IMAP toolkit provided in this Distribution is
* Copyright 1988-2003 University of Washington.
* The full text of our legal notices is contained in the file called
* CPYRIGHT, included with this Distribution.
*/

Full source listing can be found in Appendix D. The source list matched on both 
the Banner and the Error message. Therefore it can be assumed that the 
attacker has this code listing and is familiar with this service.

The final reason for selecting this detect can be found in the correlation section. 
Jose Faial also recognized this detect back in April 2004, 
(http://www.giac.org/certified_professionals/practicals/gcia/0730.php) therefore this 
activity has been going on for almost a year now. This discovery indicates that 
either someone has a grossly miss-configured system (that is still working) or 
that this attacker has a continued reason for sending malformed packets.

All of this evidence brings to light the need to perform more investigation.

Detect was generated by



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 17
Print Date 3/8/2005

Although I was unable to locate the specific rule that generated the alert we can 
make some assumptions based on what we see in the oos entry. The entries in 
the oos file, with no flags set, show no restriction on ports along with no flags 
set:

04/21-00:10:52.460370 68.121.194.43:44041 -> MY.NET.12.4:110
TCP TTL:78 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0x8C4E001  Ack: 0x4C8CFF27  Win: 0x800  TcpLen: 20

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"Null Scan!"; flags 0; …)

Probability the source address was spoofed
This is difficult to determine, however one assumption is that the attacker is not 
simply scanning the machine. They already know port 110 on that machine is 
open. It is reasonable to assume that they are trying to push packets onto the 
machine either because of a miss-configured client or for malicious purposes. If 
it is a miss-configured client then the assumption would be, the address is not 
spoofed. If the intent is malicious then this could in fact be a spoofed address. 
Once again this activity begs for a full packet capture with further analysis. The 
analyst would want to look for established sessions and closely look at any 
traffic returned to 68.121.194.43.

Attack mechanism
Although this attack could simply be a miss-configured client, there is 
compelling evidence to suggest packet crafting is happening. The most 
compelling piece of evidence is the consistent IP ID of 4660. It is unlikely that a 
miss-configured client would respond in such a consistent manner. To prove this
point, below is an example of how hping2 would be used to create such a 
packet.

Hping2 was able to recreate the packet information found in the oos file. The 
command used is listed below:

hping2 -t 78 -N 4660 -p 110 127.0.0.1

The result of this command, as shown by tcpdump, is listed below:

[root@localhost downloads]# tcpdump -xvn -i lo
tcpdump: listening on lo, link-type EN10MB (Ethernet), capture size 96 bytes
22:50:33.991361 IP (tos 0x0, ttl  78, id 4660, offset 0, flags [none], proto 6, length: 
40) 127.0.0.1.1979 > 127.0.0.1.pop3: . [tcp sum ok] win 2048

0x0000:  4500 0028 1234 0000 4e06 5c9a 7f00 0001  E..(.4..N.\.....
0x0010:  7f00 0001 07bb 006e 48b8 5b89 66a5 25bd  .......nH.[.f.%.
0x0020:  5000 0800 7115 0000                      P...q...

This does not prove hping2 created the packet but it does demonstrate that 
packet crafting tools are capable of doing so.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 18
Print Date 3/8/2005

Link Diagram

Correlations
“Jose Faial observed back in April 2004:

04/11-00:19:17.322773 68.121.194.43:6663 -> 130.85.12.4:110 TCP TTL:78 TOS:0x0
ID:4660 IpLen:20 DgmLen:40 ******** Seq: 0xF7E6001 Ack: 0x1D10773 Win: 0x800
TcpLen: 20
04/11-00:41:14.795330 68.121.194.43:6919 -> 130.85.12.4:110 TCP TTL:78 TOS:0x0
ID:4660 IpLen:20 DgmLen:40 ******** Seq: 0xFA88001 Ack: 0x547783B5 Win: 0x800
TcpLen: 20
04/11-00:19:17.322776 [**] Null scan! [**] 68.121.194.43:6663 -> 130.85.12.4:110
04/11-00:41:14.795334 [**] Null scan! [**] 68.121.194.43:6919 -> 130.85.12.4:110

They correlate exactly. Most packets come from 68.121.194.43 and are directed to POP3
port of machine 130.85.12.4. Note that IP ID is always the same 4660. This is obviously a
result of packet crafting or fragmentation, which would explain the lack of TCP flags as
well, but there is no information that indicates these packets are fragments. I suggest take
a close look at 130.85.12.4 (mail.umbc.edu), someone are certainly trying to break-in. A
brute-force against a POP3 user account is my best guess for now. I will consider the
remaining combinations as noise caused by packet corruption, because of its low number
of hits.”

Evidence of Active Targeting
The fact that there is no other activity for this IP address implies that advance 
reconnaissance has already been done. It also shows that the attacker knew 
this server was a pop3 server.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 19
Print Date 3/8/2005

Severity
4 Criticality

This is a pop3 mail server. A compromise of this server could result in 
mail being retrieved from the server by the attacker. This could result in 
corporate information leaking to competitors or privacy violations.

1 Lethality
There is no clear evidence that an attacker has an attack that will 
compromise the machine. At most we see reconnaissance activity.

3 System countermeasures
Without packet captures it is difficult to determine if a connection was 
made to the system. It is also difficult to say if the system responded to 
the inverse scan. Because there is a lack of evidence I will give it a 
moderate score.

1 Network countermeasures
The firewall clearly allowed OOS packets to traverse the firewall. An 
appropriate response would be to silently drop all none RFC packets. This 
way inverse scans would not be successful.

1 Severity
(Criticality + Lethality) – (System countermeasures + Network countermeasures)

Recommended Action
There is no clear sign of immediate danger and taking a mail server out of 
production, when students are so dependant on this resource, would be a 
mistake. A network capture device should be installed and this traffic should be 
captured and analyzed. If a compromise has occurred it would be best to 
contain the problem via firewall rules and asses how to rebuild the server during 
a regularly scheduled outage. Also a review should proceed that determines 
why the Null Scan packets are traversing the firewall.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 20
Print Date 3/8/2005

Network Statistics

Top five talkers

When looking at the top five talkers, it’s best to look at groups of IP addresses
also known as subnets. When reviewing the logs there appeared to be three 
discernable groups of IP addresses, MY.NET which represented the internal 
network (behind the firewall), 130.85 which represented the addresses served 
externally by the firewall and all the other addresses which represent traffic 
coming from the Internet. It should be noted that IP’s can be spoofed so there is 
no guarantee this approach will be 100% accurate, however the amount of 
spoofed traffic would be small (statistically speaking) and would have little 
bearing on the statistics shown. Using this approach will assist in any further 
investigation.

All of these reports where generated from a combined tally of events from all 
three files oos, alert and scans:

Top Five Talkers - Internal addresses Report (MY.NET.)

This report shows the top 5 talkers from the inside network. These should be 
investigated for possible compromises. If an internal machine has been 
compromised it will often become chatty. Especially if it’s involved in a DDOS 
network:

SourceIP Events
MY.NET.1.3 103902
MY.NET.1.4 83424
MY.NET.81.39 70498
MY.NET.112.189 23876
MY.NET.17.45 12710



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 21
Print Date 3/8/2005

Top Five Talkers – External Firewall Address Report (130.85.)

This report shows the top five talkers from the addresses served externally by
the firewall. This traffic should be investigated to determine if an inside machine 
is compromised but also to review the effectiveness of the firewall, firewall rules, 
IDS and IDS rules. Perhaps your exterior firewall devices are permitting traffic 
they should not or the IDS rules are too noisy and require some tuning.

SourceIP Events
130.85.1.3 2536679
130.85.17.45 1179172
130.85.1.4 747942
130.85.112.189 713579
130.85.81.39 694877

Top Five Talkers – Internet Address Report (All Other Addresses)
This report shows the top five talkers coming from the Internet. This list should 
be investigated to determine if these addresses are originating from people 
intending to attack the network.

SourceIP Events
213.180.193.68 39516
220.197.192.39 31282
64.136.199.197 23712
134.192.42.11 21786
80.191.163.12 19244

Top targeted ports

When looking at the top five destination ports, it is equally effective to report 
based on the IP groups mentioned above. Again this will help determine a 
strategy for further investigation. 

All of these reports where generated from a combined tally of events from all
three files oos, alert and scans:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 22
Print Date 3/8/2005

Top five targeted ports – Originating Internally (MY.NET) Report

This report shows the top five destination ports the internal machines are 
sending to. The traffic represented here should be investigated for possible 
Trojan activity. Of particular interest is port 65535 – Possible RC1-Trojan activity, 
port 27374 – Possible Exploit Translation Server, Kazimas, Remote Grab, 
SubSeven 2.1 Gold. Port 137 is likely miss-configured Windows traffic and port 
25 is likely just email activity. However traffic on all of these ports should be 
investigated further.

DestinationPort Events
65535 9736
137 5977
25 440
27374 201
7000 58

Top five targeted ports – Originating from Firewall (130.85) Report

This report shows the top five destination ports of traffic originating from the 
firewall’s external addresses. This traffic should be investigated to determine if 
egress firewall rules are required. Again this traffic should be looked at as 
possible Trojan activity. Of particular interest is port 2745 – possible bagel 
activity. Port 135 is Windows DCOM service, which could be miss-configured 
clients or possible outgoing DCOM attacks, either way worth checking. Port 445 
is likely just smb/tcp again likely miss-configured clients. The last two ports are 
quite expected with port 53 – DNS, port 80 – http.

DestinationPort Events
53 3272789
135 1838879
2745 485985
80 468305
445 348356



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 23
Print Date 3/8/2005

Top five targeted ports - All Other Addresses

This report shows the top destination ports originating from the Internet. This 
activity should be monitored to understand what ports are commonly getting 
attacked. Of particular interest is 6129 used by Dameware a remote 
administration software package, having a history of being installed by viruses. 
Port 4899 associated with radmin another remote administration package. Port 
20168 associated with LoveGate. The remaining port 443 and 80 are likely 
scanning activity from attackers looking for live hosts.

DestinationPort Events
443 99525
6129 91049
80 72177
4899 55740
20168 41022



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 24
Print Date 3/8/2005

Profile of three most suspicious external Addresses

67.104.112.42

This address was selected due to it’s involvement in detect 1.

OrgName:    XO Communications 
OrgID:      XOXO
Address:    Corporate Headquarters
Address:    11111 Sunset Hills Road
City:       Reston
StateProv:  VA
PostalCode: 20190-5339
Country:    US

ReferralServer: rwhois://rwhois.eng.xo.com:4321/

NetRange:   67.104.0.0 - 67.111.255.255
CIDR:       67.104.0.0/13 
NetName:    XOXO-BLK-17
NetHandle:  NET-67-104-0-0-1
Parent:     NET-67-0-0-0-0
NetType:    Direct Allocation
NameServer: NAMESERVER1.CONCENTRIC.NET
NameServer: NAMESERVER2.CONCENTRIC.NET
NameServer: NAMESERVER3.CONCENTRIC.NET
NameServer: NAMESERVER.CONCENTRIC.NET
Comment:    
RegDate:    
Updated:    2004-05-07

OrgAbuseHandle: XCNV-ARIN
OrgAbuseName:   XO Communications, Network Violations 
OrgAbusePhone:  +1-866-285-6208
OrgAbuseEmail:  abuse@xo.com

OrgTechHandle: XCIA-ARIN
OrgTechName:   XO Communications, IP Administrator 
OrgTechPhone:  +1-703-547-2000
OrgTechEmail:  ipadmin@eng.xo.com

# ARIN WHOIS database, last updated 2005-03-06 19:10
# Enter ? for additional hints on searching ARIN's WHOIS database.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 25
Print Date 3/8/2005

213.180.193.68

This address was selected because it showed up on the top five talkers 
originating from the internet.

OrgName:    RIPE Network Coordination Centre 
OrgID:      RIPE
Address:    P.O. Box 10096
City:       Amsterdam
StateProv:  
PostalCode: 1001EB
Country:    NL

ReferralServer: whois://whois.ripe.net:43

NetRange:   213.0.0.0 - 213.255.255.255
CIDR:       213.0.0.0/8 
NetName:    RIPE-213
NetHandle:  NET-213-0-0-0-1
Parent:    
NetType:    Allocated to RIPE NCC
NameServer: NS-PRI.RIPE.NET
NameServer: NS3.NIC.FR
NameServer: SUNIC.SUNET.SE
NameServer: AUTH00.NS.UU.NET
NameServer: SEC1.APNIC.NET
NameServer: SEC3.APNIC.NET
NameServer: TINNIE.ARIN.NET
Comment:    These addresses have been further assigned to users in
Comment:    the RIPE NCC region. Contact information can be found in
Comment:    the RIPE database at http://www.ripe.net/whois
RegDate:    
Updated:    2004-03-16

# ARIN WHOIS database, last updated 2005-03-06 19:10
# Enter ? for additional hints on searching ARIN's WHOIS database.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 26
Print Date 3/8/2005

220.197.192.39

This address was selected because it showed up on the top five talkers 
originating from the internet.

OrgName:    Asia Pacific Network Information Centre 
OrgID:      APNIC
Address:    PO Box 2131
City:       Milton
StateProv:  QLD
PostalCode: 4064
Country:    AU

ReferralServer: whois://whois.apnic.net

NetRange:   220.0.0.0 - 220.255.255.255
CIDR:     220.0.0.0/8 
NetName:    APNIC6
NetHandle:  NET-220-0-0-0-1
Parent:    
NetType:    Allocated to APNIC
NameServer: NS1.APNIC.NET
NameServer: NS3.APNIC.NET
NameServer: NS4.APNIC.NET
NameServer: NS.RIPE.NET
NameServer: TINNIE.ARIN.NET
Comment:    This IP address range is not registered in the ARIN 
database.
Comment:    For details, refer to the APNIC Whois Database via
Comment:    WHOIS.APNIC.NET or http://www.apnic.net/apnic-
bin/whois2.pl
Comment:    ** IMPORTANT NOTE: APNIC is the Regional Internet 
Registry
Comment:    for the Asia Pacific region. APNIC does not operate 
networks
Comment:    using this IP address range and is not able to 
investigate
Comment:    spam or abuse reports relating to these addresses. For 
more
Comment:    help, refer to http://www.apnic.net/info/faq/abuse
Comment:    
RegDate:    
Updated:    2004-03-30

OrgTechHandle: AWC12-ARIN
OrgTechName:   APNIC Whois Contact 
OrgTechPhone:  +61 7 3858 3100
OrgTechEmail:  search-apnic-not-arin@apnic.net

# ARIN WHOIS database, last updated 2005-03-06 19:10
# Enter ? for additional hints on searching ARIN's WHOIS database.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 27
Print Date 3/8/2005

Analysis Process

This analysis was performed using the following hardware:

Hardware
Intel Celeron 400 Mhz
160 Meg of Ram
30 Meg Disk Space 

Software
Fedora Core 2
Mysql 4.1.9.standard
Perl

Approach

Step Description Appendix
1 Created a database structure capable of loading the 

information.
E

2 Download the files from the web site
3 Created PERL scripts to parse out the information into 

discernable fields
F

4 Uploaded the parsed information into a mysql database 
(1 table for each file)

G

5 Run a script that would summaries all the events from 
each table and placed the results into an events table

H

Advantages
The parsing of the data made me more conscious of the information 1.
contained in the logs.
The event table meant that as soon as I found a suspicious address I 2.
could immediately correlate all activity associated with the IP address.
I was able to quickly change my analysis approach by simply creating a 3.
new query on the fly. I found that most script approaches required you to 
rewrite the script.

Disadvantages
It was time consuming loading the information into the database. (This 1.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 28
Print Date 3/8/2005

was mitigated with the creation of a batch file that I could start and walk 
away).
The large number of records meant careful thought was required 2.
regarding indices, too many and the load took to long, not enough and 
the queries took too long.
Required learning mysql, I am a MCDBA so the transition was not too 3.
tough, but if you did not have previous DBA experience this could be 
difficult.
In looking for the “Coming home at 2:00 AM” IP’s (Tripped into all logs), I 4.
had to create another table to summarize results. This was because the 
properly formed query simply took forever to run (I finally cancelled it after 
hours of running).



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 29
Print Date 3/8/2005

List of References

Ritter, Jordan. "enum" Bind View. 8 Mar. 2005.  
< http://www.bindview.com/Support/RAZOR/Utilities/Windows/enum_readme.cfm >.

"SID 530 - NETBIOS NT NULL session." Snort Signature Database. 8 Mar 2005
< http://www.snort.org/snort-db/sid.html?sid=530 >. 

“Null Session Vulnerability.” MSDN. Sept 21, 2005, 8 Mar 2005
< http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xpehelp/html/xeconreducenullsessionvulnerability.asp >

"SID 248 - DDOS mstream handler to client." Snort Signature Database. 8 Mar 2005
< http://www.snort.org/snort-db/sid.html?sid=248 >.

"SID 230 - DDOS shaft client login to handler." Snort Signature Database. 8 Mar 2005
< http://www.snort.org/snort-db/sid.html?sid=230 >.

Kite, Doug. “Intrusion Detection in Depth.” SANS Reading Room. July 2002, 8 March 
2005 
< http://www.giac.org/certified_professionals/practicals/gcia/0609.php>.

Faial, Jose. “GIAC Certified Intrusion Analyst – GCIA Practical Assignment.” SANS 
Reading Room. April 2002, 8 March 2005 
< http://www.giac.org/certified_professionals/practicals/gcia/0609.php>.

Northcutt, Stephen. Snort 2.1 Intrusion Detection. Syngress, 2004. 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 30
Print Date 3/8/2005

Appendix

Appendix A (Snort’s SID 530- NETBIOS NT NULL session)

GEN:SID 1:530 
Message NETBIOS NT NULL session 

Rule alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS NT NULL session"; 
flow:to_server,established; content:"|00 00 00 00|W|00|i|00|n|00|d|00|o|00|w|00|s|00| |00|N|00|T|00| 
|00|1|00|3|00|8|00|1"; reference:arachnids,204; reference:bugtraq,1163; reference:cve,2000-0347; 
classtype:attempted-recon; sid:530; rev:10;) 

Summary This event is generated when an attacker sends a blank username and blank password in an attempt 
to connect to the IPC$ (Interprocess Communication) pipe.

Impact Information gathering. This attack can permit the disclosure of sensitive information about the target 
host.

Detailed Information Null sessions allow browsing of Windows hosts by the "Network Neighborhood" and other 
functions. A Null session permits access to a host using a blank user name and password. At 
attacker may attempt to perform a Null session connection, disclosing sensitive information about the 
target host such as available shares and user names.

Affected Systems Microsoft Windows hosts
Attack Scenarios An attacker can send a blank username and blank password to try to connect to the IPC$ hidden 

share on the target computer.
Ease of Attack Simple.
False Positives Null sessions may be used by legitimate processes in the same Windows domain.

If you think this rule has a false positives, please help fill it out.
False Negatives None Known

If you think this rule has a false negatives, please help fill it out.
Corrective Action On Windows NT, 2000, XP set the registry key 

/System/CurrentControlSet/Control/LSA/RestrictAnonymous value to 1.
Contributors Original rule written by Ian Viket <ian.vitek@infosec.se>

Documented by Nawapong Nakjang <tony@ksc.net, tonie@thai.com>
Sourcefire Research Team
Judy Novak <judy.novak@sourcefire.com>

Additional 
References 

Arachnids
http://www.whitehats.com/info/IDS204

CVE
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0519

Rule References arachnids: 204
bugtraq: 1163
cve: 2000-0347



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 31
Print Date 3/8/2005

Appendix B (Snort’s SID 248-DDOS mstream handler to client)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 32
Print Date 3/8/2005

Snort Signature Database

GEN:SID 
1:248 

Message 
DDOS mstream handler to client 

Rule 
alert tcp $HOME_NET 12754 -> $EXTERNAL_NET any (msg:"DDOS mstream handler to client"; 
flow:to_client,established; content:">"; reference:cve,2000-0138; classtype:attempted-dos; sid:248; rev:4;) 

Summary 
This event is generated when an mstream DDoS handler responds to an mstream client.

Impact 
Severe. If the list source IP is in your network, it may be an mstream handler. If the listed destination IP is in your 
network, it may be an mstream client.

Detailed Information 
The mstream DDoS uses a tiered structure of compromised hosts to coordinate and participate in a distributed denial of 
service attack. At the highest level, clients communicate with handlers to inform them to launch attacks. A client may 
communicate with a handler using a TCP packet to destination port 12754 with a string of ">" in the payload. A handler 
responds to this with a TCP source port of 12754 and a string of ">" in the payload.

Affected Systems 
Any mstream compromised host.

Attack Scenarios 
An mstream handler may be respond to a communication from an mstream client.

Ease of Attack 
Simple. mstream code is freely available.

False Positives 
None Known.
If you think this rule has a false positives, please help fill it out.

False Negatives 
There are other known client-to-handler ports in addition to 12754.
If you think this rule has a false negatives, please help fill it out.

Corrective Action 
Perform proper forensic analysis on the suspected compromised host to discover the means of compromise.

Rebuild a confirmed compromised host.

Use a packet-filtering firewall to block inappropriate traffic to the network to prevent hosts from being compromised.

Contributors 
Original rule writer unknown
Sourcefire Research Team
Judy Novak <judy.novak@sourcefire.com>

Additional References 
CVE:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0138

Rule References 
cve: 2000-0138



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 33
Print Date 3/8/2005



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 34
Print Date 3/8/2005

Appendix C (Snort’s SID 230-DDOS shaft client login to handler)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 35
Print Date 3/8/2005

Snort Signature Database

GEN:SID 
1:230 

Message 
DDOS shaft client login to handler 

Rule 
alert tcp $HOME_NET 20432 -> $EXTERNAL_NET any (msg:"DDOS shaft client login to handler"; 
flow:from_server,established; content:"login|3A|"; reference:arachnids,254; 
reference:url,security.royans.net/info/posts/bugtraq_ddos3.shtml; classtype:attempted-dos; sid:230; 
rev:5;) 

Summary 
This event is generated when a DDoS Shaft client communicates with a Shaft handler. It is also 
possible that this event may be generated when any host attempts to discover or detect a Shaft 
handler.

Impact 
Attempted DDoS. If the listed source IP is in your network, it may be a Shaft client or a host attempting 
to discover Shaft handlers. If the listed destination IP is in your network, it may be a Shaft handler.

Detailed Information 
The Shaft DDoS uses a tiered structure of compromised hosts to coordinate and participate in a 
distributed denial of service attack. At the highest level, clients communicate with handlers to direct 
them to launch attacks. A client may communicate with a handler via TCP destination port 20432.

Affected Systems 
Any Shaft compromised host.

Attack Scenarios 
A Shaft client needs to communicate with handlers to direct attacks.

Ease of Attack 
Simple. Shaft code is freely available.

False Positives 
A legitimate server port of 20432 will cause this rule to fire. It may also create a false positive if port 
20432 is selected as an FTP data port.
If you think this rule has a false positives, please help fill it out.

False Negatives 
None Known.
If you think this rule has a false negatives, please help fill it out.

Corrective Action 
Perform proper forensic analysis on the suspected compromised host to discover the means of 
compromise.

Rebuild a confirmed compromised host.

Use a packet-filtering firewall to block inappropriate traffic to the network to prevent hosts from being
compromised.

Contributors 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 36
Print Date 3/8/2005



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 37
Print Date 3/8/2005

Appendix D (Source Listing for IPOP3D)

/*
* Program: IPOP3D - IMAP to POP3 conversion server
*
* Author: Mark Crispin
* Networks and Distributed Computing
* Computing & Communications
* University of Washington
* Administration Building, AG-44
* Seattle, WA  98195
* Internet: MRC@CAC.Washington.EDU
*
* Date: 1 November 1990
* Last Edited: 17 January 2003
* 
* The IMAP toolkit provided in this Distribution is
* Copyright 1988-2003 University of Washington.
* The full text of our legal notices is contained in the file called
* CPYRIGHT, included with this Distribution.
*/

/* Parameter files */

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
extern int errno; /* just in case */
#include <signal.h>
#include <time.h>
#include "c-client.h"

#define CRLF PSOUT ("\015\012") /* primary output terpri */

/* Autologout timer */
#define KODTIMEOUT 60*5
#define LOGINTIMEOUT 60*3
#define TIMEOUT 60*10

/* Size of temporary buffers */
#define TMPLEN 1024

/* Server states */

#define AUTHORIZATION 0
#define TRANSACTION 1
#define UPDATE 2
#define LOGOUT 3

/* Eudora food */

#define STATUS "Status: %s%s\015\012"
#define SLEN (sizeof (STATUS)-3)

/* Global storage */



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 38
Print Date 3/8/2005

char *version = "2003.83"; /* server version */
short state = AUTHORIZATION; /* server state */
short critical = NIL; /* non-zero if in critical code */
MAILSTREAM *stream = NIL; /* mailbox stream */
long idletime = 0; /* time we went idle */
unsigned long nmsgs = 0; /* current number of messages */
unsigned long ndele = 0; /* number of deletes */
unsigned long last = 0; /* highest message accessed */
unsigned long il = 0; /* initial last message */
char challenge[128]; /* challenge */
char *host = NIL; /* remote host name */
char *user = NIL; /* user name */
char *pass = NIL; /* password */
char *initial = NIL; /* initial response */
long *msg = NIL; /* message translation vector */
char *sayonara = "+OK Sayonara\015\012";

/* Function prototypes */

int main (int argc,char *argv[]);
void clkint ();
void kodint ();
void hupint ();
void trmint ();
int pass_login (char *t,int argc,char *argv[]);
char *apop_login (char *chal,char *user,char *md5,int argc,char *argv[]);
char *responder (void *challenge,unsigned long clen,unsigned long *rlen);
int mbxopen (char *mailbox);
long blat (char *text,long lines,unsigned long size);
void rset ();

/* Main program */

int main (int argc,char *argv[])
{
unsigned long i,j,k;
char *s,*t;
char tmp[TMPLEN];
time_t autologouttime;
char *pgmname = (argc && argv[0]) ?
(((s = strrchr (argv[0],'/')) || (s = strrchr (argv[0],'\\'))) ?
s+1 : argv[0]) : "ipop3d";

/* set service name before linkage */
mail_parameters (NIL,SET_SERVICENAME,(void *) "pop");

#include "linkage.c"
/* initialize server */

server_init (pgmname,"pop3","pop3s",clkint,kodint,hupint,trmint);
challenge[0] = '\0'; /* find the CRAM-MD5 authenticator */
if (i = mail_lookup_auth_name ("CRAM-MD5",NIL)) {
AUTHENTICATOR *a = mail_lookup_auth (i);
if (a->server) { /* have an MD5 enable file? */

/* build challenge -- less than 128 chars */
sprintf (challenge,"<%lx.%lx@%.64s>",(unsigned long) getpid (),

(unsigned long) time (0),tcp_serverhost ());
}

}
/* There are reports of POP3 clients which get upset if anything appears
* between the "+OK" and the "POP3" in the greeting.
*/
PSOUT ("+OK POP3");
if (!challenge[0]) { /* if no MD5 enable, output host name */
PBOUT (' ');
PSOUT (tcp_serverhost ());



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 39
Print Date 3/8/2005

}
PSOUT (" v");
PSOUT (version);
PSOUT (" server ready");
if (challenge[0]) { /* if MD5 enable, output challenge here */
PBOUT (' ');
PSOUT (challenge);

}
CRLF;
PFLUSH (); /* dump output buffer */
autologouttime = time (0) + LOGINTIMEOUT;

/* command processing loop */
while ((state != UPDATE) && (state != LOGOUT)) {
idletime = time (0); /* get a command under timeout */
alarm ((state == TRANSACTION) ? TIMEOUT : LOGINTIMEOUT);
clearerr (stdin); /* clear stdin errors */
while (!PSIN (tmp,TMPLEN)){ /* read command line */

/* ignore if some interrupt */
if (ferror (stdin) && (errno == EINTR)) clearerr (stdin);
else {

char *e = ferror (stdin) ?
strerror (errno) : "Command stream end of file";

alarm (0); /* disable all interrupts */
syslog (LOG_INFO,"%s while reading line user=%.80s host=%.80s",

e,user ? user : "???",tcp_clienthost ());
rset (); /* try to gracefully close the stream */
if (state == TRANSACTION) mail_close (stream);
stream = NIL;
state = LOGOUT;
_exit (1);

}
}
alarm (0); /* make sure timeout disabled */
idletime = 0; /* no longer idle */

if (!strchr (tmp,'\012')) /* find end of line */
PSOUT ("-ERR Command line too long\015\012");

else if (!(s = strtok (tmp," \015\012")))
PSOUT ("-ERR Null command\015\012");

else { /* dispatch based on command */
ucase (s); /* canonicalize case */

/* snarf argument */
t = strtok (NIL,"\015\012");

/* QUIT command always valid */
if (!strcmp (s,"QUIT")) state = UPDATE;
else if (!strcmp (s,"CAPA")) {

AUTHENTICATOR *auth;
PSOUT ("+OK Capability list follows:\015\012");
PSOUT ("TOP\015\012LOGIN-DELAY 180\015\012UIDL\015\012");
if (s = ssl_start_tls (NIL)) fs_give ((void *) &s);
else PSOUT ("STLS\015\012");
if (mail_parameters (NIL,GET_DISABLEPLAINTEXT,NIL)) {
PSOUT ("SASL"); /* display secure server authenticators */
for (auth = mail_lookup_auth (1); auth; auth = auth->next)
if (auth->server) {
if (auth->flags & AU_SECURE) {

PBOUT (' ');
PSOUT (auth->name);

}
}

}
else { /* display all authentication means */
PSOUT ("USER\015\012SASL");
for (auth = mail_lookup_auth (1); auth; auth = auth->next)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 40
Print Date 3/8/2005

if (auth->server) {
PBOUT (' ');
PSOUT (auth->name);

}
}
CRLF;
PSOUT (".\015\012");

}

else switch (state) { /* else dispatch based on state */
case AUTHORIZATION: /* waiting to get logged in */

if (!strcmp (s,"AUTH")) {
if (t && *t) { /* mechanism given? */
if (host) fs_give ((void **) &host);
if (user) fs_give ((void **) &user);
if (pass) fs_give ((void **) &pass);
s = strtok (t," "); /* get mechanism name */

/* get initial response */
initial = strtok (NIL,"\015\012");
if (!(user = cpystr (mail_auth (s,responder,argc,argv)))) {
PSOUT ("-ERR Bad authentication\015\012");
syslog (LOG_INFO,"AUTHENTICATE %s failure host=%.80s",s,

tcp_clienthost ());
}
else if ((state = mbxopen ("INBOX")) == TRANSACTION)
syslog (LOG_INFO,"Auth user=%.80s host=%.80s nmsgs=%ld/%ld",

user,tcp_clienthost (),nmsgs,stream->nmsgs);
else syslog (LOG_INFO,"Auth user=%.80s host=%.80s no mailbox",

user,tcp_clienthost ());
}
else {
AUTHENTICATOR *auth;
PSOUT ("+OK Supported authentication mechanisms:\015\012");
if (mail_parameters (NIL,GET_DISABLEPLAINTEXT,NIL)) {
for (auth = mail_lookup_auth (1); auth; auth = auth->next)

if (auth->server) {
if (auth->flags & AU_SECURE) {
PSOUT (auth->name);
CRLF;

}
}

}
/* display all authentication means */

else for (auth = mail_lookup_auth (1); auth; auth = auth->next)
if (auth->server) {

PSOUT (auth->name);
CRLF;

}
PBOUT ('.');
CRLF;

}
}

else if (!strcmp (s,"APOP")) {
if (challenge[0]) { /* can do it if have an MD5 challenge */
if (host) fs_give ((void **) &host);
if (user) fs_give ((void **) &user);
if (pass) fs_give ((void **) &pass);

/* get user name */
if (!(t && *t && (s = strtok (t," ")) && (t = strtok(NIL,"\012"))))
PSOUT ("-ERR Missing APOP argument\015\012");

else if (!(user = apop_login (challenge,s,t,argc,argv)))
PSOUT ("-ERR Bad APOP\015\012");

else if ((state = mbxopen ("INBOX")) == TRANSACTION)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 41
Print Date 3/8/2005

syslog (LOG_INFO,"APOP user=%.80s host=%.80s nmsgs=%ld/%ld",
user,tcp_clienthost (),nmsgs,stream->nmsgs);

else syslog (LOG_INFO,"APOP user=%.80s host=%.80s no mailbox",
user,tcp_clienthost ());

}
else PSOUT ("-ERR Not supported\015\012");

}
/* (chuckle) */

else if (!strcmp (s,"RPOP"))
PSOUT ("-ERR Nice try, bunkie\015\012");

else if (!strcmp (s,"STLS")) {
if (t = ssl_start_tls (pgmname)) {
PSOUT ("-ERR STLS failed: ");
PSOUT (t);
CRLF;

}
else PSOUT ("+OK STLS completed\015\012");

}
else if (!mail_parameters (NIL,GET_DISABLEPLAINTEXT,NIL) &&

!strcmp (s,"USER")) {
if (host) fs_give ((void **) &host);
if (user) fs_give ((void **) &user);
if (pass) fs_give ((void **) &pass);
if (t && *t) { /* if user name given */

/* skip leading whitespace (bogus clients!) */
while (*t == ' ') ++t;

/* remote user name? */
if (s = strchr (t,':')) {
*s++ = '\0'; /* tie off host name */
host = cpystr (t);/* copy host name */
user = cpystr (s);/* copy user name */

}
/* local user name */

else user = cpystr (t);
PSOUT ("+OK User name accepted, password please\015\012");

}
else PSOUT ("-ERR Missing username argument\015\012");

}
else if (!mail_parameters (NIL,GET_DISABLEPLAINTEXT,NIL) &&

user && *user && !strcmp (s,"PASS"))
state = pass_login (t,argc,argv);

else PSOUT ("-ERR Unknown AUTHORIZATION state command\015\012");
break;

case TRANSACTION: /* logged in */
if (!strcmp (s,"STAT")) {
for (i = 1,j = 0,k = 0; i <= nmsgs; i++)
if (msg[i] > 0) { /* message still exists? */
j++; /* count one more undeleted message */
k += mail_elt (stream,msg[i])->rfc822_size + SLEN;

}
sprintf (tmp,"+OK %lu %lu\015\012",j,k);
PSOUT (tmp);

}
else if (!strcmp (s,"LIST")) {
if (t && *t) { /* argument do single message */
if ((i = strtoul (t,NIL,10)) && (i <= nmsgs) && (msg[i] > 0)) {
sprintf (tmp,"+OK %lu %lu\015\012",i,

mail_elt(stream,msg[i])->rfc822_size + SLEN);
PSOUT (tmp);

}
else PSOUT ("-ERR No such message\015\012");

}
else { /* entire mailbox */



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 42
Print Date 3/8/2005

PSOUT ("+OK Mailbox scan listing follows\015\012");
for (i = 1,j = 0,k = 0; i <= nmsgs; i++) if (msg[i] > 0) {
 sprintf (tmp,"%lu %lu\015\012",i,

mail_elt (stream,msg[i])->rfc822_size + SLEN);
PSOUT (tmp);

}
PBOUT ('.'); /* end of list */
CRLF;

}
}
else if (!strcmp (s,"UIDL")) {
if (t && *t) { /* argument do single message */
if ((i = strtoul (t,NIL,10)) && (i <= nmsgs) && (msg[i] > 0)) {
sprintf (tmp,"+OK %lu %08lx%08lx\015\012",i,stream->uid_validity,

mail_uid (stream,msg[i]));
PSOUT (tmp);

}
else PSOUT ("-ERR No such message\015\012");

}
else { /* entire mailbox */
PSOUT ("+OK Unique-ID listing follows\015\012");
for (i = 1,j = 0,k = 0; i <= nmsgs; i++) if (msg[i] > 0) {
sprintf (tmp,"%lu %08lx%08lx\015\012",i,stream->uid_validity,

mail_uid (stream,msg[i]));
PSOUT (tmp);

}
PBOUT ('.'); /* end of list */
CRLF;

}
}

else if (!strcmp (s,"RETR")) {
if (t && *t) { /* must have an argument */
if ((i = strtoul (t,NIL,10)) && (i <= nmsgs) && (msg[i] > 0)) {
MESSAGECACHE *elt;

/* update highest message accessed */
if (i > last) last = i;
sprintf (tmp,"+OK %lu octets\015\012",

(elt = mail_elt (stream,msg[i]))->rfc822_size + SLEN);
PSOUT (tmp);

/* output header */
t = mail_fetch_header (stream,msg[i],NIL,NIL,&k,FT_PEEK);
blat (t,-1,k);

/* output status */
sprintf (tmp,STATUS,elt->seen ? "R" : " ",

elt->recent ? " " : "O");
PSOUT (tmp);
CRLF; /* delimit header and text */

/* output text */
t = mail_fetch_text (stream,msg[i],NIL,&k,NIL);
blat (t,-1,k);
CRLF; /* end of list */
PBOUT ('.');
CRLF;

}
else PSOUT ("-ERR No such message\015\012");

}
else PSOUT ("-ERR Missing message number argument\015\012");

}
else if (!strcmp (s,"DELE")) {
if (t && *t) { /* must have an argument */
if ((i = strtoul (t,NIL,10)) && (i <= nmsgs) && (msg[i] > 0)) {

/* update highest message accessed */
if (i > last) last = i;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 43
Print Date 3/8/2005

/* delete message */
sprintf (tmp,"%ld",msg[i]);
mail_setflag (stream,tmp,"\\Deleted");
msg[i] = -msg[i]; /* note that we deleted this message */
PSOUT ("+OK Message deleted\015\012");
ndele++; /* one more message deleted */

}
else PSOUT ("-ERR No such message\015\012");

}
else PSOUT ("-ERR Missing message number argument\015\012");

}

else if (!strcmp (s,"NOOP"))
PSOUT ("+OK No-op to you too!\015\012");

else if (!strcmp (s,"LAST")) {
sprintf (tmp,"+OK %lu\015\012",last);
PSOUT (tmp);

}
else if (!strcmp (s,"RSET")) {
rset (); /* reset the mailbox */
PSOUT ("+OK Reset state\015\012");

}
else if (!strcmp (s,"TOP")) {
if (t && *t && (i =strtoul (t,&s,10)) && (i <= nmsgs) &&

(msg[i] > 0)) {
/* skip whitespace */

while (isspace (*s)) s++;
if (isdigit (*s)) { /* make sure line count argument good */
MESSAGECACHE *elt = mail_elt (stream,msg[i]);
j = strtoul (s,NIL,10);

/* update highest message accessed */
if (i > last) last = i;
PSOUT ("+OK Top of message follows\015\012");

/* output header */
t = mail_fetch_header (stream,msg[i],NIL,NIL,&k,FT_PEEK);
blat (t,-1,k);

/* output status */
sprintf (tmp,STATUS,elt->seen ? "R" : " ",

elt->recent ? " " : "O");
PSOUT (tmp);
CRLF; /* delimit header and text */
if (j) { /* want any text lines? */

/* output text */
t = mail_fetch_text (stream,msg[i],NIL,&k,FT_PEEK);

/* tie off final line if full text output */
if (j -= blat (t,j,k)) CRLF;

}
PBOUT ('.'); /* end of list */
CRLF;

}
else PSOUT ("-ERR Bad line count argument\015\012");

}
else PSOUT ("-ERR Bad message number argument\015\012");

}
else if (!strcmp (s,"XTND"))
PSOUT ("-ERR Sorry I can't do that\015\012");

else PSOUT ("-ERR Unknown TRANSACTION state command\015\012");
break;

default:
PSOUT ("-ERR Server in unknown state\015\012");
break;

}
}
PFLUSH (); /* make sure output finished */



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 44
Print Date 3/8/2005

if (autologouttime) { /* have an autologout in effect? */
/* cancel if no longer waiting for login */

if (state != AUTHORIZATION) autologouttime = 0;
/* took too long to login */

else if (autologouttime < time (0)) {
PSOUT ("-ERR Autologout\015\012");
syslog (LOG_INFO,"Autologout host=%.80s",tcp_clienthost ());
PFLUSH (); /* make sure output blatted */
state = LOGOUT; /* sayonara */

}
}

}
if (stream && (state == UPDATE)) {
mail_expunge (stream);
syslog (LOG_INFO,"Logout user=%.80s host=%.80s nmsgs=%ld ndele=%ld",

user,tcp_clienthost (),stream->nmsgs,ndele);
mail_close (stream);

}
else syslog (LOG_INFO,"Logout user=%.80s host=%.80s",user ? user : "???",

tcp_clienthost ());
PSOUT (sayonara); /* "now it's time to say sayonara..." */
PFLUSH (); /* make sure output finished */
exit (0); /* all done */
return 0; /* stupid compilers */

}

/* Clock interrupt
*/

void clkint ()
{
PSOUT ("-ERR Autologout; idle for too long\015\012");
syslog (LOG_INFO,"Autologout user=%.80s host=%.80s",user ? user : "???",

tcp_clienthost ());
PFLUSH (); /* make sure output blatted */
if (critical) state = LOGOUT; /* badly hosed if in critical code */
else { /* try to gracefully close the stream */
if ((state == TRANSACTION) && !stream->lock) {
rset ();
mail_close (stream);

}
state = LOGOUT;
stream = NIL;
_exit (1); /* die die die */

}
}

/* Kiss Of Death interrupt
*/

void kodint ()
{

/* only if idle */
if (idletime && ((time (0) - idletime) > KODTIMEOUT)) {
alarm (0); /* disable all interrupts */
server_init (NIL,NIL,NIL,SIG_IGN,SIG_IGN,SIG_IGN,SIG_IGN);
PSOUT ("-ERR Received Kiss of Death\015\012");
syslog (LOG_INFO,"Killed (lost mailbox lock) user=%.80s host=%.80s",

user ? user : "???",tcp_clienthost ());
if (critical) state =LOGOUT;/* must defer if in critical code */
else { /* try to gracefully close the stream */
if ((state == TRANSACTION) && !stream->lock) {

rset ();



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 45
Print Date 3/8/2005

mail_close (stream);
}
state = LOGOUT;
stream = NIL;
_exit (1); /* die die die */

}
}

}

/* Hangup interrupt
*/

void hupint ()
{
alarm (0); /* disable all interrupts */
server_init (NIL,NIL,NIL,SIG_IGN,SIG_IGN,SIG_IGN,SIG_IGN);
syslog (LOG_INFO,"Hangup user=%.80s host=%.80s",user ? user : "???",

tcp_clienthost ());
if (critical) state = LOGOUT; /* must defer if in critical code */
else { /* try to gracefully close the stream */
if ((state == TRANSACTION) && !stream->lock) {
rset ();
mail_close (stream);

}
state = LOGOUT;
stream = NIL;
_exit (1); /* die die die */

}
}

/* Termination interrupt
*/

void trmint ()
{
alarm (0); /* disable all interrupts */
server_init (NIL,NIL,NIL,SIG_IGN,SIG_IGN,SIG_IGN,SIG_IGN);
PSOUT ("-ERR Killed\015\012");
syslog (LOG_INFO,"Killed user=%.80s host=%.80s",user ? user : "???",

tcp_clienthost ());
if (critical) state = LOGOUT; /* must defer if in critical code */
 else { /* try to gracefully close the stream */

if ((state == TRANSACTION) && !stream->lock) {
rset ();
mail_close (stream);

}
state = LOGOUT;
stream = NIL;
_exit (1); /* die die die */

}
}

/* Parse PASS command
* Accepts: pointer to command argument
* Returns: new state
*/

int pass_login (char *t,int argc,char *argv[])
{
char tmp[TMPLEN];

/* flush old passowrd */
if (pass) fs_give ((void **) &pass);



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 46
Print Date 3/8/2005

if (!(t && *t)) { /* if no password given */
PSOUT ("-ERR Missing password argument\015\012");
return AUTHORIZATION;

}
pass = cpystr (t); /* copy password argument */
if (!host) { /* want remote mailbox? */

/* no, delimit user from possible admin */
if (t = strchr (user,'*')) *t++ ='\0';

/* attempt the login */
if (server_login (user,pass,t,argc,argv)) {
int ret = mbxopen ("INBOX");
if (ret == TRANSACTION) /* mailbox opened OK? */

syslog (LOG_INFO,"%sLogin user=%.80s host=%.80s nmsgs=%ld/%ld",
t ? "Admin " : "",user,tcp_clienthost (),nmsgs,stream->nmsgs);

else syslog (LOG_INFO,"%sLogin user=%.80s host=%.80s no mailbox",
t ? "Admin " : "",user,tcp_clienthost ());

return ret;
}

}
#ifndef DISABLE_POP_PROXY

/* remote; build remote INBOX */
else if (anonymous_login (argc,argv)) {
syslog (LOG_INFO,"IMAP login to host=%.80s user=%.80s host=%.80s",host,

user,tcp_clienthost ());
sprintf (tmp,"{%.128s/user=%.128s}INBOX",host,user);

/* disable rimap just in case */
mail_parameters (NIL,SET_RSHTIMEOUT,0);
return mbxopen (tmp);

}
#endif

/* vague error message to confuse crackers */
PSOUT ("-ERR Bad login\015\012");
return AUTHORIZATION;

}

/* Authentication responder
* Accepts: challenge
* length of challenge
* pointer to response length return location if non-NIL
* Returns: response
*/

#define RESPBUFLEN 8*MAILTMPLEN

char *responder (void *challenge,unsigned long clen,unsigned long *rlen)
{
unsigned long i,j;
unsigned char *t,resp[RESPBUFLEN];
if (initial) { /* initial response given? */
if (clen) return NIL; /* not permitted */

/* set up response */
t = (unsigned char *) initial;
initial = NIL; /* no more initial response */
return (char *) rfc822_base64 (t,strlen ((char *) t),rlen ? rlen : &i);

}
PSOUT ("+ ");
for (t = rfc822_binary (challenge,clen,&i),j = 0; j < i; j++)
if (t[j] > ' ') PBOUT (t[j]);

fs_give ((void **) &t);
CRLF;
PFLUSH (); /* dump output buffer */
resp[RESPBUFLEN-1] = '\0'; /* last buffer character is guaranteed NUL */
alarm (LOGINTIMEOUT); /* get a response under timeout */
clearerr (stdin); /* clear stdin errors */



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 47
Print Date 3/8/2005

/* read buffer */
while (!PSIN ((char *) resp,RESPBUFLEN)) {

/* ignore if some interrupt */
if (ferror (stdin) && (errno == EINTR)) clearerr (stdin);
else {
char *e = ferror (stdin) ?

strerror (errno) : "Command stream end of file";
alarm (0); /* disable all interrupts */
server_init (NIL,NIL,NIL,SIG_IGN,SIG_IGN,SIG_IGN,SIG_IGN);

 syslog (LOG_INFO,"%s, while reading authentication host=%.80s",
e,tcp_clienthost ());

state = UPDATE;
_exit (1);

}
}
if (!(t = (unsigned char *) strchr ((char *) resp,'\012'))) {
int c;
while ((c = PBIN ()) != '\012') if (c == EOF) {

/* ignore if some interrupt */
if (ferror (stdin) && (errno == EINTR)) clearerr (stdin);
else {

char *e = ferror (stdin) ?
strerror (errno) : "Command stream end of file";

alarm (0); /* disable all interrupts */
server_init (NIL,NIL,NIL,SIG_IGN,SIG_IGN,SIG_IGN,SIG_IGN);
syslog (LOG_INFO,"%s, while reading auth char user=%.80s host=%.80s",

e,user ? user : "???",tcp_clienthost ());
state = UPDATE;
_exit (1);

}
}
return NIL;

}
alarm (0); /* make sure timeout disabled */
if (t[-1] == '\015') --t; /* remove CR */
*t = '\0'; /* tie off buffer */
return (resp[0] != '*') ?
(char *) rfc822_base64 (resp,t-resp,rlen ? rlen : &i) : NIL;

}

/* Select mailbox
* Accepts: mailbox name
* Returns: new state
*/

int mbxopen (char *mailbox)
{
unsigned long i,j;
 char tmp[TMPLEN];
MESSAGECACHE *elt;
nmsgs = 0; /* no messages yet */
if (msg) fs_give ((void **) &msg);

/* open mailbox */
if (stream = mail_open (stream,mailbox,NIL)) {
if (!stream->rdonly) { /* make sure not readonly */
if (j = stream->nmsgs) { /* if mailbox non-empty */

sprintf (tmp,"1:%lu",j);/* fetch fast information for all messages */
mail_fetch_fast (stream,tmp,NIL);
msg = (long *) fs_get ((stream->nmsgs + 1) * sizeof (long));
for (i = 1; i <= j; i++) if (!(elt = mail_elt (stream,i))->deleted) {
msg[++nmsgs] = i; /* note the presence of this message */
if (elt->seen) il = last = nmsgs;

}
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 48
Print Date 3/8/2005

sprintf (tmp,"+OK Mailbox open, %lu messages\015\012",nmsgs);
PSOUT (tmp);
return TRANSACTION;

}
 else sayonara = "-ERR Can't get lock.  Mailbox in use\015\012";
}
else sayonara = "-ERR Unable to open user's INBOX\015\012";
syslog (LOG_INFO,"Error opening or locking INBOX user=%.80s host=%.80s",

user,tcp_clienthost ());
return UPDATE;

}

/* Blat a string with dot checking
* Accepts: string
* maximum number of lines if greater than zero
* maximum number of bytes to output
* Returns: number of lines output
*
* This routine is uglier and kludgier than it should be, just to be robust
* in the case of a message which doesn't end in a newline.  Yes, this routine
* does truncate the last two bytes from the text.  Since it is normally a
* newline and the main routine adds it back, it usually does not make a
* difference.  But if it isn't, since the newline is required and the octet
* counts have to match, there's no choice but to truncate.
*/

long blat (char *text,long lines,unsigned long size)
{
char c,d,e;
long ret = 0;

/* no-op if zero lines or empty string */
if (!(lines && (size-- > 2))) return 0;
c = *text++; d = *text++; /* collect first two bytes */
if (c == '.') PBOUT ('.'); /* double string-leading dot if necessary */
while (lines && --size) { /* copy loop */
e = *text++; /* get next byte */
PBOUT (c); /* output character */
if (c == '\012') { /* end of line? */
ret++; --lines; /* count another line */

/* double leading dot as necessary */
if (lines && size && (d == '.')) PBOUT ('.');

}
c = d; d = e; /* move to next character */

}
return ret;

}

/* Reset mailbox
*/

void rset ()
{
unsigned long i;
char tmp[20];
if (nmsgs) { /* undelete and unmark all of our messages */
for (i = 1; i <= nmsgs; i++) { /*  */
if (msg[i] < 0) { /* ugly and inefficient, but trustworthy */

sprintf (tmp,"%ld",msg[i] = -msg[i]);
mail_clearflag (stream,tmp,i <= il ? "\\Deleted" : "\\Deleted \\Seen");

}
else if (i > il) {

sprintf (tmp,"%ld",msg[i]);
mail_clearflag (stream,tmp,"\\Seen");



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 49
Print Date 3/8/2005

}
}

 last = il;
}
ndele = 0; /* no more deleted messages */

}

/* Co-routines from MAIL library */

/* Message matches a search
* Accepts: MAIL stream
* message number
*/

void mm_searched (MAILSTREAM *stream,unsigned long msgno)
{
/* Never called */

}

/* Message exists (i.e. there are that many messages in the mailbox)
* Accepts: MAIL stream
* message number
*/

void mm_exists (MAILSTREAM *stream,unsigned long number)
{
/* Can't use this mechanism.  POP has no means of notifying the client of

new mail during the session. */
}

/* Message expunged
* Accepts: MAIL stream
* message number
*/

void mm_expunged (MAILSTREAM *stream,unsigned long number)
{
unsigned long i = number + 1;
msg[number] = 0; /* I bet that this will annoy someone */
while (i <= nmsgs) --msg[i++];

}

/* Message flag status change
* Accepts: MAIL stream
* message number
*/

void mm_flags (MAILSTREAM *stream,unsigned long number)
{
/* This isn't used */

}

/* Mailbox found
* Accepts: MAIL stream
* hierarchy delimiter
* mailbox name
* mailbox attributes
*/



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 50
Print Date 3/8/2005

void mm_list (MAILSTREAM *stream,int delimiter,char *name,long attributes)
{
/* This isn't used */

}

/* Subscribe mailbox found
* Accepts: MAIL stream
* hierarchy delimiter
* mailbox name
* mailbox attributes
*/

void mm_lsub (MAILSTREAM *stream,int delimiter,char *name,long attributes)
{
/* This isn't used */

}

/* Mailbox status
* Accepts: MAIL stream
* mailbox name
* mailbox status
*/

void mm_status (MAILSTREAM *stream,char *mailbox,MAILSTATUS *status)
{
/* This isn't used */

}

/* Notification event
* Accepts: MAIL stream
* string to log
* error flag
*/

void mm_notify (MAILSTREAM *stream,char *string,long errflg)
{
mm_log (string,errflg); /* just do mm_log action */

}

/* Log an event for the user to see
* Accepts: string to log
* error flag
*/

void mm_log (char *string,long errflg)
{
switch (errflg) {
case NIL: /* information message */
case PARSE: /* parse glitch */
break; /* too many of these to log */

case WARN: /* warning */
syslog (LOG_DEBUG,"%s",string);
break;

case ERROR: /* error that broke command */
default: /* default should never happen */
syslog (LOG_NOTICE,"%s",string);
break;

}
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 51
Print Date 3/8/2005

/* Log an event to debugging telemetry
* Accepts: string to log
*/

void mm_dlog (char *string)
{
/* Not doing anything here for now */

}

/* Get user name and password for this host
* Accepts: parse of network mailbox name
* where to return user name
* where to return password
* trial count
*/

void mm_login (NETMBX *mb,char *username,char *password,long trial)
{

/* set user name */
strncpy (username,*mb->user ? mb->user : user,NETMAXUSER-1);
strncpy (password,pass,255); /* and password */
username[NETMAXUSER] = password[255] = '\0';

}

/* About to enter critical code
* Accepts: stream
*/

void mm_critical (MAILSTREAM *stream)
{
++critical;

}

/* About to exit critical code
* Accepts: stream
*/

void mm_nocritical (MAILSTREAM *stream)
{
--critical;

}

/* Disk error found
* Accepts: stream
* system error code
* flag indicating that mailbox may be clobbered
* Returns: abort flag
*/

long mm_diskerror (MAILSTREAM *stream,long errcode,long serious)
{
if (serious) { /* try your damnest if clobberage likely */
syslog (LOG_ALERT,

"Retrying after disk error user=%.80s host=%.80s mbx=%.80s: %.80s",
user,tcp_clienthost (),
(stream && stream->mailbox) ? stream->mailbox : "???",
strerror (errcode));

alarm (0); /* make damn sure timeout disabled */
sleep (60); /* give it some time to clear up */
return NIL;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 52
Print Date 3/8/2005

syslog (LOG_ALERT,"Fatal disk error user=%.80s host=%.80s mbx=%.80s: %.80s",
user,tcp_clienthost (),
(stream && stream->mailbox) ? stream->mailbox : "???",
strerror (errcode));

return T;
}

/* Log a fatal error event
* Accepts: string to log
*/

void mm_fatal (char *string)
{
mm_log (string,ERROR); /* shouldn't happen normally */

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 53
Print Date 3/8/2005

Appendix E (SQL – Table Creation)

CREATE TABLE `sans`.`alert` (
adate varchar(5),
atime varchar(8),
attack varchar(100),
misc varchar(100),
srcip varchar(20),
srcport varchar(5),
dstip varchar(20),
dstport varchar(5),

 INDEX `idxsrcip`(`srcip`)
)
TYPE = MYISAM;

CREATE TABLE `sans`.`scans` (
adate varchar(5),
atime varchar(8),
scans varchar(100),
srcip varchar(20),
srcport varchar(5),
dstip varchar(20),
dstport varchar(5),

 INDEX `idxsrcip`(`srcip`)
)
TYPE = MYISAM;

create table `sans`.`oos` (
adate varchar(5),
atime varchar(8),
srcip varchar(20),
srcport varchar(5),
dstip varchar(20),
dstport varchar(5),
protocol varchar(5),
ttl smallint,
tos varchar(5),
id varchar(5),
iplen smallint,
dglen smallint,
flags varchar(8),
sequence varchar(10),
ack varchar(5),
win varchar(1),
tcplen smallint,
mss varchar(4),
ts varchar(10),
ws smallint,
sackok varchar(1),
extradata varchar(1),

 INDEX `idxsrcip`(`srcip`)
)
TYPE = MYISAM;

CREATE TABLE `sans`.`event` (



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 54
Print Date 3/8/2005

srcip varchar(20),
srcport varchar(5),
adate varchar(5),
atime varchar(8),
event varchar(100),
dstip varchar(20),
dstport varchar(5),
source varchar(6),

 INDEX `idxsrcip`(`srcip`,`adate`,`atime`)
)
TYPE = MYISAM;

CREATE TABLE `sans`.`stumble` (
srcip varchar(20),
source varchar(6),

 INDEX `idxsrcip`(`srcip`)
)
TYPE = MYISAM;



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 55
Print Date 3/8/2005

Appendix F (PERL Scripts for parsing)

PERL Script to parse the alert file:

# Declare the subroutine
sub trimspaces($);

if (open (ATTACK, "alert")) {
}
else {

die ("Cannot open input file!");
}

while ($line = <ATTACK>)  
{ $dateend = index($line,'[**]');

if ($dateend > -1)
{ $msgstart = $dateend + 4;

$msgend = index($line,'[**]',$msgstart);
if ($msgend > -1)
{ $datetime = substr($line,0,$dateend - 1);

@datetimeparts = split('-',$datetime);
$date = @datetimeparts[0];

@timeparts = split('\.',@datetimeparts[1]);
$time = @timeparts[0];

$msg = substr($line,$msgstart,$msgend - $msgstart);
$msg = trimspaces($msg);

$detailstart = $msgend + 4;
$detail = substr($line,$detailstart,length($line)-$detailstart);
$detail = trimspaces($detail);

$srcip = '';
$srcport ='';

$dstip = '';
$dstport = '';

$attack = '';

@msgparts = split(':',$msg);

if(@msgparts[0] =~ /spp_portscan/)
{ if(@msgparts[1] =~ /portscan status/)

{ $misc = trimspaces(@msgparts[2]);

@attackparts = split(' ',@msgparts[1]);
$attack = @attackparts[0] . " " . @attackparts[1];

@srcipparts = split(':',@attackparts[3]);
$srcip = @srcipparts[0]; 

}

if(@msgparts[1] =~ /End of portscan/)
{ $misc = trimspaces(@msgparts[2]);

@attackparts = split(' ',@msgparts[1]);
$attack = @attackparts[0] . " " . @attackparts[1] . " " . 

@attackparts[2];

@srcipparts = split(':',@attackparts[4]);
$srcip = @srcipparts[0]; 

}

if(@msgparts[1] =~ /PORTSCAN DETECTED/)
{ $miscstart = index(@msgparts[1],'(') + 1;

$miscend = index(@msgparts[1],')');

$misc = trimspaces(substr(@msgparts[1],$miscstart,$miscend-
$miscstart));

@attackparts = split(' ',@msgparts[1]);
$attack = @attackparts[0] . " " . @attackparts[1];

@srcipparts = split(':',@attackparts[3]);
$srcip = @srcipparts[0]; 

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 56
Print Date 3/8/2005

}

if(@msgparts[0] =~ /External FTP/)
{ @attackparts = split(' ',$msg);

$misc = '';
$attack = @attackparts[0] . ' ' . @attackparts[1] . ' ' . @attackparts[2] . 

' ' . @attackparts[3];

@detailparts = split(' ',$detail);

@srcipparts = split(':',@detailparts[0]);
$srcip = @srcipparts[0]; 
$srcport =  @srcipparts[1]; 

@dstipparts = split(':',@detailparts[2]);
$dstip = @dstipparts[0]; 
$dstport =  @dstipparts[1]; 

}

if(@msgparts[0] =~ /activity/)
{ @attackparts = split(' ',$msg);

$misc = @attackparts[0];
$attack = @attackparts[1];

@detailparts = split(' ',$detail);

@srcipparts = split(':',@detailparts[0]);
$srcip = @srcipparts[0]; 
$srcport =  @srcipparts[1]; 

@dstipparts = split(':',@detailparts[2]);
$dstip = @dstipparts[0]; 
$dstport =  @dstipparts[1]; 

}

if(length($attack) < 1)
{ $misc = '';

$attack = $msg;

@detailparts = split(' ',$detail);

@srcipparts = split(':',@detailparts[0]);
$srcip = @srcipparts[0]; 
$srcport =  @srcipparts[1]; 

@dstipparts = split(':',@detailparts[2]);

$dstip = @dstipparts[0]; 
$dstport =  @dstipparts[1]; 

}

print "$date" . '%';
print "$time" . '%';
print "$attack" . '%';
print "$misc" . '%';
print "$srcip" . '%';
print "$srcport" . '%';
print "$dstip" . '%';
print "$dstport";
print "\n";

}
}

}

#Remove whitespaces from the start and end of the string
sub trimspaces($)
{ my $string = shift;

$string =~ s/^\s+//;
$string =~ s/\s+$//;
return $string;

}

PERL Script to parse the scans file:

if (open (ATTACK, "scans")) {
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 57
Print Date 3/8/2005

else {
die ("Cannot open input file!");

}

#open (OUTFILE, "> fin.scan");

while ($line = <ATTACK>)  {
#$line = <ATTACK>;

@words1 = split (' ',$line);
$month = @words1[0];
$day = @words1[1];
$time = @words1[2];

if($month =~ /Apr/) { $date="04/$day"};

@src = split(':',@words1[3]);
$src_ip = @src[0];
$src_port = @src[1];

@dst = split(':',@words1[5]);
$dst_ip = @dst[0];
$dst_port = @dst[1];

$msg = @words1[6];
for($i=7;(length(@words1[$i]) and !(@words1[$i] =~ /Apr/)) > 0;$i++) 
{ $msg = $msg . " " . @words1[$i];
}

print "$date" . '%';
print "$time" . '%';
print "$msg" . '%';
print "$src_ip" . '%';
print "$src_port" . '%';
print "$dst_ip" . '%';
print "$dst_port";
print "\n";

}

PERL Script to parse the oos file:

open (OOS, "oos");

$firsttime = 1;
while ($line = <OOS>)
{

if(($line =~ /\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+\=\+/) or ($firsttime == 1))
{

if($firsttime == 0) 
{

print "$date" . '%';
print "$time" . '%';
print "$srcip" . '%';
print "$srcport" . '%';
print "$dstip" . '%';
print "$dstport" . '%';

print "$protocol" . '%';
print "$ttl" . '%';
print "$tos" . '%';
print "$id" . '%';
print "$iplen" . '%';
print "$dglen" . '%';

print "$flags" . '%';
print "$sequence" . '%';
print "$ack" . '%';
print "$win" . '%';
print "$tcplen" . '%';

print "$mss" . '%';
print "$ts" . '%';
print "$ws" . '%';
print "$sackok" . '%';

if($extralines > 2)
{

$extradata = 1;
}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 58
Print Date 3/8/2005

else
{

$extradata = 0; 
}

print "$extradata";
print "\n";

$skipline = <OOS>;
}
$extralines = 0;

# ******************************** Line 1 ********************************
if($firsttime == 1)
{

$line1 = $line;
}
else
{

$line1 = <OOS>;
}

@line1parts = split(' ',$line1);
$datetime = @line1parts[0];
@datetimeparts = split('-',$datetime);
$date = @datetimeparts[0];

@timeparts = split('\.',@datetimeparts[1]);
$time = @timeparts[0];

@srcipparts = split(':',@line1parts[1]);
$srcip = @srcipparts[0]; 
$srcport =  @srcipparts[1]; 

@dstipparts = split(':',@line1parts[3]);
$dstip = @dstipparts[0]; 
$dstport =  @dstipparts[1]; 

# ******************************** Line 2 ********************************
$line2 = <OOS>;

@line2parts = split(' ',$line2);
$protocol = @line2parts[0];

@ttlparts = split(':',@line2parts[1]);
$ttl = @ttlparts[1];

@tosparts = split(':',@line2parts[2]);
$tos = @tosparts[1];

@idparts = split(':',@line2parts[3]);
$id = @idparts[1];

@iplenparts = split(':',@line2parts[4]);
$iplen = @iplenparts[1];

@dglenparts = split(':',@line2parts[5]);
$dglen = @dglenparts[1];

$fragflag = @line2parts[6];

# ******************************** Line 3 ********************************
$line3 = <OOS>;

@line3parts = split(' ',$line3);

$flags = @line3parts[0];
$sequence = @line3parts[2];
$ack = @line3parts[4];
$win = @line3parts[6];
$tcplen = @line3parts[8];

$line4 = <OOS>;
$optionstart = index($line4,'=>') + 2;
$options = trimspaces(substr($line4,$optionstart,length($line4) - $optionstart));

$mss = '';
$mssstart = index($options,'MSS:');
if($mssstart > -1)
{



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 59
Print Date 3/8/2005

$mssstart = $mssstart + 4;
@mssparts = split(' ',substr($options,$mssstart,length($options) - $mssstart));
$mss = @mssparts[0];

}

$ts = '';
$tsstart = index($options,'TS:');
if($tsstart > -1)
{

$tsstart = $tsstart + 4;
@tsparts = split(' ',substr($options,$tsstart,length($options) - $tsstart));
$ts = @tsparts[0];

}

$ws = '';
$wsstart = index($options,'WS:');
if($wsstart > -1)
{

$wsstart = $wsstart + 4;
@wsparts = split(' ',substr($options,$wsstart,length($options) - $wsstart));
$ws = @wsparts[0];

}

$sackok = 0;
$wsstart = index($options,'SackOk');
if($wsstart > -1)
{ $sackok = 1
}

}
$firsttime = 0;
$extralines++;

}

#Remove whitespaces from the start and end of the string
sub trimspaces($)
{ my $string = shift;

$string =~ s/^\s+//;
$string =~ s/\s+$//;
return $string;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 60
Print Date 3/8/2005

Appendix G (SQL Script to load database tables )

Script to load parsed file into the alert database table:

delete from alert;
load data local infile "/sans/ciapractical/work/alert.ld" into table 
alert fields terminated by "%";

Script to load parsed file into the scans database table:

delete from scans;
load data local infile "/sans/ciapractical/work/scans.ld" into table 
scans fields terminated by "%";

Script to load parsed file into the oos database table:

delete from oos;
load data local infile "/sans/ciapractical/work/oos.ld" into table 
oos fields terminated by "%";



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Richard Sillito
GCIA Certification

GIAC Certification Page 61
Print Date 3/8/2005

Appendix H (SQL Script to generate the events table)

insert into event select 
srcip,srcport,adate,atime,attack,dstip,dstport,'alert' from alert;
insert into event select 
srcip,srcport,adate,atime,scans,dstip,dstport,'scans' from scans;
insert into event select 
srcip,srcport,adate,atime,'oos',dstip,dstport,'oos' from oos;
insert into stumble select srcip,source from event;


