
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment Version 4.1

Tom Davis
March 16, 2005

SANS Network Security 2004 Annual Conference
Las Vegas, Nevada



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Table of Contents

1 Executive Summary 3
1.1 Establish a Virtual Private Network Service 3
1.2 Enhance Network Perimeter Defense Measures 3
1.3 Evaluate Additional Security Software 4
1.4 Closing Remarks 4

2 Detailed Analysis 5
2.1 Logs Analyzed 5
2.2 Relational Analysis 5

2.2.1 Network Topology 5
2.3 Alerts Analysis 6

2.3.1 Summary of Alerts 6
2.3.2 Three Alerts: In-Depth Analysis 7

2.4 Out-of-Spec Analysis 17
2.5 Scan Analysis 19
2.6 Network Statistics 20

2.6.1 Top Talkers 20
2.6.2 Top Five Targeted Services or Ports 22
2.6.3 Most Suspicious External Source Addresses 22
2.6.4 Most Suspicious Internal Source Addresses 24

2.7 Correlations 26
2.8 Recommendations 26

3 Analysis Process 27
3.1 Analysis Platform 27
3.2 Tools and Techniques 27

3.2.1 Description of Tools 27
3.2.2 Process Details 28
3.2.3 Problems Encountered 28

4 Appendices 30
4.1 format-gcialogs.sh Overview 30

4.1.1 Crash Course 30
4.1.2 Narrative 31

4.2 format-gcialogs.sh Source 33
4.3 snacs.sh Source 35

5 List of References 39

1



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

1 Beale et al, p. 2

Executive Summary2
As I’m certain you are aware, your University’s computer systems house a 
considerable amount of data that are protected by federal and state regulations, such 
as the Family Educational Rights and Privacy Act (FERPA), the Health Insurance 
Portability and Accountability Act (HIPAA), and California’s Senate Bill (SB) 1386 (also 
referred to as the Database Protection Act).  These same systems also host 
institutional and individual intellectual property and research data.  Any unauthorized 
disclosure of data in these categories can have a serious impact on your institution,
such as loss of federal funding, criminal sanctions, negative media coverage, reduced 
enrollment, and an inability to obtain future research grants.

During this security review of your network, I analyzed three sets of logs from April 20th, 
21st, and 22nd, 2004.  These logs were generated by a network-based Intrusion 
Detection System (IDS); an IDS allows “real-time reporting of suspicious and malicious 
system and network activity”1.  Based on my analysis of these IDS logs, I submit the 
following three strategic recommendations: establish a Virtual Private Network (VPN) 
service, enhance network perimeter defense measures, and evaluate additional 
security software. Tactical recommendations will be made throughout the latter 
sections of this document.

Establish a Virtual Private Network Service2.1
In its simplest form, a Virtual Private Network (VPN) is a service that allows 
geographically dispersed computer systems to connect to one another in a secure 
fashion.  The most common implementation consists of a VPN server that is housed
on the University network and compatible VPN clients that reside on desktop and 
laptop computer systems.  These desktop and laptop systems can be directly attached 
to the University network, or they can be attached to the Internet from remote locations 
such as hotel rooms, faculty members’ homes, and public access wireless kiosks.  
When a user of a remote client establishes a connection to the VPN server, all of the 
network communications between the two computer systems are encrypted.

The increasing mobility of faculty and staff computer systems increases the risk that 
the University’s sensitive institutional data will be exposed.  By deploying a VPN 
service and requiring its use, it will afford the data improved security while they are
being transmitted across the Internet.  A VPN service can also be used to improve the 
security of the wireless networking infrastructure if you require all wireless network
traffic be transmitted through the VPN server.  And, just as importantly, a VPN service 
will allow for a stricter network perimeter defense policy as described below.

Enhance Network Perimeter Defense Measures2.2
All local University network traffic sent to and from the Internet must pass through 
networking devices called routers; thus, routers can act as a single choke point where 
security policies can be enforced before the traffic enters or exits your network. The 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 4 -

most common security measure performed by routers is via access control lists 
(ACL’s).  These ACL’s, also known as filters, can discard network traffic based on 
criteria such as source or destination IP address, network protocol, and port.

Many applications rely on specific network protocols and ports being allowed through 
routers in order to function properly.  For example, Internet browsing normally occurs 
through the TCP protocol on port number 80.  If we were to use a router ACL to discard 
outbound port 80 traffic, users would not be able to use their Internet browsers to 
browse the web.  Other less used or more dangerous applications, however, should be 
discarded by router ACL’s.

While these filters have the potential to impact the use of legitimate applications, their
impact can be eliminated if users first establish a VPN connection to a VPN server.  
The VPN connection will “tunnel” all underlying application traffic on its own network 
port(s), thus bypassing the router filters.

The IDS logs that I reviewed clearly indicate that very few router ACL’s are in place on 
your University’s network.  This lack of filtering exposes almost all of your computer 
systems to thousands of malicious attacks per day.  Therefore, it is my 
recommendation that your use of router ACL’s be increased significantly.  Specific 
filtering recommendations are provided later in this document.

Evaluate Additional Security Software2.3
It is critical that a computer’s operating system and applications be regularly updated 
to address any security vulnerabilities that have been discovered in them.  It is also 
important to ensure that these same computers have adequate virus protection. This is 
especially true in a University environment where (in your case) thousands of student-
owned machines are connected to the network; students would much rather spend 
their money on things other than anti-virus software.

Considering the compromised systems that I observed in the IDS logs, there are a 
number of unpatched and unprotected systems on your network.  I recommend that 
site licenses be purchased for both patch management and anti-virus products.  Patch 
management software will make the task of deploying important security patches to 
computer systems on your network much easier.  And, by offering free or low-cost anti-
virus software to your faculty, staff, and students, you dramatically increase your 
chances of having adequately protected machines at your University.

Closing Remarks2.4
Recent high profile computer security incidents at George Mason University, the 
University of Texas at Austin, and the University of California at Berkeley (among 
several others) clearly illustrate the importance of computer security in institutions of 
higher education.  It is imperative that you act now to reduce the chance of your 
University being added to that list.  If not, it’s only a matter of time.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 5 -

Detailed Analysis3

Logs Analyzed3.1

The following logs were downloaded and analyzed from <http://isc.sans.org/logs/> 

Table 1: Log Files Analyzed
Alerts Scans Out-Of-Spec

alert.040420.gz scans.040420.gz oos_report_040416.gz
alert.040421.gz scans.040421.gz oos_report_040417.gz
alert.040422.gz scans.040422.gz oos_report_040418.gz

Notice the date stamp used in the Out Of Specification (OOS) file names.  I had 
originally downloaded the OOS files that had the same date stamps as the alert and 
scan logs.  Upon inspection, however, I noticed that the logs that were contained within 
the downloaded OOS files were not from the correct days.  I subsequently downloaded 
the OOS files listed above since those contained entries from the correct days.  To 
make it easier for my scripts to process these logs, I took the liberty of renaming the 
OOS files to reflect the actual logs that they contained.

To protect the identity of the institution from which the logs originated, alert and oos log 
entries were modified such that the beginning two octets of their local IP addresses are 
MY.NET.  Because MY.NET. does not conform to a valid IP address, it is not 
processed correctly by tools such as SnortSnarf.  I substituted 10.64. in place of 
MY.NET. in the alert and oos log files.  

However, the scan file entries were not sanitized with MY.NET.  Based on the practical 
submissions of others, it was clear that the 130.85.0.0/16 addresses in the scan files 
were the same ones that were obfuscated in the alert and oos files.  Therefore, I 
changed all occurrences of 130.85. IP addresses in the scan files with the same 10.64. 
IP octets I used in the alert and oos logs.

Relational Analysis3.2

Network Topology3.2.1

It is my opinion that the University has deployed its Snort sensors behind their 
perimeter router (i.e., on the non-Internet facing side).  The sensors are either obtaining 
their traffic from one, perhaps multiple, spanning feeds from their campus switches or 
are placed between the perimeter router and the campus router.  The flow of incoming 
traffic would then be Internet -> Perimeter Router -> Campus Router -> Campus 
Switches -> Building Switches -> Data Jacks.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 6 -

One interesting observation is that there were no alert or scan log entries that had both 
a source and destination IP address from within the University’s address space.  Either 
the Snort rules are all written in such a way as to not record those alerts/scans or the 
Snort sensors just aren’t seeing that traffic. It could also be that the Snort sensors are 
being fed from a network tap positioned between the perimeter router and the campus 
router as mentioned above.

Alerts Analysis3.3

Summary of Alerts3.3.1

There were 551,968 entries in the three alert files analyzed covering 51 distinct alert 
classifications.  464,618 (or 84.2%) of those were portscan entries, with the remaining 
87,350 (15.8%) being more traditional alerts (see Table 2 below).  The data reflected in 
the portscan alerts will be analyzed in the “Scan Analysis” section on page 19; 
therefore, they will not be discussed further in this section.

Table 2: Alerts Summary
Alert # of Alerts
10.64.30.4 activity 30866
High port 65535 tcp - possible Red Worm – traffic 19276
EXPLOIT x86 NOOP 11184
10.64.30.3 activity 9275
SMB Name Wildcard 5985
Tiny Fragments - Possible Hostile Activity 4392
RFB - Possible WinVNC - 010708-1 2360
Null scan! 1730
NMAP TCP ping! 627
Possible trojan server activity 374
SUNRPC highport access! 243
DDOS shaft client to handler 145
High port 65535 udp - possible Red Worm - traffic 106
[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. 98
TCP SMTP Source Port traffic 97
TCP SRC and DST outside network 77
Incomplete Packet Fragments Discarded 67
FTP passwd attempt 60
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC 57
ICMP SRC and DST outside network 43
SMB C access 40
TFTP - Internal UDP connection to external tftp server 31
External RPC call 23
EXPLOIT x86 setgid 0 18



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 7 -
2 Fearnow and Stearnes.

[UMBC NIDS IRC Alert] Possible drone command detected. 17
TFTP - External TCP connection to internal tftp server 16
EXPLOIT x86 setuid 0 16
FTP DoS ftpd globbing 15
NIMDA - Attempt to execute cmd from campus host 15
DDOS mstream client to handler [CVE] [arachNIDS] 13
EXPLOIT NTPDX buffer overflow 9
[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC 9
[UMBC NIDS] External MiMail alert 8
[UMBC NIDS] Internal MiMail alert 8
IRC evil – running XDCC 7
TFTP - Internal TCP connection to external tftp server 6
Attempted Sun RPC high port access 6
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. 6
DDOS mstream handler to client [CVE] 4
EXPLOIT x86 stealth noop 4
connect to 515 from inside 4
SYN-FIN scan! 3
Probable NMAP fingerprint attempt 2
NETBIOS NT NULL session [BUGTRAQ] [CVE] [arachNIDS] 2
External FTP to HelpDesk 10.64.70.49 1
TFTP - External UDP connection to internal tftp server 1
Back Orifice 1
External FTP to HelpDesk 10.64.70.50 1
Traffic from port 53 to port 123 1
External FTP to HelpDesk 10.64.53.29 1

Three Alerts: In-Depth Analysis3.3.2

Alert 1: High port 65535 tcp – possible Red Worm - traffic3.3.2.1

Description:  
The Red worm, or more commonly known as the Adore worm, “scans the Internet 
checking Linux hosts to determine whether they are vulnerable to any of the following 
well-known exploits: LPRng, rpc-statd, wu-ftpd and BIND”2. Initially discovered in April 
2001, this worm mails out key system information (e.g., IP address, account 
information, etc) from the compromised host in an attempt to inform the attacker(s) that 
another machine has fallen victim to their malware.  In addition, it contacts a web 
server to download additional malware, and uses port 65535/tcp for its network 
interactions.  And, true to its worm classification, it attempts to compromise other 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 8 -

machines by exploiting the same vulnerabilities.

Reason Selected:
The alert was selected because patches for the vulnerabilities exploited by the worm 
have been available for well over three years prior to the alerts being generated.  It 
would be apparent that adequate system administration is not being performed on 
hosts that succumb to this worm.  In addition, it was chosen because this particular 
alert, if written as I presume, is prone to a high rate of false positives. The latter aspect 
is extremely important in that bogus alerts cloud the intrusion analyst’s perspective of 
the network as they have a tendency to draw the analyst’s attention away from more 
critical alerts.

Generated By:
Snort generated these alerts using “Fast Alert” mode.   Since I was not given the actual 
rule that triggered these alerts, I can only assume that it is only checking for a source 
or destination port of 65535. The alerts were of the form:
04/20-13:54:19.309575  [**] High port 65535 tcp - possible Red Worm - traffic [**] 10.64.24.34:80 -
> 66.194.21.200:65535
04/20-13:54:19.349648  [**] High port 65535 tcp - possible Red Worm - traffic [**] 
66.194.21.200:65535 -> 10.64.24.34:80

Probability Source Address Spoofed:
In order to compromise the system and attempt to exploit other systems, the worm 
must use TCP.  Therefore, the likelihood that the source addresses are spoofed in 
legitimate alerts is extremely low.

Attack Mechanisms:
As mentioned earlier, the Adore worm attempts to exploit vulnerabilities in LPRng (port 
515), rpc-statd (port 111), wu-ftpd (port 21) and BIND (port 53).  No end user interaction 
is required for this worm to be successful as it attacks unpatched and otherwise 
unprotected services that are listening on the University network.

Correlations:
This particular worm has been in the wild for almost four years; therefore, it has been 
well documented.

Evidence of Active Targeting:
Snort alerts that are written to trigger only on source or destination port, as this one has 
been, are prone to false positives.  When establishing a network connection, client 
machines select an indiscriminate source port to bind to.  If the client so happened to 
choose a source port of 65535, it would generate an alert with this particular rule.  So, 
it is necessary that the analyst perform additional verification steps to determine 
whether the machine indicated in the alert logs has in fact fallen victim to the Adore 
worm.

For example, how can we be certain the following alerts for 10.64.60.38 aren’t the 
result of it being a web server (port 80) and 211.2.199.82 randomly selecting 65535 as 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 9 -

a source port?
04/21-04:23:05.985525 [**] High port 65535 tcp - possible Red Worm - traffic [**] 
211.2.199.82:65535 -> 10.64.60.38:80
04/21-04:23:05.985535 [**] High port 65535 tcp - possible Red Worm - traffic [**] 10.64.60.38:80 -
> 211.2.199.82:65535

Since the external host apparently initiated this connection to our internal host, and 
there is no additional alert or scan information incriminating our internal host, I’m left to 
conclude that the above two alerts are false positives.

Severity:
Criticality

I am assigning a criticality value of 4 for this particular worm since it targets 
important services, particularly FTP and BIND.  FTP in that the FTP servers 
traditionally house sensitive institutional data, and BIND in that DNS attacks are 
very dangerous.  If one of the University’s DNS servers were compromised it 
would subject the network to DNS spoofing attacks.

Lethality
If successful, the worm will grant the malware root-level access to the system. 
Therefore, I’m assigning a lethality value of 5. 

System Countermeasures
Given the high number of false positives, this analyst is led to assume that most 
Linux systems have been patched against these particular vulnerabilities.  
Therefore, I am assigning a system countermeasure value of 3.

Network Countermeasures

Based on my analysis of the scan logs, only port 515 (LPRng) appears to be 
blocked at the University’s edge routers with access control lists (ACL’s).  All of 
the other service ports exploited by Adore (i.e., 21, 53, and 111) are not being 
filtered as I observed many external IP addresses scanning for those ports on 
our local machines. Therefore, I am assigning a network countermeasures 
value of 1.

Calculated Severity Value

(4 + 5) – (3 + 1) = 5

Alert 2: [UMBC NIDS IRC Alert] Possible sdbot floodnet detected 3.3.2.2
attempting to IRC

Description:
Sdbot is a worm that compromises Microsoft Windows systems.  The original worm 
has been highly modified resulting in numerous variants.  It compromises systems 
through a variety of methods: behaving as a Trojan horse which entices a user to 
initiate it; exploiting vulnerabilities in Microsoft and DameWare software; exploiting 
vulnerabilities in other malware, or attacking Microsoft Windows shares.  Once 
installed on a system Sdbot acts as an IRC client and will join a channel on a specific 
IRC server.  Thereafter, the Sdbot client can be controlled via this IRC channel where it 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 10 -

can be instructed to wage Denial of Service (DoS) attacks upon other targets on the 
network and to execute other commands on the compromised host.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 11 -

Table 3: Sources triggering this attack signature

Source IP # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

10.64.84.186 25 25 1 1

10.64.17.45 14 14 5 5

10.64.112.193 8 8 2 2

10.64.153.195 3 3 2 2

10.64.80.119 2 2 1 1

10.64.112.189 2 2 1 1

10.64.69.210 1 1 1 1

10.64.69.155 1 1 1 1

10.64.43.10 1 1 1 1

Reason Selected:
Sdbot variants can be extremely damaging, not only to the hosts they infect but the 
network infrastructure itself.  If several Sdbot hosts on the University network were 
instructed to initiate a DoS attack at the same time, they would severely hinder and 
perhaps deny legitimate network traffic.  In addition, Sdbot’s key logging traits can be a 
danger if it is able to obtain user passwords, credit card numbers, and other personally 
identifiable data. And, certain variants have been known to disable security software 
such as anti-virus programs, thus opening up the machine to a variety of other attack 
vectors.

Generated By:
Snort generated these alerts using “Fast Alert” mode.   I was not given the actual rule 
that triggered these alerts, but I estimate that the rule looked for a specific command 
sent from the IRC server to the Sdbot IRC client instructing it to begin an ICMP, TCP, or 
UDP DoS attack.  In addition, all of the alerts I reviewed had a destination port of 7000, 
so the alert could have been further tuned to only look at port 7000 traffic. The alerts 
were of the form:
04/20-13:02:43.206211 [**] [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to 
IRC [**] 10.64.17.45:1029 -> 164.15.194.17:7000
04/20-13:02:43.915276 [**] [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to 
IRC [**] 10.64.17.45:1031 -> 131.234.100.43:7000

Probability Source Address Spoofed:
The IRC communications between the Sdbot client and the controlling IRC server are 
done over TCP which requires an established connection.  Therefore, the probability 
that the source addresses are spoofed in these alerts is extremely low.  However, 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 12 -

Sdbot will spoof the source address for traffic it generates when performing a DoS
attack.

Attack Mechanisms:
As mentioned above and described in Zone Lab’s Virus Information Center, this multi-
faceted worm uses a variety of attack mechanisms in its attempt to spread through the 
Internet.  It can be disguised as a legitimate application (i.e., act as a Trojan horse) and 
distributed to users through normal file distribution methods (e.g., peer-to-peer 
applications, email, etc.).  It can spread itself by brute forcing Microsoft Windows 
shares.  It can exploit vulnerabilities in Microsoft software (see Microsoft Security 
Bulletins MS01-059, MS03-007, MS03-039, and MS04-011) and DameWare (see 
DameWare bulletin #2).  And, it even exploits vulnerabilities in other malware, such as 
Bagle, MyDoom, and OptixPro.  

Correlations:
Zone Labs’ Virus Information Center had by far the best written description I was able 
to find regarding the attack methods used by Sdbot, though Zone Labs had the worm 
classified as Rbot (McAfee’s alias was [W32/]Sdbot.worm.gen.g). Walter Clarie also 
analyzed similar alerts in his GCIA practical.

Evidence of Active Targeting:
It is clear from the alert and scan logs that the machines listed in Table 3 above are 
indeed compromised.  For example, 10.64.112.189 was responsible for 713,606 
entries in the scan logs and had scanned 530,124 distinct destination IP addresses.  
Of those scan entries, all but 27 were scanning for destination ports of 135 – most 
likely looking for other Windows machines vulnerable to the RPC vulnerabilities 
addressed by the Microsoft Bulletins mentioned in the Attack Mechanisms section 
above. 10.64.17.45 accounted for 1,179.229 scan log entries across 142,832 target 
hosts, and it scanned for almost all of the ports normally indicative of an Sdbot infected 
host. See Table 4 below for a break down of those scan entries.

Table 4: 10.64.17.45 scan entries analyzed

Port Port Description # Scan Entries

135 Microsoft RPC 164,233

2745 Bagle 159,046

1025 Microsoft RPC 149,319

445 Microsoft Network Share 144,928

3127 MyDoom 140,531

6129 DameWare 136,104

139 Microsoft Network Share 132,567



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 13 -

80 Web (http) 103,897

3410 Backdoor.OptixPro 24,330

5000 Universal Plug-n-Play 24,075

Link Graph:
The link graph in Figure 1 below clearly reflects the Sdbot compromise of 10.64.17.45.  
It has joined IRC channels on five different IRC servers and is being remotely controlled 
by the attacker(s) through those channels.  It also reflects the magnitude of scanning 
that this University host has performed in a relatively short period of time (three days).

Figure 1:  10.64.17.45 Link Graph

I also analyzed the scan logs looking for external IP addresses that had scanned for 
ports used by Sdbot and found an alarming number of external hosts attacking those 
ports.  See Table 5 below for a break down of those scan entries.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 14 -

Table 5: External IP scans of internal ports

Port Port Description # Scan Entries

6129 DameWare 90,980

2745 Bagle 9,610

135 Microsoft RPC 7,982

445 Microsoft Network Share 1,237

139 Microsoft Network Share 648

3127 MyDoom 183

Let’s take a look at a portion of the scan log entries for an external IP address that was 
scanning for Sdbot hosts on our network.
Apr 20 20:49:13 218.155.217.136:2150 -> 10.64.29.155:2745 SYN ******S* 
Apr 20 20:49:13 218.155.217.136:2155 -> 10.64.29.155:6129 SYN ******S* 
Apr 20 20:49:13 218.155.217.136:2157 -> 10.64.29.155:80 SYN ******S* 
Apr 20 20:49:13 218.155.217.136:1523 -> 10.64.60.37:2745 SYN ******S*
Apr 20 20:49:13 218.155.217.136:1528 -> 10.64.60.37:6129 SYN ******S* 
Apr 20 20:49:13 218.155.217.136:1530 -> 10.64.60.37:80 SYN ******S*
We can easily see that this host is scanning machines on the University’s network for 
Sdbot hosts.  Notice that the source port numbers are sequential, but have gaps 
between them.  This indicates that it is also scanning other machines that are most 
likely not on the University’s network.

Take special note of the TCP flags at the end of each line; only the SYN flag is set on 
each of these scan entries.   The University could easily block incoming initial TCP 
connections (i.e., those with only the SYN flag set) to the ports listed in Table 5 above
via router ACL’s.  And, by making use of Cisco’s tcp-initial ACL keyword (consult your 
router documentation), it will only block incoming connections that have only the SYN 
bit set.  Doing this allows us to slow down the entry of the worm into the University’s 
network.  I use the phrase “slow down” as this ACL by itself does not protect the 
University completely from the worm; for example, an Sdbot compromised laptop that 
is attached directly to the University’s network will not be subject to the router ACL and 
will attempt to compromise other internal hosts.  This type of block has the added 
benefit in that it does not discard legitimate TCP connections where the network stack 
has chosen one of those ports randomly as the client port.  In that case, the packets 
would either have both the SYN and ACK flags or just the ACK flag set.

Severity:
Criticality

Without knowing the purpose of each of the Windows machines compromised 
by this worm, it is difficult to assign a criticality for the individual machines.  If it 
were a staff workstation with institutional data, it would warrant a higher 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 15 -

criticality ranking than a departmental test machine.  However, because of 
Sdbot’s capability to perform DoS attacks, its impact on the network could be 
very dramatic.  Therefore, I’m assigning a criticality score of 4.

Lethality
Given the number of vulnerabilities exploited by Sdbot and the fact that it results 
in a system level compromise of the attacked hosts, I’m assigning a lethality 
value of 5.

System Countermeasures
These hosts were obviously compromised, thus appropriate system 
administration practices were not being adhered to.  I am assigning a system 
countermeasures value of 1.

Network Countermeasures
Traffic to the ports exploited by Sdbot is allowed to enter the network, thus I am 
assigning a network countermeasures value of 1.

Calculated Severity Value

(4 + 5) – (1 + 1) = 7

Alert 3: SMB C Access3.3.2.3

Description:
Server Message Block (SMB) is a protocol used by Windows hosts to share 
documents and printers.  This alert indicates that a non-University host has attempted 
a connection to a Windows host residing on the University network using SMB.  
Furthermore, the attempt has been made to connect to the “C” share which is normally 
the location of the operating system installation files.

Reason Selected:
The alert could indicate that someone external is attempting to brute force username 
and password combinations to gain access to the University’s host or already has a 
valid set of authentication credentials for the University host..  Or, a faculty or staff 
member could be accessing the host from home (e.g., via cable modem or DSL) to 
access the files stored on a computer at work.  The latter is dangerous in that SMB 
provides no protection for the data that is transmitted across the network.  If the 
employee is accessing sensitive institutional data from home using this method, the
data is not encrypted while it is transmitted across the Internet.  

In addition, the mere fact that this alert was triggered by external sources further 
exemplifies the need for stricter perimeter network protection.  External access to port 
139, among others, should be filtered by the University’s border router(s).

Generated By:
Snort generated these alerts using “Fast Alert” mode.   Although I’m certain that there 
have been revisions to the actual rule that triggered the alerts I analyzed, the following 
current rule is to detect similar activity.
alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB C$ share 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 16 -

access"; flow:established,to_server; content:"|00|"; offset:0; depth:1; 
content:"|FF|SMBu"; distance:3; within:5; byte_test:1,!&,128,6,relative; 
content:"C|24 00|"; nocase; distance:33; content:!"IPC|24 00|"; nocase; 
distance:-5; within:5; classtype:protocol-command-decode; sid:533; rev:13;)

Probability Source Address Spoofed:
The SMB protocol uses TCP which requires an established connection.  Therefore, the 
probability that the source addresses are spoofed in these alerts is extremely low.  

Attack Mechanisms:
This type of attack is successful if the attacker is able to authenticate to the SMB share 
using brute-forced (i.e., attempts at password guessing), non-existent (i.e., no 
password), or otherwise obtained (e.g., social engineered) authentication credentials.

Correlations:
Alex Wood analyzed this detect in his GCIA practical entitled “Intrusion Detection: 
Visualizing Attacks in IDS Data”.

Evidence of Active Targeting:
Let’s take a look at the alerts generated by the external host 82.129.132.122:
04/22-09:15:53.295629  [**] SMB C access [**] 82.129.132.122:2837 -> 10.64.190.93:139
04/22-09:15:56.542169  [**] SMB C access [**] 82.129.132.122:2838 -> 10.64.190.95:139
04/22-09:16:23.300853  [**] SMB C access [**] 82.129.132.122:2837 -> 10.64.190.93:139
04/22-09:16:32.506553  [**] SMB C access [**] 82.129.132.122:2839 -> 10.64.190.97:139
04/22-09:16:55.959450  [**] SMB C access [**] 82.129.132.122:2838 -> 10.64.190.95:139

And, let’s also review the scan logs generated by that same host:
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.87:137 UDP  
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.88:137 UDP  
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.89:137 UDP  
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.94:137 UDP  
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.97:137 UDP  
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.98:137 UDP  
Apr 22 09:15:50 82.129.132.122:1030 -> 10.64.190.99:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.103:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.105:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.106:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.108:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.109:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.111:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.113:137 UDP  
Apr 22 09:15:51 82.129.132.122:2837 -> 10.64.190.93:139 SYN ******S* 
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.114:137 UDP  
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.115:137 UDP  
Apr 22 09:15:51 82.129.132.122:2838 -> 10.64.190.95:139 SYN ******S* 
Apr 22 09:15:51 82.129.132.122:1030 -> 10.64.190.118:137 UDP  

This external host is clearly scanning the University’s network looking for NETBIOS 
shares (port 137/udp) and then coming back later (as indicated by the alert logs) to 
attempt to connect to those shares.

Severity:
Criticality



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 17 -

Again, without knowing the purpose of each of the Windows machines 
implicated by these alerts, it is difficult to assign a criticality for the individual 
machines.  If it were a staff workstation with institutional data, it would warrant a 
higher criticality ranking than a departmental test machine.  Therefore, I’m 
assigning a criticality score of 4.

Lethality
The lethality associated with each alert depends on whether the alert was being 
generated by a connection to the hosts from an authorized University user or by 
an attacker.  I’m assigning a lethality value of 4.

System Countermeasures
There is no clear indication from the logs that all of the machines were 
compromised.  Therefore, I am assigning a system countermeasures value of 3.

Network Countermeasures
External sourced traffic to the ports used by SMB is allowed to enter the 
network, thus I am assigning a network countermeasures value of 1.

Calculated Severity Value

(4 + 4) – (3 + 1) = 4



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 18 -

Out-of-Spec Analysis3.4
There were 2,972 out-of-spec log entries for the three days that I analyzed.  The top five 
source and destination IP’s can be found in the tables below.

Table 6: Top 5 OOS Source IP’s
Source IP # Alerts Destinations Involved
68.54.84.49 931 10.64.6.7
66.225.198.20 133 10.64.12.6
128.59.22.253 89 10.64.71.246
195.38.115.167 88 10.64.43.5
141.152.34.103 82 10.64.12.6

Table 7: Top 5 OOS Destination IP’s
Destination IP # Alerts Originating sources
10.64.6.7 1001 (7 source IPs)
10.64.12.6 944 (135 source IPs)
10.64.24.44 137 (28 source IPs)
10.64.71.246 126 (213.186.36.219, 128.59.22.253
10.64.5.67 117 (5 source IPs)

And, the following table summarizes the TCP flags reflected in these logs.

Table 8: OOS TCP Flags
TCP Flags # Alerts
12****S* 2,878
******** 48
12***R** 24
****P*** 11
12UAPRSF 1
12U**RS* 1
12*A**S* 1
12**PR*F 1
12****SF 1
1*U*P*SF 1
1**APRSF 1
1***P*SF 1
*2U*P*SF 1

The characters listed in the TCP flags column represent the individual options that are 
set within a given TCP communication:  “1” and “2” indicate that the two ‘reserved”
flags are set; U (URG) the urgent flag is set; A (ACK) the acknowledgement flag is set; 
P (PSH) the push flag is set; R (RST) the reset flag is set; S (SYN) the synchronize flag 
is set; and, F (FIN) the finish flag is set. An asterisk indicates that a given flag is not 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 19 -

set.

Let’s focus for the moment on the two rows that have neither of the “reserved” flags set 
(i.e., the ******** and ****P*** rows).  The former is referred to as a null scan because 
no TCP flags have been set.  It is most often used in reconnaissance scanning to 
determine the remote machine’s operating system as different TCP/IP 
implementations will respond to this invalid flag combination in different ways.  The 
latter is obviously anomalous given that it is contained in the out-of-spec logs, but it is 
unclear what its intent was.  They all originated from the same IP address 
(148.63.216.97) and were destined for the same University IP address (10.64.70.254).  
It is common for routers to be assigned .254 addresses, so this may have been an 
attempt to fingerprint our router in some fashion.  The source IP address did not show 
up in the alert logs, but the same entries found in the OOS logs are reproduced in the 
scan logs.

The ‘reserved” bits in the TCP flags, as the name implies, were initially reserved for 
future expansion; any TCP packet that had those two flags set were viewed as out-of-
spec.  With the introduction of Explicit Congestion Notification (ECN), those two flags 
are now being used for legitimate purposes. The remaining rows in Table 8 have at 
least one of the ECN-related flags set, and that could be the reason they are being 
flagged as out-of-spec.  However, those with SYN and FIN both set are definitely out-of-
spec as well.  The largest majority of the out-of-spec logs have a TCP flag set of 
12****S* which most likely indicates a Linux host as the Linux kernel was one of the 
first to implement support for ECN.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 20 -

Scan Analysis3.5
The majority of the scan log analysis can be found throughout the other sections of this 
document.  However, I would like to mention one specific finding.  

In order to understand what, if any, ports were being blocked by the University’s border 
router(s), I reviewed the scan logs for all entries that had an external (i.e., non-
University owned) source IP address and an internal (i.e., University owned) IP 
address.  I then extracted all of the destination ports and reviewed that list.  Any ports 
not found in that list are possibly being blocked by border router ACL’s.  Please note 
that the analysis assumes that the IDS system is inside the University’s network.  And, 
it’s also important to note that more accurate results could be obtained by reviewing 
more than just three days worth of scan logs.

It is clear from this analysis that very few of the most dangerous ports (e.g., Microsoft 
networking, Sun RPC) are being blocked at the border router(s).  The only notable port 
blocks found were 1434/udp (to protect Microsoft SQL Servers against Slammer-like 
compromises) and 161/udp and 162/udp (SNMP traffic). Again, a more accurate view 
could be attained by examining the scan log files for additional days.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 21 -

Network Statistics3.6

Top Talkers3.6.1

To get a grasp of the top talkers on the University network, we need to look at both the 
alert and scan log files.  The tables below reflect the top five internal and external 
machines found in those log files.

Top Alert Sources3.6.1.1

Table 9: Internal & External Alert Sources

Internal IP # alerts External IP # alerts

10.64.30.4 30,866 134.192.42.11 21,803

10.64.30.3 9,277 68.55.155.26 3,733

10.64.43.8 3,433 131.92.177.18 3,248

10.64.43.13 2,102 64.12.24.34 3,076

10.64.69.232 1,522 64.12.24.35 2,334

Internal Hosts:  10.64.30.4 and 10.64.30.3 are both on this list because of Snort rules 
“10.64.30.4 activity” and “10.64.30.3 activity” respectively.  Those rules appear to alert 
on all traffic destined to/from those specific IP addresses.  10.64.43.8 and 10.64.43.13 
are both on the list because of the “High port 65535 tcp - possible Red Worm – traffic”
alert.  In fact, that is the only alert recorded for both IP addresses.  There are no scan 
logs to implicate 10.64.43.8 in additional suspect activity.  However, 10.64.43.13 has 
been an active scanner and appears to be compromised with an Sdbot variant.  Both 
warrant further investigation.  10.64.69.232 is another “High port 65535 tcp - possible 
Red Worm – traffic” alert generator, and there are several TCP and UDP scan entries 
for it in the scan logs as well.  It too warrants further investigation.

External Hosts:  134.192.42.11 is on the list because of “10.64.30.4 activity”.  Since it 
has triggered this alert almost seven times more than any other external host, it does 
appear to be suspicious.  68.55.155.26 is also on the list because of “10.64.30.4 
activity”.  Neither of them have generated any scan entries, however.  131.92.177.18 
has generated the most “10.64.30.3 activity” alerts of any host.  Again, this warrants 
further investigation.  64.12.24.34 and 64.12.24.35 both generated a large number of 
“High port 65535 tcp - possible Red Worm – traffic”.  Neither generated scan alerts.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 22 -

Top Scan Sources3.6.1.2

Table 10: Internal & External Scan Sources

Internal IP # scans External IP # scans

10.64.1.3 2,536,694 213.180.193.68 36,433

10.64.17.45 1,179,178 220.197.192.39 25,926

10.64.1.4 747,956 64.136.199.197 20,487

10.64.112.189 713,579 80.191.163.12 19,073

10.64.81.39 694,880 207.3.145.130 18,380

Internal Hosts:  10.64.1.3 and 10.64.1.4 are clearly the University’s DNS servers 
based on the DNS traffic (port 53) that is evident in the logs.  The Snort sensors should 
be configured to exclude these from the scan entries.  10.64.17.45 and 10.64.112.189 
are compromised by an Sdbot variant as they have generated a large quantity of scan 
logs in its attempt to exploit other machines (numerous port 135, 2745, 1025, 445, 
3127, 6129, 139, 80, 3410, and 5000 entries).  The scan entries associated with 
10.64.81.39 were almost exclusively scans for TCP port 135.  This host is most likely 
looking for Windows machines that are vulnerable to the RPC vulnerabilities 
mentioned elsewhere in this document.

External Hosts:  213.180.193.68 scanned a wide range of ports against just two 
internal hosts (10.64.97.65 and 10.64.97.159).  Because of this targeted scan, it should 
be investigated.  220.197.192.39 is compromised with an Sdbot variant has scanned 
5,903 distinct internal IP’s.  64.136.199.197 scanned for port 80 and 443 (HTTP and 
HTTPS) against 11,182 distinct internal IP’s, most likely searching for vulnerable 
Apache or Microsoft IIS web servers.  80.191.163.12 scanned exclusively for port 6129 
(DameWare) against 13,220 distinct IP’s, searching for vulnerable DameWare 
installations.  And, finally, 207.3.145.130 is scanning for vulnerable FTP and TELNET 
services on ports 21 and 23.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 23 -

Top Five Targeted Services or Ports3.6.2

To generate the list of the top five targeted services, I parsed the scan logs looking for 
scan entries that had an external (i.e., non-University owned) source IP address that 
was scanning ports on internal (i.e., University owned) IP addresses.

Table 11: Top Five Targeted Ports By External Sources

Destination Port # of Scans Service/Application

443 99,446 HTTPS

6129 90,980 DameWare

80 59,603 HTTP

4899 55,722 radmin?

20168 41,014 Lovegate Worm

Most Suspicious External Source Addresses3.6.3

I selected the following as most suspicious external source addresses as they did not 
show up prominently in the alerts, but were obviously attempting to connect to several 
University systems.

213.180.193.683.6.3.1

This IP address initiated 36,433 scans covering a wide range of TCP ports against two 
University hosts (10.64.97.65 and 10.64.97.159).  This is most likely an intelligence 
gathering effort to prepare for a more concerted attack.  I provide the ARIN information 
for the party responsible for this IP address:
Search results for: 213.180.193.68

OrgName:    RIPE Network Coordination Centre 
OrgID:      RIPE
Address:    P.O. Box 10096
City:       Amsterdam
StateProv:  
PostalCode: 1001EB
Country:    NL

ReferralServer: whois://whois.ripe.net:43

NetRange:   213.0.0.0 - 213.255.255.255 
CIDR:       213.0.0.0/8 
NetName:    RIPE-213
NetHandle:  NET-213-0-0-0-1
Parent:    
NetType:    Allocated to RIPE NCC



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 24 -

NameServer: NS-PRI.RIPE.NET
NameServer: NS3.NIC.FR
NameServer: SUNIC.SUNET.SE
NameServer: AUTH00.NS.UU.NET
NameServer: SEC1.APNIC.NET
NameServer: SEC3.APNIC.NET
NameServer: TINNIE.ARIN.NET
Comment:    These addresses have been further assigned to users in
Comment:    the RIPE NCC region. Contact information can be found in
Comment:    the RIPE database at http://www.ripe.net/whois
RegDate:    
Updated:    2004-03-16

207.3.145.1303.6.3.2

This host scanned three specific ports (port 21, port 23, and port 111) against 11,027 
distinct IP's.  Scans against specific ports are much more concerning as the attacker
performing the scan is most likely actively attempting to exploit the services (i.e., FTP, 
TELNET, and sunrpc).  Whereas a scan of all ports on a machine is most likely just 
attempting to determine what services are listening; though, this sort of scan almost 
always leads to the former.

OrgName:    Savvis 
OrgID:      SAVVI-3
Address:    3300 Regency Parkway
City:       Cary
StateProv:  NC
PostalCode: 27511
Country:    US

NetRange:   207.2.128.0 - 207.3.255.255 
CIDR:       207.2.128.0/17, 207.3.0.0/16 
NetName:    SAVVIS
NetHandle:  NET-207-2-128-0-1
Parent:     NET-207-0-0-0-0
NetType:    Direct Allocation
NameServer: NS01.SAVVIS.NET
NameServer: NS02.SAVVIS.NET
NameServer: NS03.SAVVIS.NET
NameServer: NS04.SAVVIS.NET
NameServer: NS05.SAVVIS.NET
Comment:    
RegDate:    1995-12-13
Updated:    2004-11-17

TechHandle: IA3-ORG-ARIN
TechName:   Cable and Wireless US 
TechPhone:  +1-800-977-4662
TechEmail:  ip@clp.cw.net 

OrgAbuseHandle: ABUSE11-ARIN
OrgAbuseName:   Abuse 
OrgAbusePhone:  +1-877-393-7878
OrgAbuseEmail:  abuse@savvis.net



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 25 -

OrgNOCHandle: NOC99-ARIN
OrgNOCName:   Network Operations Center 
OrgNOCPhone:  +1-800-213-5127
OrgNOCEmail:  ipnoc@savvis.net

OrgTechHandle: UIAA-ARIN
OrgTechName:   US IP Address Administration 
OrgTechPhone:  +1-888-638-6771
OrgTechEmail:  ipadmin@savvis.net

206.222.14.2093.6.3.3

This external machine scanned 11,957 distinct IP’s for TCP port 20168.  Most likely the 
attacker was looking for the backdoor of a Lovegate compromised host.
Search results for: 206.222.14.209

OrgName:    eNET Inc. 
OrgID:      ENET
Address:    3000 East Dublin Granville Rd.
City:       Columbus
StateProv:  OH
PostalCode: 43231
Country:    US

NetRange:   206.222.0.0 - 206.222.31.255 
CIDR:       206.222.0.0/19 
NetName:    EE3-DOM
NetHandle:  NET-206-222-0-0-1
Parent:     NET-206-0-0-0-0
NetType:    Direct Allocation
NameServer: DNS2.EE.NET
NameServer: DNS3.EE.NET
Comment:    ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate:    1996-04-10
Updated:    1996-04-10

TechHandle: KK326-ARIN
TechName:   Kitsmiller, Kelly 
TechPhone:  +1-614-794-5971
TechEmail:  dns@ee.net  

Most Suspicious Internal Source Addresses3.6.4

I selected the following as most suspicious internal source addresses as they did not 
show up prominently in the alerts, but were obviously being mischievous.

10.64.81.393.6.4.1

This University host generated 694,880 scan entries, of which 693,977 (or 99.9%) were 
of TCP destination port 135 against a wide range of hosts.  As mentioned above in Top 
Scan Sources, this host is probably looking for Windows machines that are vulnerable to 
the RPC vulnerabilities mentioned elsewhere in this document.  This host should be 
investigated.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 26 -

10.64.53.2253.6.4.2

This machine generated 122,802 scan entries but did not generate a single alert.  
These scans were almost exclusively UDP scans on a variety of ports and IP 
addresses.  However, there was no distinguishable pattern for the scans.  This host 
should be investigated.

10.64.97.903.6.4.3

This host generated 104,166 scan entries but did not generate a single alert.   These 
scans were almost exclusively TCP scans of port 80, and encompassed 63,096 distinct 
destination IP’s.  This host could be a web crawler or it could be scanning for Apache 
and/or Microsoft IIS vulnerabilities.  Again, this host should be investigated.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 27 -

Correlations3.7
Correlations from other sources are referenced in the appropriate sections of this 
document and can also be found in the List of References at the end of this document.

Recommendations3.8
I respectfully submit the following recommendations:

A VPN service should be established.  As mentioned in the Executive Summary•
section on page 3, such a service will have multiple benefits; it will afford the 
data improved security while they are being transmitted across the Internet, it 
can be used to improve the security of the wireless networking infrastructure if 
all wireless network traffic is required to be routed through the VPN server, and 
it will allow for a stricter network perimeter defense policy.
The network perimeter is extremely porous.  Much stricter router access control •
lists (ACL’s) should be implemented on the University’s border routers to block 
commonly abused ports and protocols.  Ports 135, 137, 138, 139, and 445 
(Microsoft related), 111 (Sun RPC), 1433 and 1434 (Microsoft SQL Server), and 
3306 (MySQL) are the obvious first choices.  The University should also consider 
blocking the standard IRC server ports for inbound connections (e.g., ports 
6000, 6660-6669, 7000, 7001, and 8888) to prevent the most prevalent botnet 
command and control malware from being served on its network.
A University-wide license should be purchased for anti-virus software and •
offered to its students, faculty, and staff at a minimal cost.
Centralized patch management software should be purchased and offered to •
the University’s IT administrators.  This will make the process of distributing and 
deploying patches to systems much more efficient, thus improving the overall 
security of the network.
Spy-ware and ad-ware software should be purchased and offered to the •
University’s students, faculty, and staff at a minimal cost.
The University should increase its use of RFC 1918 (i.e. private IP) address •
space.
The Snort rules should be rewritten to be less reliant on port-based rules, which •
are prone to false positives.
The Snort rules should be tuned to lessen the alerts generated, thus focused on •
the more important alerts.  For example:

10.64.30.4 and 10.64.30.3 alert activity clutters up alertso
10.64.1.3 and 10.64.1.4 are clearly DNS servers and the Snort sensors o
should exclude them from scan logs.  It is common practice to exclude 
DNS servers from port scan detection in Snort sensors because they 
generate so many entries in the scan logs.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Analysis Process

3 SnortSnarf home page.
4 snort_stat script comment.

Analysis Process4

Analysis Platform4.1
The analysis was performed with Gentoo Linux using a 2.4 kernel.  The system 
included 1 GB of RAM, 10GB of disk space, and a 1.6 GHz processor.

Tools and Techniques4.2
Distillation of the massive amount of log data was made easier by SnortSnarf, 
snort_stat, scripts from Les Gordon and Ricky Smith’s GCIA practicals, assorted unix 
commands, a shell script I developed called format-gcialogs.sh that pulls all of the 
others together, and another shell script I developed called snacs.sh that extracts 
useful bits of information from the scan logs given an IP address.

Description of Tools4.2.1

SnortSnarf is “a Perl program to take files of alerts from snort, and produce HTML 
output intended for diagnostic inspection and tracking down problems”3. After 
SnortSnarf processes an alert file, it generates a report that contains the total number 
of occurrences for each alert as well as the number of distinct source and destination 
IP addresses for each alert.  This HTML-based summary report makes it possible to 
drill down into the more detailed aspects of the report to get a different view of the data.

snort_stat is Perl program designed to “generate statistical data from every day snort 
log file”4.  snort_stat was developed by Yen-Ming Chen and gives us yet another view, 
albeit more verbose, of the alert data.

format_alerts and sum_alerts are Perl programs provided to the community by Les 
Gordon in his GCIA practical submission.  format_alerts processes a snort alert file, 
splits each log entry into logical comma separated values (CSV), and generates two 
output files; one contains the portscan-related alert entries, the other contains the 
remaining alerts. These remaining alerts can then be fed into sum_alerts to generate 
several views of the alert data, such as a list of the IP addresses connected to by 
internal hosts and the list of ports connected to by external hosts.

parse-oos and parsescan are Perl programs provided to the community by Ricky 
Smith in his GCIA practical submission.  parse-oos will process the out-of-specification 
log entries and put them in a format that is easily processed by SnortSnarf.  This 
makes the interpretation of the data much easier. parsescan parses a scan file and 
generates two output files containing IP addresses and count pairs; one contains the 
list of IP addresses used as scanning sources and a count representing the number of 
times it was found in the input file, the other contains the same information but for IP 
addresses that were the target of the scan attempts (i.e., the destination IP address 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 29 -

from the entries).  

format-gcialogs.sh is a shell script that I developed that extracts and organizes the log 
files, processes them using the scripts mentioned above, and creates reports that 
summarize the data to assist in the analysis process.  Complete documentation and 
source code for this script can be found in the appendices. 

snacs.sh is a shell script that I developed that extracts useful information from the 
scan logs given a specific IP address.  It displays information such as: the number of 
scan entries found for the IP; the number of TCP and UDP scan entries for the IP; the 
total number of distinct destination IP addresses scanned by the IP; the total number of 
distinct destination TCP and UDP ports scanned by the IP; the number of scans 
against each distinct destination IP address; and, the number of scans against each 
distinct TCP and UDP port.  Complete documentation and source code for this script 
can be found in the appendices. 

Process Details4.2.2

One of the first tasks involved in performing the analysis was to simply view the log 
files provided with the less command.  This makes it is easy to understand the format 
of and data contained within the files.  I also reviewed several practicals that were 
submitted by others to obtain some insight into the tools that others have written or 
used in support of their certification efforts.  Next, it was just a matter of putting the 
tools to use on the log files.  If you follow the order in which the functions in format-
gcialogs.sh are called, you will have a good idea of the steps that I used during the 
process. The narrative on format-gcialogs.sh in the appendices also describes the 
process in detail.

I wrote snacs.sh in an effort to stream-line the process of identifying the Most Suspicious 
External Source Addresses and the Most Suspicious Internal Source Addresses above. It is 
especially helpful to compare the scan entries for the individual IP’s against the alerts 
for those same IP’s.  If you find a host that has several scan entries but no (or few) alert 
entries, it might be worth further investigation.  A possible future enhancement to 
snacs.sh would be to have it read the IP addresses provided by Ricky Smith’s 
parsescan program, and then generate a comma separated value file containing the 
values generated by snacs.sh for each IP address.

Problems Encountered4.2.3

During the analysis process, I encountered the following problems with either the tools 
or the log files:

To protect the identity of the institution from which the logs originated, alert and •
oos log entries have been modified such that the beginning two octets of their 
local IP addresses are MY.NET.  Because MY.NET. does not conform to a valid 
IP address, it is not processed correctly by tools such as SnortSnarf.  This was 
solved by replacing MY.NET. with a valid IP address octet that did not appear in 
any of the log files.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 30 -

The scan files were not sanitized with MY.NET.  Based on the practical •
submissions of others, it was clear that the 130.85.0.0/16 addresses in the scan 
files were the same ones that were obfuscated in the alert and oos files.  I 
changed all occurrences of 130.85. IP addresses in the scan files with the same 
valid IP used in the alert and oos logs.
The alert files were extremely large because they contained portscan entries in •
addition to the standard alerts.  This made processing the alerts through 
SnortSnarf difficult.  Since the data represented by these portscan entries are 
also reflected in the scan files, they were removed from the alert files before the 
alerts were processed.  
The alert files contained a number of entries that that were not formatted •
correctly.  I found this out when I ran an initial test of SnortSnarf against just one 
of the three alert files as SnortSnarf generated several error messages.  After 
reviewing several of these lines, it was obvious that these alerts had somehow 
been corrupted when they were added to the file.  If they were generated by a 
Snort sensor writing out in ASCII format (as opposed to a script that processes a 
unified binary version of the alerts after the fact), then this could be one possible 
reason for the corruption.  Converting alerts to ASCII, especially on a sensor that 
resides on a busy network (which would be the case on a university network), is 
extremely taxing on the system.  Another possible explanation might be that 
there were multiple Snort instances running on one machine, all logging to the 
same alert file.  This could generate file locking issues with them all competing 
for the file. format-gcialogs.sh will generate a report on these mal-formed alert 
entries so they can be identified and fixed.
Ricky Smith's parse-oos.pl and parsescan.pl scripts will not accept fully •
qualified filenames as input.  format-gcialogs.sh had to be designed to deal with 
that.
The version of parsescan.pl in Ricky Smith's published practical had a slight •
error in one statement.  Specifically, the first "open RESULTS" should open 
$resultsfile, not $srcresultsfile.
The site hosting the Snort sensor that generated the alerts had a custom rule •
that had a comma in its description, and the commas interfered with Les’
format_alerts program.  format-gcialogs.sh was designed to remove those 
commas from the alert logs before they were given to format_alerts.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Appendices

Appendices5

format-gcialogs.sh Overview5.1
format-gcialogs.sh was developed mainly as a self-documenting archive of the steps I 
took to extract important information from the massive amount of log files provided for 
this practical.  However, it turned into a script that I believe will assist other intrusion 
analysts in processing these same logs.  

Crash Course5.1.1

This section describes just those steps required to get the script to work.  Anyone 
performing the analysis on a Unix-like machine should have no problem using the 
script as it makes use of simple shell code.  It does, however, call programs that have 
been written in Perl, so you’ll need a recent version of Perl installed as well.

download log files from <http://isc.sans.org/logs/> and place them in /var/log/gcia1.
download format-gcialogs.sh and place it in /usr/local/bin (or another directory that 2.
is included in your PATH)
modify GCIALOGS to reflect the directory in which you placed the downloaded log 3.
files
modify MYNETREPLACEMENT variable in format-gcialogs.sh to reflect the first two 4.
IP address octets (e.g., 10.64.) you’d like to be substituted for MY.NET. in the log 
files
review ACTUALNET variable in format-gcialogs.sh to ensure that it still matches the 5.
“real” first two octets of the IP address (the IP addresses in the scan logs I 
processed were not modified to begin with MY.NET.)
modify MYDATExx variables in format-gcialogs.sh to match the dates contained in 6.
the logs you downloaded from <http://isc.sans.org/logs/>
modified SNORTRULES* variables to reflect where your Snort configuration files 7.
are located
install Perl (if necessary)8.
download programs used by this script (i.e., SnortSnarf, snort_stat, format_alerts, 9.
sum_alerts, parse-oos, and parsescan) and place them in /usr/local/bin (or another 
directory that is included in your PATH)
change “2002-“ in format_alerts.pl to match the year of your log files10.
change $HOME_NET variable in sum_alerts.pl to match the value you used for 11.
MYNETREPLACEMENT in format-gcialogs.sh
change the first “open RESULTS” line of code in parsescan.pl to open $resultsfile, 12.
not $srcresultsfile
initiate “format-gcialogs -A”13.
fix mal-formed alerts (not as critical to fix the mal-formed scans) as instructed by 14.
script output
initiate “format-gcialogs -B”15.
consult extracts and reports as instructed by script output16.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 32 -

Narrative5.1.2

This section will describe the various functions that are used within format-gcialogs.sh 
for the “-A” and “-B” command line switches. A word of warning, though; this script 
performs several modifications on the logs that you have downloaded.  It might be in 
your best interest to archive the pristine logs you have downloaded before initiating this 
script.

format-gcialogs -A5.1.2.1

OrganizeLogs will gunzip each of the logs you downloaded and place them in 
appropriately named sub-directories (i.e., alerts, oos, and scans) based on their file 
names.  These sub-directories will be created off of the directory that contained the .gz 
version of the logs (by default, that location is /var/log/gcia).  If it processes a file whose 
name it does not recognize, and thus can’t make a determination which sub-directory 
to move it to, it will generate an error message and continue to process the remaining 
files.

FixIPs will adjust IP addresses in the alert, oos, and scan logs so the analysis 
programs used against them can interpret the data correctly.  IP addresses within the 
alert and oos files have been sanitized by replacing the first two octets with MY.NET..  
FixIPs will change those to a valid IP address.  This replacement octet pair is 
configurable within the script (by default it uses 10.64.).  In addition, the scan logs I 
chose to download did not have their IP addresses sanitized.  Based on the practical 
submissions of others, it was clear that 130.85.0.0/16 IP addresses in the scan logs 
were the same ones that were obfuscated in the alert and oos files.  Therefore, FixIPs 
will change all occurrences of 130.85. IP addresses in the scan files with 10.64. so that 
they match the alert and oos files.

FindBagLogs will search through the alert and scan logs looking for entries that 
appear to be mal-formed.  It does this by examining the start of each entry to ensure 
that it matches the dates of the logs we should be analyzing.  The scan logs have so 
many entries that ignoring the mal-formed ones will not have a dramatic impact on 
your analysis results.  However, the alert logs should be corrected if possible before 
proceeding on with the “-B” flag to format-gcialogs. You will find these erroneous log 
entries in the “malformed” sub-directory off of the scans and alerts directory.

format-gcialogs -B5.1.2.2

RemoveScansFromAlerts removes portscan entries from the alert logs.  This 
drastically reduces the size of the alert log files and allows them to be processed much 
more efficiently.  The data reflected in the discarded portscan entries can be found in 
the scan logs themselves.

ReportOnAlerts processes the alert logs with SnortSnarf and snort_stat.  The resulting 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 33 -

reports can be found in the reports/snarf and reports/stat sub-directories off of the 
alerts directory.

LesGordon uses the programs provided by Les Gordon in his practical to process the 
alert logs.  The extracts generated by his programs give us yet another view of the 
alerts to use in our analysis process.  The first step performed in this routine is to 
remove any commas found in the alert log entries.  The site hosting the Snort sensor 
that generated these logs had a custom rule that had a comma in its description, and 
these commas interfere with Les’ format_alerts program.  format_alerts manipulates 
the logs into a format that is understood by sum_alerts, and then sum_alerts is used to 
generate reports based off of the data.  These reports can be found in the reports/les 
sub-directory off of the alerts directory.

ReportOnOOS uses Ricky Smith’s parse-oos program to format the out-of-spec log 
files into a format that can be understood by SnortSnarf, and then SnortSnarf is used to 
generate reports based off of the data. These reports can be found in the reports/snarf 
sub-directory off of the oos directory.  

ReportOnScans uses Ricky Smith’s parsescan to parse the scan file and generates 
two output files containing IP addresses and count pairs.  Results are stored directly in 
the scans directory.  Additional unix commands are used to extract entries where the 
destination IP address is on the network we are analyzing and the source IP address is 
external.  This allows us to determine which destination TCP and UDP destination 
ports are being accessed by those not on our network.  Results are stored in the 
reports sub-directory off of the scans directory.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 34 -

format-gcialogs.sh Source5.2
For brevity, only the initial portion of the script is included below.  You can find the 
entire script here:

<https://itso.iu.edu/staff/tdavis/format-gcialogs.sh>

#!/bin/sh
#
# Catch-all script to manipulate and report on data in GCIA logs.
#
# Tom Davis, 01/14/2005
#
# Based on work by:
#  Chris Baker 
#    - http://www.giac.org/practical/Chris_Baker_GCIA.zip
#    * idea of placing logs into aptly named directories
#
# Calls scripts developed by:
#  Silicon Defense (http://www.silicondefense.com/)
#    * SnortSnarf 
#      - http://www.snort.org/dl/contrib/data_analysis/snortsnarf/
#  Yen-Ming Chen
#    * snort_stat.pl 
#      - http://www.snort.org/dl/contrib/data_analysis/snort_stat.pl
#  Les Gordon
#    * format_alerts.pl 
#      - http://forum.sans.org/discus/messages/78/7466.html?1055304069
#      NOTE: format_alerts.pl has 2002- hard coded in the script, so you'll
#            want to modify that to match the year of the log records
#            you are analyzing.
#      INFO: commas contained within the alert records will cause 
#            format_alerts to have issues because it parses the alert logs
#            using comma as a delimeter.  we "tr" the commas within 
#          format-gcialogs.sh (this script) to remove commas from the 
#            input file to resolve this issue
#    * sum_alerts.pl 
#      - http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc
#      NOTE: You'll want to change $HOME_NET within this script to match 
the
#            value you use below for MYNETREPLACEMENT
#  Ricky Smith
#    * parse-oos.pl
#      - http://www.giac.org/practical/GCIA/Ricky_Smith_GCIA.pdf
#    * parsescan.pl 
#      - http://www.giac.org/practical/GCIA/Ricky_Smith_GCIA.pdf
# NOTE: You'll have to modify parsescan.pl as there was a slight error 
#            in the version included in Ricky's practical.  Specifically, 
#            the first "open RESULTS" should open $resultsfile, not 
#            $srcresultsfile
#    INFO: Neither of the above scripts can take fully qualified path names 
#          as input.  this script (format-gcialogs.sh) has been coded to 
#          compensate for that issue.
#
# NOTE: Place all of the above scripts in /usr/local/bin (or another 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 35 -

#  directory that is included in your PATH).
#

#
# NOTE: Change the following to match your environment!
#
# location of the GCIA log files you downloaded
GCIALOGS=/var/log/gcia
# make sure this doesn't already appear in the log files
MYNETREPLACEMENT=10.64.
# scan logs weren't sanitized with MY.NET., so actual IP needs to be
# provided here so we can change those to MYNETREPLACEMENT as well
ACTUALNET=130.85.
# list of dates for GCIA log files you've chosen to use 
# future enhancement could pull these dates from the actual
# log file names, but I'm too lazy to add it now!  note that
# I'm really only processing three log files, but I put the 
# fourth date in here because the log file rotation for 
# the third day was performed slightly after midnight and I 
# didn't want to lose any relevant logs.
MYDATE1=04/20
MYDATE2=04/21
MYDATE3=04/22
MYDATE4=04/23
MYDATE1b="Apr 20"
MYDATE2b="Apr 21"
MYDATE3b="Apr 22"
MYDATE4b="Apr 23"
# Snort file location (used by SnortSnarf)
SNORTRULESFILE=/etc/snort/snort.conf
SNORTRULESDIR=/etc/snort
.
.
.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 36 -

snacs.sh Source5.3

You can also download the entire script here:

<https://itso.iu.edu/staff/tdavis/snacs.sh>

#!/bin/sh
#
# Generate useful info on scans.
#
# Tom Davis, 03/03/2005
#

#
# NOTE: Change the following to match your environment!
#
# location of the GCIA log files you downloaded
GCIALOGS=/var/log/gcia

# General use variables.
SCANS=$GCIALOGS/scans
SCANSBAD=$SCANS/malformed
SCANSCOMBINEDFILEBASE=scans.combined
SCANSCOMBINEDFILE=$SCANS/$SCANSCOMBINEDFILEBASE
SCANSREPORTS=$SCANS/reports
SCANSRPTINTDESTFILE=$SCANSREPORTS/scans-extsrc-intdest
MAXPORT=50
MAXIP=50
TMPFILE1=/tmp/snacs1
TMPFILE2=/tmp/snacs2

#
# Main shell function
#
main ()
{

echo " "
echo "======= Generating reports for scan entries with source IP: 

$IPADDRESS"
echo " "
REGEXPIPADDRESS=`echo $IPADDRESS | sed -e "s/\./\\\\\./g"` 

# grab all entries that have our IP address, exclude UDP entries, 
# exclude all entries where our IP is in the destination, and 
# only keep the IP:port destination information (removes TCP flags)
egrep "$REGEXPIPADDRESS:" $SCANSCOMBINEDFILE | egrep -v "UDP" | cut -f2 -

d ">" | sed 's/^ //g' | egrep -v "$REGEXPIPADDRESS" | cut -f1 -d "S" | sed 
's/ $//g' > $TMPFILE1

COUNT=`cat $TMPFILE1 | wc -l`
echo "*** TCP scan statistics: $COUNT total log entries ***"
echo " "

cat $TMPFILE1 | cut -f2 -d ":" | sort > $TMPFILE2
COUNT=`cat $TMPFILE2 | uniq | wc -l`



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 37 -

echo "Destination port frequency counts for $COUNT distinct ports (TCP 
scans):"

if [ $COUNT -gt $MAXPORT ]
then

echo "  NOTE: Number of ports is greater than $MAXPORT, listing is 
abbreviated"

fi
echo " "

echo "# scans|port"
echo "---------------"
if [ $COUNT -gt $MAXPORT ]
then

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1 | head -n $MAXPORT
else

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1
fi
echo " "

cat $TMPFILE1 | cut -f1 -d ":" | sort > $TMPFILE2
COUNT=`cat $TMPFILE2 | uniq | wc -l`

echo "Destination IP address frequency counts for $COUNT distinct IPs 
(TCP scans):"

if [ $COUNT -gt $MAXIP ]
then

echo "  NOTE: Number of IPs is greater than $MAXIP, listing is 
abbreviated"

fi
echo " "

echo "  # ips|ip"
echo "-----------------------"
if [ $COUNT -gt $MAXIP ]
then

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1 | head -n $MAXIP
else

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1
fi
echo " "

# grab all entries that have our IP address, only grab UDP entries, 
# exclude all entries where our IP is in the destination, and 
# only keep the IP:port destination information (removes UDP info)
egrep "$REGEXPIPADDRESS:" $SCANSCOMBINEDFILE | egrep "UDP" | cut -f2 -d 

">" | sed 's/^ //g' | egrep -v "$REGEXPIPADDRESS" | cut -f1 -d "U" | sed 
's/ $//g' > $TMPFILE1

COUNT=`cat $TMPFILE1 | wc -l`
echo "*** UDP scan statistics: $COUNT total log entries ***"
echo " "

cat $TMPFILE1 | cut -f2 -d ":" | sort > $TMPFILE2
COUNT=`cat $TMPFILE2 | uniq | wc -l`

echo "Destination port frequency counts for $COUNT distinct ports (UDP 
scans):"



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 38 -

if [ $COUNT -gt $MAXPORT ]
then

echo "  NOTE: Number of ports is greater than $MAXPORT, listing is 
abbreviated"

fi
echo " "

echo "# scans|port"
echo "---------------"
if [ $COUNT -gt $MAXPORT ]
then

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1 | head -n $MAXPORT
 else

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1
fi
echo " "

cat $TMPFILE1 | cut -f1 -d ":" | sort > $TMPFILE2
COUNT=`cat $TMPFILE2 | uniq | wc -l`

echo "Destination IP address frequency counts for $COUNT distinct IPs 
(UDP scans):"

if [ $COUNT -gt $MAXIP ]
then

echo "  NOTE: Number of IPs is greater than $MAXIP, listing is 
abbreviated"

fi
echo " "

echo "  # ips|ip"
echo "-----------------------"
if [ $COUNT -gt $MAXIP ]
then

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1 | head -n $MAXIP
else

cat $TMPFILE2 | uniq -c | sort -n -r -k 1,1
fi
echo " "

return
}

#
# Provide a little help on the script's use.
#
DisplayUsage()
{
cat << EOF

Usage: $0 -h -i ip_address

-h Display help
-i generate reports based on IP address

Examples:
$0 -h
$0 -i



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 39 -

EOF

return
}  # end of DisplayUsage()

#
# Initialize our working environment and call the main function.
#

# Process command line arguments
while getopts i: useropts
do

case "${useropts}" in 
h) DisplayUsage

 exit ;;
i) IPADDRESS=${OPTARG} ;;

\?) DisplayUsage
exit ;;

esac
done

# Call the main function
main



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 40 -

List of References6

Baker, Chris GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
<http://www.giac.org/practical/Chris_Baker_GCIA.zip>

Beale, Jay, et al. Snort 2.1 Intrusion Detection 2nd ed. Rockland: Syngress, 2004

Clarie, Walter GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
<http://www.giac.org/certified_professionals/practicals/gcia/0758.php>

DameWare Security Bulletins & Advisories
<http://www.dameware.com/support/security/bulletin.asp?ID=SB2>

Fearnow, Matt, and William Stearnes, Adore Worm
<http://www.sans.org/y2k/adore.htm>

Fearnow, Matt, and William Stearnes, Lion Worm
<http://www.sans.org/y2k/lion.htm>

Gordon, Les GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
<http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc>

Hayes, Brian GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
<http://www.giac.org/certified_professionals/practicals/gcia/0770.php>

McAfee’s Security Headquarters, [W32/]Sdbot.worm.gen.g
<http://vil.nai.com/vil/content/v_100454.htm>

Microsoft Security Bulletins
<http://www.microsoft.com/technet/security/bulletin/MS01-059.mspx>
<http://www.microsoft.com/technet/security/bulletin/MS03-007.mspx>
<http://www.microsoft.com/technet/security/bulletin/MS03-039.mspx>
<http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx>

Ramakrishnan, K. and S. Floyd, A Proposal to add Explicit Congestion Notification 
(ECN) to IP

<http://www.ietf.org/rfc/rfc2481.txt>

Rekhter, Y., et al., Address Allocation for Private Internets
<http://www.ietf.org/rfc/rfc1918.txt>

Smith, Ricky GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
<http://www.giac.org/practical/GCIA/Ricky_Smith_GCIA.pdf>



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Detailed Analysis

- 41 -

SnortSnarf, <http://www.snort.org/dl/contrib/data_analysis/snortsnarf/>

snort_stat, <http://www.snort.org/dl/contrib/data_analysis/snort_stat.pl>

State of California. BILL NUMBER: SB 1386
<http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-

1400/sb_1386_bill_20020926_chaptered.html>

Stearnes, William Ramen Worm
<http://www.sans.org/y2k/ramen.htm>

United States. Department of Education. Family Educational Rights and Privacy Act 
(FERPA)

<http://www.ed.gov/policy/gen/guid/fpco/ferpa/index.html>

Wood, Alex Intrusion Detection: Visualizing Attacks in IDS Data
<http://www.giac.org/certified_professionals/practicals/gcia/0619.php)

Zone Labs Virus Information Center, Rbot.T (aka Sdbot)
<http://vic.zonelabs.com/tmpl/body/CA/virusDetails.jsp?VId=39437>


