
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6

GIAC (GCIA) Gold Certification

Author:	 Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	
Advisor:	 Antonios	 Atlasis	

Accepted:	 September	 21st,	 2011	

Abstract	

Over the next years to come IPv6 will eventually replace IPv4 in private and public

networks. This paper attempts to describe upcoming challenges and limitations as well as

new methods of OS fingerprinting with the shift to IPv6. This includes performing

network scans and finding live hosts to fingerprint. The focus of this paper will be on

describing the changes made within the protocol headers in IPv6 and the consequences

for OS fingerprinting. This covers known fingerprinting method with new IPv6 header

fields and new methods of OS fingerprinting enabled with the IPv6 protocol. Protocol

examinations also include IPv6 extension headers introduced with IPv6. Current

fingerprinting and scanning tools will be listed and checked for IPv6 fingerprinting

support. Finally, possible countermeasures to prevent OS fingerprinting on IPv6 protocol

level will be mentioned.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 2
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

1. Introduction
In real life human fingerprints are used as a method of identification. As of today

no two fingerprints were found to be alike, hence fingerprints are an excellent way to

positively identify a person beyond reasonable doubt. Just like a human fingerprint has its

unique characteristics, an operating system has its unique implementation of

communication protocols by which it can be identified. In this context, OS (Operating

System) fingerprinting is the analysis of certain characteristics and behaviors in network

communications in order to remotely identify an OS and its version without having direct

access to the system itself (Allen, 2007). Like in real life, fingerprints are compared to a

database of known identities. Captured system communications characteristics and

behaviors need to be compared to a database of known operating systems. OS

fingerprinting is a useful and important tool for both security professionals (called ‘white-

hats’) and crackers (called ‘black-hats’). Not only can it be used to get a good overview

of systems on a network, but it can reveal vulnerable systems that need to be secured or

might be promising targets to attack.

The main reason why OS fingerprinting is feasible refers back to the RFCs

responsible for communications protocols like IP (IPv6), ICMP, TCP and UDP only

describing the expected normal behavior. They define how the protocols should be used

and should work, but they do not explain in detail how certain parameters should be

chosen or how to handle unexpected or incorrect flag combinations. For instance, the

default values for the TTL (Time to live) in the IPv4 or the ISN (Initial Sequence

Number) in the TCP protocol are not defined. This lack in specification leaves room for

interpretation by OS vendors when implementing these protocols in their operating

systems. Therefore, different operating systems tend to show different characteristics in

communication and handling of unexpected or incorrect flag combinations.

OS fingerprinting is an important technique for both white-hats and black-hats.

Not only is OS fingerprinting an excellent technique for black-hats to discover vulnerable

systems, but it is also very valuable to security professionals to be able to discover,

manage and control network resources and identify vulnerable systems.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 3
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

For black-hats it is not only essential to find live hosts on a targeted network, but

to identify their operating systems. This way the black-hat can use the appropriate

exploits and intrusion techniques for the identified operating systems. For instance, if a

targeted webserver is known to run a Linux operating system it would not be promising

to try exploits and attacks crafted for an IIS webserver. Furthermore, an OS fingerprint

may reveal that a targeted system is missing specific security patches or service packs

which fix known vulnerabilities. With that knowledge black-hat might be able to target

those specific vulnerabilities and gain control over the system with little effort (Allen,

2007).

Security professionals may utilize OS fingerprinting to manage and secure

networks and systems. White-hats or administrators can use OS fingerprinting to map out

and identify all systems existent in their managed network segment. The information

gained may be used to identify unpatched or vulnerable systems or unauthorized and

rouge devices connected to the network. In addition, other network devices such as

printers and switches have to be identified, managed and updated as well (Nerakis, 2006).

OS fingerprinting is a complex and extensive subject. There are different methods

of OS fingerprinting, both technical and non-technical. These include port scanning,

banner grabbing, active stack fingerprinting, passive stack fingerprinting and social

engineering. Moreover, stack fingerprinting analysis can be made on different layers of

the TCP/IP reference model and utilizing various protocols. Although other protocols like

TCP or UDP are mentioned in this paper and are used more extensively for OS

fingerprinting, this paper focuses on OS fingerprinting based on the IPv6 protocol

(Nerakis, 2006).

This paper looks at some IPv6 fingerprinting methods derived from IPv4 and

some newly enabled ones. Additionally, some of the methods are tested to demonstrate

the possibilities of OS fingerprinting with IPv6. But the limits of this paper do not allow

for analyzing and testing of all IPv6 OS fingerprinting methods.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 4
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

2. The Change from IPv4 to IPv6
2.1. Protocol Header changes in IPv6

This chapter gives a short overview of the IPv6 protocol. The introduction of the

IPv6 protocol is not only in response to the exhaustion of IPv4 address space, but an

evolution of the IPv4 protocol in terms of improving existing features and adding new

ones. Improvements in the IPv6 protocol include (Network Working Group, 1995):

§ Expanded address space.

§ Extended routing (more levels of addressing hierarchy, simple auto-configuration

of addresses).

§ Improved scalability of multicast routing.

§ Simplified header (lesser header fields compared to IPv4 to lower processing

costs, dropped header fields are now available as optional extension headers).

§ Support for optional extension headers (allows for faster processing because

extension headers are not examined by routers, allows for arbitrary length of IPv6

header).

§ Support for authentication and privacy through encryption.

§ Support for source routes (Source Demand Routing Protocol (SDRP)).

§ Quality of service capabilities.

These improvements also allow for foreseen and unforeseen successes in simplicity,

resiliency and flexibility of the IPv6 protocol (Murphy & Malone, 2005).

In order to better understand the effect the change from IPv4 to IPv6 has on OS

fingerprinting, the following figures describe the differences and similarities of these

protocols.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 5
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

	

Figure	 1	 -‐	 IPv4	 Protocol	 Header	 (SANS	 Institute,	 2011a)	

Figure 1 - IPv4 Protocol Header shows the IPv4 protocol header as specified in

the RFC 791 (University of Southern California, 1981). The Figure 2 - IPv6 Protocol

Header shows the new IPv6 protocol header (Network Working Group, 1998). Although

the ‘Source Address’ and ‘Destination Address” header fields are four times as long in

IPv6 compared to IPv4, the entire protocol header without options is only twice as long.

This is because some of the header fields from IPv4 were discarded in IPv6 and

somewhere moved to an extension header. That speeds up the routing process as routers

between the source and destination don not need to process extension headers.

	

Figure	 2	 -‐	 IPv6	 Protocol	 Header	 (SANS	 Institute,	 2011b)	

Next, this paper is going to examine some specific header fields in the IPv6

protocol. There are only three header fields that have the same name as before; these are

‘Version’, ‘Source Address’ and ‘Destination Address’. The source and destination

address fields gained in length. The version header field is the only field that is identical

to the IPv4 protocol. The version field specifies the IP protocol version and therefore

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4

8

12

16

20

24

Destination	 Address

Options	 (optional)

TTL Protocol Header	 Checksum

Source	 Address

Version IHL Type	 of	 Service Total	 Length

Identification Flags Fragment	 Offset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4

8

12

16

20

24

28

32

36

40

Source	 Address

Destination	 Address

Version Traffic	 Class Flow	 Label

Payload	 Length Next	 Header Hop	 Limit

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 6
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

caries the information how to process the packet. Table 1 – Modified header fields in

IPv6 give an overview over the IPv6 and corresponding IPv4 header fields as well as new

features introduced in IPv6.

IPv6 IPv4 Description

Traffic Class /

Flow Label

Type of Service This field may be used by a host to label those

packets for which it is requesting special handling

by routers within a network, such as non-default

quality of service or "real-time" service.

Payload Length IHL (Internet

Header Length)

/ Total Length

Length of the remainder of the packet following

the IPv6 header, in octets.

Next Header Protocol Identifies the type of header immediately

following the IPv6 header.

Hop Limit TTL Decremented by 1 by each node that forwards the

packet. The packet is discarded if Hop Limit is

decremented to zero.

Table	 1	 –	 Modified	 header	 fields	 in	 IPv6	

As only the absolute necessary header fields are placed in the default header of

the IPv6 protocol, all other additional functionality is moved to the optional extension

headers. Table 2 - Extension headers in IPv6 shows all available extension headers

(Hermann-Seton, 2002).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 7
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

IPv6 Description

Hop-by-Hop Options

Header

Options that need to be examined by all devices on the

path.

Destination Options Header Options that need to be examined only by the destination

of the packet.

Routing Header Methods to specify the route for a datagram (used with

Mobile IPv6). The Routing header is used by an IPv6

source to list one or more intermediate nodes (or

topological clusters) to be "visited" on the way to a

packet's destination.

Fragment Header The Fragment header is used by an IPv6 source to send

payloads larger than would fit in the path MTU to their

destinations. The Fragment Header replaces and moves

the fragmentation capabilities of IPv4 to the optional

extensions headers. Therefore the Fragment Header is not

examined by routers and fragmentation must be handled

by the end points.

Authentication Header

(AH)

The Authentication header is used to provide

authentication and integrity assurance for IPv6 packets.

Privacy Header (ESP) The Privacy Header or Encapsulating Security Payload

(ESP) seeks to provide confidentiality and integrity by

encrypting data to be protected and placing the encrypted

data in the data portion of the Privacy Header.

Table	 2	 -‐	 Extension	 headers	 in	 IPv6	

In addition to the header fields that were changed or added in IPv6, the header

field ‘Checksum’ was discarded completely. This speeds up the routing process as no

checksum needs to be checked and calculated by every router the packet passes. The

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 8
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

integrity of packets is normally checked by upper layer protocols like TCP, so this does

not negatively affect the reliability of a communication.

2.2. Challenges in finding live hosts with IPv6
This paper assumes that the targeted live host for fingerprinting is known. But in

reality a new challenge with IPv6 is that it is not as easy to find live hosts to fingerprint

as with IPv4. Scanning a subnet with IPv4 might be done in a matter of hours, but it

might take days or weeks with IPv6 as the address space is much wider. Furthermore,

assuming that the number of live hosts will not raise the same amount as the address

space increases with the transition to IPv6, it will be much more difficult to find live

hosts. This is mainly because most addresses are not used yet, although there are

techniques to reduce the IPv6 search space (Chown, 2005). For instance, a typical IPv4

subnet has 8 bits, a typical IPv6 subnet 64 bits reserved for host addressing. At a scanning

speed of one probe per second the IPv4 subnet scan would take less than 5 minutes to

complete, whereas the IPv6 subnet would take more than 5 billion years to complete

(6net, 2008).

3. Existing OS fingerprinting methods from IPv4
3.1. IPID generation and fragmentation

The new fragmentation extension header in IPv6 reuses known IPv4 header fields

and therefore does not offer new functionality. The IPv4 header fields ‘Identification’

(packet ID), ‘Flags’ and ‘Fragment Offset’ were moved to the IPv6 fragmentation

extension header. While the basic functionality of fragmentation stays the same in IPv6,

the relocation of the fragmentation header fields enables new ways of usage for OS

fingerprinting. This is because fragmentation is now handled by the source and

destination rather than intermediate routers to speed up packet delivery times (Network

Working Group, 1998). In IPv4 fingerprinting, tools avoid fragmentation because it is

done by intermediate routers which results in identifying a router rather than the sending

operating system (Lyon, 2011a). In IPv6, fragmentation is now exclusively done by the

source and destinations hosts. This means the fragmentation extension header is not

processed and manipulated by intermediate routers and therefore can be used to identify

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 9
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

the source OS. In IPv6 routing devices or routers along the travel path of a packet do not

need to support fragmentation anymore and will simply discard any packets too large for

the MTU of the next network segment (Nerakis, 2006).

Although fragmentation fingerprinting is generally avoided in IPv4, one flag is

used for fingerprinting (Lyon, 2011b). That is the “DF” or “don’t fragment” flag of the

IPv4 header. This is only set by the sending host and not manipulated by intermediate

routers, hence it can be used for fingerprinting. But the DF flag is the only IPv4 header

field that was removed in the IPv6 fragmentation header as it is not necessary for packet

delivery any more. This means the DF flag is not available for fingerprinting in IPv6. But

as fragmentation is handled by source and destinations hosts in IPv6, all other

fragmentation extension header field could now be used for fingerprinting (Trowbridge,

2003).

The IPv6 fragmentation header is specified in RFC 2460 and adds three

modifications to handle error conditions that may arise when reassembling fragmented

packets. First, the time to complete the reassembly for a packet is limited to 60 seconds

within the reception of the first fragment. If not all fragments are received within this

timeframe, all fragments must be discarded. Furthermore, if the first fragment has been

received, an ICMP Fragment Reassembly Time Exceeded response message should be

sent back. Secondly, the fragment offset in the fragmentation extension header is

specified in 8-octet units, relative to the start of the fragment of the original packet. This

means that, if a fragment is not the last fragment and the length of the fragment is not a

multiple of 8 octets, the fragment must be discarded. In such an event an ICMP

Parameter Problem, Code 0 error message should be sent in response. Finally, if the

length and offset of a fragment are such that the total length of the reassembled packet

would exceed 65,535 octets, all fragments should be discarded (DITCHE, 2005).

Extensive tests should be performed to examine if the OS vendors comply with

the aforementioned recommendations. If any of them do not, this could be a good

indication that might be used for OS fingerprinting.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 10
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

3.1.1. IPID generation
The IPID is a unique identifier for every packet in a connection. It is used as

reference for every single fragment of a packet when reassembling it. Many operating

systems utilize a system wide counter for IPID generation. Other, more advanced

operating systems randomize the IPID. Of these two variations the system wide counter

may produce predictable IPIDs which could be used to identify an operating system

(Trowbridge, 2003).

Some fingerprinting tools like Nmap even try to find patterns in the IPID

generation of an OS (Nerakis, 2006).

3.1.2. Overlapping fragments
The handling of overlapping fragments could be used for OS fingerprinting in

IPv4, although avoided because intermediate routers handle fragmentation (Lyon,

2011b). Overlapping fragments means that two consecutive fragments carry the same

bytes of the final IP packet. For instance, the last two bytes of the first fragment represent

the same two bytes as the first two bytes of the second fragment. In this case the OS

TCP/IP stack has to decide how to reassemble the final packet. Depending on the

implementation of the OS some might tend to override the bytes from the earlier

fragment with the bytes from the later fragment and vice versa. Such differences can lead

to OS fingerprinting (Nerakis, 2006).

As far as the IPv6 fragmentation handling is concerned, this was initially

specified in the RFC 2460. This RFC allows overlapping fragments, but it does not

specify how to process them (DITCHE, 2005). This shortcoming is addressed in the RFC

5722, which intends to update the IPv6 fragmentation handling. Specifically, RFC 5722

explicitly requires overlapping fragments to be silently discarded, eliminating any effects

of such type of attacks (Krishnan, 2009). However, extensive tests should be performed

to examine if the OS vendors comply with RFC 5722, or if they still implement RFC

2460 regarding fragmentation.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 11
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

3.2. TTL or Hop Limit
The Time-to-Live or short TTL header field in the IPv4 protocol is used as a

counter to prevent packets from bouncing around the internet or between routers

indefinitely. The TTL is set to a specific value by the sending host and decremented by 1

by every router along the travel path. As soon as the TTL reaches 0, the packet is

dropped, regardless of whether the target host was reached or not. The RFC 791, which

specifies the IPv4 protocol, does not require an explicit value that should be used as

initial value for the TTL (University of Southern California, 1981). As a result, different

operating systems use different initial TTL values. These deviations between operating

systems can be used to fingerprint them (Nerakis, 2006).

In the IPv6 protocol the TTL header field is renamed to hop limit, but the basic

functionality stays the same and therefore can still be utilized to fingerprint operating

systems. However IPv6 introduces the stateless address autoconfiguration (Thomson &

Narten, 1998). Address autoconfiguration allows a host to obtain parameters like IPv6

prefix, link local MTU and hop limit on network initialization when a router is present.

The router sends router advertisements to hosts on the local network in order to set

certain parameters. By this, all operating systems regardless of differences in their

TCP/IP stack implementation can obtain the same initial hop limit. Therefore, OS

fingerprinting based on the initial hop limit may not be feasible in networks using address

autoconfiguration (6deploy, 2011).

Still, in some cases like a home local area network where no router is present,

differences in the initial hop limit as seen in IPv4 are expected between operating

systems.

3.3. ICMP port unreachable message
The ICMP protocol in IPv4 allows OS fingerprinting based on the payload of port

unreachable messages (Postel, 1981). In order to be able to associate the port unreachable

message with the original message that triggered it, the first part of the originating

message starting with the IPv4 header is included in the payload of the response. As the

RFC 1122 only specifies the minimum required bytes of the original packet to include in

the ICMP port unreachable response, different operating systems tend to include different

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 12
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

amount over this minimum (Braden, 1989). Therefore, ICMP port unreachable messages

are a good source of OS fingerprinting in IPv4 (Nerakis, 2006).

The basic principle of port unreachable messages stays the same in ICMPv6. The

ICMP protocol is moved to an extension header of the IPv6 protocol and some ICMP

codes are changed, but the header fields stay the same. Operating systems include

different amounts of data from the original packet in ICMPv4 error messages, although

the RFC specifies otherwise. This leads to the assumption that ICMPv6 implementation

may do the same and provide OS specific fingerprints (Nerakis, 2006).

4. OS fingerprinting methods enabled by IPv6
4.1. IPv6 Extension Headers

The new concept of optional extensions headers replaces the IPv4 options. These

extension headers might enable new methods of fingerprinting hosts. In this section we

will look at some of these extension headers and identify header fields that might

possibly be manipulated to stimulate unexpected responses. The extent of this paper does

not allow testing all these possibilities. Until then all described possibilities do not

represent actual proven fingerprinting methods. Nevertheless, this section will provide an

overview of what might be feasible with the IPv6 extension headers.

There are a small number of available extension headers at the moment, each of

which is identified by a distinct next header value. The currently implemented extension

headers are (Ahmed & Asadullah, 2009):

§ Hop-by-Hop options header

§ Routing header

§ Fragment header

§ Destination options header

§ Authentication header

§ Privacy header

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 13
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

The extensions headers are only processed by the endpoints of a connection with

exception of the Hop-by-Hop extension header. The Hop-by-Hop options header is

examined by every node or router along the packets travel path.

In the following, some extensions headers are listed and possible fingerprinting

methods enabled by them. This is just a short summary and does not explain the header

fields or packet manipulation possibilities in detail.

4.1.1. Destination Options Header
The destination options header is specified in RFC 2460. The destination options

header consists of the header fields “next header” (8-bit), “header extension length” (8-

bit) and “options” (variable length). The options header field contains one or more Type-

Length-Value (TLV) options. One TLV consists of the fields “option type” (8-bit),

“options data length” (8-bit) and “options data” (variable length) (Network Working

Group, 1998). The Destination Options Header may be used with an unrecognized

destination type to fingerprint a targeted OS. To allow this the destination option type

should be set to an unrecognized value for a destination header. By analyzing the

response sent by targeted host, a distinction between different operating systems might be

feasible (Ahmed & Asadullah, 2009).

4.1.2. Routing Header
The routing header is specified in RFC 2460. The routing header consists of the

header fields “next header” (8-bit), “header extension length” (8-bit), “routing type” (8-

bit), “segments left” (8-bit) and “type-specific data” (variable length) (Network Working

Group, 1998). As the RFC does not specify how to handle unexpected or malformed

routing headers, we can try the following manipulations to the routing header in order to

stimulate a response that might be used to identify a specific operating system (Ahmed &

Asadullah, 2009).

§ Unrecognized routing type

For this test the routing type field should be set to an unrecognized value,

the segments left field should be set to “1” and the data field set to the

“::0” address. The RFC 2460 specifies that in that case the processing

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 14
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

target host has to make a decision based on the value of the segments left

field. If the segments left field is set to “0” the host should ignore the

routing header and proceed to the next header. Otherwise an ICMPv6 error

message should be generated (Nerakis, 2006).

§ Unrouted address

The routing type field should be set to the default type, the segments left

field should be set to “1” and the data field set to the “::0” address. The

RFC 2460 specifies that the first address to be visited by the packet is the

one in the IPv6 header. That address or host then has to send the packet to

the next address specified in the routing extension header. As this address

is considered unrouted, we might want to examine the responses by

different operating systems (Nerakis, 2006).

§ Incorrect extension header length

The routing type field should be set to the default type “0”, the segments

left field should be set to “2” and the data field set to the “::0” address.

The RFC 2460 specifies that the receiver should discard the packet, if the

segments left field is greater than the routing addresses in the routing

extension header. A corresponding ICMPv6 error message should be

generated (Nerakis, 2006).

4.1.3. Fragment Header
The fragmentation header is the replacement for the fragmentation options in the

IPv4 header. See chapter 3.1 for fragmentation fingerprinting methods.

The RFC 2460 recommends an order for the extension headers to appear. The

order recommended is:

§ IPv6 header

§ Hop-by-Hop options header

§ Destination options header

§ Routing header

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 15
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

§ Fragment header

§ Authentication header

§ Encapsulating Security Payload header

§ Destination Options header

§ Upper-layer header

Furthermore, the RFC 2460 specifies that all extension headers, except for the

destination options header, should only occur ones. The destination options header might

occur twice, once before the routing header and again once before the upper-layer header.

Both the order recommendation and occurrence specification of the extension headers

might offer ways to manipulate packets to stimulate unexpected responses. As the order

is merely a recommendation, different operating system might process various order

combinations differently (DITCHE, 2005).

4.2. MTU discovery
As the fragmentation of packets is done by endpoints in IPv6 rather than by

intermediate routers, the sending host first has to discover the MTU (maximum

transmission unit) for the path to the destination host. IPv6 offers the path MTU

discovery protocol specified in RFC 1981. The question arises how different operating

systems implement or use the MTU discovery protocol. Different operating systems

might choose a different default MTU for the first connection. Some might choose a low

transmission unit to avoid fragmentation and the need for MTU discovery. Others might

try to discover the MTU on every connection. All these possibilities might be used to

fingerprint operating systems as vendors tend to implement RFCs differently (McCann,

Deering, & Mogul, 1996).

4.3. Neighbor Discovery Protocol (NDP)
The Neighbor Discovery Protocol (NDP) is introduced with IPv6 as a

replacement for the IPv4 ARP (Address Resolution Protocol). It is specified in the RFC

1122 and handles several tasks. These tasks are address autoconfiguration of nodes,

discovery of other nodes on the same link, including determining the link layer addresses

of other nodes, detection of duplicate addresses, locating available routers and DNS

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 16
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

(Domain Name System) servers and discovering the address prefix (Braden, 1989). The

NDP is quite a simple protocol and implementation between OS vendors might not vary

and therefore not allow OS fingerprinting based on the NDP. However, tests and analysis

show that despite the simplicity there are differences between operating systems.

Although there are some differences in the implementation between operating systems,

these are not enough to precisely tell them apart or even distinguish between OS versions

(Beck, Festor, & Chrisment, 2007).

5. IPv6 fingerprinting hands-on examples
This chapter provides some hands-on examples of OS fingerprinting with IPv6.

For this purpose some of the methods described in the previous chapter will be tested.

The following tests only utilize active fingerprinting methods. Successful passive

fingerprinting methods will need a larger network that produced enough network traffic

to capture sufficient and suitable packets.

5.1. The test environment
In order to illustrate the application of some of the fingerprinting methods

described in the previous chapter, we set up a test environment. The test environment

includes the following four operating systems.

Fingerprinting source

• Linux Ubuntu 11.04 (Canonical Ltd., 2011)

Fingerprinting targets

• Microsoft Windows 7 64-bit (6.1, Build 7601) (Microsoft Corporation,

2011)

• Linux Ubuntu 11.04 (Canonical Ltd., 2011)

• PC-BSD 8.2 (iXsystems Inc., 2011)

The OS selection does not cover a wide range of systems and different versions,

but it does include one derivative of Microsoft Windows, Linux and Unix. This should be

sufficient for the scope of this paper.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 17
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

All systems are connected via local network only using the IPv6. For performing

the fingerprinting and analyzing the network traffic the tools Scapy (version 2.1.0)

(Biondi, 2011), traceroute (version 2.0.15 for Linux) and Wireshark (version 1.4.6) (The

Wireshark team, 2011) are used.

The following figure shows the test environment setup with the fixed local IPv6

addresses configured for all hosts.

Figure	 3	 –	 OS	 Fingerprinting	 test	 environment	

For these tests all the systems and IP addresses are known. This means all

targeted IP addresses are known to be a running host, although there might be no

response. Furthermore, as all systems are on the same local area network and no router

needs to be passed, thus the hop limit will never be decremented. This is important for the

hop limit fingerprinting tests.

5.2. Initial hop limit test
In order to test the initial hop limit of a system, the targeted hosts need to send an

IPv6 packet. As the hop limit must be set for every IP packet, almost every stimulus that

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 18
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

will trigger a response will work. In this case an ICMP echo request packet is chosen to

stimulate a response. We craft the ICMP echo request packet using Scapy.

5.2.1. Windows 7
Figure 4 - ICMPv6 echo request against Windows 7 shows how we build an

ICMPv6 echo request packet in Scapy. We first create a stimulus packet (“sp”) as an IPv6

packet. The target host in this example is the Windows 7 host with the IPv6 address of

‘fe80::aaaa’. Next we create an ICMPv6 echo request (“er”). Finally, we send the

ICMPv6 echo request using the “sr1()” command. The screenshot also shows parts of the

ICMPv6 response packet.

Figure	 4	 -‐	 ICMPv6	 echo	 request	 against	 Windows	 7	

The warning can be ignored in this case as we are on a local network and know

the host is alive. As we can see, we get one packet in response to our echo request. Figure

5 - Wireshark echo response output from Windows 7 shows the Wireshark output

generated by the echo request and echo reply.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 19
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

Figure	 5	 -‐	 Wireshark	 echo	 response	 output	 from	 Windows	 7	

The first packet we see in the list is the ICMPv6 echo request send from our

probing host to the target host with the IPv6 address of ‘fe80::aaaa’. The second packet is

the echo response send by the targeted host. In the details below we can see that the ‘Hop

limit’ is set to ‘128’ by the targeted host. As the test environment is set up as a local area

network, we know the hop limit is the initial hop limit set by the operating system, in this

case Windows 7.

5.2.2. Ubuntu 11.04
We run the same test against the Ubuntu system with the parameters shown in

Figure 6 - ICMPv6 echo request against Ubuntu 11.04.

Figure	 6	 -‐	 ICMPv6	 echo	 request	 against	 Ubuntu	 11.04	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 20
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

Figure	 7	 -‐	 Wireshark	 echo	 response	 output	 from	 Ubuntu	 11.04	

In Figure 7 - Wireshark echo response output from Ubuntu 11.04 we see the same

echo ICMPv6 echo request against the Ubuntu 11.04 host with the IPv6 address of

‘fe80::bbbb’. As we can see, the Ubuntu host sets the initial hop limit to ‘64’.

5.2.3. PC-BSD 8.2
Next, we run the ICMPv6 echo request against the PC-BSD host as shown in

Figure 8 - ICMPv6 echo request against PC-BSD 8.2.

Figure	 8	 -‐	 ICMPv6	 echo	 request	 against	 PC-‐BSD	 8.2	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 21
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

Figure	 9	 -‐	 Wireshark	 echo	 response	 output	 from	 PC-‐BSD	 8.2	

The Wireshark output for the PC-BSD hosts echo reply shows that the hop limit is

set to ‘64’, the same as the Ubuntu host.

The ICMPv6 echo request tests show that operating systems use different initial

hop limit values in their IPv6 implementation. Like the RFC 791 does not specify a

certain initial TTL value for IPv4, the RFC 2460 does not specify a certain initial hop

limit for IPv6 packets. In our tests, the Windows 7 host set an initial hop limit of ‘128’,

whereas the Ubuntu and PC-BSD host set a value of ‘64’. This shows that operating

system can be told apart by their initial hop limit. However, in this case it is only possible

to differentiate between Windows and Unix/Linux based systems. To accurately identify

the OS, more tests have to be done in order to find more fingerprints which help to tell

the different Unix/Linux based systems apart.

5.3. ICMP port unreachable message
In IPv4 the amount of original data contained within the ICMP error messages is

not constant and differs by operating system. These differences are used for OS

fingerprinting (Nerakis, 2006). In IPv6, respectively ICMPv6, we might expect the same

differences between operating systems. To test this behavior we utilize the Linux

traceroute tool. Linux traceroute generates a serious of UDP packets to find out the route

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 22
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

to a given target IP address. As the fingerprinting source and target are on the same local

network and no programs are listening on UDP ports, we expect to see ICMP port

unreachable messages as response to see on the network.

In this test scenario we use the following traceroute command to fingerprint the

targeted systems.

Figure	 10	 -‐	 traceroute	 command	

As we are using IPv6, the option “-6” must be added to the command line.

Otherwise, traceroute would send an IPv4 packet. In order to tell traceroute the network

interface to use, we specify it by adding “-i eth0”. This tells traceroute to use the eth0

interface, which is necessary, because we are using link local addresses. Next, we specify

the target host we are trying to fingerprint. In this example it is the host with the address

of “fe80::aaaa”. The last option defines the total packet length in bytes, excluding the

Ethernet header, to use for traceroute. As we are looking for differences in the amount of

original packet data contained in the response, we are continuously increasing this value.

By this we hope to find the maximum payload each operating system returns. If these

maximum payloads vary between the systems, we can use this information for OS

fingerprinting.

5.3.1. Windows 7
This example shows one ICMPv6 port unreachable error message returned by

Windows 7. In this case the IPv6 packet size (excluding the Ethernet header) of the UDP

packets is 80 bytes. Shown on screenshot, traceroute sends a serious of UDP packets with

different source and destination port variation to the target host. However, we are only

interested in the payload length of the ICMPv6 port unreachable message. As we can see

on the screenshot, the payload of the IPv6 packet that the Windows 7 host sends in

response is ‘88’. This includes the ICMPv6 header, which is composed of 8 bytes. After

subtracting the ICMPv6 header length of 8 bytes, the total amount of payload data within

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 23
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

the ICMPv6 error message is 80 bytes. That is exactly the IPv6 packet size (excluding the

Ethernet header) of the traceroute packets.

Figure	 11	 -‐	 ICMPv6	 port	 unreachable	 message	 returned	 by	 Windows	 7	

5.3.2. Ubuntu 11.04
This example shows an ICMPv6 port unreachable message returned by Ubuntu

11.04. For this example we used an IPv6 packet size (excluding the Ethernet header) of

500 bytes for the UDP traceroute packets. As we can see the payload of the IPv6 packet

returned by the Ubuntu host is 508 bytes. After subtracting the 8 bytes of the ICMPv6

header we get our 500 bytes of the original packet.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 24
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

Figure	 12	 -‐	 ICMPv6	 port	 unreachable	 message	 returned	 by	 Ubuntu	 11.04	

5.3.3. PC-BSD 8.2

Figure	 13	 -‐	 ICMPv6	 port	 unreachable	 message	 returned	 by	 PC-‐BSD	 8.2	

Figure 13 - ICMPv6 port unreachable message returned by PC-BSD 8.2 shows

the same test against the PC-BSD host. Again, after subtracting the8 bytes of the ICMPv6

header we get our initial packet size of 1000 bytes, as set in traceroute.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 25
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

To evaluate the maximum payload of the ICMPv6 error messages, we run a series

of tests with growing packet sizes against each operating system. Table 3 - Bytes returned

in ICMPv6 port unreachable error messages shows the evaluation of our tests. The first

column is the packet size (excluding the Ethernet header) of the UDP packet series sent

by traceroute. The second, third and fourth column represent the total bytes of payload in

the ICMPv6 port unreachable message returned by the target hosts.

Total bytes sent Windows 7 Ubuntu 11.04 PC-BSD 8.2

80 80 80 80

250 250 250 250

500 500 500 500

750 750 750 750

1000 1000 1000 1000

1250 1232 1232 1232

1500 1232 1232 1232

Table	 3	 -‐	 Bytes	 returned	 in	 ICMPv6	 port	 unreachable	 error	 messages	

As we can see in the test results, the amount of data from the original packet

never exceeds 1232 bytes. This behavior is common for all three operating systems in

this test. The conclusion of this test has to be that, unlike ICMP error messages in IPv4,

the ICMPv6 error messages do not offer a fingerprint based on the payload of the original

packet.

6. Fingerprinting tools and IPv6 support
As most fingerprinting techniques utilize the TCP and other upper layer protocols,

the use of IPv6 is supported in most common network security tools. However, the actual

usage of IPv6 protocol header information that could indicate a specific OS is limited.

Nevertheless, there are some tools that make use of IPv6 protocol characteristics

to identify operation systems.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 26
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

6.1. Nmap 5.51
The most well-known OS fingerprinting tool is Nmap. As of version 5.51 Nmap

does support ping sweeps with IPv6, but it does not support automated OS identification

based on IPv6. Automated probing and analysis are only supported for IPv4 at this time.

The next, still unstable version of Nmap 5.59 (currently in beta status) will support

automated fingerprinting based on IPv6 (Lyon, 2011a).

6.2. P0f
P0f is the most well-known passive OS fingerprinting tool. It passively detects OS

types and versions, firewalls and the usage of NAT. As of now p0f works fine with IPv4,

but does not support IPv6 (Beck, Festor, & Chrisment, 2007).

6.3. SinFP 4
SinFP 4 performs TCP active fingerprinting based on IPv6 to determine the

remote OS. The tool itself works properly, though the fingerprint database is not very

accurate. Thus, the OS identification may not always be very reliable. Besides, some of

the tests could be considered as attacks by IDS (Beck, Festor, & Chrisment, 2007).

7. Preventing IPv6 OS fingerprinting
There are just as many techniques and tools for preventing OS fingerprinting as

there are for performing OS fingerprinting. Preventing OS fingerprinting does not

necessarily mean to prevent the disclosure of any information that might lead to

identifying a specific OS, but it may also mean to alter or obfuscate information in order

to simulate a different OS to the one actually used. Besides, OS fingerprinting tools rely

on a number of different tests to conclusively identify an OS. By blocking or obfuscating

some of these tests fingerprinting tools can be misled. (Zamboni & Kruegel, 2006). It

must be stated that any kind of preventing OS fingerprinting or obfuscating the identity of

an OS should not be considered a reliably security measure. Even so the true identity and

version of an OS can be hidden, this cannot stop an attacker from trying every potential

exploit for every OS. Therefore, preventing OS fingerprinting slows down hackers, but

the only real security mechanism to rely on remains patching and hardening the OS

(Allen, 2007).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 27
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

As said before, there are in general many ways to prevent OS fingerprinting. For

instance, welcome banners for FTP, SMTP and other services like Apache and IIS

servers could be altered. A firewall or IPS could be used to filter and block outgoing

traffic that might give away information to identify an OS. Or services like HTTP and

SSH could be configured to use non-standard ports (Trowbridge, 2003).

In order to prevent OS fingerprinting in the case of the IPv6 protocol, either the

TCP stack of the OS must be modified or a filtering device must manipulate packets

passing through it. A filtering or packet manipulating device will slow down network

traffic or even block it. Making modifications to the TCP stack of an OS might not only

affect how network traffic appears, but also may have a negative impact on network

performance (Allen, 2007).

8. Conclusion
After looking at known fingerprinting methods from IPv4 and newly enabled

methods by the IPv6 protocol, we conclude that fingerprinting methods with the IP

protocol did not fundamentally change. Some of the known fingerprinting techniques

from IPv4 can still be used with IPv6, others are obsolete. Then again, IPv6 also enables

new methods of OS fingerprinting which substitute the obsolete methods from IPv4.

Overall, OS fingerprinting methods with the IP protocol are still limited with IPv6, hence

OS fingerprinting still depends on upper layer protocols like TCP or FTP.

The change from IPv4 to IPv6 does bring one change worth mentioning. The

address space is largely enhanced with the IPv6 128-bit IP addresses. As OS

fingerprinting sometimes includes finding live hosts on a network first, a simple address

range scan is too time consuming within a standard IPv6 subnet with 64-bit reserved for

the host address.

This paper gives an overview of some of the OS fingerprinting methods available

with IPv6. These methods still need to be intensively tested in an appropriate

environment. Although this paper gives examples for some of the methods described, it

does not and is not intended to cover OS fingerprinting in depth. The examples are based

on three common operating systems in use today, but they barely cover all available

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 28
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

operating systems. Likewise, the tests do not differentiate between different versions of a

respective OS, which calls for further research. The objective is to test all the methods

described with all major operating system including their different versions. This is not

only necessary to confirm whether these methods are useful or not, but to build a

database of as much IPv6 OS fingerprints as possible.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 29
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

9. References
6deploy.	 (2011).	 IPv6	 Address	 autoconfigration	 stateless	 &	 stateful.	 Retrieved	

September	 08,	 2011,	 from	 http://www.6deploy.eu/tutorials/080-‐
6deploy_ipv6_autoconfiguration_mechs_v0_4.pdf	

6net.	 (2008).	 IPv6	 Deployment	 Guide.	 Javvin	 Press.	

Ahmed,	 A.,	 &	 Asadullah,	 S.	 (2009).	 Deploying	 IPv6	 in	 Broadband	 Access	 Networks.	
John	 Wiley	 &	 Sons.	

Allen,	 J.	 M.	 (2007,	 September	 22).	 OS	 and	 Application	 Fingerprinting	 Techniques.	
Retrieved	 March	 22,	 2011,	 from	
http://www.sans.org/reading_room/whitepapers/authentication/os-‐
application-‐fingerprinting-‐techniques_32923	

Beck,	 F.,	 Festor,	 O.,	 &	 Chrisment,	 I.	 (2007,	 March).	 IPv6	 Neighbor	 Discovery	 Protocol	
based	 OS	 fingerprinting.	 Retrieved	 March	 21,	 2011,	 from	
http://hal.inria.fr/docs/00/18/48/51/PDF/RT-‐0345.pdf	

Biondi,	 P.	 (2011,	 September).	 Scapy.	 Retrieved	 September	 03,	 2011,	 from	
http://www.secdev.org/projects/scapy/	

Braden,	 R.	 (1989,	 October).	 RFC	 1122	 -‐	 Requirements	 for	 Internet	 Hosts	 -‐-‐	
Communication	 Layers.	 Retrieved	 August	 24,	 2011,	 from	 http://www.rfc-‐
editor.org/rfc/rfc1122.txt	

Canonical	 Ltd.	 (2011).	 Ubuntu.	 Retrieved	 September	 01,	 2011,	 from	
http://www.ubuntu.com/	

Chown,	 T.	 (2005,	 10	 27).	 IPv6	 Implications	 for	 TCP/UDP	 Port	 Scanning.	 Retrieved	 05	
19,	 2011,	 from	 http://tools.ietf.org/pdf/draft-‐chown-‐v6ops-‐port-‐scanning-‐
implications-‐02.pdf	

DITCHE.	 (2005,	 September).	 IPv6	 Protocol	 (RFC	 2460	 DS).	 Retrieved	 August	 27,	
2011,	 from	 http://www.6diss.org/workshops/saf/ipv6-‐protocol.pdf	

Hermann-‐Seton,	 P.	 (2002).	 Security	 Features	 in	 IPv6.	 Retrieved	 August	 2011,	 23,	
from	 http://www.sans.org/reading_room/whitepapers/protocols/security-‐
features-‐ipv6_380	

iXsystems	 Inc.	 (2011).	 PC-‐BSD.	 Retrieved	 September	 01,	 2011,	 from	
http://www.pcbsd.org/	

Krishnan,	 S.	 (2009,	 December).	 RFC	 5722	 -‐	 Handling	 of	 Overlapping	 IPv6	 Fragments.	
Retrieved	 September	 08,	 2011,	 from	 http://tools.ietf.org/html/rfc5722	

Lyon,	 G.	 (2011a).	 Nmap.	 Retrieved	 September	 04,	 2011,	 from	 http://nmap.org/	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 30
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

Lyon,	 G.	 (2011b).	 Fingerprinting	 Methods	 Avoided	 by	 Nmap.	 Retrieved	 September	 08,	
2011,	 from	 http://nmap.org/book/osdetect-‐other-‐methods.html	

McCann,	 J.,	 Deering,	 S.,	 &	 Mogul,	 J.	 (1996,	 August).	 RFC	 1981	 -‐	 Path	 MTU	 Discovery	 for	
IP	 version	 6.	 Retrieved	 August	 24,	 2011,	 from	
http://www.ietf.org/rfc/rfc1981.txt	

Microsoft	 Corporation.	 (2011).	 Windows	 7	 -‐	 Microsoft	 Windows.	 Retrieved	
September	 01,	 2011,	 from	 http://windows.microsoft.com/en-‐
US/windows7/products/home	

Murphy,	 N.	 R.,	 &	 Malone,	 D.	 (2005).	 IPv6	 Network	 Administration.	 O'Reilly	 Media.	

Nerakis,	 E.	 (2006,	 September).	 IPV6	 HOST	 FINGERPRINT.	 Retrieved	 March	 21,	 2011,	
from	 http://faculty.nps.edu/xie/theses/06Sep_Nerakis.pdf	

Network	 Working	 Group.	 (1995,	 January).	 RFC	 1752	 -‐	 The	 Recommendation	 for	 the	
IP	 Next	 Generation	 Protocol.	 Retrieved	 July	 19,	 2011,	 from	
http://www.ietf.org/rfc/rfc1752.txt	

Network	 Working	 Group.	 (1998,	 December).	 RFC	 2460	 -‐	 IPv6	 Specification.	 Retrieved	
July	 19,	 2011,	 from	 http://www.ietf.org/rfc/rfc2460.txt	

Postel,	 J.	 (1981,	 September).	 RFC	 792	 -‐	 INTERNET	 CONTROL	 MESSAGE	 PROTOCOL.	
Retrieved	 August	 25,	 2011,	 from	 http://tools.ietf.org/html/rfc792	

SANS	 Institute.	 (2011a).	 TCP/IP	 and	 tcpdump	 Pocket	 Reference	 Guide.	 Retrieved	
March	 22,	 2011,	 from	 http://www.sans.org/security-‐resources/tcpip.pdf	

SANS	 Institute.	 (2011b).	 IPv6	 TCP/IP	 and	 tcpdump	 Pocket	 Reference	 Guide.	 Retrieved	
March	 22,	 2011,	 from	 http://www.sans.org/security-‐
resources/ipv6_tcpip_pocketguide.pdf	

The	 Wireshark	 team.	 (2011,	 September).	 Wireshark	 -‐	 Go	 deep.	 Retrieved	 September	
01,	 2011,	 from	 http://www.wireshark.org/	

Thomson,	 S.,	 &	 Narten,	 T.	 (1998,	 December).	 RFC	 2462	 -‐	 IPv6	 Stateless	 Address	
Autoconfiguration.	 Retrieved	 September	 08,	 2011,	 from	
ftp://ftp.ripe.net/rfc/rfc2462.txt	

Trowbridge,	 C.	 (2003,	 July	 16).	 An	 Overview	 of	 Remote	 Operating	 System	
Fingerprinting.	 Retrieved	 March	 22,	 2001,	 from	
http://www.sans.org/reading_room/whitepapers/testing/overview-‐
remote-‐operating-‐system-‐fingerprinting_1231	

University	 of	 Southern	 California.	 (1981,	 September).	 RFC	 791	 -‐	 Internet	 Protocol.	
Retrieved	 July	 19,	 2011,	 from	 http://www.ietf.org/rfc/rfc791.txt	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

OS fingerprinting with IPv6	 31
	

Christoph	 Eckstein,	 christoph.eckstein@samapartners.com	 	 	

Zamboni,	 D.,	 &	 Kruegel,	 C.	 (2006).	 Recent	 Advances	 in	 Intrusion	 Detection:	 9th	
International	 Symposium,	 RAID	 2006,	 Hamburg,	 Germany,	 September	 20-‐22,	
2006,	 Proceedings	 (Lecture	 Notes	 in	 ...	 Applications,	 incl.	 Internet/Web,	 and	
HCI).	 Springer.	

