
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment
Version 4.1

Michael Gauthier
SANS Network Security 2004 (September)
Submission date: March 21th, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Abstract
This paper is a Security Audit Intrusion Report. It is based upon the

following files that were retrieved from http://isc.sans.org/logs/. The
/scans/scans.030916.gz file contained no data.

/oos/OOS_Report_2003_09_15_22271.gz
/oos/OOS_Report_2003_09_16_32593.gz
/oos/OOS_Report_2003_09_17_9362.gz
/oos/OOS_Report_2003_09_18_12914.gz
/oos/OOS_Report_2003_09_19_10419.gz
/scans/scans.030915.gz
/scans/scans.030916.gz
/scans/scans.030917.gz
/scans/scans.030918.gz
/scans/scans.030919.gz
/alerts/alert.030915.gz
/alerts/alert.030916.gz
/alerts/alert.030917.gz
/alerts/alert.030918.gz
/alerts/alert.030919.gz

The paper contains three main sections.
Executive Summary•
Detailed Analysis•
Analysis Process•

The primary purpose of the Executive Summary and Detailed Analysis
sections is the fulfillment of the practical assignment objectives. The
assignment states, “select the three most critical detects” this objective was
weighted against an attempt not to duplicate work already done by others.
Specifically the IRC/Botnet alerts appear to have received a great deal of
attention already. The secondary factor was choosing detects which provided
sufficient information to generate a meaningful analysis.

The Analysis Process section contains a detailed walkthrough of how the
files were analyzed including commands run. It is intended to provide a starting
point for future students so that their work may build upon these processes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Content
GIAC Certified Intrusion Analyst (GCIA) 1
Abstract 2
Table of Content 3
Executive Summary 3
Detailed Analysis 3

Files Analyzed 3
Relationship Identification 3
Detect Overview 3
Detect 1 3

Detect Generation 3
Source Address 3
Attack Mechanism 3
Correlation 3
Active Targeting 3
Severity 3
Recommendations 3

Detect 2 3
Detect Generation 3
Source Address 3
Attack Mechanism 3
Correlation 3
Active Targeting 3
Severity 3
Recommendations 3

Detect 3 3
Detect Generation 3
Source Address 3
Attack Mechanism 3
Correlation 3
Active Targeting 3
Severity 3
Recommendations 3

Network Statistics 3
Alert File Statistics 3
Scan File Statistics 3
Out of Specification File Statistics 3

Analysis Process 3
Analysis Station 3
Walkthrough 3

Alert Logs 3
Scan Logs 3
Out of Specification Logs 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

List of References 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

Executive Summary
This report analyzes three days worth of logs generated by the

University’s network intrusion detection system (NIDS). These logs contain
747,578 intrusion alerts covering 49 unique signatures. Previous reports have
covered the dangers of botnets and their use of Internet relay chat (IRC)
communication channels; this report will not duplicate that work.

After reviewing the NIDS logs one overarching problem becomes
apparent, the system utilizes signatures that are to narrow in their focus.
Numerous alerts analyzed here triggered based upon one criteria. In today’s
heterogeneous Internetworking environment there are very few malicious
attacks that can be located based upon testing a single element of a packet.

In December of 2002 a Snort user list posting updated a network time
protocol (NTP) rule to eliminate false positives caused by normal traffic.
However even though these logs are from September of 2003 the rule still
appears to be unchanged from the original.

The University needs to verify the integrity of the hosts identified in this
report as having potentially been compromised. These hosts were identified as
having responded to remote probes for backdoor programs. These programs
would give remote users unfettered access to University resources as well as
the ability to damage the University’s reputation. Once this is completed it is
imperative that the security team update the NIDS rulebase to current standards
verifying that any rules identified here are corrected to test for multiple criteria
before triggering an alert.

With an updated rulebase the University NIDS will provide its operators
with a greatly increased probability of identifying attacks and intrusions. This will
lead to a greater respect for its data and a higher level of trust from other
information technology departments. Increased trust will inevitably lead to a
more positive response and cooperation between departments leading to a
higher level of security on the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

Detailed Analysis

Files Analyzed
The following files were analyzed for this report. They were generated by

various university systems between September 14th, 2003 and September 19th,
2003. Each file’s contents ends on the evening of the data specified in the
filename with the exception of the OOS logs. The OOS logs contain the previous
day’s log data.

/oos/OOS_Report_2003_09_15_22271.gz
/oos/OOS_Report_2003_09_16_32593.gz
/oos/OOS_Report_2003_09_17_9362.gz
/oos/OOS_Report_2003_09_18_12914.gz
/oos/OOS_Report_2003_09_19_10419.gz
/scans/scans.030915.gz
/scans/scans.030916.gz
/scans/scans.030917.gz
/scans/scans.030918.gz
/scans/scans.030919.gz
/alerts/alert.030915.gz
/alerts/alert.030916.gz
/alerts/alert.030917.gz
/alerts/alert.030918.gz
/alerts/alert.030919.gz

Relationship Identification
In a complex Internetwork environment there exists a number of systems

many of which are interdependent. For the purpose of intrusion analysis it is
important to identify stimulus and response. When reading a log entry we must
identify what caused the entry to be created.

The scan logs show numerous entries for what appear to be outbound
DNS queries from a local DNS server on IP address 130.85.1.3. We can verify
the legitimacy of this traffic by identifying the destination with simple DNS
queries. It is important to note that the owner of IP addresses can assign any
name to a reverse DNS PTR record so we must also cross check these results
with whois lookups to the various Internet registries to verify the ownership of the
IP space.

echo 'select dstip,dstport,prot from scan where srcip LIKE "130.85.1.3" order by
dstip,dstport,prot;' | mysql gcia | uniq -c | sort -nr | head
55787 192.26.92.30 53 UDP
46178 203.20.52.5 53 UDP
44379 130.94.6.10 53 UDP
39550 192.52.178.30 53 UDP
35848 205.231.29.244 53 UDP
32312 131.118.254.34 53 UDP
32067 192.55.83.30 53 UDP
30574 192.148.252.171 53 UDP
28321 205.231.29.240 53 UDP
27894 63.251.136.209 53 UDP

host 192.26.92.30
30.92.26.192.in-addr.arpa domain name pointer c.gtld-servers.net.

whois -h whois.arin.net 192.26.92.30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

OrgName: VeriSign Global Registry Services
OrgID: VGRS
Address: 21345 Ridgetop Circle
City: Dulles
StateProv: VA
PostalCode: 20166
Country: US

NetRange: 192.26.92.0 - 192.26.92.255
CIDR: 192.26.92.0/24
NetName: VGRSGTLD-3
NetHandle: NET-192-26-92-0-1
Parent: NET-192-0-0-0-0
NetType: Direct Assignment
NameServer: L2.NSTLD.COM
NameServer: D2.NSTLD.COM
NameServer: E2.NSTLD.COM
NameServer: C2.NSTLD.COM
Comment:
RegDate: 2000-11-30
Updated: 2001-03-20

TechHandle: ZV22-ARIN
TechName: VeriSign Global Registry Services
TechPhone: +1-703-318-6444
TechEmail: nstld@verisign-grs.com

OrgTechHandle: NETWO480-ARIN
OrgTechName: Network Admin
OrgTechPhone: +1-703-948-4300
OrgTechEmail: netadmin@verisign.com

ARIN WHOIS database, last updated 2005-03-05 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

While researching this traffic an unusual number of lookups was detected
going to host “130.94.6.10” with the DNS PTR record “bsp1.bondedsender.org.”
A whois lookup on the domain bondedsender.org did not return any noteworthy
information but a quick look at there website returned the following information.

Overview of the Bonded Sender program

The growth of unsolicited email - spam - has negatively impacted both senders and
receivers of email. Traditional anti-spam systems have been developed to identify spam,
but these systems have the drawback of periodically destroying legitimate email traffic.

Sponsored by IronPort Systems, the Bonded Sender program turns the spam problem upside
down by identifying legitimate email traffic. Originators of legitimate email can now post
a financial bond to ensure the integrity of their email campaign. Receivers who feel they
have received an unsolicited email from a Bonded Sender can complain to their ISP,
enterprise, or IronPort and a financial charge is debited from the bond.

This market-based mechanism allows email senders to ensure their message gets to their end
user, and provides corporate IT managers and ISPs with an objective way to ensure only
unwanted messages get blocked. For FAQs and white papers describing the Bonded Sender
program, visit http://www.bondedsender.com

Configuring your spam filters to use Bonded Sender

Integrating Bonded Sender with email software is easy. Receivers of email can use the DNS
query commonly used by blacklist services to take advantage of the Bonded Sender program.

Further checks show that to query the bonded sender database the mail

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

software should be setup to send requests to sa.bondedsender.org an address
that resolves to the IP address in question.

sa.bondedsender.org A IN 2700 130.94.6.10

It is extremely probable that a University mail server is causing the
University DNS server to originate the traffic to bonded sender. Next we dig
another layer deep to discover that the University mail server first receives SMTP
email from the Internet causing it to query the University DNS server. Finally
prior to the University mail server receiving mail the University’s second DNS
server receives a DNS request most likely an MX record lookup to locate the
mail server’s IP address. Following are the scan log entries and a link graph
illustrating the traffic flow.

timeof srcip srcport dstip dstport prot flags
2003-Sep-19 10:19:15 193.252.22.23 26370 130.85.1.5 53 UDP
2003-Sep-19 10:19:15 193.252.22.23 64141 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-19 10:19:16 130.85.1.3 38473 130.94.6.10 53 UDP

2003-Sep-19 20:30:17 193.252.22.23 45098 130.85.1.5 53 UDP
2003-Sep-19 20:30:17 193.252.22.23 62693 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-19 20:30:17 130.85.1.3 38473 130.94.6.10 53 UDP

2003-Sep-19 06:57:15 193.6.40.1 53 130.85.1.3 53 UDP
2003-Sep-19 06:57:15 193.6.40.1 3795 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-19 06:57:35 130.85.1.3 38473 130.94.6.10 53 UDP

NO INITIAL DNS
2003-Sep-15 08:13:14 204.92.158.12 36994 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-15 08:13:15 130.85.1.3 38473 130.94.6.10 53 UDP

NO INITIAL DNS
2003-Sep-18 16:59:09 204.92.158.12 51129 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-18 16:59:15 130.85.1.3 38473 130.94.6.10 53 UDP

2003-Sep-17 01:28:15 212.100.234.53 45290 130.85.1.5 53 UDP
2003-Sep-17 01:28:15 212.100.234.53 45291 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-17 01:28:20 130.85.1.3 38473 130.94.6.10 53 UDP

2003-Sep-18 01:02:12 212.100.234.53 62471 130.85.1.3 53 UDP
2003-Sep-18 01:02:12 212.100.234.53 62472 130.85.100.230 25 TCP SYN 12****S* RESERVEDBITS
2003-Sep-18 01:02:13 130.85.1.3 38473 130.94.6.10 53 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

The link graph displays a many to one relationship between the outside
mail servers and the University DNS server. It also shows a many to one
relationship between the outside mail servers and the University mail server. It is
important to note that the presumed location of the network intrusion detection
system (NIDS) sensor is at the perimeter of the network. We can assume this
location because none of the logs show Intranetwork traffic. A one to one
relationship between the University mail server and the University DNS server is
inferred by our understanding of the client server DNS protocol. Finally a one to
one relationship exists between the University DNS server and the bonded
sender list server.

Detect Overview

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

A total of forty nine unique detects were logged in the alert logs over the
time period reviewed.

Entries Alert
644781 SMB Name Wildcard
57074 257.257.30.4 activity
14303 Incomplete Packet Fragments Discarded
10269 High port 65535 udp - possible Red Worm - traffic
9666 257.257.30.3 activity
2324 connect to 515 from outside
1810 ICMP SRC and DST outside network
1755 SUNRPC highport access!
986 NMAP TCP ping!
982 Possible trojan server activity
857 Null scan!
791 EXPLOIT x86 NOOP
517 TCP SRC and DST outside network
443 High port 65535 tcp - possible Red Worm - traffic
416 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.
382 [UMBC NIDS] External MiMail alert
243 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC
177 SNMP public access
165 External RPC call
96 EXPLOIT x86 stealth noop
81 EXPLOIT NTPDX buffer overflow
75 FTP passwd attempt
70 FTP DoS ftpd globbing
61 SMB C access
52 EXPLOIT x86 setgid 0

 51 EXPLOIT x86 setuid 0
30 RFB - Possible WinVNC - 010708-1
21 TFTP - Internal UDP connection to external tftp server
14 TFTP - External TCP connection to internal tftp server
14 TCP SMTP Source Port traffic
10 Tiny Fragments - Possible Hostile Activity
8 Traffic from port 53 to port 123
8 TFTP - External UDP connection to internal tftp server
7 TFTP - Internal TCP connection to external tftp server
6 Attempted Sun RPC high port access
5 [UMBC NIDS IRC Alert] K:line d user detected, possible trojan.
5 External FTP to HelpDesk 257.257.53.29
3 Probable NMAP fingerprint attempt
3 NIMDA - Attempt to execute cmd from campus host
3 DDOS mstream client to handler
2 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
2 NETBIOS NT NULL session
1 SYN-FIN scan!
1 Fragmentation Overflow Attack
1 External FTP to HelpDesk 257.257.70.50
1 External FTP to HelpDesk 257.257.70.49
1 DDOS shaft client to handler
1 Bugbear@MM virus in SMTP
1 Back Orifice

Detect 1
timeof action srcip srcport dstip dstport
09-16 06:03:47 EXPLOIT NTPDX buffer overflow 198.64.140.205 3186 257.257.97.104 123

This detect was chosen primarily because it is an exploit detect
immediately followed by a remote control detect. No other alerts were noted
coming from or going to either of the addresses associated with the NTPDX
alert.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

09-16 06:04:36 Back Orifice 198.64.140.205 12 257.257.97.104 31337

No entries were found for either address in the OOS logs. A number of
scans were found targeting 257.257.97.104 and on September 17th and after
there are a number of scans originating from 257.257.97.104. No entries were
found in the scan log for 198.64.140.205.

September 15th through the 19th, 2003 were Monday through Friday
therefore a weekend period does not explain the sudden start in scan activity
from 257.257.97.104. The scans targeting 257.257.97.104 do not appear to have
any direct connection to the NTPDX or Back Orifice alert. The scans target TCP
ports 21 (FTP), 80 (WEB), 554 (RTSCP), and 34816 (MS03-018). Port 34816 is
an exploit port for Microsoft Internet Information Server see reference MS03-018.
The apparent culprit of most of the outgoing scans a peer to peer file sharing
program called “Blubster” see SANS ISC notes at
http://isc.sans.org/port_details.php?port=41170.

After researching the NTPDX exploit and the capabilities of Back Orifice
they seem an unlikely combination. The NTP daemon would be found in most
cases on a *IX system whereas Back Orifice is a remote control system for
Windows. The scans for port 34816 for Microsoft IIS vulnerability (new as of May
of 2003) also point to a possible Windows platform. The scans for port 41170
also point to a Windows platform use of the p2p app “Blubster” see there
downloads section http://www.blubster.com/download/. Further examination of the end
system will be required to make a definite determination.

Detect Generation
The University IDS system rules were not provided for correlation with this

analysis nor were the actual packets logged that generated alerts. It is therefore
not possible to be absolutely certain what traffic generated the alerts, however
an educated guess can be made based upon what “standard” rules were known
to exist at the time the logs were generated.

drop udp $EXTERNAL_NET any -> $HOME_NET 123 (msg:"EXPLOIT NTPDX buffer overflow"; dsize: >128; reference:
arachnids,492;)

This rule can be found at
http://xfiles.erin.utoronto.ca/pub/unix/security/hogwash/rules0727 in a file dated April of
2002. The rule is written in Snort syntax and the alert was likely generated by a
Snort sensor. Snort versions 2.0.1 was released in July of 2003 according to the
ChangLog file found at
http://cvs.snort.org/viewcvs.cgi/snort/ChangeLog?rev=1.337.2.17&content-
type=text/vnd.viewcvs-markup. It seems unlikely that the University was running this
version due to the “SMB Name Wildcard“ alerts. That alert is not found in Snort version
2.0.1 the most current version it can be found in is version 1.6 released in March
of 2000. The “NTPDX” alert is also first found in version 1.6,
http://cvs.snort.org/viewcvs.cgi/snort/rules/exploit.rules.diff?r1=1.5&r2=1.6.

A UDP packet with a destination port 123 and a data size greater than

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

128 bytes would have triggered this alert.

Source Address
The source address “198.64.140.205“ could easily have been spoofed for both

of the alerts. Both protocols are based on the user datagram protocol (UDP) a
connectionless transport protocol in the TCP/IP stack. Individual packets
triggered both alerts and there is no correlation of the external IP to any other
traffic. If the attack were successful the attacker would have created another
communications channel to send commands to the host. This second channel
could be outbound or inbound. The logs do not show any other activity on
September 16th. The whois database shows the IP registered to a large hosting
company Verio.

whois -h whois.arin.net 198.64.140.205

OrgName: Verio, Inc.
OrgID: VRIO
Address: 8005 South Chester Street
Address: Suite 200
City: Englewood
StateProv: CO
PostalCode: 80112
Country: US

ReferralServer: rwhois://rwhois.verio.net:4321/

NetRange: 198.63.0.0 - 198.66.255.255
CIDR: 198.63.0.0/16, 198.64.0.0/15, 198.66.0.0/16
NetName: VRIO-198-063
NetHandle: NET-198-63-0-0-1
Parent: NET-198-0-0-0-0
NetType: Direct Allocation
NameServer: NS0.VERIO.NET
NameServer: NS1.VERIO.NET
NameServer: NS2.VERIO.NET
NameServer: NS3.VERIO.NET
NameServer: NS4.VERIO.NET
Comment: *Rwhois information on assignments from this block available
Comment: at rwhois.verio.net port 4321
RegDate: 1993-02-11
Updated: 2005-03-02

TechHandle: VIA4-ORG-ARIN
TechName: Verio, Inc.
TechPhone: +1-303-645-1900
TechEmail: vipar@verio.net

OrgAbuseHandle: VAC5-ARIN
OrgAbuseName: Verio Abuse Contact
OrgAbusePhone: +1-800-551-1630
OrgAbuseEmail: abuse@verio.net

OrgNOCHandle: VSC-ARIN
OrgNOCName: Verio Support Contact
OrgNOCPhone: +1-800-551-1630
OrgNOCEmail: support@verio.net

OrgTechHandle: VIA4-ORG-ARIN
OrgTechName: Verio, Inc.
OrgTechPhone: +1-303-645-1900
OrgTechEmail: vipar@verio.net

ARIN WHOIS database, last updated 2005-03-13 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Found a referral to rwhois.verio.net:4321.

%rwhois V-1.5:0078b6:00 rwhois.verio.net (Vipar 0.1a. Comments to vipar@verio.net)
network:Class-Name:network
network:Auth-Area:198.64.128.0/19
network:ID:NETBLK-W061-198-064-128.127.0.0.1/32
network:Handle:NETBLK-W061-198-064-128

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

network:Network-Name:W061-198-064-128
network:IP-Network:198.64.128.0/19
network:In-Addr-Server;I:NS931-HST.127.0.0.1/32
network:In-Addr-Server;I:NS1829-HST.127.0.0.1/32
network:In-Addr-Server;I:NS4208-HST.127.0.0.1/32
network:IP-Network-Block:198.64.128.0 - 198.64.159.255
network:Org-Name:Verio Advanced Hosting - Dulles
network:Street-Address:22451 Shaw Rd
network:City:Sterling
network:State:VA
network:Postal-Code:20166
network:Country-Code:US
network:Tech-Contact;I:IA17312-VRIO.127.0.0.1/32
network:Created:2002-03-13 17:07:41+00
network:Updated:2002-03-13 17:07:41+00

The IP addresses in some of the log files are obfuscated but in some of
the logs they were not. It was therefore possible to perform a DNS lookup on the
destination IP. It resolved to a PPP connection. If the University DNS is to be
trusted one can assume this IP address is a dial-in connection. It is very likely
part of a dial-in pool. This can explain some of the profile changes noted in the
scanning.

Attack Mechanism
The NTPDX exploit attacks the network time protocol service on UDP port 123. It
sends an over size datagram to the service and overflows a buffer in the NTP
server. There are two common versions of NTP version 3 and version 4.
According to the original bugtrac post versions greater than 4.0.99k are not
vulnerable, note subject line.

To: BugTraq
Subject: ntpd =< 4.0.99k remote buffer overflow
Date: Apr 4 2001 10:27PM
Author: Przemyslaw Frasunek <venglin freebsd lublin pl>
Message-ID: <20010404222701.X91913@riget.scene.pl>

Further analysis is difficult given the fact that the scan log for September 16th is
empty. Also the terminal server logs need to be analyzed to locate the dial-in
users connected at the time of the alerts.

It should also be noted that the rule as quoted above could trigger false
positives. According to a Neohapsis posting an ntpdc query can trigger the rule
by requesting an NTP server return a response that is often greater than 128
bytes: http://archives.neohapsis.com/archives/snort/2002-12/0413.html.

Correlation
The original BugTraq can be found at

http://www.securityfocus.com/archive/1/174011 dated April 4th, 2001 and submitted by
“Przemyslaw Frasunek.”

The original advisory can be found at
http://www.securityfocus.com/advisories/3200 dated April 5th, 2001.

An in-depth analysis of the exploit code can be found in Miika Turkia’s
GCIA practical: http://www.giac.org/certified_professionals/practicals/gcia/0352.php.

The rule first appeared in Snort version 1.6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

http://cvs.snort.org/viewcvs.cgi/snort/rules/exploit.rules.diff?r1=1.5&r2=1.6 dated Mon Apr 9
06:39:44 2001 UTC. A recommendation for updating the rule can be found at
http://archives.neohapsis.com/archives/snort/2002-12/0413.html posted by James
(jamesh_at_cybermesa.com) on Sat Dec 14 2002 - 05:02:29 CST.

The original Request for Comment on NTP is “RFC 958 - Network Time
Protocol (NTP)” updated in “RFC 1305 - Network Time Protocol (Version 3)
Specification, Implementation.” More information can be found at
http://www.ntp.org/ntpfaq/NTP-s-def.htm#AEN1438.

Active Targeting
There is no evidence of active targeting. There is no scan activity targeting

either NTP or BO. The lack of active targeting coupled with the knowledge that
the target is a dial-in greatly increases the probability that these alerts are false
positives.

Severity
Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)
(1 + 5) – (1 + 2) = 3

Criticality = 1
The machine appears to be a member of a dial-in pool. End-user stations
generally connect via dial-in therefore it is almost certainly NOT a server or
infrastructure device.
Lethality = 5
The attack would result in the attacker gaining full control of the system.
System Countermeasures = 1
The NTP service is often run as the super user and unlikely to be firewalled,
logged, or updated on end user dial-in systems.
Network Countermeasures = 2
A University network providing dial-in network access with a public IP pool is
unlikely to firewall the connections. Due to the fact that this paper is being
written they are certainly running the traffic through an IDS system.

Recommendations
The system should be located to substantiate the data by an incident

handling team. The IDS rules should be tuned to include the change
recommended in the Snort Users mailing list post on Neohapsis. Increasing the
dgram check size to 188 will filter out possible false positives caused by ntpdc
queries. The Back Orifice rule should also be updated to current Snort rules that
check datagram content as well as port numbers. This will provide the IDS team
with alerts with a lower percentage of false positives.

The University appears to run multiple NTP servers on their network.
Given this fact NTP packets should be blocked at the perimeter for all systems
except the NTP servers. Internal hosts could then synchronize time off of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

University provided servers and be protected from exploitation from the Internet
at large. Host based firewalls should also block NTP traffic on key University
systems to only allow connections with the University NTP servers.

Detect 2
Nine Hundred and eighty two alerts were triggered with the message

“Possible trojan server activity.” Of these alerts two horizontal scans were
conducted against the University’s MY.NET.190.0/24 network. The scans were
searching for port 27374 a common trojan server port. Currently
http://www.treachery.net/tools/ports/ lists 14 different trojans that use this port.
Security Focus lists an advisory for Subseven version 1.9 as early as 1999
indicating a number of versions of Subseven would have been in circulation at
the time of these alerts. The site also contains advisories regarding the Ramen
worm as early as 2001 indicating that multiple malware programs were using
port 27374 at the time these alerts were triggered.

The log entries clearly show the horizontal scans for port 27374, in both
the alert log and the scan log. More troubling is the fact that the alert logs show
responses indicating that some of the hosts scanned responded to the scans.

ALERT LOG for 24.241.235.231 to port 27374
09-19 06:38:54 Possible trojan server activity 24.241.235.231 2048 257.257.6.15 27374
09-19 06:38:55 Possible trojan server activity 24.241.235.231 2048 257.257.6.15 27374
09-19 06:38:56 Possible trojan server activity 24.241.235.231 2048 257.257.6.15 27374
09-19 06:43:19 Possible trojan server activity 24.241.235.231 4160 257.257.16.90 27374
09-19 06:43:24 Possible trojan server activity 24.241.235.231 4467 257.257.16.114 27374
09-19 07:58:13 Possible trojan server activity 24.241.235.231 1201 257.257.190.0 27374
09-19 07:58:13 Possible trojan server activity 24.241.235.231 1202 257.257.190.1 27374
09-19 07:58:13 Possible trojan server activity 24.241.235.231 1203 257.257.190.2 27374
09-19 07:58:13 Possible trojan server activity 24.241.235.231 1204 257.257.190.3 27374
09-19 07:58:13 Possible trojan server activity 24.241.235.231 1205 257.257.190.4 27374
~Many incrementing source ports and destination IPs in between~
09-19 07:58:38 Possible trojan server activity 24.241.235.231 3100 257.257.190.236 27374
09-19 07:58:38 Possible trojan server activity 24.241.235.231 3101 257.257.190.237 27374
09-19 07:58:38 Possible trojan server activity 24.241.235.231 3110 257.257.190.246 27374
09-19 07:58:38 Possible trojan server activity 24.241.235.231 3109 257.257.190.245 27374
09-19 07:58:38 Possible trojan server activity 24.241.235.231 3111 257.257.190.247 27374
09-19 07:58:40 Possible trojan server activity 24.241.235.231 3255 257.257.190.251 27374
09-19 07:58:40 Possible trojan server activity 24.241.235.231 3256 257.257.190.252 27374
09-19 07:58:40 Possible trojan server activity 24.241.235.231 3257 257.257.190.253 27374
09-19 07:58:40 Possible trojan server activity 24.241.235.231 3258 257.257.190.254 27374

Responding stations
09-19 06:38:54 Possible trojan server activity 257.257.6.15 27374 24.241.235.231 2048
09-19 06:38:55 Possible trojan server activity 257.257.6.15 27374 24.241.235.231 2048
09-19 06:38:56 Possible trojan server activity 257.257.6.15 27374 24.241.235.231 2048
09-19 07:58:13 Possible trojan server activity 257.257.190.1 27374 24.241.235.231 1202
09-19 07:58:14 Possible trojan server activity 257.257.190.1 27374 24.241.235.231 1202
09-19 07:58:14 Possible trojan server activity 257.257.190.1 27374 24.241.235.231 1202
09-19 07:58:33 Possible trojan server activity 257.257.190.202 27374 24.241.235.231 2806
09-19 07:58:33 Possible trojan server activity 257.257.190.203 27374 24.241.235.231 2807
09-19 07:58:34 Possible trojan server activity 257.257.190.203 27374 24.241.235.231 2807

Entries in the scan log
2003-Sep-19 07:58:14 24.241.235.231 1202 .190.1 27374 TCP SYN ******S*
2003-Sep-19 07:58:15 24.241.235.231 1350 .190.8 27374 TCP SYN ******S*
2003-Sep-19 07:58:15 24.241.235.231 1351 .190.9 27374 TCP SYN ******S*
2003-Sep-19 07:58:15 24.241.235.231 1352 .190.10 27374 TCP SYN ******S*
2003-Sep-19 07:58:15 24.241.235.231 1353 .190.11 27374 TCP SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

2003-Sep-19 07:58:15 24.241.235.231 1354 .190.12 27374 TCP SYN ******S*
~Many incrementing source ports and destination IPs in between~
2003-Sep-19 07:58:38 24.241.235.231 3100 .190.236 27374 TCP SYN ******S*
2003-Sep-19 07:58:38 24.241.235.231 3101 .190.237 27374 TCP SYN ******S*
2003-Sep-19 07:58:38 24.241.235.231 3110 .190.246 27374 TCP SYN ******S*
2003-Sep-19 07:58:38 24.241.235.231 3109 .190.245 27374 TCP SYN ******S*
2003-Sep-19 07:58:38 24.241.235.231 3111 .190.247 27374 TCP SYN ******S*
2003-Sep-19 07:58:40 24.241.235.231 3255 .190.251 27374 TCP SYN ******S*
2003-Sep-19 07:58:40 24.241.235.231 3256 .190.252 27374 TCP SYN ******S*
2003-Sep-19 07:58:40 24.241.235.231 3257 .190.253 27374 TCP SYN ******S*
2003-Sep-19 07:58:40 24.241.235.231 3258 .190.254 27374 TCP SYN ******S*

ALERT LOG for 67.162.218.221 to port 27374
09-19 21:05:58 Possible trojan server activity 67.162.218.221 3529 257.257.16.90 27374
09-19 21:05:59 Possible trojan server activity 67.162.218.221 3752 257.257.16.106 27374
09-19 21:05:59 Possible trojan server activity 67.162.218.221 3760 257.257.16.114 27374
09-19 21:43:40 Possible trojan server activity 67.162.218.221 3898 257.257.190.13 27374
09-19 21:43:40 Possible trojan server activity 67.162.218.221 3899 257.257.190.14 27374
09-19 21:43:40 Possible trojan server activity 67.162.218.221 3900 257.257.190.15 27374
~Many incrementing source ports and destination IPs in between~
09-19 21:43:51 Possible trojan server activity 67.162.218.221 3694 257.257.190.250 27374
09-19 21:43:51 Possible trojan server activity 67.162.218.221 3693 257.257.190.249 27374
09-19 21:43:51 Possible trojan server activity 67.162.218.221 3695 257.257.190.251 27374
09-19 21:43:51 Possible trojan server activity 67.162.218.221 3696 257.257.190.252 27374
09-19 21:43:52 Possible trojan server activity 67.162.218.221 4050 257.257.190.254 27374

Responding stations
09-19 21:43:44 Possible trojan server activity 257.257.190.100 27374 67.162.218.221 1543
09-19 21:43:49 Possible trojan server activity 257.257.190.203 27374 67.162.218.221 3089
09-19 21:43:49 Possible trojan server activity 257.257.190.202 27374 67.162.218.221 3088
09-19 21:43:49 Possible trojan server activity 257.257.190.202 27374 67.162.218.221 3088
09-19 21:43:49 Possible trojan server activity 257.257.190.203 27374 67.162.218.221 3089
09-19 21:43:50 Possible trojan server activity 257.257.190.203 27374 67.162.218.221 3089
09-19 21:43:50 Possible trojan server activity 257.257.190.202 27374 67.162.218.221 3088

Entries in the scan log
2003-Sep-19 21:43:40 67.162.218.221 3898 130.85.190.13 27374 TCP SYN ******S*
2003-Sep-19 21:43:40 67.162.218.221 3899 .190.14 27374 TCP SYN ******S*
2003-Sep-19 21:43:40 67.162.218.221 3900 .190.15 27374 TCP SYN ******S*
2003-Sep-19 21:43:40 67.162.218.221 3902 .190.16 27374 TCP SYN ******S*
~Many incrementing source ports and destination IPs in between~
2003-Sep-19 21:43:51 67.162.218.221 3694 .190.250 27374 TCP SYN ******S*
2003-Sep-19 21:43:51 67.162.218.221 3693 .190.249 27374 TCP SYN ******S*
2003-Sep-19 21:43:51 67.162.218.221 3695 .190.251 27374 TCP SYN ******S*
2003-Sep-19 21:43:51 67.162.218.221 3696 .190.252 27374 TCP SYN ******S*
2003-Sep-19 21:43:52 67.162.218.221 4050 .190.254 27374 TCP SYN ******S*

A link graph clearly illustrates the one to many relationship of the scan by
each of the offending hosts. For each attacker the source ports increment by
one for each IP scanned. The host MY.NET.190.202 is taken from the group to
represent the few machines that responded to the scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

Detect Generation
A rule was not found in any Snort distribution containing the message text

“Possible trojan server activity” indicating this is likely a custom rule. Some
similar rules were found that will be used as a basis for comparison with this
traffic.

Snort version 1.6 rule with port 27374
alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any (msg:"BACKDOOR SIG - SubSseven 22"; flags:
A+; content: "|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485; sid:103; rev:1;)

Rules from Packet Storm Security dated 06/08/2000
alert tcp $HOME_NET 27374 -> !$HOME_NET any (msg:"IDS279 - BACKDOOR ACTIVITY-Possible
Subseven v2.1"; flags:SA;)
alert tcp !$HOME_NET any -> $HOME_NET 27374 (msg:"IDS279 - BACKDOOR ATTEMPT-Subseven
v2.1"; flags:S;)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

The first rule specifies a content match on the packet that would make it
far to specific to warrant the message in the alerts. The second and third
examples are closer to what would be expected for a general rule. They match
on a source or destination port and look for TCP and synack and syn flags to be
set. The match for the syn and ack flags are important because if they were not
included then traffic to a closed port would generate two alerts (such as we see
in our logs for MY.NET.190.202) because the station would respond with a
packet with the rst flag set. As the rules are they match our traffic very well
indicating a stimulus to the port and a response from the host further ensuring a
valid alert.

Source Address
The source addresses of the attack both trace back to cable Internet

providers. One provider located in Wisconsin and one located in Michigan. The
source IP address could have been spoofed if our rules check simply for the syn
and syn ack and do not verify a completed TCP stream. The original bugtraq for
using a zombie host for TCP idle scanning with the IP ID field was posted well
before these alerts were generated. Antirez posted an example of the method to
Bugtraq in late 1998.

Attack Mechanism
The scans for port 27374 are not actively attacking the hosts on the

.190.0/24 network. Instead they are probing to find machines that have already
been infected. It is probable that the delivery of a trojan (Subseven for example)
was attempted earlier by some unrelated means (email for example). These
scans would then be done as a follow-up checking for successful deployment of
the original attack.

Correlation
The example rules used can be found hosted by Packet Storm at the

following URL http://packetstormsecurity.nl/sniffers/snort/06082kbackdoor.rules.
A quick explanation of the Ramen worm and its use of port 2734 can be

found here http://www.sans.org/y2k/ramen.htm.
An early advisory referencing the Subseven trojan is located here

http://www.securityfocus.com/advisories/1644.
Some early posts showing rules to detect Ramen and Subseven using

snort can be found here http://www.securityfocus.com/archive/96/191589.
The earliest reference to using the IP ID idle scanning technique is

described here http://www.kyuzz.org/antirez/papers/dumbscan.html.
An excellent walkthrough of filtering false positive alerts out of the results

for the “Possible trojan” rule can be found here http://www.lurhq.com/idsindepth.html.

Active Targeting
These traffic patterns are a perfect example of active targeting. These two

IP sources (or the source that is spoofing these addresses) is actively scanning

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

through nearly 256 IP addresses attempting to locate machines that have been
compromised by trojan horse programs.

Severity
Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)
(3 + 2) – (2 + 1) = 2

Criticality = 3
A reverse DNS lookup was performed on the IP addresses that responded
during the scan. Each IP address contains a unique name; two of them contain
the string “VPN” indicating they may be virtual private network (VPN) gateway
hosts. The hosts are therefore considered to be someone critical systems.
Lethality = 2
Unless accompanied by an original attack to place the trojan program on the
hosts the scan would have no effect.
System Countermeasures = 2
No information regarding the hosts was provided. Since a few of the systems
responded, it is assumed that few system countermeasures are in place.
Network Countermeasures = 1
Given that multiple machines responded to the scan either there is no firewall in
place or it is not blocking traffic to these hosts or ports.

Recommendations
The hosts that responded to the scan need to be inspected by an incident

response team. There is a high probability that these alerts do in fact indicate
malicious traffic and the hosts are likely running a backdoor program allowing
full remote control of the systems.

A firewall rule should be created blocking all inbound traffic to port 27374.
There is no legitimate service identified as using that port therefore it should only
be allowed into the network as a response to established network connections.
Any outgoing traffic destined for port 27374 should be logged as it is likely traffic
from an internal host scanning for Internet hosts infected with a trojan.

Detect 3
The last analysis started with an investigation into the “SUNRPC highport

access!” and the “Attempted Sun RPC high port access” alerts. A large number
of the alerts were sourced from the same IP address and port,
“64.12.28.110:5190”. America Online Instant Messenger (AIM) uses Port 5190
and the IP address is registered to AOL. With this traffic removed another IP
address stands out, “63.250.195.10” belonging to Yahoo.

AIM Traffic
09-15 11:32:05 SUNRPC highport access! 64.12.28.110 5190 257.257.70.38 32771

09-19 17:05:56 SUNRPC highport access! 65.165.91.219 80 257.257.97.96 32771

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

09-19 17:05:59 SUNRPC highport access! 65.165.91.219 80 257.257.97.96 32771

09-15 13:34:26 Attempted Sun RPC high port access 63.250.195.10 44553 .153.153 32771
09-18 00:43:29 Attempted Sun RPC high port access 63.250.195.10 59530 .69.208 32771

09-15 13:34:26 Attempted Sun RPC high port access 63.250.195.10 44553 .153.153 32771
09-15 13:28:15 High port 65535 udp - possible Red Worm - traffic 63.250.195.10 53247
257.257.153.153 65535
09-17 13:35:18 High port 65535 udp - possible Red Worm - traffic 63.250.195.10 65535
257.257.153.153 65488

The Yahoo IP was found attacking with a number of different signatures
mostly targeting *IX based hosts. The NTPDX exploit was listed earlier, Sun
RPC high port refers to UDP port 32771 an RPC port running the rusers
daemon, Red Worm was somewhat of a copy cat follow-up to the Ramen worm
attacking Linux, and TFTP (more cross platform) is a file transfer protocol that
lacks authentication.

Attempted Sun RPC high port access
EXPLOIT NTPDX buffer overflow
High port 65535 udp - possible Red Worm - traffic
TFTP - External UDP connection to internal tftp server
TFTP - Internal UDP connection to external tftp server

The Yahoo IP also attacked a number of targets. The IP addresses were
resolved to names in search of some commonality. Of the addresses that
resolved, a number of them appear as public library PCs. This would suggest
Windows clients that would not be vulnerable to the alerts listed.

121.150..in-addr.arpa domain name pointer serial11.lib..edu.
85.150..in-addr.arpa domain name pointer tec18.lib..edu.
157.152..in-addr.arpa domain name pointer lib037pc01.ucslab..edu.
169.152..in-addr.arpa domain name pointer lib037pc13.ucslab..edu.
250.152..in-addr.arpa domain name pointer lib037pc57.ucslab..edu.
153.153..in-addr.arpa domain name pointer libstkpc13.libpub..edu.
31.153..in-addr.arpa domain name pointer refweb02.libpub..edu.
36.153..in-addr.arpa domain name pointer refweb07.libpub..edu.
87.153..in-addr.arpa domain name pointer refweb23.libpub..edu.
159.53..in-addr.arpa domain name pointer ecs333pc29.ucslab..edu.
196.53..in-addr.arpa domain name pointer ecs020pc01.ucslab..edu.
215.53..in-addr.arpa domain name pointer ecs104pc15.ucslab..edu.
208.69..in-addr.arpa domain name pointer lib-69-208.pooled..edu.
197.70..in-addr.arpa domain name pointer ecs020pc02.ucs..edu.
61.97..in-addr.arpa domain name pointer ppp1-61.dialup..EDU.

The scan log also contained a large number of hits from the Yahoo IP,
43,050 all were UDP. Of these 11,335 different ports were hit. There appeared
to be no pattern among the source ports or the destination ports, they appeared
random.

The only non-hostile explanation for the traffic was found through Google
searches. A Mcafee firewall forum posting was found containing the IP address.
The user was having problem using Microsoft Media Player and it was triggering
alerts to his firewall. Sites were also found that contained URLs pointing to the
Yahoo IP with the mms:// protocol. Two documents on Microsoft’s website were
found describing the Microsoft Media Server and its associated protocols. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

following excerpt from the site describes what appears to be the traffic reported
in the alerts.

In a TCP connection there is only one socket created. (A socket is an identifier for a particular service on a
particular node on a network.) You therefore need only one port number on the client and one on the server.
Commands (such as play, pause, and fast forward) and data (audio and video) are sent across the same socket
connection. In UDP connections, however, the client makes a TCP connection to the server and sends
commands over it. The server then opens a UDP socket to the client. It is over this second socket that the
audio and video data is sent and it is this second socket that firewalls and proxies typically block.

Detect Generation
alert udp any any -> $HOME_NET 32771 (msg: "Attempted Sun RPC high port access";)

This rule generated the original alert that began this analysis. The NTPDX
alert was covered earlier and the rest of the alerts were generated by apparent
custom rules. This rule checks for UDP packets destined for port 32771, the port
associated with the rusers RPC daemon on Sun hosts. The rule does not
however provide any content matching, thus the rule can easily trigger when
client programs bind the port as a random source port. The rules alerting for
TFTP traffic may be similar. They would be less likely to be triggered however
because they match for port 69. Ports below 1024 are typically reserved for
servers and thus most clients pick random ports starting above 1024. An
example of this is listed in the correlation section regarding the Microsoft SQL
client.

Source Address
All the packets associated with these detects were transmitted using

UDP. UDP is connectionless meaning a single packet can be sent without any
need for a response. It is also unlikely that any of the rules triggered did any
content checking; meaning a single packet of any type could have triggered
these rules. The only factor that points to a valid source address is the shear
volume of traffic and the probable distribution across similar end stations. If this
traffic is indeed Windows Media Player traffic then the source address is valid.
The only remaining suspicion against this theory is the fact that ports from 0-
1024 are logged, it seems unlikely that low numbered ports would be included
in any applications random source/destination port pool.

Attack Mechanism
The Sun RPC alert is triggered to alert administrators that the rusersd

RPC program is being probed. This service should be disabled per standard
Solaris hardening procedures. It gives a remote user a list of local accounts to
assist in further attacks against a host. The TFTP alerts notify administrators that
files are being transferred into or out of the network using a protocol that has no
authentication. TFTP is typically utilized to backup configurations or to upload
firmware to network infrastructure devices. It should not be used for
Internetworking transfers.

The other possible explanation for these traffic patterns taken as a whole

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

is that the Yahoo IP is port scanning a number of University hosts. These scans
may be spoofed to obscure true attacks/scans or the machine may be
compromised. The fact that Yahoo is the owner of the address space is positive,
as they should prove to be helpful in further investigations of the traffic.

OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US

NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.YAHOO.COM
NameServer: NS2.YAHOO.COM
NameServer: NS3.YAHOO.COM
NameServer: NS4.YAHOO.COM
NameServer: NS5.YAHOO.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-11-24
Updated: 2003-05-06

TechHandle: NA258-ARIN
TechName: Netblock Admin
TechPhone: +1-408-349-3300
TechEmail: netblockadmin@yahoo-inc.com

OrgTechHandle: NA258-ARIN
OrgTechName: Netblock Admin
OrgTechPhone: +1-408-349-3300
OrgTechEmail: netblockadmin@yahoo-inc.com

ARIN WHOIS database, last updated 2005-03-20 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

Correlation
F-Secure’s site was used to research the Red Worm attack http://www.f-

secure.com/v-descs/adore.shtml.
Microsoft describes the behaviour of its SQL client choosing a random

source port in this article http://support.microsoft.com/kb/q287932/.
The reference to Microsoft Media Server can be found at these two URLs:

http://www.microsoft.com/resources/documentation/WindowsServ/2003/standard/proddocs/en-
us/Default.asp?url=/resources/documentation/WindowsServ/2003/standard/proddocs/en-
us/wmserver/wmsmmsservercontrolprotocol.asp and
http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/maintain/w2kmngd/14_2kwmp.m
spx.

The McAfee firewall forum posting referencing the Yahoo IP can be found
here http://forums.mcafeehelp.com/viewtopic.php?t=8978.

A lookup using http://www.treachery.net/tools/ports/lookup.cgi port lookup tool
correlated port 5190 to AIM.

A security focus article discusses the rusersd service and lists it as a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

standard service to disable during hardening http://www.securityfocus.com/infocus/1365.

Active Targeting
The large number of ports utilized across numerous hosts indicates either

active targeting or a client application designed to drive security analysis crazy. If
it is port scanning then the attacker will likely know if the targets are firewalled. If
they are not firewalled then the attacker will know which ports are open and
based on this information the platform of the system will be evident.

Severity
Severity = (criticality + lethality) – (system countermeasures + network
countermeasures)
(1 + 5) – (1 + 1) = 4

Criticality = 1
None of the systems targeted appear particularly critical. They all have generic
hostnames referencing a number and many contain “pc” indicating an end users
station. While downtime is not enjoyable on any stations these appear to be the
most expendable.
Lethality = 5
Only the NTPDX exploit would have resulted in super user privileges. The Sun
RPC alerts would have only divulged valid usernames and the TFTP traffic
would indicate someone accessing a TFTP server. That server should however
not be accessible outside the network and may contain sensitive data. The most
lethal would be the Red Worm alerts. They may indicate that a successful super
user compromise had already occurred.
System Countermeasures = 1
The end user station identified would be the least protected systems on a
University network. They are unlikely to receive regular attention regarding patch
installation and almost certainly contain no host-based firewall as that may
interfere with their use.
Network Countermeasures = 1
Just as they are unlikely to use host-based firewalling they are also unlikely to
utilize a network-based firewall. The only positive is that these logs were
collected meaning their traffic is monitored by a network based intrusion
detection system.

Recommendations
Yahoo should be contacted to verify the host that originated this traffic. If

it is valid traffic they will likely be able to provide details regarding the protocol in
question. If they are unaware of a media client exhibiting these characteristics
then they will want to verify whether the traffic originated on their network and
verify the integrity of the host machine. If the traffic is valid then Windows Media
Player can be configured to stream the traffic over HTTP. This would make this
traffic much easier to identify in the future.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

The IDS system should be configured to provide “content” matches
whenever possible. Content matches check the data inside of the packet to
verify that the payload matches a signature before triggering an alert. These
types of rules provide a much lower level of false positives thereby increasing
the probability that analysis will locate malicious traffic in the IDS logs.

Network Statistics

Alert File Statistics
Number of Alerts: 747578
Unique alerts and counts can be found under “Detect Overview.”
Unique alerts: 49
Unique source IP addresses for alerts: 1667
Unique University source IP addresses for alerts: 159
Unique Internet source IP addresses for alerts: 1508
Top five University source IP addresses and alert count:
579678 257.257.162.118
48963 257.257.150.220
14218 257.257.150.133
3868 257.257.70.207
1933 257.257.21.50

Top five Internet source IP addresses and alert count:
579678 257.257.162.118
48963 257.257.150.220
14218 257.257.150.133
3868 257.257.70.207
1933 257.257.21.50

Unique destination IP addresses for alerts: 591949
Unique University destination IP addresses for alerts: 693
Unique Internet destination IP addresses for alerts: 591256
Top five University destination IP addresses and alert count:

57051 257.257.30.4
9657 257.257.30.3
5827 257.257.70.207
2323 257.257.24.15
1577 257.257.70.38

Top five Internet destination IP addresses and alert count:
3864 216.231.173.92
2923 24.211.131.102
2671 67.69.108.230
2617 205.134.166.194
2337 209.126.216.244

Unique source ports for alerts: 3625
Unique University source ports for alerts: 585
Unique Internet source ports for alerts: 3224
Top five University source ports and alert count:
578984 1025
14968 4253
14584 99999 <- No SRC PORT SPECIFIED IN ALERT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

10418 4018
9500 1184

Top five Internet source ports and alert count:
17141 3738
15764 3488
6292 65535
3447 1247
2664 1091

Unique destination ports for alerts: 1035
Unique University destination ports for alerts: 935
Unique Internet destination ports for alerts: 143
Top five University destination ports and alert count:

48970 51443
11239 524
5824 12203
4217 80
2340 3019

Top five Internet destination ports and alert count:
643860 137
16608 99999 <- No DST PORT SPECIFIED IN ALERT
4211 65535
230 27374
190 80

Top five University source IP addresses and count from portscan entries in alert
file:

22821 257.257.84.194
5064 257.257.70.53
3560 257.257.163.235
2297 257.257.80.243
1796 257.257.1.5

Top five Internet source IP addresses and count from portscan entries in alert
file:

3639 148.63.83.0
1510 66.117.22.125
1112 194.249.91.190
1014 66.250.55.114
542 69.1.65.188

Scan File Statistics
Top five University source IP addresses and count:
2597670 130.85.1.3
1521633 130.85.84.194
1315532 130.85.70.53
580124 130.85.1.5
356322 130.85.80.243
Top five destination ports/protocols and destination IP/ports for top five
University source IP addresses filtered for ports 135 137 25 and 53:
for i in $(echo 'select srcip from scan where srcip LIKE "MY.NET.%" and dstport != "53"
and dstport != "135" and dstport != "25" and dstport != "137" order by srcip;' | mysql
gcia | uniq -c | sort -nr | head -n5 | cut -c9-100); do
echo
echo $i

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

echo "select dstport,prot from scan where srcip LIKE '$i' order by dstport,prot;" | mysql
gcia | uniq -c | sort -nr | head -n5
echo "select dstip,dstport,prot from scan where srcip LIKE '$i' order by
dstip,dstport,prot;" | mysql gcia | uniq -c | sort -nr | head -n5;
done

130.85.70.53
1225687 135 TCP

89844 80 TCP
1 dstport prot
1 443 TCP

40 130.84.173.131 135 TCP
38 130.84.111.115 135 TCP
38 130.84.110.173 135 TCP
37 130.84.44.120 135 TCP
37 130.84.228.44 135 TCP

130.85.70.207
2401 33774 UDP
2056 65090 UDP
1997 18304 UDP
1978 11564 UDP
1808 33513 UDP
2256 24.224.188.141 33774 UDP
2056 12.222.24.242 65090 UDP
1997 69.27.66.247 18304 UDP
1978 142.217.110.70 11564 UDP
1808 81.152.67.233 33513 UDP

130.85.84.210
26394 6257 UDP

426 80 TCP
149 16257 UDP
83 6256 UDP
77 26257 UDP
98 172.133.50.228 6257 UDP
90 62.211.252.6 6257 UDP

 83 68.72.171.140 6257 UDP
78 68.14.89.26 6257 UDP
69 80.116.225.5 6257 UDP

130.85.98.132
12101 22321 UDP
4289 7674 UDP

14 80 TCP
5 1025 UDP
4 2865 UDP
9 220.122.198.101 22321 UDP
8 211.212.96.4 22321 UDP
7 220.91.73.39 22321 UDP
7 220.81.215.195 22321 UDP
7 219.248.155.236 22321 UDP

130.85.82.2
1626 4046 UDP
1621 32801 UDP
1605 2645 UDP
1594 1173 UDP
1553 1100 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

1626 68.34.149.132 4046 UDP
1621 4.3.172.73 32801 UDP
1605 24.209.234.234 2645 UDP
1594 24.197.242.66 1173 UDP
1553 24.79.219.29 1100 UDP

Top five Internet source IP addresses and count:
43050 63.250.195.10

 25952 217.58.104.215
23234 168.215.234.10
22965 217.236.57.37
22360 24.220.60.195

Top five destination ports/protocols and destination IP/ports for top five Internet
source IP addresses filtered for port 80:
for i in $(echo 'select srcip from scan where srcip NOT LIKE "130.85.%" and dstport !=
"80" order by srcip;' | mysql gcia | uniq -c | sort -nr | head -n5 | cut -c9-100); do
echo
echo $i
echo "select dstport,prot from scan where srcip LIKE '$i' order by dstport,prot;" | mysql
gcia | uniq -c | sort -nr | head -n5
echo "select dstip,dstport,prot from scan where srcip LIKE '$i' order by
dstip,dstport,prot;" | mysql gcia | uniq -c | sort -nr | head -n5;
done

63.250.195.10
15679 0 UDP

750 4046 UDP
229 1431 UDP
222 1833 UDP
215 2902 UDP

5198 130.85.150.85 0 UDP
4549 130.85.153.31 0 UDP
1631 130.85.152.157 0 UDP
1052 130.85.70.197 0 UDP
1035 130.85.153.36 0 UDP

211.38.231.66
21874 34816 TCP

1 dstport prot
2 130.85.99.99 34816 TCP
2 130.85.99.98 34816 TCP
2 130.85.99.84 34816 TCP
2 130.85.99.83 34816 TCP
2 130.85.99.82 34816 TCP

80.143.44.248
20719 34816 TCP

1 dstport prot
3 130.85.21.90 34816 TCP
2 130.85.99.9 34816 TCP
2 130.85.99.8 34816 TCP
2 130.85.99.79 34816 TCP
2 130.85.99.78 34816 TCP

203.242.231.1
20432 554 TCP

1 dstport prot

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

1 38473 UDP
1 38361 UDP
2 130.85.99.94 554 TCP
2 130.85.99.93 554 TCP
2 130.85.99.92 554 TCP
2 130.85.99.91 554 TCP
2 130.85.99.88 554 TCP

213.190.156.194
20124 34816 TCP

1 dstport prot
2 130.85.99.99 34816 TCP
2 130.85.99.98 34816 TCP
2 130.85.99.90 34816 TCP
2 130.85.99.9 34816 TCP
2 130.85.99.89 34816 TCP

Out of Specification File Statistics
Datagram length 40: 341
Datagram length 44: 381
Datagram length 48: 136
Datagram length 52: 63
Datagram length 56: 33
Datagram length 60: 13589
Datagram length 64: 177
Datagram matches kazaa: 623
Interesting: 10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

Analysis Process
The following documents the analysis that was performed upon the log

files. It includes the commands and procedures performed on the files and is
intended to provide a simple walkthrough.

Analysis Station
The log files have been processed using the following software and hardware:

Gentoo GNU/Linux Kernel 2.6.10•
AMD Athlon(tm) XP 2400+•
1GB RAM•
RAID1 set of 80GB IDE HD•
3ware Inc 3ware PATA RAID Controller•
bash, version 2.05b.0(1)-release•
mysql 4.0.22•
perl, v5.8.4•
nmap version 3.75•
grep (GNU grep) 2.5.1•
coreutils (cut, wc) 5.2.1•
bind-tools (host, dig) 9.2.3•
whois 4.6.11•
vim - Vi IMproved 6.3•

Walkthrough
The first task is organizing and unzipping the files. The following three

command loops move each file to a directory based on their type (oos, scan,
alert) and unzips them.

mkdir oos
mkdir alert
mkdir scans
for f in $(ls OOS*); do cp $f oos; gunzip oos/$f; done
for f in $(ls alert.03*); do cp $f alert; gunzip alert/$f; done
for f in $(ls scans.03*); do cp $f scans; gunzip scans/$f; done

Alert Logs
We start by analyzing the alert files. First they are concatenated together.

The correct format for an alert line is:
09/15-00:00:01.263804 [**] SMB Name Wildcard [**] MY.NET.162.118:1025 -> 204.127.165.224:137

The grep ‘^:’ finds any lines that start with a “:” and the “-v” switch tells it
to exclude those lines. The output of the command is redirected “>” to the
alert.new file and a line count “wc –l” is performed to ensure the file contains the
approximate number of lines that it should. Doing this removes invalid lines that
start with a “:” from our alert file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

cd alert
for f in $(ls); do cat $f >> alert; done

grep '^:' -v alert > alert.new
wc -l alert
1514130 alert

wc -l alert.new
1513161 alert.new

rm alert
mv alert.new alert

Next the “MY.NET.” entries are replaced with “257.257.” this allows easier
filtering because the IP address should only contain numerals. The commands
are run four times because there can be multiple instances of “MY.NET” on each
line. Also some lines were later found to be missing new line characters at the
end thus causing two lines to appear at this point as one. Each time the
command is run a line count is performed to ensure we have not lost any alerts.
Finally we check for any occurrences of “MY.NET” by searching with grep.

cat alert|sed -e 's/MY.NET./257.257./' > alert.new
wc -l alert.new
1513161 alert.new

mv alert.new alert
cat alert|sed -e 's/MY.NET./257.257./' > alert.new
wc -l alert.new
1513161 alert.new

mv alert.new alert
cat alert|sed -e 's/MY.NET./257.257./' > alert.new
wc -l alert.new
1513161 alert.new

mv alert.new alert
cat alert|sed -e 's/MY.NET./257.257./' > alert.new
wc -l alert.new
1513161 alert.new

mv alert.new alert

grep MY.NET alert | wc -l
0

There were a number of lines (961) that were missing proper new line
characters between them but were otherwise undamaged. Eight lines were also
found that contained the content from three alerts. The following commands
were run and then repeated to break these lines up properly. Grep is used to
find the lines by matching four “[**]” sequences in a single line. Sed is then used
to search for the date string preceded by a single character and replace it with
the single character a new line and then the date string. Again line counts are
performed to ensure we don’t lose data.

grep '\[**\].*\[**\].*\[**\]' alert | wc -l
961

wc -l alert
1513189 alert

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

sed -e 's#\(.\)\(09/1[56789]-[0-9][0-9]:\)#\1\n\2#' alert >alert.new
wc -l alert.new
1514150 alert.new
echo $[`cat alert | wc -l` + `grep '\[**\].*\[**\].*\[**\]' alert | wc -l`]
1514150

grep '\[**\].*\[**\].*\[**\]' alert.new | wc -l
8

mv alert.new alert

A number of alerts were found referencing three IP addresses such as
“68.54.168.204:3488 -> 257.257.30.4:3488 -> 257.257.30.4:51443”. Some lines
contained two external addresses followed by an internal. Others contained two
internal addresses preceded by an external address. The sed command was
used to search for multiple “->” sequences and remove the IP address in
between. A line count is performed on a grep to locate the number of corrupted
lines. A line count is then performed a diff command of the new and old file to
find the number of lines affected by the sed command. Finally because the diff
output displays four lines for every line that is different a simple match
command is performed to validate the output.

$ sed -e 's/->.*->/->/' alert > alert.new

$ wc -l alert
1514115 alert

$ wc -l alert.new
1514115 alert.new

$ grep '..->.*->' alert | wc -l
149

$ grep '..->.*->' alert.new | wc -l
0

$ diff alert alert.new | wc -l
596

$ echo $[149 * 4]
596

mv alert.new alert

Now the Mysql database is created. The schema used is based off of the
column names used in the perl script contained in Jason Lam’s GCIA Practical.
The perl script used later in this document is a modification of that used by Mr.
Lam. The perl script contains multiple lines that are commented out, these were
used to test the script to ensure the pattern matches were working correctly.

mysqladmin -u root -p create gcia

$ cat mysql.schema
DROP TABLE IF EXISTS portscan;
CREATE TABLE portscan (
id int(11) DEFAULT '0' NOT NULL auto_increment,
timeof varchar(24) DEFAULT '' NOT NULL,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

srcip varchar(16) DEFAULT '' NOT NULL,
nohost varchar(16) DEFAULT '' NOT NULL,
tcpno varchar(16) DEFAULT '' NOT NULL,
udpno varchar(16) DEFAULT '' NOT NULL,
PRIMARY KEY (id)

);

DROP TABLE IF EXISTS alert;
CREATE TABLE alert (
id int(11) DEFAULT '0' NOT NULL auto_increment,
timeof varchar(24) DEFAULT '' NOT NULL,
action varchar(100) DEFAULT '' NOT NULL,
srcip varchar(16) DEFAULT '' NOT NULL,
srcport varchar(6) DEFAULT '' NOT NULL,
dstip varchar(16) DEFAULT '' NOT NULL,
dstport varchar(6) DEFAULT '' NOT NULL,
PRIMARY KEY (id)

);

$ cat mysql.schema | mysql gcia

cat insert_alert.pl
#!/usr/bin/perl -w

use DBI;
$driver = "mysql";
$dsn = "DBI:$driver:database=gcia;host=localhost;";

$dbh = DBI->connect($dsn, "root", "xksEIR187rllp");

@files=('alert');
foreach $file (@files) {

#print $file . "\n";
open ALERT, $file || die "Coudn't open $file";
while ($line=<ALERT>){

if ($line =~ /^(\d+)\/(\d+)-(\d+:\d+:\d+).\d+\s+\[**\] spp_portscan: End of portscan from ([\d\w\W.]+):
TOTAL time\(\d+\w\) hosts\((\d+)\) TCP\((\d+)\) UDP\((\d+)\) [\w\s]*\[**\]\s$/){

#Portscan
$1 = Month, $2=date, $3=time, $4 = srcip, $5 = nohost, $6 = TCPno, $7 = UDPno
$sql = "INSERT INTO portscan (timeof, srcip, nohost, tcpno, udpno) VALUES (" ;
$sql .= "'2004-$1-$2 $3', '$4', '$5', '$6', '$7')";
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;

 $sth->execute();
#print "$sql\n";

} elsif ($line =~ /^(\d+)\/(\d+)-(\d+:\d+:\d+).\d+\s+\[**\]\s([\s\W\w]+)\s\[**\] ([\d.]+):(\d+) ->
([\d.]+):(\d+)\s$/) {

#Rules alert
$1 = Month, $2=date, $3=time, $4 = Action, $5 = srcip, $6 = srcport, #7 = dstip, #8 = dstport
$sql = "INSERT INTO alert (timeof, action, srcip, srcport, dstip, dstport) VALUES (" ;
$sql .= "'2004-$1-$2 $3', 'REPLACEMEPLEASE', '$5', '$6', '$7', '$8')";
#Hack to remove single quote from some action descriptions
my $action = $4;
$action =~ s/'/ /;
$sql =~ s/REPLACEMEPLEASE/$action/;
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;
$sth->execute();
#print "$action\n";
#print "$sql\n";

Match for alerts with no port numbers
} elsif ($line =~ /^(\d+)\/(\d+)-(\d+:\d+:\d+).\d+\s+\[**\]\s([\s\W\w]+)\s\[**\] ([\d.]+) ->

([\d.]+)\s$/) {
$1 = Month, $2=date, $3=time, $4 = Action, $5 = srcip, $6 = dstip

 $sql = "INSERT INTO alert (timeof, action, srcip, srcport, dstip, dstport) VALUES (" ;
$sql .= "'2004-$1-$2 $3', '$4', '$5', '99999', '$6', '99999')";
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;

 $sth->execute();
#print "$sql\n";

Match for alerts with one port number
} elsif ($line =~ /^(\d+)\/(\d+)-(\d+:\d+:\d+).\d+\s+\[**\]\s([\s\W\w]+)\s\[**\] ([\d.]+):(\d+) ->

([\d.]+)\s$/) {
$1 = Month, $2=date, $3=time, $4 = Action, $5 = srcip, $6 = srcport, #7 = dstip
$sql = "INSERT INTO alert (timeof, action, srcip, srcport, dstip, dstport) VALUES (" ;
$sql .= "'2004-$1-$2 $3', '$4', '$5', '$6', '$7', '99999')";
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;
$sth->execute();
#print "$sql\n";

Match for alerts with one IP
} elsif ($line =~ /^(\d+)\/(\d+)-(\d+:\d+:\d+).\d+\s+\[**\]\s([\s\W\w]+)\s\[**\] ([\d.]+)\s$/) {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

$1 = Month, $2=date, $3=time, $4 = Action, $5 = srcip
$sql = "INSERT INTO alert (timeof, action, srcip, srcport, dstip, dstport) VALUES (" ;
$sql .= "'2004-$1-$2 $3', '$4', '$5', '99999', '999.999.999.999', '99999')";
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;
$sth->execute();
#print "$sql\n";

}else{
#use for testing to print lines that do not match
#print "$line";

}
}

}

./insert_alert.pl

With the alert data input into the SQL database it can now be analyzed. A
combination of SQL queries and UNIX command line utilities were used to
generate the data listed in the Network Statistics section. The commands run
are listed here.

echo 'select action from alert order by action;' | mysql gcia | uniq -c | sort -n
echo 'select distinct srcip from alert order by srcip;' | mysql gcia | wc -l
echo 'select distinct srcip from alert where srcip LIKE "257.257%" order by srcip;' |
mysql gcia | wc -l
echo 'select distinct srcip from alert where srcip NOT LIKE "257.257%" order by srcip;' |
mysql gcia | wc -l
echo 'select srcip from alert where srcip LIKE "257.257.%" order by srcip;' | mysql gcia |
uniq -c | sort -nr | head -n10
echo 'select distinct srcip,action from alert where srcip = “EACH TOP 5 IP HERE” order by
srcip;' | mysql gcia | tail -n+2 |wc -l
echo 'select distinct srcip,action from alert where srcip = "EACH TOP 5 IP HERE" order by
srcip;' | mysql gcia
echo 'select srcip from alert where srcip NOT LIKE "257.257.%" order by srcip;' | mysql
gcia | uniq -c | sort -nr | head -n10
echo 'select distinct srcip,action from alert where srcip = "EACH TOP 5 IP HERE";' | mysql
gcia | tail -n+2 | wc -l
echo 'select distinct srcip,action from alert where srcip = "EACH TOP 5 IP HERE";' | mysql
gcia
echo 'select distinct dstip from alert order by dstip;' | mysql gcia | wc -l
echo 'select distinct dstip from alert where dstip LIKE "257.257.%" order by dstip;' |
mysql gcia | wc -l
echo 'select distinct dstip from alert where dstip NOT LIKE "257.257.%" order by dstip;' |
mysql gcia | wc -l
echo 'select dstip from alert where dstip LIKE "257.257.%" order by dstip;' | mysql gcia |
uniq -c | sort -nr | head -n10
echo 'select dstip from alert where dstip NOT LIKE "257.257.%" order by dstip;' | mysql
gcia | uniq -c | sort -nr | head -n10
echo 'select distinct dstport from alert order by dstport;' | mysql gcia | wc -l
echo 'select distinct dstport from alert where dstip LIKE "257.257.%" order by dstport;' |
mysql gcia | wc -l
echo 'select distinct dstport from alert where dstip NOT LIKE "257.257.%" order by
dstport;' | mysql gcia | wc -l
echo 'select dstport from alert where dstip LIKE "257.257.%" order by dstport;' | mysql
gcia | uniq -c | sort -nr | head -n10
echo 'select dstport from alert where dstip NOT LIKE "257.257.%" order by dstport;' |
mysql gcia | uniq -c | sort -nr | head -n10
echo 'select distinct srcport from alert order by srcport;' | mysql gcia | wc -l
echo 'select distinct srcport from alert where srcip LIKE "257.257.%" order by srcport;' |
mysql gcia | wc -l
echo 'select distinct srcport from alert where srcip NOT LIKE "257.257.%" order by
srcport;' | mysql gcia | wc -l
echo 'select srcport from alert where srcip LIKE "257.257.%" order by srcport;' | mysql
gcia | uniq -c | sort -nr | head -n10
echo 'select srcport from alert where srcip NOT LIKE "257.257.%" order by srcport;' |
mysql gcia | uniq -c | sort -nr | head -n10
echo 'select srcip from portscan where srcip LIKE "257.257.%" order by srcip;' | mysql
gcia | uniq -c | sort -nr | head -n5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

echo 'select srcip from portscan where srcip NOT LIKE "257.257.%" order by srcip;' | mysql
gcia | uniq -c | sort -nr | head -n5

Scan Logs
The same basic procedure was then used on the scan logs. They were

concatenated into a single file using a command loop. A MySQL database was
created and a perl script was used to insert the records into the database.

for f in $(ls scans.*); do cat $f >> scans; done

ls -lh
total 955M
-rw-r--r-- 1 user group 477M Feb 20 20:55 scans
-rw-r--r-- 1 user group 89M Feb 9 14:41 scans.030915
-rw-r--r-- 1 user group 75M Feb 9 14:41 scans.030917
-rw-r--r-- 1 user group 172M Feb 9 14:42 scans.030918
-rw-r--r-- 1 user group 143M Feb 9 14:42 scans.030919

cat mysql.schema
DROP TABLE IF EXISTS scan;
CREATE TABLE scan (
id int(11) DEFAULT '0' NOT NULL auto_increment,
timeof varchar(24) DEFAULT '' NOT NULL,
srcip varchar(16) DEFAULT '' NOT NULL,
srcport varchar(16) DEFAULT '' NOT NULL,
dstip varchar(16) DEFAULT '' NOT NULL,
dstport varchar(16) DEFAULT '' NOT NULL,
prot varchar(16) DEFAULT '' NOT NULL,
flags varchar(64) DEFAULT '' NOT NULL,
PRIMARY KEY (id)

);

cat mysql.schema | mysql gcia

cat insert_scan.pl
#!/usr/bin/perl -w

use DBI;
$driver = "mysql";
$dsn = "DBI:$driver:database=gcia;host=localhost;";

$dbh = DBI->connect($dsn, "root", "PASSWORDHERE");

@files=('scans');
foreach $file (@files) {
#print $file . "\n";
open ALERT, $file || die "Coudn't open $file";
while ($line=<ALERT>){
#scan UDP
if ($line =~ /^([\w]+) (\d+) (\d+:\d+:\d+) ([\d.]+):(\d+) -> ([\d.]+):(\d+) UDP\s*$/){
$1 = Month $2=date $3=time $4=srcip $5=srcport $6=dstip $7=dstport
$sql = "INSERT INTO scan (timeof, srcip, srcport, dstip, dstport, prot) VALUES (" ;
$sql .= "'2003-$1-$2 $3', '$4', '$5', '$6', '$7', 'UDP')";
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;
$sth->execute();
#print "$sql\n";

#scan TCP
}elsif ($line =~ /^([\w]+) (\d+) (\d+:\d+:\d+) ([\d.]+):(\d+) -> ([\d.]+):(\d+) ([\w]+

.+)\s*$/){
$1 = Month $2=date $3=time $4=srcip $5=srcport $6=dstip $7=dstport $8=flags
 $sql = "INSERT INTO scan (timeof, srcip, srcport, dstip, dstport, prot, flags) VALUES (" ;
$sql .= "'2003-$1-$2 $3', '$4', '$5', '$6', '$7', 'TCP', '$8')";
my $sth = $dbh->prepare($sql) or die "Couldn't prepare statement: " . $dbh->errstr;;
$sth->execute();
#print "$sql\n";

}else{
#use for testing to print lines that do not match
#print "$line";

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

}
}

./insert_scan.pl

Numerous statistics were then generated using SQL queries and
command line tools. Some simple DNS queries were run with the “host”
command to verify some of the results. It appears that legitimate traffic may
have been flagged as scans so an attempt was made to remove that traffic.
Here are queries that revealed a DNS server.

echo 'select srcip from scan where srcip LIKE "130.85.%" order by srcip;' | mysql gcia |
uniq-c | sort -nr | head -n5
2597670 130.85.1.3
1521633 130.85.84.194
1315532 130.85.70.53
580124 130.85.1.5
356322 130.85.80.243

echo 'select dstport,prot from scan where srcip LIKE "130.85.1.3" order by prot,dstport;'
| mysql gcia | uniq -c | sort -nr | head -n5
2587353 53 UDP

7289 123 UDP
255 61005 UDP
172 53 TCP
133 61872 UDP

echo 'select dstip,dstport,prot from scan where srcip LIKE "130.85.1.3" order by
dstip,dstport,prot;' | mysql gcia | uniq -c | sort -nr | head -n5
55787 192.26.92.30 53 UDP
46178 203.20.52.5 53 UDP
44379 130.94.6.10 53 UDP
39550 192.52.178.30 53 UDP
35848 205.231.29.244 53 UDP

host 192.26.92.30
30.92.26.192.in-addr.arpa domain name pointer c.gtld-servers.net.
host 203.20.52.5
Host 5.52.20.203.in-addr.arpa not found: 3(NXDOMAIN)
host 130.94.6.10
10.6.94.130.in-addr.arpa domain name pointer bsp1.bondedsender.org.
host 192.52.178.30
30.178.52.192.in-addr.arpa domain name pointer k.gtld-servers.net.
host 205.231.29.244
244.29.231.205.in-addr.arpa domain name pointer a.ns.dsbl.org.

Here are queries that uncover what appears to be NetBIOS traffic
between internal hosts. Note that unlike the alert logs the scan logs have not
obfuscated the IP addresses.

echo 'select dstport,prot from scan where srcip LIKE "130.85.70.53" order by
dstport,prot;' |mysql gcia | uniq -c | sort -nr | head -n5
1225687 135 TCP
89844 80 TCP

1 dstport prot
1 443 TCP

echo 'select dstip,dstport,prot from scan where srcip LIKE "130.85.70.53" order by
dstip,dstport,prot;' | mysql gcia | uniq -c | sort -nr | head -n5

40 130.84.173.131 135 TCP
38 130.84.111.115 135 TCP
38 130.84.110.173 135 TCP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

37 130.84.44.120 135 TCP
37 130.84.228.44 135 TCP

A command loop was then run to return the desired statistical
information. The first run detected DNS, SMTP, and NetBIOS traffic. A
subsequent loop was run removing these from the results. The filtered loop is
listed here because it is more complex and based on the unfiltered loop. A
similar look was then run with “WHERE srcip NOT LIKE ‘130.85.%’” to retrieve
the same statistics for external sources.

for i in $(echo 'select srcip from scan where srcip LIKE "130.85.%" and dstport != "53"
and dstport != "135" and dstport != "25" and dstport != "137" order by srcip;' | mysql
gcia | uniq -c | sort -nr | head -n5 | cut -c9-100); do
echo
echo $i
echo "select dstport,prot from scan where srcip LIKE '$i' order by dstport,prot;" | mysql
gcia | uniq -c | sort -nr | head -n5
echo "select dstip,dstport,prot from scan where srcip LIKE '$i' order by
dstip,dstport,prot;" | mysql gcia | uniq -c | sort -nr | head -n5; done

130.85.70.53
1225687 135 TCP
89844 80 TCP

1 dstport prot
1 443 TCP
40 130.84.173.131 135 TCP
38 130.84.111.115 135 TCP
38 130.84.110.173 135 TCP
37 130.84.44.120 135 TCP
37 130.84.228.44 135 TCP

130.85.70.207
2401 33774 UDP
2056 65090 UDP
1997 18304 UDP
1978 11564 UDP
1808 33513 UDP
2256 24.224.188.141 33774 UDP
2056 12.222.24.242 65090 UDP
1997 69.27.66.247 18304 UDP
1978 142.217.110.70 11564 UDP
1808 81.152.67.233 33513 UDP

130.85.84.210
26394 6257 UDP
426 80 TCP
149 16257 UDP
83 6256 UDP
77 26257 UDP
98 172.133.50.228 6257 UDP
90 62.211.252.6 6257 UDP
83 68.72.171.140 6257 UDP
78 68.14.89.26 6257 UDP
69 80.116.225.5 6257 UDP

130.85.98.132
12101 22321 UDP
4289 7674 UDP
14 80 TCP
5 1025 UDP
4 2865 UDP
9 220.122.198.101 22321 UDP
8 211.212.96.4 22321 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

7 220.91.73.39 22321 UDP
7 220.81.215.195 22321 UDP
7 219.248.155.236 22321 UDP

130.85.82.2
1626 4046 UDP
1621 32801 UDP
1605 2645 UDP
1594 1173 UDP
1553 1100 UDP
1626 68.34.149.132 4046 UDP
1621 4.3.172.73 32801 UDP
1605 24.209.234.234 2645 UDP
1594 24.197.242.66 1173 UDP
1553 24.79.219.29 1100 UDP

Out of Specification Logs
The out of specification (OOS) logs were handled in a different way. First

they were concatenated like the others but then there were analyzed in their
native ASCII format. A perl script was used to generate some basic statistics on
the data. The file is a list of packets with their IP and TCP headers decoded. Any
data in the packet is then listed in HEX and ASCII columns. The perl script gives
the number of packets based on the datagram lengths. Any packets larger 64
bytes are printed to screen. After viewing the results a filter was added to match
the keyword “Kazaa” in the packet. Here is the script and its statistical output.

for f in $(ls OOS*); do cat $f >> oos; done

grep '^09/..-..:..:' oos | wc -l
15356

wc -l oos
130595 oos

cat parse.pl

#!/usr/bin/perl

$/ = "=+";
my $file = shift @ARGV;
my $dgm40 = '0';
my $dgm44 = '0';
my $dgm48 = '0';
my $dgm52 = '0';
my $dgm56 = '0';
my $dgm60 = '0';
my $dgm64 = '0';
my $kazaa = '0';
my $print = '0';

open F, "$file" or die("Cannot open $file $!");
while (<F>) {

if (/DgmLen:40/) { $dgm40++; next; }
if (/DgmLen:44/) { $dgm44++; next; }
if (/DgmLen:48/) { $dgm48++; next; }
if (/DgmLen:52/) { $dgm52++; next; }
if (/DgmLen:56/) { $dgm56++; next; }
if (/DgmLen:60/) { $dgm60++; next; }
if (/DgmLen:64/) { $dgm64++; next; }
if (/Kazaa/) { $kazaa++; next; }
#if (/^.*\n.*\n.*\n.*\n.*\n.*\n.*\n.*$/) { print $_; next; }
$print++;
print $_;

}
print "\n40: " . $dgm40;
print "\n44: " . $dgm44;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

print "\n48: " . $dgm48;
print "\n52: " . $dgm52;
print "\n56: " . $dgm56;
print "\n60: " . $dgm60;
print "\n64: " . $dgm64;
print "\nkazaa: " . $kazaa;
print "\nprint: " . $print;
print "\n";
close F;

chmod 700 parse.pl

./parse.pl oos |tail –n9
40: 341
44: 381
48: 136
52: 63
56: 33
60: 13589
64: 177
kazaa: 623
print: 10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

List of References
James. Ntpdx overflow attempt sig triggered by ntpdc query. 14 December 2002
http://archives.neohapsis.com/archives/snort/2002-12/0413.html

Frasunek, Przemyslaw. ntpd =< 4.0.99k remote buffer overflow. 4 April 2001
http://www.securityfocus.com/archive/1/174011

The NetBSD Foundation, Inc. 2001-004: NTP remote buffer overflow. 5 April 2001
http://www.securityfocus.com/advisories/3200

Turkia, Miika. Level Two Intrusion Detection In Depth. 28 January 2001
http://www.giac.org/certified_professionals/practicals/gcia/0352.php

Stearns, William Ramen Worm Detect Script. 15 February 2001
http://www.sans.org/y2k/ramen.htm

Internet Security Systems (ISS) X-Force. ISS-028: Windows Backdoor Update III. 6 July 1999
http://www.securityfocus.com/advisories/1644

Rao, Subba. Ramen worm and Snort log entry. 17 June 2001
http://www.securityfocus.com/archive/96/191589

Antirez. Dumb Scan. 18 December 1998
http://www.kyuzz.org/antirez/papers/dumbscan.html

LURHQ Threat Intelligence Group. Intrusion Detection: In-Depth Analysis.
http://www.lurhq.com/idsindepth.html

Rautiainen, Sami. F-Secure Virus Descriptions : Adore. April 2001
http://www.f-secure.com/v-descs/adore.shtml

Microsoft Corporation. INF: TCP Ports Needed for Communication to SQL Server Through a
Firewall. 16 September 2003
http://support.microsoft.com/kb/q287932/

Microsoft Corporation. Using the MMS protocol. 2003
http://www.microsoft.com/resources/documentation/WindowsServ/2003/standard/proddocs/en-
us/Default.asp?url=/resources/documentation/WindowsServ/2003/standard/proddocs/en-
us/wmserver/wmsmmsservercontrolprotocol.asp

Microsoft Corporation. Using Windows 2000 with Service Pack 4 in a Managed Environment.
http://www.microsoft.com/technet/prodtechnol/Windows2000Pro/maintain/w2kmngd/14_2kwmp.m
spx

Whitle. McAfee Guardian and Yahoo Launchcast. 17 April 2003
http://forums.mcafeehelp.com/viewtopic.php?t=8978

Flynn, Hal. FOCUS on Sun: Hardening Solaris - Creating a Diamond in the Rough. 2 October
2000
http://www.securityfocus.com/infocus/1365

Lam, Jason. GCIA Practical. 14 October 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Michael J. Gauthier – GCIA Practical v4.1

http://www.giac.org/certified_professionals/practicals/gcia/0441.php

