
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

	 	
[VERSION	 June	 2012]	

	
	 	

Log2Pcap

GIAC (GCIA) Gold Certification

Author: Joaquín Moreno Garijo, bastionado@gmail.com
Advisor: Johannes Ullrich

Accepted: October 4th 2012
(Date your final draft is accepted by your advisor)

Abstract

While	 handling	 an	 incident,	 either	 in	 the	 identification	 phase	 or	 during	 the	 computer	
forensics	 analysis,	 it	 is	 necessary	 to	 analyze	 the	 logs	 from	 different	 servers	 to	
identify	 the	 events	 that	 could	 be	 related	 to	 the	 incident.	 This	 task	 is	 often	 done	 using	
regular	 expressions	 with	 a	 customized	 list	 of	 patterns	 designed	 to	 identify	 unusual	
behavior.	 This	 is	 a	 time	 consuming	 process,	 requiring	 up	 to	 date	 signatures.	 	 This	
paper	 describes	 a	 novel	 tool,	 Log2pcap,	 which	 converts	 server	 logs	 to	 the	 standard	
“pcap”	 format.	 A	 pcap	 file	 can	 then	 be	 analyzed	 using	 IDS	 engines	 like	 Snort	
leveraging	 existing	 and	 well	 maintained	 signature	 collections.	 	

Log2Pcap	 2

	

	 	 	

1. Introduction
During the analysis of all the available data that are logged, organizations must be

able to identify which portions of this information are actionable and pertinent. This

tedious process is related with the normalization process, and also, with the parsing log

process (Paul, 2011). To help with this tiring work, people devoted to incident handling

and computer forensics usually have programs that search for patterns in those logs and

identify potential dangerous events (msbachman, 2010) (Worman, 2009).

This paper aims to create a new type of tool to help with this task. The objective is

to use the already existing rules in the deployed IDSs (Intrusion Detecting Systems) as a

detection method, instead of the traditional parse log tools with white and black lists. To

do so, the tool will regenerate the network traffic using the server logs. The network

traffic files will then be loaded into the IDS to detect the anomalous or potentially

dangerous behaviors.

The chosen programming language has been Python with the Scapy library to

recreate the network traffic. The IDS used in this paper is Snort.

1.1. Scapy
Scapy is an interactive packet manipulation tool. It is able to forge network

traffic, decode traffic, packet sniffer, send traffic, receive traffic and more functionality.

Scapy uses the Python interpreter as a command board (Secdev Scapy project, 2012).

Scapy is probably one of the best libraries to craft network packets without

requiring a complex language (Biondi, 2005) and it makes it easy to develop future

extensions to the Log2Pcap tool. However, Scapy is not a fast library compared to some

C libraries. This is not a critical issue in the case of the Log2Pcap, as the information it is

not processed in real time and therefore the impact of the lower speed is not that critical,

compared to other tools that need to process network traffic in real time. For this reason,

Scapy has been the library chosen to develop Log2Pcap.

Due to the fact that Scapy is implemented in Python, Log2Pcap has been

developed in this language.

Log2Pcap	 3

	

	 	 	

1.2. Snort
Snort is an open source network intrusion detection system write in C language.

Providing technical capacity to perform real-time traffic, protocol analysis and packet

logging. It can be used to detect different types of attacks and deviation from normal or

expected behavior such as buffer overflows, stealth port scans, malware, web attack and

so on (Caswell, Beale, & Baker, 2007).

The tool is common used in knowledge-based approaches, but it also can be use

as behavior-based approaches (Debar, 2013) using the dynamic preprocessors (Ashley,

2008).

Snort has been chosen because it is one of the most used open source IDSs and it

can read PCAP files, which is a requirement to use Log2Pcap. Furthermore, it is well

documented and it has been used in different organizations, countries and CERTS, as an

example of the stability and reliability of the tool (US CERT, 2011).

The proposed alternative to Snort is Suricata (http://suricata-ids.org), that has

good performance in multithread processors, but it has less documentation than Snort

(Albin, 2011).

1.3. Emerging Threats and Source Fire VRT
To detect the possible threats the Snort engine uses an open source rule language,

dynamic rules and two specific types of preprocessors: the core preprocessor and the

dynamic preprocessor (Caswell, Beale, & Baker, 2007). There are many different rule

sets that can be added to the Snort engine to increase the type of threats detected. Some of

them have been specifically designed to detect certain malware or exploits, but it is worth

to mention that some of the more specialized sets of rules, usually programmed in C, are

not free.

Among the free packs of rules (disregarding in this point the license of use of

those rules, sometimes limited to personal use) there are two sets that are the most often

used in the Snort environment: the one from the Source Fire VRT (www.snort.org/vrt/)

and the one from Emerging Threats (www.emergingthreats.net).

Log2Pcap	 4

	

	 	 	

In this paper we are going to use mainly the free Source Fire VRT rules, and in

some cases both. Although both sets have their pros and cons, it is not the objective of

this paper to discuss this.

2. Log2Pcap
Log2Pcap is a proof of concept about how we can combine the Scapy library to

recreate the network traffic in order to take advantage of the powerfulness of the IDS and

its rules. Due to the fact that there are many different types of protocols and formats of

server logs, for the first version of this tool, currently it only supports a few types of

logfiles from web servers using the HTTP protocol.

2.1. Uses
The tool was designed with three different purposes:

1. Computer forensics analysis of logs from servers that are potentially

compromised or involved in a security incident. The server logs can be

obtained from a SIM or a centralized log and the tool can be used to find

evidence to help the security experts analyzing the incident. Although the

server logs can be taken from the server, this information may have been

modified by the intruder and should not be considered reliable.

2. To help in the identification phase of the incident. The tool can be used as

part of an unassisted batch process to find potential attacks hidden in the

server logs.

3. To evaluate the network perimeter protection: firewalls, IPS, WAF… If

the IDS detect attacks from the Log2Pcap output that the perimeter

devices did not detect, it may be a signal that your protection

infrastructure is not doing its job.

2.2. Limitations of the tool
The tool has currently some limitations that a user needs to be aware of before

using it. First of all the emulation of the traffic depends on the amount of information the

Log2Pcap	 5

	

	 	 	

logs provide. Some event logs do not save all the information needed to recreate the

whole network traffic. In that case Log2Pcap will recreate only part of the traffic.

As an example, some web servers do not log the POST parameters, but they log

all the GET parameters. In this sense, it is important to configure logging correctly in

order to save all the information that may be necessary in the future, taking into account

that this may impact the performance and disk usage of the server. Depending on the

service has to use a specific guide to configure the log files, as an example:

• Tomcat: http://tomcat.apache.org/tomcat-7.0-doc/logging.html

• Apache: http://httpd.apache.org/docs/2.2/logs.html

• Nginx: http://wiki.nginx.org/Configuration#Logging

The second limitation comes from the fact that the logs may not be reliable

enough. They can be altered by the intruder before they are copied to a safe environment

or the server is halted by a security expert to collect evidences during the computer

forensics analysis. For this reasons the logs should be always, when possible, taken from

a secure remote log server. Another natural limitation of Log2Pcap is that it needs an IDS

that supports the PCAP file as input. If the IDS does not support this format, it is

necessary to use additional software such Tcpreplay to read the traffic and send it to the

mirror port of the IDS. The development of this environment will increase the time and

cost of Log2Pcap.

Another relevant limitation is the time needed to recreate the traffic from a log file

to a PCAP file and to inject this file to the IDS. Currently to apply a regular expression

with a black list or white list to the log is faster than using Log2Pcap.

The last limitation is the loss of correlation between the IDS alert and the line of

the log registry that raised the alert. When the IDS reports the alerts after being “fed”

with the PCAP file, the security expert loses context information, as he does not know

which line of the log generated the alert.

Log2Pcap	 6

	

	 	 	

3. Design of the tool
The program has been designed in layers for different purpose to make it easier to

extend and improve in the future. They are the parse log layer, the protocol layer and the

Scapy function layer as described in the next section.

3.1. Modulation Program
In order to allow future developments of the tool it is important to create a

modular application.

The first level is the log parser: it reads the logs and extracts the information

needed for the next level, commonly referred as normalization. The second level is the

protocol level that needs the basic fields provided by the log parser in order to recreate

the protocol. The last level is called by the protocol level to recreate the network traffic

using Scapy, as we can see in the next picture:

Image	 1:	 diagram	 layer	 of	 the	 application.	

Log2Pcap	 7

	

	 	 	

The main advantage of this model it is shown in the example, where a new type of

log from a webserver such as Apache Tomcat is used as the source log. To parse this new

log format, it would be necessary to develop only one new function to parse the log, that

function will then call the standard protocol HTTP function.

3.2. HTTP Protocol
Due to the fact that developing support for all the protocols for all the different

types of potential network traffic would require a lot of time and that this paper is a proof

of concept with limited assigned time, the first version of the application only has support

for the HTTP Protocol.

The Protocol is used very widely and its analysis is required for most incidents,

which makes support for it a requirement for computer forensics and intrusion detection.

3.3. Logs support
Log2Pcap currently supports four different webserver log formats with the

common or default log configuration. For customized event log formats the user has to

adapt the program to match the specific event log configuration.

This part is one of the most challenging tasks because many operating systems

have their own log file format that can be changed by the administrator to adapt to his/her

needs. Furthermore, some operating systems do not provide the basic information of how

they save the log by default.

For this reason Log2Pcap currently only offers support for four different

webserver logs, as an example of how the security expert or administrator must adapt the

tool to support specific log formats.

3.3.1. Microsoft IIS
Microsoft Internet Information Services or IIS has different types of logs and

allows log format customization by the administrator. Log2Pcap supports the two main

default log formats: IIS W3C Extended and IIS Log Format.

The first and most common is W3C Extended. There is a detailed explanation of

the different fields of the log file at the Log Analyzer web site

Log2Pcap	 8

	

	 	 	

(http://loganalyzer.adiscon.com). The most important for the tool are the following

fields:

- - SourceIp - DestinationIP HTTPMethod URI - ReturnCode - - - - ProtocolVersion SomeHTTPHeaders

A real example of the log can be obtained from the Web of Nihuo Software

(Nihuo, 2013):

1998-11-19 22:48:39 206.175.82.5 - 208.201.133.173 GET /global/images/navlineboards.gif - 200 540 324 157 HTTP/1.0

Mozilla/4.0+(compatible;+MSIE+4.01;+Windows+95) USERID=CustomerA;+IMPID=01234 http://www.loganalyzer.net

2002-05-02 17:42:15 172.22.255.255 - 172.30.255.255 80 GET /images/picture.jpg – 200

Mozilla/4.0+(compatible;MSIE+5.5;+Windows+2000+Server)

2002-05-24 20:18:01 172.224.24.114 - 206.73.118.24 80 GET /Default.htm - 200 7930 248 31

Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+2000+Server) http://64.224.24.114/

The second log format is the IIS Log Format, which can be obtained also from the

Web of Nihuo Software (Nihuo, 2013) or the online documentation in the Microsoft

(Microsoft TechNet, 2003). The most important fields are the following:

SourceIP, -, -, -, -, -, DestinationIp, -, -, -, ReturnCode, -, HTTPMethod, URI, SomeHTTPHeaders

A real log entry using this format is shown below:

192.168.114.201, -, 03/20/01, 7:55:20, W3SVC2, SALES1, 172.21.13.45, 4502, 163, 3223, 200, 0, GET, /DeptLogo.gif, -,

3.3.2. Apache

For the Apache Web Server the tool accepts the default format Apache Combined

which has the following format:

SourceIP - - [] “HTTPMethod URI HTTPProtocol” ReturnCode - - SomeHTTPHeaders

A real log file has been obtained from the author own server (Debian 6) and from

one challenger of the Honeynet Project (Raffael, Chuvakin, & Tricaud, 2010). This

format was verified in other two servers with other Linux distributions, Ubuntu 10.4 LTS

and Red Hat EL 5:

Own Server:

65.96.235.XXX - - [03/Sep/2012:21:41:57 +0000] "GET /index.php3 HTTP/1.1" 404 120259 "-" "Mozilla/5.00 (Nikto/2.1.5)

(Evasions:None) (Test:multiple_index)"

Log2Pcap	 9

	

	 	 	

HoneyNet Project:

10.0.1.XXX - - [24/Apr/2010:14:33:22 -0700] "GET /feed/ HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1"

SxPq9AoAAQ4AAEHGCtEAAAAD 967817

3.3.3. IBM WebSeal
The default log from IBM WebSeal does not provide much data:

SourceIP - - [-] “HTTPMethod URI HTTPProtocol” ReturnCode -

A sample entry from a IBM WebSeal log looks like the following:

XX.XX.XX.XX - Unauth [05/Nov/2012:09:01:42 +0200] "GET / HTTP/1.0" 200 103

XX.XX.XX.XX - Unauth [05/Nov/2012:09:07:29 +0200] "GET /$URL HTTP/1.1" 200 471

3.3.4. Nginx
The tool accepts the default log configuration for Nginx, which includes the

following fields:

SourceIP - - -] “HTTPMethod Uri HTTPProtocol” ReturnCode - “-” “UserAgent”

A real example log file has been taken from the Slicehost Web page (SliceHost,

2010):

80.154.42.XXX - - [23/Aug/2010:15:25:35 +0000] "GET /phpmy-admin/scripts/setup.php HTTP/1.1" 404 347 "-" "ZmEu"

123.65.150.XX - - [23/Aug/2010:03:50:59 +0000] "POST /wordpress3/wp-admin/admin-ajax.php HTTP/1.1" 200 2

"http://www.example.com/wordpress3/wp-admin/post-new.php" "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_4; en-US)

AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.472.25 Safari/534.3"

4. Code Tool
As described before, Log2Pcap has been developed in Python using the Scapy

library to generate and output the traffic to a PCAP file. The tool has three layers: Scapy

layer, Protocol layer and the Log Parser layer.

4.1. Scapy Basic Functions
The Scapy main functions recreate the network traffic using the TCP stack. The

tool has five different functions that are being used to support the protocol layer

functions.

Log2Pcap	 10

	

	 	 	

4.1.1. Handshake function
The purpose of this function is to recreate the three way handshake to establish a

TCP connection. The client starts sending a Syn flag to the server, then the server replies

with a Syn+Ack flag and finally the client confirms the packet with an Ack flag packet

(Stevens & Fall, 2011). The initial sequential number for the source and destination are

created by the Python random function “getrandbits” with a size of 32 bits which is the

length for this field in the TCP header (Foundation, 2012).

The code of the function:

def handshake(pcapfile, dstIp, dstPort, srcIp, srcPort):

 seqN = random.getrandbits(32)

 ackN = 0

 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="S",seq=seqN,ack=ackN))

 ackN = random.getrandbits(32)

pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="SA",seq=ackN,ack=seqN+1))

pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN+1,ack=ackN+1))

 return (seqN+1, ackN+1)

4.1.2. End connection
To finish the connection the tool uses two different functions. The first function is

ending TCP connections “politely” with a FIN flag packet in both directions; its name is

“finishconnection”. The second function is the “impolite version” that involves a reset

packet from the client; this function is named “resetconnection” (Stevens & Fall, 2011).

For each line in the log, the finishconnection function requires four packets to end

the connection, while resetconnection only needs one packet. For this reason, using the

resetconnection function implies a smaller PCAP file than finishconnection. Another

difference is that the Log2pcap tool is faster if resetconnection is used because it needs to

save less data in the file and call Scapy functions fewer times. On the other hand, some

IDS and network tools identified the reset packet as a network error, a possible DoS

attack or a packet crafter. However, Snort does not have problems using the

resetconnection function.

As an example, we created two different PCAP file using the resetconnection

function and other with the finishconnection function using the same log as input, and

then opened the PCAP file in Wireshark (Burns, et al., 2007):

Log2Pcap	 11

	

	 	 	

Image 2: PCAP file created using resetconnection function

Image 3: PCAP file created using finishconnection function

As we can see Wireshark shows the RST packet in red. For this reason the

Log2Pcap tool uses the function finishconnection by default, although the user can use

resetconnection instead of finishconnection to increase the performance and reduce the

size of the PCAP file.

In the next image a comparative benchmark of speed and file size is shown

comparing finishconnection and resetconnection using an Apache log with 361 lines.

Using the finishconnection function the file size was 60 kilobyte bigger than using the

resetconnection function (resulting in 236KB and 176KB respectively) and the

processing required 30% more time than in the case of using resetconnection:

Log2Pcap	 12

	

	 	 	

Image 4: Benchmark comparative using Fin o Rst end connection

The code for the resetconnection is as follows:

def resetconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN):

 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="R",seq=seqN,ack=ackN))

The code for the finishconnection is as follows:

def finishconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN):

pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="FA",seq=seqN,ack=ackN))

seqN = seqN + 1

pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="A",seq=ackN,ack=seqN))

pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="FA",seq=ackN,ack=seqN))

ackN = ackN + 1

 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN,ack=ackN))

4.1.3. Send data
Depending on the protocol, data may be send in on direction or it can be send in

both directions. For this reason the tool has two different functions to simulate data

sending. The first one is “sendData”, which sends the information in only one way using

a function parameter. The other function is “queryResponse” which simulates sending the

data and receiving a response.

In the sendData function the information is in the “data” function parameter:

def sendData(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, data):

pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN,ack=ackN)/data)

 if len(query) == 0:

 seqN = seqN + 1

Log2Pcap	 13

	

	 	 	

 else:

 seqN = seqN + len(data)

 return (seqN, ackN)

In the function queryResponse the data sent is in the function parameter “query”

and the response data is in the function parameter “response”:

def queryResponse(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, query, response):

 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN,ack=ackN)/query)

 if len(query) == 0:

 seqN = seqN + 1

 else:

 seqN = seqN + len(query)

 pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="A",seq=ackN,ack=seqN)/response)

 if len(response) == 0:

 ackN = ackN + 1

 else:

 ackN = ackN + len(response)

 return (seqN, ackN)

4.2. HTTP Protocol Functions
The second layer of the tool is the Protocol layer. As said above, in this first

version Log2Pcap supports only the HTTP Protocol.

This layer has two different functions: “httpfast” and “http”. The httpfast function

is only required for programmers who need a custom HTTP query or request but it is not

intended for use as a standard component for log parsing. The http function is the core of

the HTTP implementation and it is called by the functions that parse the web server log.

For the implementation of the “http” function different types of logs have been

analyzed in order to know the type and amount of information they provide, and what of

this information is useful for recreate the web traffic. The conclusion is that for the tool to

work correctly, the log needs to provide the following HTTP header fields:

• HTTP method: GET, POST, HEAD, OPTIONS, TRACE…

• The URL requested by the client.

• The version of the HTTP protocol.

Log2Pcap	 14

	

	 	 	

• The User Agent header field of the client. “It shows information of the web

browser used by the web visitor. This is used for statistical purposes and the

tracing of protocol violations” (W3C, 1994). Some audit tools and malware have

their own signatures.

• The “Referer” header field. “This allows the client to specify, for the server

benefit, the address (URI) of the document (or element within the document)

from which the URI in the request was obtained” (W3C, 1994).

• The parameters sent by the POST method.

• The return status code from the server. “The data sections of the messages Error,

Forward and Redirection responses may be used to obtain human-readable

diagnostic information” (W3C, 1998).

The implementation of the http function starts generating a random source port for

the client higher than 1024 (not reserved port). Then it takes all the values from the

function parameters and generates the HTTP query from the client. Finally the function

checks the status code provided by the server and generates a specific response

depending on the status code. In this implementation, the tool has a specific response for

the most common return codes: 200, 302, 400, 401, 403, 404, 414 and 500. If the state

code is 200 and the method is “GET” or “POST” the server replies with a simple HTML

web page. The implementation of this function is as follows:

def http(pcapfile, dstIp, dstPort, srcIp, url, method, protocol, useragent, referer, param, retCode):

try:

 srcPort = int(random.getrandbits(16))

 while srcPort < 1024:

 srcPort = int(random.getrandbits(16))

 _query = "%s %s %s\n" % (method, url, protocol)

 _useragent = "User-Agent: %s\n" % str(useragent)

 _referer = "Referer: %s\n" % str(referer)

 if param == "":

 httpQuery = "%s%s%s\n" % (_query, _useragent, _referer)

 else:

 _param = "%s\n" % str(param)

 httpQuery = "%s%s%s%s\n" % (_query, _useragent, _referer, _param)

Log2Pcap	 15

	

	 	 	

 if retCode == "200":

 _response = "%s %s OK" % (protocol, retCode)

 elif retCode == "302":

 _response = "%s %s Found" % (protocol, retCode)

 elif retCode == "400":

 _response = "%s %s Bad Request" % (protocol, retCode)

 elif retCode == "401":

 _response = "%s %s Unauthorized" % (protocol, retCode)

 elif retCode == "403":

 _response = "%s %s Forbidden" % (protocol, retCode)

 elif retCode == "404":

 _response = "%s %s Not Found" % (protocol, retCode)

 elif retCode == "414":

 _response = "%s %s Request-URI Too Long" % (protocol, retCode)

 elif retCode == "500":

 _response = "%s %s Internal Server Error" % (protocol, retCode)

 else:

 _response = "%s %s Other" % (protocol, retCode)

 if retCode == "200" and (method == "GET" or method == "POST"):

 httpResponse = "%s\n\n<html><head></head><body></body></html>\n\n" % _response

 elif retCode == "302" or retCode == "200":

 httpResponse = "%s\n\n" % _response

 else:

 httpResponse = "%s\nConnection: close\n\n" % _response

 (seqN, ackN) = handshake(pcapfile, dstIp, dstPort, srcIp, srcPort)

 (seqN, ackN) = queryResponse(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, httpQuery, httpResponse)

 finishconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN)

except:

 sys.stderr.write("HTTP traffic:\nhttpQuery:\n%s\nhttpResponse:\n%s\n-------" % (httpQuery, httpResponse))

The “httpfast” function has two parameters: httpQuery and httpResponse. This

function does not parse the parameters to prepare the information as the protocol

describes, but it is only implemented for specific cases in which the programmer needs to

use specific custom queries and responses to recreate the network traffic with any other

functionality:

def httpfast(pcapfile, dstIp, dstPort, srcIp, httpQuery, httpResponse):

try:

 srcPort = int(random.getrandbits(16))

 while srcPort < 1024:

 srcPort = int(random.getrandbits(16))

 (seqN, ackN) = handshake(pcapfile, dstIp, dstPort, srcIp, srcPort)

Log2Pcap	 16

	

	 	 	

 (seqN, ackN) = queryResponse(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, httpQuery, httpResponse)

 finishconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN)

except:

 sys.stderr.write("HTTP traffic:\nhttpQuery:\n%s\nhttpResponse:\n%s\n-------" % (httpQuery, httpResponse))

4.3. Parse Logs
The process of parsing the logs depends on the format of the input logs provided.

The tool has support for four web server logs and five different types of logs. We will use

the Apache template as an example, although the parse code for the other logs can be

found at the end of this paper.

The function requires as parameters the name of the PCAP file, the name of the

log file and the IP address and port of the web server. This information is usually

provided to the tool when it is called through the prompt. The following code shows an

example:

logFile=sys.argv[1]

fileName=sys.argv[2]

template = str(sys.argv[3])

if template == "apache":

serverIp=sys.argv[4]

serverPort=sys.argv[5]

pcapfile = PcapWriter(fileName, append=True)

for log in open(logFile):

 apache(log, pcapfile, serverIp, serverPort)

 pcapfile.close()

First of all, the apache log parser function deletes the newline character and then

splits the log line in order to get all the information from the log registry and assign it to

the different variables. If the log do not provides some fields that the http function needs,

the value of these parameters is blank (“”). At the end of the code the http function is

called.

def apache(linelog, pcapfile, serverIp, serverPort):

try:

 linelog = re.sub(r"[\r\n]+", "", linelog)

 zone = linelog.split('"')

 srcIp = zone[0].split(' -')[0]

 query = zone[1].split(' ')

Log2Pcap	 17

	

	 	 	

 method = str(query[0])

 url = str(query[1])

 protocol = str(query[-1])

 useragent = str(zone[5])

 referer = str(zone[3])

 retCode = str(zone[2].split()[0])

 param = ""

 http(pcapfile, serverIp, serverPort, srcIp, url, method, protocol, useragent, referer, param, retCode)

except:

 sys.stderr.write("Unable to parse %s\n" % linelog)

5. Example of use
The tool has been tested in two different scenarios. The first is a prepared demo in

a controlled environment while the second scenario is a Honeynet challenge that includes

different logs, one of them from an Apache web server.

5.1. Prepared environment
In the first case, the environment includes four computers: the first one is the

intruder that launches an audit against the second server, an Apache web server, using the

popular Nikto audit tool. The third computer is a centralized log server that receives the

logs from the web server using the Rsyslog daemon. The last computer is the Security

Expert or Auditor computer, used to analyze the information from the centralized log:

Image 5: diagram of the demo example

Log2Pcap	 18

	

	 	 	

5.1.1. Get the logs
The log used was obtained from the centralized log server and copied to the

auditor computer in order to work with the copy and not the original file. The name of

the file is “Diciembre.log” and it uses the Apache combined log format from a Linux

Debian 6 server. The log file has nearly 350 queries from the intruder. The image shows

that the log file contains HTTP requests potentially made by an intruder using Nikto:

Image 6: Apache log from the auditing apache server with Nikto.

The IP of the intruder is 65.96.235.121, a fictional and random IP address created

for this demo. It makes several requests to the web server using Nikto v2.1.5 without

making use of evasion techniques.

5.1.2. Generate PCAP File
After the log has been obtained, the PCAP file is generated using Log2Pcap. If the

program is executed without any options, it shows the supported log formats and the

different options available. In this case the template is “apache”, which requires as

options the IP and port of the web server. We have used for this example “192.168.0.1”

and “80” respectively. The name of the PCAP file is “result.pcap”:

Log2Pcap	 19

	

	 	 	

Image 7: Log2Pcap tool example with apache template

As we can see, the size of the output PCAP file is 168 Kilobyte. The file can then

be loaded into programs that support the PCAP format, such as Wireshark, Snort,

Ethercap and others (Burns, et al., 2007). In this case we are using Tcpdump and Tcpflow

to show the generated traffic:

Image 8: Reading PCAP file with Tcpdump and Tcpflow.

Log2Pcap	 20

	

	 	 	

As we can see in the image, the PCAP file shows the network traffic transmitted

between the intruder and the web server. In this case, the http function has used

resetconnection instead of finishconnection to increase the performance. Next we will

read the PCAP file with Snort to look for potential attacks.

5.1.3. Inject the PCAP file in Snort
For this proof of concept, Snort has been configured with the default

configuration of a BackTrack 5.2 with Sourcefire VRT rules. The PCAP “result.pcap”

file will be loaded as input and the attacks detected by Snort will be saved in the file alert

in the /tmp directory.

Image 9: Running Snort with the PCAP file created by Log2Pcap

When executed, Snort shows relevant information about the packets read: number

of packets, number of alerts detected, strange requests, etc.:

Image 10: Snort results

As a result Snort provides a new file called alert with 2841 lines and 408 alerts,

some of the alerts repeat.

Log2Pcap	 21

	

	 	 	

We can see that Snort detected 38 different alerts from one default Nikto auditing.

Most of them show that Nikto tried to access default files that usually have sensitive

information such as htpasswd, cgi-bin path, robots.txt, path transversal, Trace HTTP

method or invalid methods:

Image 11: Alerts detected by Snort.

As we can see the main current limitation of the program is the loss of context

information: the user does not know which log line has generated a specific Snort alert.

For this reason it is important not to load more than one day of log in the Log2Pcap tool

and use only one log per day.

5.2. Challenge from Honey Net
In September of 2010 the Honey Net project published a forensics challenge with

different logs coming from one Linux server (Raffael, Chuvakin, & Tricaud, 2010). One

of these logs is from one Apache Web Server that we will feed to Log2Pcap.

In this case, the Apache log is provided in two different files: access and media.

For this reason the files have been joined in only one log file named “apache.log”. As

before, the Log2Pcap has generated the PCAP that has then been read by Snort. This

Log2Pcap	 22

	

	 	 	

scenario used the default Snort in Black Hat 5.2: Snort 2.8 with the free Source Fire VRT

rules:

Image 12: Log2Pcap are going to inject the result in the Snort.

The Snort has reported only four alerts where only two are distinct:

Image 13: Snort result from Honey Net challenge.

In this case, Snort does not give the results expected about what happened in the

environment. If the Apache log or the PCAP file is analyzed, some requests and user

agents that can imply a threat can be found. This information can be confirmed in the

solution of the challenge from William Söderberg (Söderberg, 2010).

In order to detect such threats, it is necessary to use other rule sets, in this case the

one from Emerging Threats. To use the last version of these rules Snort 2.9 is required.

For this reason, a new analyst environment is prepared using a Security Onion (Burks,

2013) environment with Snort 2.9.3 and the Emerging Threats rules.

Log2Pcap	 23

	

	 	 	

The Security Onion is one of the best all-in-one environments for intrusion

detection systems. Although it is not the purpose of this document to explain how this

distribution works, it is necessary to explain the basics steps to read a PCAP file, due to

the fact that in Security Onion DAQ is enabled by default and Snort cannot read PCAP

files with DAQ.

The first step is to download the Emerging Threats rules and update them with

Pulled Pork (JJ, 2013):

Image	 14:	 Updating	 rules	

Then, it is necessary to change the Snort configuration and we are ready to launch

Snort with the same options used in this paper:

Image	 15:	 Configuring	 Snort	 and	 lunch	 it	

When executed, Snort notifies us that three alerts have been detected:

Log2Pcap	 24

	

	 	 	

Image	 16:	 Snort	 has	 detected	 three	 alerts.	

Since the version of Snort is 2.9.3, we need to work with unified2 files. The

easiest way to read this format and parse to traditional Snort alerts is to use Barnyard2

with the following configuration and options:

Image	 17:	 Using	 Barnyard2	 for	 translates	 the	 unified	 file.	

In the result of Snort three alerts about the “Pxyscand User Agent” are shown.

These alerts provide more information about the incident and in fact it matches with the

solution of the challenge:

“My script reveals all this information. 3 attackers ran a proxy scanner (from same subnet) called

pxyscand against the server …” (Söderberg, 2010).

Log2Pcap	 25

	

	 	 	

6. Conclusions
The most important concept of Log2Pcap is the idea that the network traffic can

be recreated using the web server logs. Then, the security analysts can use this generated

network traffic in all the tools that can read this type of data such as the Intrusion

Detection Systems described.

The final purpose of this tool is not to substitute already mature tools, but to give

to the security professional a tool that allows new ways to detect potential threats and

helps him/her in their daily work with a different point of view.

Log2Pcap	 26

	

	 	 	

7. References
Albin,	 E.	 (2011,	 September).	 www.hsdl.org.	 Retrieved	 from	

http://www.hsdl.org/?view&did=691228	
Ashley,	 D.	 (2008).	 www.sans.org.	 Retrieved	 from	

http://www.sans.org/reading_room/whitepapers/tools/developing-‐snort-‐
dynamic-‐preprocessor_32874	

Biondi,	 P.	 (2005,	 May	 4).	 Packet	 generation	 and	 network	 based	 attacks	 with	 Scapy.	
Retrieved	 from	 www.secdev.org:	
http://www.secdev.org/conf/scapy_pacsec05.pdf	

Burks,	 D.	 (2013,	 January	 3).	 Security	 Onion	 Documentation.	 Retrieved	 from	
http://code.google.com/p/security-‐onion/wiki/Installation	

Burns,	 B.,	 Killion,	 D.,	 Beauchesne,	 N.,	 Moret,	 E.,	 Sobrier,	 J.,	 Lynn,	 M.,	 et	 al.	 (2007).	
Security	 Power	 Tools.	 Sebastopol,	 CA:	 O'Reilly	 Media.	

Caswell,	 Beale,	 &	 Baker.	 (2007).	 Snort	 IDS	 and	 IPS	 Toolkit.	 Burlington,	 MA:	 Syngress.	
Consortium,	 W.	 W.	 (1994).	 HTTP	 Request	 fields.	 Retrieved	 from	

http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html	
Debar,	 H.	 (2013).	 www.sans.org.	 Retrieved	 from	 http://www.sans.org/security-‐

resources/idfaq/behavior_based.php	
Foundation,	 P.	 S.	 (2012).	 Python	 Online	 Documentation.	 Retrieved	 from	

http://www.python.org/doc/	
JJ.	 (2013).	 Pulled	 Pork.	 Retrieved	 from	 http://code.google.com/p/pulledpork/	
Lutz,	 M.	 (2011).	 Programming	 Python.	 Sebastopol,	 CA:	 O'Reilly	 Media.	
Microsoft	 TechNet.	 (2003).	 Microsoft.	 Retrieved	 from	

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Libr
ary/IIS/c93b2856-‐76c4-‐4348-‐9d46-‐8a60612c3b23.mspx?mfr=true	

msbachman.	 (2010).	 www.hackthissite.org.	 Retrieved	 from	
http://www.hackthissite.org/articles/read/1082	

Nihuo.	 (2013).	 Loganalyzer.	 Retrieved	 from	 http://www.loganalyzer.net/log-‐
analyzer/iis-‐log-‐analyzer.html	

Paul,	 M.	 (2011).	 Official	 guide	 to	 the	 CSSLP.	 Boca	 Raton,	 Florida:	 CRC	 Press.	
Raffael,	 M.,	 Chuvakin,	 A.,	 &	 Tricaud,	 S.	 (2010).	 HoneyNet.	 Retrieved	 from	

http://honeynet.org/challenges/2010_5_log_mysteries	
Scapy,	 P.	 (2012).	 Scapy	 Online	 Documentation.	 Retrieved	 from	 www.secdev.org:	

http://www.secdev.org/projects/scapy/doc/	
SliceHost.	 (2010).	 SliceHost.	 Retrieved	 from	

http://articles.slicehost.com/2010/8/27/reading-‐nginx-‐web-‐logs	
Söderberg,	 W.	 (2010,	 October	 21).	 Solution	 to	 the	 Honey	 Net	 Challenge	 5:	 Log	

Mysteries.	 Retrieved	 from	
http://honeynet.org/files/william_soderberg_Forensic_Challenge_2010_-‐
_Challenge_5_-‐_Submission.pdf	

Stevens,	 W.	 R.,	 &	 Fall,	 K.	 R.	 (2011).	 TCP/IP	 Illustrated,	 Volume	 1,	 2nd	 ed.	 Arbor,	
Michigan:	 Pearson	 Education.	

Log2Pcap	 27

	

	 	 	

US	 CERT.	 (2011).	 www.fbiic.gov.	 Retrieved	 from	
https://www.fbiic.gov/public/2011/feb/EWIN-‐11-‐035-‐01A_UPDATE.pdf	

Worman,	 M.	 (2009).	 http://computer-‐forensics.sans.org.	 Retrieved	 from	
http://computer-‐forensics.sans.org/blog/2009/05/26/perl-‐fu-‐regexp-‐log-‐
file-‐processing	

	
	
	

Log2Pcap	 28

	

	 	 	

Appendix: the code of Log2Pcap
The code included in this appendix is the code of Log2Pcap. The tool is available

in the following URL: http://code.google.com/p/forensics-log-2-pcap/. Visit the web of

the project for future updates of the tool.
#!/usr/bin/python
-*- encoding: utf-8 -*-

from scapy.all import *
import sys

"""
 Joaquín Moreno Garijo @moxilo
 SANS GCIA GOLD Dic 2012 V0.1

"""

############## CORE #################

"""
 Help menu

 program: name of the program
"""
def options(program):
 print "\n\tUsage: " + program + " logfile pcapfile template [templateOptions]\n"
 print "\tAvailable Templates:"
 print "\t\t- Apache Combine (default) Web Server: apache serverip serverport"
 print "\t\t Example: " + program + " access.log output.pcap apache 192.168.0.1 80\n"
 print "\t\t- IIS Log Web Server: iis serverport"
 print "\t\t Example: " + program + " access.log output.pcap iis 80\n"
 print "\t\t- IIS W3C Web Server: iis-w3c serverport"
 print "\t\t Example: " + program + " access.log output.pcap iis-w3c 80\n"
 print "\t\t- IBM Webseal: webseal serverip serverport"
 print "\t\t Example: " + program + " access.log output.pcap webseal 192.168.0.1 80\n"
 print "\t\t- Nginx: nginx serverip serverport"
 print "\t\t Example: " + program + " access.log output.pcap nginx 192.168.0.1 80\n"
 print "\n"
 exit(1)

"""
 Create the handshake connection

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 srcPort: source port (client port)

 seqN: sequence number TCP
 ackN: ack number TCP
"""
def handshake(pcapfile, dstIp, dstPort, srcIp, srcPort):
 #Random seq
 seqN = random.getrandbits(32)
 ackN = 0

 #Syn
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="S",seq=seqN,ack=ackN))

 #Random ack
 ackN = random.getrandbits(32)

 #Syn+ack, ack
 pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="SA",seq=ackN,ack=seqN+1))
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN+1,ack=ackN+1))

 return (seqN+1, ackN+1)

"""
 Reset the comunications

Log2Pcap	 29

	

	 	 	

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 srcPort: source port (client port)
 seqN: sequence number TCP
 ackN: ack number TCP
"""
def resetconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN):
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="R",seq=seqN,ack=ackN))

"""
 Finish the comunications

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 srcPort: source port (client port)
 seqN: sequence number TCP
 ackN: ack number TCP
"""
def finishconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN):
 #Client FA
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="FA",seq=seqN,ack=ackN))
 seqN = seqN + 1
 pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="A",seq=ackN,ack=seqN))
 #Server FA
 pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="FA",seq=ackN,ack=seqN))
 ackN = ackN + 1
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN,ack=ackN))

"""
 Query and response

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 srcPort: source port (client port)
 seqN: sequence number TCP
 ackN: ack number TCP
 query: body text for the query
 response: body text for the response
"""
def queryResponse(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, query, response):
 #Query
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN,ack=ackN)/query)

 #Seq incremental
 if len(query) == 0:
 seqN = seqN + 1
 else:
 seqN = seqN + len(query)
 #Response
 pcapfile.write(IP(dst=srcIp,src=dstIp)/TCP(dport=int(srcPort),sport=int(dstPort),flags="A",seq=ackN,ack=seqN)/response)

 #Acq incremental
 if len(response) == 0:
 ackN = ackN + 1
 else:
 ackN = ackN + len(response)

 #Return seqN, ackN
 return (seqN, ackN)

"""
 SendData

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 srcPort: source port (client port)
 seqN: sequence number TCP
 ackN: ack number TCP
 data: body text for the query
"""
def sendData(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, data):

Log2Pcap	 30

	

	 	 	

 #Query
 pcapfile.write(IP(dst=dstIp,src=srcIp)/TCP(dport=int(dstPort),sport=int(srcPort),flags="A",seq=seqN,ack=ackN)/data)

 #Seq incremental
 if len(query) == 0:
 seqN = seqN + 1
 else:
 seqN = seqN + len(data)

 #Return seqN, ackN
 return (seqN, ackN)

############## PROTOCOLS #################

"""
 HTTP

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 url: url request
 method: HTTP method
 protocol: HTTP protocol
 useragent: usert agent of the client
 referer: referer query
 param: Post Parameters
 retCode: return code
"""
def http(pcapfile, dstIp, dstPort, srcIp, url, method, protocol, useragent, referer, param, retCode):
 try:
 #Random source port
 srcPort = int(random.getrandbits(16))
 while srcPort < 1024:
 srcPort = int(random.getrandbits(16))

 #Client query
 _query = "%s %s %s\n" % (method, url, protocol)
 _useragent = "User-Agent: %s\n" % str(useragent)
 _referer = "Referer: %s\n" % str(referer)
 if param == "":
 httpQuery = "%s%s%s\n" % (_query, _useragent, _referer)
 else:
 _param = "%s\n" % str(param)
 httpQuery = "%s%s%s%s\n" % (_query, _useragent, _referer, _param)

 #Server Response
 if retCode == "200":
 _response = "%s %s OK" % (protocol, retCode)
 elif retCode == "302":
 _response = "%s %s Found" % (protocol, retCode)
 elif retCode == "400":
 _response = "%s %s Bad Request" % (protocol, retCode)
 elif retCode == "401":
 _response = "%s %s Unauthorized" % (protocol, retCode)
 elif retCode == "403":
 _response = "%s %s Forbidden" % (protocol, retCode)
 elif retCode == "404":
 _response = "%s %s Not Found" % (protocol, retCode)
 elif retCode == "414":
 _response = "%s %s Request-URI Too Long" % (protocol, retCode)
 elif retCode == "500":
 _response = "%s %s Internal Server Error" % (protocol, retCode)
 else:
 _response = "%s %s Other" % (protocol, retCode)

 if retCode == "200" and (method == "GET" or method == "POST"):
 httpResponse = "%s\n\n<html><head></head><body></body></html>\n\n" % _response
 elif retCode == "302" or retCode == "200":
 httpResponse = "%s\n\n" % _response
 else:
 httpResponse = "%s\nConnection: close\n\n" % _response

 #Debug
 #print "httpQuery:\n%s\nhttpResponse:\n%s\n-------" % (httpQuery, httpResponse)

 #Initialice connection
 (seqN, ackN) = handshake(pcapfile, dstIp, dstPort, srcIp, srcPort)

 #Query and response HTTP

Log2Pcap	 31

	

	 	 	

 (seqN, ackN) = queryResponse(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, httpQuery, httpResponse)

 #End connection
 finishconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN)
 except:
 sys.stderr.write("Unable to create HTTP traffic:\nhttpQuery:\n%s\nhttpResponse:\n%s\n-------" % (httpQuery, httpResponse))

"""
 HTTP fast (Not parse, query and response string)

 pcapfile: file to save the network traffic
 dstIp: destination IP (server IP)
 dstPort: port destination (server port)
 srcIp: source IP (client IP)
 httpQuery: http query to server
 httpResponse: http response from server
"""
def httpfast(pcapfile, dstIp, dstPort, srcIp, httpQuery, httpResponse):
 try:
 #Debug
 #print "httpQuery:\n%s\nhttpResponse:\n%s\n-------" % (httpQuery, httpResponse)

 #Random source port
 srcPort = int(random.getrandbits(16))
 while srcPort < 1024:
 srcPort = int(random.getrandbits(16))

 #Initialice connection
 (seqN, ackN) = handshake(pcapfile, dstIp, dstPort, srcIp, srcPort)

 #Query and response HTTP
 (seqN, ackN) = queryResponse(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN, httpQuery, httpResponse)

 #End connection
 finishconnection(pcapfile, dstIp, dstPort, srcIp, srcPort, seqN, ackN)
 except:
 sys.stderr.write("Unable to create HTTP traffic:\nhttpQuery:\n%s\nhttpResponse:\n%s\n-------" % (httpQuery, httpResponse))

############## TEMPLATES #################

"""
 apache combined (default)

 Ex: 10.0.1.2 - - [24/Apr/2010:14:33:22 -0700] "GET /feed/ HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1"
SxPq9AoAAQ4AAEHGCtEAAAAD 967817
 172.16.2.128 - - [03/Sep/2012:23:18:51 +0200] "GET /F2UMWNgN.orig HTTP/1.1" 404 529 "-" "Mozilla/5.00 (Nikto/2.1.5)
(Evasions:None) (Test:map_codes)"

 linelog: line of one log
 pcapfile: file to save the pcap file
 serverIp: server IP (destination IP)
 serverPort: server port (destination port)
"""
def apache(linelog, pcapfile, serverIp, serverPort):
 try:
 #Delete "\n"
 linelog = re.sub(r"[\r\n]+", "", linelog)

 zone = linelog.split('"')
 srcIp = zone[0].split(' -')[0]
 query = zone[1].split(' ')
 method = str(query[0])
 url = str(query[1])
 protocol = str(query[-1])
 useragent = str(zone[5])
 referer = str(zone[3])
 retCode = str(zone[2].split()[0])

 #Not saved by default in the log
 param = ""

 #Debug
 #print "dstIp: %s - dstPort: %s - srcIp: %s - srcPort: %s" % (dstIp, dstPort, srcIp, srcPort)
 #print "Query:\n%s %s %s\n%s\n%s\n%s\nResponse:\n%s" % (method, url, protocol, useragent, referer, param, retCode)

 #Add to pcap
 http(pcapfile, serverIp, serverPort, srcIp, url, method, protocol, useragent, referer, param, retCode)
 except:

Log2Pcap	 32

	

	 	 	

 sys.stderr.write("Unable to parse %s\n" % linelog)

"""
 IIS W3C Extended
 Info: http://www.loganalyzer.net/log-analyzer/w3c-extended.html
 Format: date time IPsrc - IPdst Method query - codereturn X X X HTTPVersion UserAgent Var Referer
 Ex: 1998-11-19 22:48:39 206.175.82.5 - 208.201.133.173 GET /global/images/navlogboards.gif - 200 540 324 157 HTTP/1.0
Mozilla/4.0+(compatible;+MSIE+4.01;+Windows+95) USERID=CustomerA;+IMPID=01234 http://www.loganalyzer.net
 2002-05-24 20:18:01 172.224.24.114 - 206.73.118.24 80 GET /Default.htm - 200 7930 248 31 HTTP/1.0
Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+2000+Server) http://64.224.24.114/

 linelog: line of one log
 pcapfile: file to save the pcap file
 serverPort: server port (destination port)
"""
def iisw3c(linelog, pcapfile, serverPort):
 try:
 #Delete "\n"
 linelog = re.sub(r"[\r\n]+", "", linelog)

 zone = linelog.split(' ')
 srcIp = str(zone[2])
 dstIp = str(zone[4])
 referer = str(zone[-1])
 #Some logs have sourcePort... others no! If it has:
 if zone[5].isdigit():
 serverPort = zone[5]
 method = str(zone[6])
 url = str(zone[7])
 retCode = zone[9]
 protocol = str(zone[13])
 useragent = str(zone[14])
 else:
 method = str(zone[5])
 url = str(zone[6])
 retCode = zone[8]
 protocol = str(zone[12])
 useragent = str(zone[13])

 #Not saved by default in the log
 param = ""

 #Debug
 #print "dstIp: %s - dstPort: %s - srcIp: %s" % (dstIp, serverPort, srcIp)
 #print "Query:\n%s %s %s\n%s\n%s\n%s\nResponse:\n%s\n--------" % (method, url, protocol, useragent, referer, param,
retCode)

 #Add to pcap
 http(pcapfile, dstIp, serverPort, srcIp, url, method, protocol, useragent, referer, param, retCode)
 except:
 sys.stderr.write("Unable to parse %s\n" % linelog)

"""
 IIS Log File Format
 Info: http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/c93b2856-76c4-4348-9d46-
8a60612c3b23.mspx?mfr=true
 http://www.loganalyzer.net/log-analyzer/iis-log-file-format.html
 Format: Ipsrc, -, date, time, -, -, ipdst, -, -, -, returncode, -, methode, query, -,
 Ex: 192.168.114.201, -, 03/20/01, 7:55:20, W3SVC2, SALES1, 172.21.13.45, 4502, 163, 3223, 200, 0, GET, /DeptLogo.gif, -,

 linelog: line of one log
 pcapfile: file to save the pcap file
 serverPort: server port (destination port)
"""
def iis(linelog, pcapfile, serverPort):
 try:
 #Delete "\n"
 linelog = re.sub(r"[\r\n]+", "", linelog)

 zone = linelog.split(', ')
 srcIp = str(zone[0])
 dstIp = str(zone[6])
 method = str(zone[12])
 url = str(zone[13])
 retCode = str(zone[10])
 param = str(zone[14])

 #Not saved by default in the log
 useragent=""
 referer=""

Log2Pcap	 33

	

	 	 	

 protocol="HTTP/1.1"

 #Debug
 #print "dstIp: %s - dstPort: %s - srcIp: %s" % (dstIp, serverPort, srcIp)
 #print "Query:\n%s %s %s\n%s\n%s\n%s\nResponse:\n%s\n--------" % (method, url, protocol, useragent, referer, param,
retCode)

 #Add to pcap
 http(pcapfile, dstIp, serverPort, srcIp, url, method, protocol, useragent, referer, param, retCode)
 except:
 sys.stderr.write("Unable to parse %s\n" % linelog)

"""
 IBM Webseal default log

 Ex: XX.XX.XX.XX - Unauth [01/Oct/2011:10:21:17 +0700] "GET / HTTP/1.0" 200 123
 XX.XX.XX.XX - Unauth [01/Oct/2011:10:21:19 +0700] "GET /index.php HTTP/1.1" 200 432

 log: line of one log
 pcapfile: file to save the pcap file
 serverIp: server IP (destination IP)
 serverPort: server port (destination port)
"""
def webseal(linelog, pcapfile, serverIp, serverPort):
 try:
 #Delete "\n"
 linelog = re.sub(r"[\r\n]+", "", linelog)

 zone = log.split(' ')
 srcIp = zone[0]
 query = (log.split('"')[1]).split(' ')
 method = str(query[0])
 url = str(query[1])
 protocol = str(query[-1])
 retCode = zone[len(zone)-2]

 #Not saved by default in the log
 useragent=""
 referer=""
 param = ""

 #Debug
 #print "dstIp: %s - dstPort: %s - srcIp: %s" % (dstIp, serverPort, srcIp)
 #print "Query:\n%s %s %s\n%s\n%s\n%s\nResponse:\n%s\n--------" % (method, url, protocol, useragent, referer, param,
retCode)

 #Add to pcap
 http(pcapfile, dstIp, serverPort, srcIp, url, method, protocol, useragent, referer, param, retCode)
 except:
 sys.stderr.write("Unable to parse %s\n" % linelog)

"""
 Nginx File Format
 Info: http://articles.slicehost.com/2010/8/27/reading-nginx-web-logs

 Ex: 80.154.42.54 - - [23/Aug/2010:15:25:35 +0000] "GET /phpmy-admin/scripts/setup.php HTTP/1.1" 404 347 "-" "ZmEu"
 123.65.150.10 - - [23/Aug/2010:03:50:59 +0000] "POST /wordpress3/wp-admin/admin-ajax.php HTTP/1.1" 200 2
"http://www.example.com/wordpress3/wp-admin/post-new.php" "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_4; en-US) AppleWebKit/534.3
(KHTML, like Gecko) Chrome/6.0.472.25 Safari/534.3"

 linelog: line of one log
 pcapfile: file to save the pcap file
 serverIp: server IP (destination IP)
 serverPort: server port (destination port)
"""
def nginx(linelog, pcapfile, serverIp, serverPort):
 try:
 #Delete "\n"
 linelog = re.sub(r"[\r\n]+", "", linelog)

 zone = linelog.split(', ')
 srcIp = zone[0].split(' ')[0]
 zone = linelog.split('"')
 query=zone[1].split(' ')
 method = str(query[0])
 url = str(query[1])
 protocol = str(query[-1])
 useragent=str(zone[5])
 referer=str(zone[3])

Log2Pcap	 34

	

	 	 	

 retCode = zone[2].split(' ')[1]

 #Not saved by default in the log
 param = ""

 #Debug
 #print "dstIp: %s - dstPort: %s - srcIp: %s" % (dstIp, serverPort, srcIp)
 #print "Query:\n%s %s %s\n%s\n%s\n%s\nResponse:\n%s\n--------" % (method, url, protocol, useragent, referer, param,
retCode)

 #Add to pcap
 http(pcapfile, dstIp, serverPort, srcIp, url, method, protocol, useragent, referer, param, retCode)
 except:
 sys.stderr.write("Unable to parse %s\n" % linelog)

############## MAIN #################

if len(sys.argv) < 4:
 options(str(sys.argv[0]))

#logfile name
logFile=sys.argv[1]

#pcapfile name
fileName=sys.argv[2]

#Select the template of the log
template = str(sys.argv[3])
if template == "apache":
 if len(sys.argv) != 6:
 options(str(sys.argv[0]))
 serverIp=sys.argv[4]
 serverPort=sys.argv[5]
 pcapfile = PcapWriter(fileName, append=True)
 for log in open(logFile):
 apache(log, pcapfile, serverIp, serverPort)
 pcapfile.close()
elif template == "iis":
 if len(sys.argv) != 5:
 options(str(sys.argv[0]))
 serverPort=sys.argv[4]
 pcapfile = PcapWriter(fileName, append=True)
 for log in open(logFile):
 iis(log, pcapfile, serverPort)
 pcapfile.close()
elif template == "iis-w3c":
 if len(sys.argv) != 5:
 options(str(sys.argv[0]))
 serverPort=sys.argv[4]
 pcapfile = PcapWriter(fileName, append=True)
 for log in open(logFile):
 iisw3c(log, pcapfile, serverPort)
 pcapfile.close()
elif template == "webseal":
 if len(sys.argv) != 6:
 options(str(sys.argv[0]))
 serverIp=sys.argv[4]
 serverPort=sys.argv[5]
 pcapfile = PcapWriter(fileName, append=True)
 for log in open(logFile):
 webseal(log, pcapfile, serverIp, serverPort)
 pcapfile.close()
elif template == "nginx":
 if len(sys.argv) != 6:
 options(str(sys.argv[0]))
 serverIp=sys.argv[4]
 serverPort=sys.argv[5]
 pcapfile = PcapWriter(fileName, append=True)
 for log in open(logFile):
 nginx(log, pcapfile, serverIp, serverPort)
 pcapfile.close()
else:
 print "\n\tThe template " + template + " doesn't exist!!!\n"
 options(str(sys.argv[0]))

