
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com

Active Defense via a Labyrinth of Deception

GIAC (GCIA) Gold Certification

Author: Nathaniel Quist, nathanielquist1@gmail.com
Advisor: Adam Kliarsky

Accepted: November 19th, 2016

Abstract

A network baseline allows for the identification of malicious activity in real time.
However, a baseline requires that every listed action is known and accounted, presenting
a nearly impossible task in any production environment due to an ever-changing
application footprint, system and application updates, changing project requirements, and
not least of all, unpredictable user behaviors. Each obstacle presents a significant
challenge in the development and maintenance of an accurate and false positive free
network baseline. To surmount these hurdles, network architects need to design a
network free from continuous change including, changing company requirements,
untested systems or application updates, and the presence of unpredictable users.
Creating a static, never-changing environment is the goal. However, this completely
removes the functionality of a production network. Or does it? Within this paper, I will
detail how this type of static environment, referred to as the Labyrinth, can be placed in
front of a production environment and provide real time defensive measures against
hostile and dispersed attacks, from both human actors and automated machines. I expect
to prove the Labyrinth is capable of detecting changes in its environment in real time. It
will provide a listing of dynamic defensive capabilities like identifying attacking IP
addresses, rogue-process start commands, modifications to registry values, alterations in
system memory and recording the movements of an attacker's tactics, techniques, and
procedures. At the same time, the Labyrinth will add these values to block list, protecting
the production network lying behind. Successful accomplishment of these goals will
prove the viability and sustainability of a Labyrinth defending network (Revelle, 2011)
environments.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

1. Introduction

The Labyrinth is a virtual network housed within a hypervisor architecture.

Hypervisors are often called Virtual Machine Monitors (VMMs) and allow one physical

machine to manage the functionality of multiple Operating Systems (OSs). Don Revelle,

the author of the whitepaper Hypervisors and Virtual Machines, states that for a single

machine to operate multiple virtual OSs, “The	hypervisor	must	work	with	minimal

overhead and maintain supervisory privileges over the entire machine at all times”

(Revelle, 2011). The Labyrinth manages the functionality of a network designed to

perform in a similar manner to a production network. Each system within the Labyrinth

has a role within the environment. Depending upon the available resources provided by

the hypervisor, several subnets can be configured and maintained, each representing an

aspect of an enterprise environment, a DMZ, an internal server bank, user workstations,

or even entire departments like IT, or Human Resources departments. The joining of

these separated networks into a single virtual medium creates the illusion of a complete

enterprise environment.

The Labyrinth adds a hidden layer of security within this virtual network as a built

in multifaceted security monitoring system that is employed to record every action and

function on each system in the Labyrinth. Anchoring the security layer is a centralized

correlation engine used to measure each action within the Labyrinth and compare these

values against a listing of Known-Good actions. This listing is a static baseline of normal

operations for each system, user, application, and subnet housed within the Labyrinth.

CERN defines a baseline as “a set of basic objectives which must be met by any given

service or system” (CERN Computer Security, 2010). Within the Labyrinth, the "basic

objectives" are the actions of the individual systems, processes, and users, which must

follow a prescribed list of values. Table 1, illustrates how baselines are compared against

a known good set of values.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Table	1:	Baseline:	XOR	Baseline	Checksum	

The advantage of leveraging static baselines against the virtual environment is the

identification of any action performed outside of the static baseline. Since the Labyrinth

is a static environment, each system, as well as each of its subsequent actions, should

only function in a predictable manner. The correlation engine analyzes the values given

from the live Labyrinth and compares these values against the Known-Good values listed

within the static baseline. If there is a difference both the live Labyrinth and the baseline

Labyrinth, it is undeniable evidence that a third party modified the Labyrinth.

2. SIEM Management versus Labyrinth Network

As mentioned within the previous section, the purpose of the Labyrinth is a

security monitoring system, which directs every recorded action to a centralized

correlation engine. The correlation engine is responsible for collecting network and

system data and comparing it against a predetermined baseline to ensure Labyrinth

validity. A centralized correlation engine appliance within the computer security industry

is known as a Security Information Event Management (SIEM) tool. As illustrated within

Figure 1, the SIEM receives data from several security tools like network security

appliances providing IDS, Proxy, and NetFlow collection, as well as system specific

event logging, process executions, registry, and memory alteration functionality.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

	

Figure	1:	SIEM	Topology

The network security layer targets network traffic, specifically Network Intrusion

Detection Systems (NIDS), Network Traffic Proxy systems, and Network Flow Analysis.

These technologies perform specific network traffic analysis and are essential in building

a detailed picture of how an attacker may move and pivot within a network. The

Labyrinth architecture should use a Snort integration along with firewall logs, and

NetFlow sources to identify the specific types of traffic moving through the Labyrinth.

The data from these systems is routed to the SIEM for further contextualization. Where

the network data is correlated alongside log data, active directory information, and

endpoint detection systems to develop a holistic picture of activity within the Labyrinth.

The security network provides the base architecture for the Labyrinth; as such, the

Labyrinth lacks believability from the perspective of a functioning enterprise

environment. The core aspects of the network, e.g. the firewalls, servers, endpoint

systems, and network connections, still need to be installed and configured. While the

security framework contains the structure for the continuity of network traffic, the role of

the Labyrinth is designed to be a virtual recreation of a production environment.

Honeypots have long been used to emulate live systems because they “simulate the

characteristics and vulnerabilities of common operating systems and record all the

operations and behaviors” (Du, Zhang, Zhou, & Bai, 2013). The Labyrinth network needs

to provide features an attacker would expect from a standard enterprise or business

network. The use of honeypots allows the defenders to deceive the attackers by creating

the perception of a believable environment. This truly deceptive state will allow "a more

active defense ability, learning ability, and dynamic interaction ability, than a traditional

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

defense system [alone]” (Du, Zhang, Zhou, & Bai, 2013). The Labyrinth takes this a step

further by integrating not just one honeypot, but a series of honeypots into what is called

a honeynet.

3. Labyrinth Traffic

3.1. Log and Traffic Collection

Detection of potentially malicious traffic begins at the system and device level

within the Labyrinth. The placement of sensors throughout the Labyrinth in a variety of

formats delivers a unique set of data to the SIEM. Traffic sensors like those employed by

firewalls, the Intrusion Detection System (IDS), or the proxy systems, are commonplace

within security network architecture. Firewalls provide a robust capability for displaying

all inbound and outbound connections within an environment, as Figure 2 shows.

	

Figure	2:	Firewall	Connection	Panel

Each of these sensors allows network traffic communication protocols and traffic

patterns to identify malicious patterns within network traffic, providing the ability to

detect malicious network traffic as it happens. The security industry considers IDS to be a

dying security tool due to its relative weakness in deciphering between good and bad

traffic:“The bane of IDS has been the inability to weed out false positives and false

negatives” (Wickman, 2003). Given this currently accepted state, the Labyrinth does

employ IDS sensors. The Labyrinth has already created a level baseline, and all action

within the Labyrinth are judged by the SIEM, not by the IDS or web proxy devices

themselves. IDS logs collected by the SIEM are also held against a baseline to determine

legitimate or suspicious behavior.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

	

Figure	3:	Snort	logs	displayed	within	a	SIEM

As displayed in the Snort collection logs within Figure 3, the Labyrinth employs

additional agent variants designed to capture a holistic threat detection spectrum. The

term holistic is most commonly used within the medical industry but is defined "as

relating to or concerned with complete systems rather than with individual parts”

(Merriam-Webster, 2016). Windows event logs, syslog data, endpoint registry, command,

and resource usage events, firewall traffic metadata, netflow traffic metadata, and third-

party security appliance collection should all be collected, creating a board spectrum of

information. The following graphics display a raw TCPDump traffic dump, Figure 4,

which details network packets from and to a Linux system and Figure 5, displaying a

Windows Security Log detailing a logon event.

	

Figure	4:	TCPDump	Example	

	
Figure	5:	Windows	Security	Event	Log	

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Each of these data sources should be collected directly from the endpoint systems on

which they were created, and delivered to the SIEM for further analysis. Each system

within the Labyrinth can give critical information benefiting the network at large. Each of

these unique sources needs to be collected by Labyrinth sensors to form a complete

picture of an incident. Within the SIEM, each of the unique logs is displayed within a

single pane of glass, as seen in Figure 6. This method of viewing network events gives

the analyst a deeper understanding of events within a holistic approach to security events

and offers correlative capabilities based on specific event types.

	

Figure	6:	SIEM	printout	of	holistic	collection

If an event alters the events designed to take place within the Labyrinth, the

SIEM's capabilities to correlate known good actions against the recorded live actions,

allowing the SIEM to accurately identify any delta between the whitelist and the live data

sets. Should a change be recorded signifying the alteration of the Labyrinth, the SIEM

will document the difference between the two states, as illustrated within Figure 7. The

delta is instantly written to disk by services in the SIEM, and this information can be used

to block the continued actions from the same unknown patterns.

	

Figure	7:	Traffic	Detection	to	Blacklist

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

 Human analysts will be forwarded all post-analyzed data, allowing them to

quickly determine the exact anomalous action that took place in the Labyrinth, thus,

affording the analyst time to prepare and defend the production environment rather than

react to incidents as they occur.

3.1.1 Snort as a Log Source

Snort is an industry standard IDS platform used throughout the network security

industry. The usage of Snort within the Labyrinth functions in the same manner as Snort

within an enterprise network. Network defenders use Snort to monitor traffic

transmissions across the virtual network and employ Snort functionality within a

distributed and load balanced architecture. The physical location of Snort sensors is

architected into the foundation of the Labyrinth itself, with a sensor located in each of the

Labyrinth’s subnets, as well as directly behind the Labyrinth’s boundary firewall. Each

sensor will relay suspect network events to a dedicated Snort manager, which in turn

confirms or denies the event and ultimately delivers a positive IDS alert to the

Labyrinth’s SIEM appliance for further correlation.

The configuration of a Snort platform follows industry standard guidelines. This

example of Snort was created on a Linux Debian 7.0 system and used the command 'sudo

apt-get install snort' to install the tool. See Figure 8.

	

Figure	8:	Snort	Installation

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Snort requires configuration for the environment to perform efficiently. The

following configurations assist Snort in the task: the home network IP address range,

known as HOME_NET, the Snort rule directories, as well as the Snort decoders, and

Snort Preprocessors. The configuration of these settings is within the snort.conf file,

located in the /etc/Snort directory. Figure 9 presents a graphic display of the Snort

configuration file, beginning at the top of the snort.conf file. All configuration changes to

the snort.conf file must be performed using Linux’s ‘nano’ or ‘vi’ editing tools.

	

Figure	9:	Snort	Configuration	File	

Figure 10 displays the use of the editor to add the Snort Home Network under

section 1 of the snort.conf file.	

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

	

Figure	10:	Snort	Home/External	Network	Configuration	

Configuration of the path location for Snort Rules is seen within Figure 11. This

is information is also found within section 1 of the snort.conf file.	

	

Figure	11:	Configuring	Snort's	Rule	Directory	

Figure 12 illustrates the configuration of decoders used by Snort is performed

within section 2 of the snort.conf file.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

	

Figure	12:	Assigning	Snort	Decoders	

The configuration of each preprocessor implemented by Snort is seen within

Figure 13. Configuration of the preprocessors is located under section 4 of the snort.conf

file.	

	

Figure	13:	Configure	Snort's	Preprocessors

Once the Snort decoders and preprocessors are configured, enabling the syslog

feature will allow for the passage of detected events to flow from Snort to the Labyrinth's

SIEM. Located within section 6, illustrated in Figure 14, the addition of string ‘output

alert_syslog: host:<SIEM IP>:514, LOG_AUTH LOG_ALERT' directly below the

‘#syslog' header forces Snort to pass all its events to the SIEM via syslog.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

	

Figure	14:	Configuring	Snort's	Syslog	Feed

The base configuration of Snort does not include a full set of Snort signatures.

Signatures are used by Snort to trigger alerts when malicious traffic passes across a

network. The configuration of Snort includes custom Snort signatures used for highly

configured settings, or the use of pre-generated signatures typically used in generic

environments. For this example, I will demonstrate the process of configuring the Snort

signatures using pre-generated rules pulled from the “Registered” version of Snort 2.9.

The “Registered” version of Snort Rules v2.9 is an open source list of signatures, and it is

available upon approval from Snort.org. This version does require an active membership

in which to download the signatures. There is a community version containing an open

source collection of Snort signatures, available to any user who wishes to stand up a

Snort environment without requiring registration through the Snort website. There is also

an additional Snort signature package, called “Subscription” signatures. Subscription

signatures are only available through the purchase of this specific package.

“Subscription” signature rule sets traditionally contain more targeted sets of signatures,

focused up trending threats within the security industry, where the free packages such as

the “Community” or the “Registered” signature sets contain only a basic listing of

signatures.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Snort v3.0 does contain a listing of Community signature rules by default.

However, to install the “Registered” or “Subscription” version of Snort signatures you

will need to have a registration code, called an OinkCode, to download specific

signatures. To download these signature rules, the user can directly download the rules

via a terminal session from the Snort appliance using the following wget command. See

Figure 15.

	

Figure	15:	wget	call	for	Registered	Snort	Signatures

After	the	user	has	downloaded	the	rule	set,	the	rules	need	to	be	added	to	the	

/etc/snort/rules	directory,	so	they	are	available	to	Snort.	The	command	to	

uncompress	and	move	the	rules	is	displayed	within	Figure	16.	

	

Figure	16:	Installing	Snort's	Registered	Signatures

Now that Snort is configured, tuned, and has a complete set of signatures, the user

can begin the process of starting Snort. Snort requires the use of the‘–s’ switch within the

Snort start-up command to relay Snort Alerts via syslog to the waiting SIEM appliance.

Figure 17 demonstrates what Snort looks like after supplying the Snort start-up

command, ‘snort –c snort.conf –s –A fast.’

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

	

Figure	17:	Running	Snort

Upon seeing this screen, Snort will not display further messages in the terminal

screen, as all Snort events are written via syslog and sent to the Labyrinth’s SIEM. Snort

messages are used as another layer of monitoring and detection, providing network data

to the SIEM. Correlating this data against Known-Good baseline network data, the SIEM

can identify acceptable and unacceptable connections inside the Labyrinth. Figure 18

details a Snort event from Labyrinth system, 192.168.1.168, attempting to perform and

RDP connection to another Labyrinth system, 192.168.1.235.

	

Figure	18:	Snort	example	of	an	RDP	attempt

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Since Snort is sending data to the SIEM, defenders can also witness the same

event within the SIEM. See Figure 19. In this case, Snort had initially flagged the event

as suspicious, and the SIEM has maintained that same correlation.

	

Figure	19:	Listing	of	all	Snort	events	within	the	SIEM

Diving further, it is inferred that the SIEM is capable of displaying both the raw

Snort log itself, as well as any accompanying metadata values associated with such an

event. Within Figure 20, the raw data is displayed, while Figure 21 shows the metadata

that is associated with the collected raw data.

Figure 20: Drill down on suspicious Snort event

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Figure 21: Listing of all known metadata from the Snort event

The power of integrating Snort data into the Labyrinth is that each packet within

the Labyrinth can be collected and shipped to the centralized SIEM where it is integrated

with data from other systems and network devices. The SIEM performs correlation

against the Known-Good network traffic from the live network traffic, providing

immediate understanding as to whether the Labyrinth itself generated that event, or if a

third party performed the action, indicating malicious intent. If this example were live,

the SIEM would flag the originating IP address, 192.168.1.168, and flag all traffic from

that system as suspicious. The SIEM could also perform several automated actions

against that system, such as capturing a live snapshot of memory to be used for forensic

investigation, isolating and extracting a currently running process, and generating a list of

user accounts currently logged into that system.

	
3.2. Firewalls

As in production environments, firewalls hold an important role within the

Labyrinth. The Labyrinth assumes the role as the boundary firewall, serving as both an

external and internal boundary for traffic entering and leaving the production network.

Like edge firewalls within a production environment, the Labyrinth's firewall is subject to

large quantities of connection attempts from the Internet like network or system

vulnerability probing, potential large-scale denial of service attacks, and malformed

packet attacks. Each attempt is designed to either compromise, overwhelm, or penetrate

network boundary defenses. These types of events bombard external firewalls with

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

verbose quantities of data and consistently test the network’s firewall defensive

capabilities. As Figure 22 shows, the Labyrinth is placed in the direct line of attack from

these types of attacks and events.

	

Figure	22:	Labyrinth	Placement

The Labyrinth is not immune to these malicious patterns of traffic, and

precautions need to be taken within the Labyrinth to ensure the configuration of the

firewall is conducive to boundary firewall functionality. Standard industry practices for

firewall administration and maintenance are requirements even within the Labyrinth.

Requirements for these two separate firewalls include that industry standard firewall rule

configurations must be configured, and that a distinct separation between true boundary

firewall and the Labyrinth's boundary firewall must be employed.

A network containing a Labyrinth technically consists of two boundary firewalls.

A firewall housed within the Labyrinth, and the external firewall situated in front of the

production network. The Labyrinth's firewall essentially mimics the functionality of the

external firewall, and the Labyrinth's firewall should not be trusted to the same extent nor

given the same firewall rules as the boundary firewall. The Labyrinth firewall’s design

must allow for resetting, alteration or modification on a dynamic basis. This requirement

forces the Labyrinth firewalls to protect the Labyrinth while not making any allowances

for the production network. The Labyrinth’s virtual landscape is designed to be re-

deployed at a moment’s notice, if the Labyrinth’s firewall contained custom firewall rules

for the production network, those rules would be removed when the Labyrinth was re-

deployed. Additionally, if the Labyrinth firewall is configured with the same rules as the

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

true boundary firewall, attackers could glean information detailing the layout of the

production environment, or at least the types of services offered within the network.

The Labyrinth contains several internal firewalls, which behave in the same

manner as network segment firewalls within a production network. Segment firewalls are

the traditional method for elevating a flat network topology into a multilayered topology.

The Labyrinth should mimic a production network in almost every facet. By using a

tiered topology, the Labyrinth maintains its deception, and "successfully causing the

target to accept as true, a specific incorrect version of reality, with the intent of causing

the target to act in a way that benefits the deceiver” (Rowe & Custy, 2007). Successful

network deception will make the Labyrinth more believable to attackers and will assist

defenders in the identification and analysis of an attacker’s actions. Figure 23 illustrates

the flow of traffic through the Labyrinth, as data traverses each of the Labyrinth’s subnets

before continuing its passage to the true boundary firewall.

	

Figure	23:	Firewall	Data	Flow

The internal firewalls within the Labyrinth are not expected to process large

volumes of traffic. Only the virtual systems of the Labyrinth will be producing traffic,

and in a static Labyrinth, this will be the only traffic crossing the network boundary. As

such, these firewalls should not be the targets of heavy network traffic or the recipients of

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

a sustained bombardment of attacks. If the firewalls do experience this style of traffic,

the Labyrinth will detect the event. The internal firewalls will not require a significant

amount of resources to provide functionality and virtual firewall applications like those

provided by the open-source providers, pfSense, IPFire, and OPNsense, provide many of

the features required to process and detect any suspicious action.

As stated above, the production network still maintains its boundary firewall,

which employs the originally designed function of protecting the internal network. Even

with the presence of the Labyrinth, the boundary firewall still maintains the functionality

by blocking external communications, which could find a way through the Labyrinth.

Due to the presence of the Labyrinth, the quantity of data the boundary firewall must now

process should now be much smaller due to the Labyrinth detecting and blocking the vast

majority of unwarranted communications.

The Labyrinth also provides the boundary firewall an extra set of eyes which

detect and prevent unwarranted activity. Due to the Labyrinth’s heavily censored and

static environment, it can quickly and accurately uncover potentially malicious

connections and forward any identified external IP addresses to the production boundary

firewall for blocking. Any communication to or from that same external IP address will

instantly be flagged as suspicious and blocked from communication for all production

endpoints. In essence, the boundary firewall is given an early warning detection system

via the Labyrinth, allowing for the real-time blocking of malicious traffic before endpoint

systems connect to the suspicious external systems.

3.3. Attaching Third Party Appliances

The design of the Labyrinth contains several segmented networks used to alter the

network topology and aid in the believability of the Labyrinth. These network segments

provide defenders an opportunity to increase their data analytic surface area by

connecting physical third-party security appliances. Third party security appliances can

provide additional insight into both suspicious and legitimate network traffic traversing

the Labyrinth by performing both inline and tapped network analytics pulled directly

from the Labyrinth’s own network choke points. These devices include Anti-Virus

detection sensors, web proxy sensors, deep packet analytic devices, as well as Intrusion

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Detection and Prevention Systems. The appliances use the Labyrinth’s structured

network as an intermediate monitoring zone, analyzing data before any suspicious traffic

can pass through into the production network or exit out of the Labyrinth environment.

This integration with the Labyrinth enhances the functionality of these appliances

by providing a single routable pathway in which to collect data, and assists with the

management of the appliances’ resources in a more structured and efficient manner. This

efficiency is achieved by using physical NICs to pass network traffic out of the

Labyrinth's hypervisor architecture to physical systems outside of the Labyrinth. The

Labyrinth reduces its strain on performing constant network analysis on internal network

traffic and allows for the security appliances to maintain a more granular analysis of

network traffic entering and leaving the production environment. The diversion of traffic

out of the Labyrinth is architected into the Labyrinth's network structure between the

virtual network segments. The segments within the Labyrinth provide an avenue for

network traffic to be routed out of the Labyrinth to the designated appliances. The

network traffic pulled from the Labyrinth is then passed to the specified security

appliance where the appliance is able to perform the designed functionality. Upon

completion of the analysis, the security appliance sends the traffic back into the Labyrinth

to complete its journey. This process is seen in Figure 24:

	

Figure	24:	Connection	of	Third	Party	Security	Appliances

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

The capability of the Labyrinth to allow third-party appliances to receive traffic

from and return traffic to the Labyrinth dramatically increases the security capabilities of

the production network. By allowing for a technique called “distributed scanning" the

Labyrinth saves resources and distributes the network’s monitoring load to several third-

party systems. The offensive equivalent of distributed scanning was explained within the

whitepaper “Tracking Darkports for Network Defense” as, “scanning that occurs when

multiple systems act in unison using a divide and conquer strategy to scan a network or

host of interest” (Whyte, van Oorschot, & Kranaki, 2007). To use this same tactic as a

defensive technique, the Labyrinth provides an avenue to perform a higher density of

analytic operations, and a means for each packet crossing the Labyrinth to undergo

multiple passes across several security sensors, the Labyrinth can bolster the detection

capabilities against all traffic moving through the Labyrinth. Security appliances and

applications can achieve a more granular analysis of all network traffic by segmenting the

analytic requests and by allowing multiple stages of detection from the same analytic

system across the length of the Labyrinth.

It may be helpful to think of the style of defense provided by the Labyrinth being

akin to the gatehouse within medieval castles. The gatehouse contained two doorways on

either side of an enclosed hallway: the entrance being the castle gates and the exit being

the portcullis. In the hallway between the two doorways was a long inspection point in

which all persons and cargo awaited inspection before access to, or withdraw from, the

castle. These hallways were holding zones used to inspect persons and cargo before

allowed to continue the journey. Should something be suspected, the portcullis would

drop, and the castle gates would close trapping whoever was inside the enclosed hallway.

The same concept appears today in data centers and with their use of mantraps. All

persons are required to successfully meet the authentication requirements before being

allowed to enter or leave the data center. This concept is moved into the realm of the

network as the Labyrinth behaves like the mantrap, or rather the castle gatehouse,

inspecting, questioning, and authenticating all activities taking place within its

boundaries. While it is impossible to prevent and stop all malicious attempts against a

network, the Labyrinth provides the gatehouse architecture required to give every packet,

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

connection, session, and byte, an additional layer of inspection to ensure that best effort

analysis of all data occurs.

4. Test Labyrinth

The purpose of the Labyrinth is to detect anomalous activity while still

maintaining a deceptive trait of being a fully functional production network. Every action

within the Labyrinth is weighed and measured against a baseline of the same type,

comparing IP addresses against a legitimate listing of IP addresses, system processes

weighed against a known good process list, and user actions weighed against the known

actions of Labyrinth user accounts. The whitelists used as the control list are taken from

the legitimate actions themselves before the Labyrinth has "gone live." Otherwise stated

as all actions and baselines are taken from a Labyrinth before placed in its final position,

the listing of IP addresses, processes, system and networking behaviors, and user

activities represent all accepted and normal behavior for that entity. Gordon Fraser,

author of ‘Creating a baseline of process activity for memory forensics,' explained the

procedure for creating a process baseline involves, “needing a basic understanding of the

core processes loaded by the operating system upon boot and the processes that are

loaded when a user logs on” (Fraser, 2014). The recording of minutia processed by a

system as a service starts presents the Labyrinth with the core foundation of the process

baseline. This data then becomes available to compare future service starting operations

to ensure the service executed as designed or if it had been modified to fulfill a separate

purpose.

To achieve the truly dynamic deception qualities, yet still maintain quantitative

dataset requirements, all network traffic within the Labyrinth data is required to be pre-

recorded and looped to ensure continuous action. The Labyrinth recording needs to be

recorded in a way so that it prevents the direct perception of recorded traffic. Imagine

viewing a looped animated image, if the first sequence of frames and the last sequence of

frames do not perfectly align the video will appear to ‘jump.' This same effect should be

taken into account when a system or a user account refreshes their looped action. One

technique employed to hide the jump effect within the looped action is to stagger the

recorded tracks. By beginning each recorded endpoint system and each user account on a

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

separate cycle, the obscurity of network traffic will provide cover for a recording which

contains a jumping event

The actions of the Labyrinth itself, those being the systems, users, and processes,

will not need an external stimulus to produce believable production value. Internal file

servers will be called upon by virtual user accounts to deliver specified virtual data from

requested virtual systems within the virtual network. Data will be deleted, created, and

modified on all Labyrinth systems as it normally would within a standard environment.

To ensure the deception of the Labyrinth, creating external requests should be made from

specified Labyrinth systems to aid in the illusion should anyone witness the network

traffic within the Labyrinth. Seeing external web traffic emanating from the Labyrinth

itself will assist in maintaining the illusion. Recording and then replaying live collected

network traffic from a production environment can assist in creating a more believable

network profile.

5. Labyrinth Analytics

The analytics process within the Labyrinth falls into three categories: data

collection, baseline comparison, and block list creation. These three categories make up

the key aspects for how the Labyrinth will determine malicious actions. Figure 25

illustrates this process. The log sources generate logs, which are collected and shipped to

the SIEM. Inside the SIEM, a baseline comparison is performed against the live data to

ensure validity. Finally, actions that do not match the baseline will be flagged and written

to block lists. The SIEM sends these block lists to the appropriate security appliance

responsible for blocking the suspicious traffic within the production environment.

	

Figure	25:	Labyrinth	Process	Flow

A series of network sensors and data collectors provide data collection through

each endpoint system and network device within the Labyrinth. The hypervisor housing

the Labyrinth is also capable of collecting data from the Labyrinth systems and shipping

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

these logs to the SIEM for further analysis. Endpoint systems will collect registry,

process, and command-line activities; network devices will collect network traffic,

session creations, and connection activities; and the hypervisor collects memory and hard

drive resource requests from all virtual system resource requests.

The SIEM compares each activity against a listing of known good actions for that

entity category to determine the validity of the action. For example, comparing all current

external IP address connections against the listing of known good external IP addresses

connections. All collected entity fields follow the same procedure, system processes,

services, user command-line and network activities, system registry alterations,

application changes or configurations, and network flow statistics, among others. Any

action performed within the Labyrinth, which does not contain a correlating entry on the

accompanied whitelist, will be written to a blacklist. The blacklist will then have its

contents delivered to their respective security appliance, via a scheduled task. The

scheduled task is programmed to monitor for changes in the blacklist file. Upon recording

a change, the scheduled task will initiate a script performing the action of delivering the

contents to the appropriate security appliance.

The following use-case will assist in describing the functionality of the Labyrinths

analytics. A malicious actor scans a suspected production environment. They discover a

susceptible endpoint. Upon successful exploitation of the endpoint, the actor downloads

their Remote Access Tool (RAT) onto the exploited system, successfully hooking the

system for continued operations into the network. Given these details, the following

pieces of metadata would be collected by the Labyrinth and sent to the internal SIEM.

1. The external IP address(es) performing the reconnaissance scan(s).

2. The external IP address launching the exploit against the internal system.

3. The exploit used to compromise the endpoint.

4. Compromised user accounts used before, during, and after the exploitation.

5. The external system housing the actor’s toolkit.

6. The RAT itself, containing the following pieces of metadata:

a) The malware name.

b) The malware’s hash values: MD5, SHA1, and SHA256.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

c) System registry modifications and configurations.

d) Dropper files created by the RAT.

e) Beacon data sent from the RAT to the Command and Control (C2)

node.

f) The IP address(es) of the C2 node(s).

g) Specific beacon patterns of the RAT.

7. All subsequent actions by the actors after the placement of the RAT to be

identified following these same steps listed above, across other endpoints and

network devices within the Labyrinth.

With each attack against the network, specific metadata values can be gathered to

identify the action. The Labyrinth allows for each of these values to be analyzed by the

SIEM. The Labyrinth then delivers each value to an appropriate security appliance,

designed to prevent internal production systems from falling victim to the same attack,

which affected the Labyrinth. Following an attack of this nature, the Labyrinth can revert

to a golden image. Meaning the Labyrinth is wiped clean of all malicious activities and

reverted to a state free from the compromise that just encountered. All objects recovered

from the compromise are still on record and activity being blocked by production security

appliances, thus leaving the Labyrinth able to detect and identify the next attack on the

network.

6. Labyrinth Limitations

The Labyrinth offers many beneficial features for detecting unknown activity by

providing indicators of compromise to production security systems. However, the

Labyrinth is not fully capable of protecting every aspect of the production network.

Perhaps one of the greatest threats facing businesses today is compromised employee

accounts. Employee account traffic is, by default, allowed to pass through the Labyrinth

unhampered. The function of the Labyrinth is to detect direct action against the static

environment, not to analyze traffic leaving the production environment. The Labyrinth

does offer the capability to integrate with third-party security appliances to provide a

deeper insight into the analysis of legitimate traffic passing across the Labyrinth

threshold. The process of analyzing raw network traffic will remain in the same state as it

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

currently stands within traditional networks, and is subject to the speed and viability of

the security products currently performing those actions.

To expound upon how traffic can be sent undetected through the Labyrinth, the

Labyrinth functions in the same manner as an NAT’ed environment, meaning that traffic

originating from an internal location will have its origin IP address removed from the

packet and replaced with an IP address designated by the NAT firewall. This traffic is

allowed to cross an untrusted network without fear of exposing the systems or networks

behind the firewall. The firewall will then await the return traffic from the packet's

original destination. When presented with the return traffic, the firewall compares the

packet session IDs, namely the packet’s ACK and SYN values. These values are unique

to the return packet and will only be accepted by the firewall if they match. If the packets

do meet the firewall's criteria, the firewall replaces the original the IP address given to the

original outgoing packets with the original source IP address and the return packet is

allowed to enter the internal network.

The Labyrinth does not inspect the traffic originating from internal systems, and,

as such, is not able to perform baseline operations against this traffic. The door is left

open for potentially malicious traffic targeting user accounts to pass through the

Labyrinth as if it requested by a legitimate means. Examples of these types of user-

focused attacks are, SpearPhishing, a legitimate user clicking on a malicious link from a

received email, solutions regarding how to mitigate these attacks range from email and

web filtering, payload analysis, Phishing awareness training, and network traffic analysis

(Phishlabs, 2015). Waterhole attacks are another style of attack not inherently being

blocked by the Labyrinth. Waterhole attacks happen when, “The attacker injects the

malicious code by downloading it into the client system, once the client requests for a

service from the web server” (Sarala, Kayalvizhi, & Zayaraz, 2014). Web proxy analysis

tools would be a more logical choice to prevent this style of attack. Poor downloading

habits are another user-based behavior which the Labyrinth will not be able to prevent.

Proper user training and vigilant endpoint security monitoring tools would be more

suitable tools in the prevention of malicious file downloads. Finally, physical access to

user systems from a malicious actor is also not preventable by the Labyrinth, as the

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Labyrinth cannot be knowledgeable of the actions from a user account performed by

someone other than the account owner.

7. Conclusion

In review, the Labyrinth has the advantage of leveraging a static baseline analysis

of pre-recorded actions to determine unwarranted actions against a network. The creation

of baseline comes from each Labyrinth user action, process execution, and network

connection through a series of scripted actions. Each system within the Labyrinth is a

unique data source and feeds data to an internal SIEM. The SIEM compares all collected

traffic against a baseline and determines the validity of the action based upon the

successful matching of events.

The Labyrinth allows for the integration of third-party security devices to provide

a more granular analysis of legitimate ingress and egress traffic. The analytic processes

performed within Labyrinth are subsequently reduced due to the integration, leaving

additional resources available to the Labyrinth’s SIEM to perform more granular baseline

comparisons across its environment. The SIEM further reduces analytic resource usage

by not having to perform advanced User Behavior Analytics or Network Behavior

Analytics, as the SIEM only requires the usage of baseline comparison analysis to detect

anomalous activity. With the reduction in required processing, the Labyrinth's ability to

detect anomalous activity is better equipped to discover malicious activity in real-time.

With the detection of this malicious activity, the Labyrinth can automatically direct the

activity to systems capable of preventing the traffic from affecting the production system.

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

References

CERN	Computer	Security.	(2010,	06	10).	Mandatory	Security	Baselines.	Retrieved	09	
29,	2016,	from	security.web.cern.ch:	
https://security.web.cern.ch/security/rules/en/baselines.shtml	

	
Du,	J.,	Zhang,	X.,	Zhou,	Y.,	&	Bai,	Y.	(2013).	Active	Defense	Security	Model	in	the	

Application	of	Network	Deception	System	Design.	Luoyang	Electronic	
Equipment	Test	Center	of	China	(LEETC).	Paris:	Atlantis	Press.		

	
Fraser,	G.	(2014).	Creating	a	Baseline	of	Process	Activity	for	Memory	Forensics.	The	

SANS	Institute,	The	InfoSec	Reading	Room.	Bethesda:	The	SANS	Institute.	
	
Merriam-Webster.	(2016,	10	20).	holistic.	Retrieved	10	20,	2016,	from	Merriam-

Webster:	http://www.merriam-webster.com/dictionary/holistic	
	
Phishlabs.	(2015).	The	CISO’s	Guide	to	Spear	Phishing	Defense.	Phishlabs.	Charleston:	

Phishlabs.	
	
Revelle,	D.	(2011).	Hypervisors	and	Virtual	Machines.	;login;	,	5.	
	
Rowe,	N.	C.,	&	Custy,	E.	J.	(2007).	Deception	in	Cyber-Attacks.	U.S.	Naval	Postgraduate	

School.	Monterey:	U.S.	Naval	Postgraduate	School.	
	
Sarala,	R.,	Kayalvizhi,	M.,	&	Zayaraz,	G.	(2014).	INFORMATION	SECURITY	RISK	

ASSESSMENT	UNDER	UNCERTAINTY	USING	DYNAMIC	BAYESIAN	
NETWORKS.	IJRET:	International	Journal	of	Research	in	Engineering	and	
Technology,	3	(7),	4.	

	
Whyte,	D.,	van	Oorschot,	P.	C.,	&	Kranaki,	E.	(2007).	Tracking	Darkports	for	Network	

Defense.	Carleton	University,	School	of	Computer	Science.	Ottawa:	Carleton	
University.	

	
Wickman,	T.	D.	(2003).	INTRUSION	DETECTION	IS	DEAD.	LONG	LIVE	INTRUSION	

PREVENTION!	The	SANS	Institute.	Bethesda:	The	SANS	Institute.	
	

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Appendix
	

The Labyrinth used for testing throughout this paper was created on a Dell

PowerEdge R710 equipped with two, eight-core 2.53 GHz Intel Xeon Processors, 24GB

RAM, 1 TB of hard disk space, and four NetXtreme II Gigabit Network Interface Cards

(NICs). The hypervisor software running on the server is XenServer 7.0.1 64-bit, using

Dell 6.4.0 BIOS.

The Labyrinth is connected to the ISP gateway via a standalone modem, set to the

bridge setting. This setting forces the modem to provide ISP connectivity but will not

interfere with any traffic moving across the device by routing or altering any of the

packets. The Labyrinth is then directly attached to the modem via a standard Cat5e cable

and connected to the eth0 NIC. The Labyrinth connects to an integrated firewall/router

device, via eth1, distributing network connectivity to a small home office. Finally, the

management port, eth3, is connected to a standard 5-port switch, which allows for the

control of the Labyrinth's hypervisor architecture via an external laptop. The management

port is also connected to the firewall/router providing an avenue for the SIEM to send

blacklisted IP addresses to the firewall.

The hypervisor architecture used within the test Labyrinth is XenServer 7, which

currently manages the following virtual systems and devices:

Table	2:	Listing	of	Managed	Virtual	Machines	

	

I used two different SIEM deployments to test the functionality of the dynamic

list creation for the Labyrinth. The Windows deployment used LogRhythm version 7.1.7

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

with no special modifications, and the Ubuntu deployment used an ELK stack

(ElasticSearch, LogStash, Kibana) paired with the Watcher module. Both SIEM

deployments functioned as expected after the creation of the appropriate whitelist

baselines. At this point, there is no reason to say one SIEM is more apt in performing

whitelist correlation functions as LogRhythm, ELK stack, Splunk, and IBM’s QRadar all

support this functionality.

To test the Labyrinth’s external IP detection functionality, I used a paid VPN

proxy service connected via a mobile hotspot simulating external IP addresses attempting

to connect to the Labyrinth. The IP addresses in which I connected were as follows:

© 2016 The SANS Institute Author retains full rights.

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Table	3:	Listing	of	Chosen	External	IP	Addresses	

	

	 Both	SIEM	appliances	were	successful	in	identifying	the	external	connections	

from	two	of	the	Labyrinth’s	data	sources,	the	external	firewall,	and	one	of	the	

Ubuntu	systems	configured	as	a	Web	Server.	Both	SIEM	solutions	successfully	wrote	

the	external	IP	addresses	to	their	respective	blacklists.	My	firewall	currently	uses	

iptables,	so	I	was	not	able	to	make	a	direct	direction	to	the	firewall	using	Window’s	

PowerShell.	Plink.exe	could	be	an	option	to	make	this	functional.	However,	my	

Ubuntu	machine	was	able	to	use	a	bash	script	to	execute	the	IP	Block	Script	via	a	

cron	job.	Scripts	for	Cisco	ASA,	Juniper,	and	Palo	Alto	firewalls	can	also	be	utilized	

via	the	command	line.	

	

Figure	26:	Block	IP	Bash	Script	

