
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!
!
! [VERSION!March!2014]! !
! !

Linux Rootkit Detection With OSSEC

GIAC (GCIA) Gold Certification

Author: Sally Vandeven, sallyvdv@gmail.com
Advisor: Dominicus Adriyanto Hindarto

Accepted:
March 26, 2014

Abstract

Rootkits are one the most insidious forms of malware because they are designed to
hide their existence on a system making them very difficult to detect. Yet there are
utilities that claim to be effective at rootkit detection. OSSEC is one such utility. It is
an open source host based IDS/IPS that also includes rootkit detection for Linux
systems. This paper will examine and measure OSSEC’s ability to detect and identify
several different Linux rootkits including both user mode and kernel mode variants.

! !

Linux Rootkit Detection with OSSEC
!

2

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

1. Introduction
Most malware consists of a malicious application that gets installed on a victim’s

computer. That application must somehow get executed, often by tricking the user into

clicking on something that will cause the application to launch, and then the software can

carry out its evil deed. A rootkit is a special type of malware that actually replaces or

makes changes to existing operating system components in order to alter the behavior of

the system, usually with the intent of hiding itself and other processes, files, network

connections or other operations that might expose the attacker’s activities (Skoudis &

Zeltser, 2003, p. 303).

OSSEC is a free, open source host based intrusion detection system that attempts

to detect the presence of such rootkits on Linux systems (http://www.ossec.net/doc) using

a combination of file integrity checking, signature based detection and anomaly detection

(Cid, 2008, p.161).

This paper will discuss in detail the methods OSSEC employs for rootkit

detection and then summarize the results of live tests of several types of rootkits and

OSSEC’s success at detecting them.

2. What is a Rootkit?
Rootkits are generally grouped into one of two categories: user mode rootkits and

kernel mode rootkits. The first type, user mode, modifies or replaces operating system

components or system binaries that are used directly by the user and run in what is called

“user mode” and the second modifies the kernel itself. Rootkits have taken on these

names most likely because they accurately reflect the level at which they run on the

computer.

Linux Rootkit Detection with OSSEC
!

3

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure'1'

!
Kernel&mode&vs&user&mode&in&Linux&

Andrew Tanenbaum describes kernel mode and user mode in his book Modern

Operating Systems (Tanenbaum, 2008, p.2). He writes that the operating system runs in

kernel mode and has full access to all hardware and resources in the computer. All other

software runs in user mode and must get access to hardware resources via the kernel or

operating system. Figure 1 shows Tanenbaum’s depiction of the relationship between

user mode and kernel mode software. If a user would like information about files, for

example, the user would issue the ls command to show a listing of files. Ls is a Linux

utility that runs in user mode. The ls command will query the kernel or operating system

because it controls the access to the file system. The kernel will pass back the requested

information to the ls command, which in turn gets passed back to the user.

Linux Rootkit Detection with OSSEC
!

4

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 2 shows where the two types of rootkits operate in this layered model of

the computer’s organization. User mode rootkits run at the same level as other user mode

software often by replacing Linux utilities with modified, malicious versions. Kernel

mode rootkits operate in the protected and privileged space of the operating system.

'
Figure'2'

Linux&user&mode&and&kernel&mode&rootkits&
!

Installing a rootkit on a system requires root level access for either type of rootkit.

How an attacker gains root level access to a system is beyond the scope of this paper but

may be accomplished, for example, by stealing credentials or launching an exploit of

some sort. Once the attacker has root level access, the rootkit can be injected into the

system.

!

2.1. User mode rootkits
A user mode rootkit modifies operating system executable files or libraries that

interact with the kernel on the user’s behalf. Examples of executable files that a rootkit

might want to target include the system binaries ls, ps, netstat and sshd. These allow the

user to view files, processes, network connections and perform remote logins

respectively. Because Linux is open source software, an attacker can download the

source to these programs and make any modifications she desires. This allows the

attacker to build in functionality that effectively controls which files, processes, network

connections and remote logons a user or system administrator ultimately sees, resulting in

Linux Rootkit Detection with OSSEC
!

5

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

“hidden” information of the attacker’s choosing. For a user mode rootkit to be

successful, the system administrator must also use these trojaned binary files to

administer and monitor the system. A system administrator who does not check the

integrity of the executable files she is utilizing may very well be fooled by such a rootkit.

This stealth may help the attacker maintain access to a system for a long time.

2.1.1. How a user mode rootkit gets injected into a system
Since the goal of a rootkit is to provide an attacker with a stealthy environment in

which to carry out his activities, the attacker does not want to raise any suspicion. In

other words, it is paramount that the system appear to be functioning normally.

Therefore, the executables that the attacker replaces must be placed where the users

expect to find them. On most Linux systems these files are located in either /bin,

/usr/bin, /sbin or /usr/sbin (Nguyen, 2004). Typically, these directories are owned by

root and other users are only allowed to execute the programs. For this reason, the

attacker must have root level access in order to place his malicious files on the system.

Once the attacker gains root level access, perhaps by guessing or cracking the password,

he can insert his own malicious executable files or libraries, for example, by using the cp

(copy) command to overwrite the existing version of a binary like netstat with his version

of netstat.

2.1.2. How the user mode rootkit functions
User mode rootkits provide a stealthy environment to the attacker by hiding the

attackers activities. This is usually accomplished by adding filtering capability to an

executable file so that users, including system administrators, receive only the output

that the attacker wants them to receive. For example, if the attacker wants to open up a

port that he will use as a backdoor into the system, he will add functionality to programs

like netstat or lsof that report information about open ports. The added functionality will

filter the output that is returned to the user, showing the state of all ports except the

attacker’s chosen backdoor port. The attacker adds this functionality by modifying the

source code for those programs, compiling and then installing on the target computer.

If the attacker wants to launch a process that will exfiltrate data from a system, he

will hide his activities by modifying and installing malicious executables that report

Linux Rootkit Detection with OSSEC
!

6

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

information about both the processes running on the system and the current network

connections. These malicious executables will then “lie” to the user by omitting the

attackers malicious process and port information.

2.1.3. Detecting user mode rootkits
When operating systems components are regularly checked using file integrity

checking tools like OSSEC, detection of user mode rootkits is quite successful. When an

attacker replaces or modifies a binary file in system directories its cryptographic hash

will change. If a system administrator watches for changes to these cryptographic hashes

on a regular basis, comparing the hashes with a table of known good hashes, the rootkit

can be easily discovered. Because detection is so straightforward, user mode rootkits are

no longer common (Mcclure et al., 2012, p. 303).

2.2. Kernel mode rootkits
A kernel mode rootkit makes modifications to the kernel itself. As discussed

above, the kernel is the interface between users and the hardware. Programs that a user or

system administrator runs on a Linux system run in user mode and query the kernel for

information about files, processes, network connections etc. as shown in Figure 1.

Considering the example above, when the user wants a listing of files in the current

directory the user would issue the ls command, which is a user mode utility. The ls

command would then query the kernel, the kernel would return the listing of files to the ls

utility and the ls utility would return that information to the user. A kernel mode rootkit

would manipulate the information passed back from the kernel to the user mode utility.

After performing a file integrity check of the ls binary confirming that it has not been

tampered with, the system administrator trusts the ls command and so trusts the

information it provides. In other words, the system administrator is not aware that he is

not being told “the truth” about the directory listing he received.

Kernel mode rootkits provide a stealthier environment in which an attacker can

operate because they are harder to detect and they are more thorough. It is trivial to

determine that a user mode binary file has been tampered with. This is done by regularly

comparing the cryptographic hashes on the binaries against a known good database, as

noted above. However, detecting that the kernel has been tampered with is more difficult

Linux Rootkit Detection with OSSEC
!

7

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

because so many of the tools used for detection are user mode tools, which can be fed

inaccurate information by an undermined kernel. Kernel mode rootkits manipulate the

information sent back from the kernel to user mode programs by interfering with the

system call table (Skoudis, Zeltser, 2003, Chapter 8). System calls are the “fundamental

interface between and application and the Linux kernel” according to the Linux manual

(Kerrisk, 2013) and the system call table is a kernel data structure that maintains pointers

to the locations in kernel memory where these system calls reside. Figure 3 shows the

logical arrangement of the System call table in kernel mode space.

'
Figure'3'

System&call&table&is&kernel&mode&data&structure&

A kernel mode rootkit can consistently “lie” to any user mode process that issues

those system calls. For example, in order for a user mode rootkit to hide a file it would

have to alter and install malicious copies of all binaries that show files on the system.

Since most of those binaries are using the same system call to query the file system, the

kernel mode rootkit can fool them all without even knowing who is asking. Although

the book was written over 10 years ago, Malware: Fighting Malicious Code gives an

excellent fundamental overview of the Linux kernel, system calls and kernel mode

rootkits (Skoudis, Zeltser, 2003, Chapter 8).

A rootkit can be injected into the system in one of several ways. Once injected

into a system, the rootkit may use a variety of techniques to interfere with the system call

table. Each of these will be discussed in a section below.

Linux Rootkit Detection with OSSEC
!

8

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

2.2.1. How a kernel mode rootkit gets injected into the system
There are currently three known methods for injecting a kernel mode rootkit into

a system. These are summarized below based on the detailed description in McClure’s

book, Hacking Exposed: Network Security Secrets & Solutions (McClure et al., 2012,

Chapter 5).

The first and still the most common method is by installing a loadable kernel

module (LKM). LKMs were introduced to Linux around 1995 (Henderson, 2001).

LKMs provide flexibility for both administrators and developers by allowing kernel level

code to be added to or removed from a running kernel. In other words, this feature

allows privileged users to alter the functionality of the kernel without recompiling it and

often without requiring a reboot. LKMs were designed in 1995 to be used for device

drivers, system calls, network drivers and some file system drivers (Henderson, 2001,

Section 2.5). But shortly thereafter, attackers began using LKMs to manipulate the

kernel in order to hide their malicious activities. The attacker must have root privileges

but once she does, she can insert a malicious module into the kernel using, for example,

the insmod or modprobe command. Insmod is a simple utility that inserts a module from

any path and modprobe will load a module and any dependencies but the module must

exist in the /lib/modules directory (Corbet & Rubini, 2005, Section 2.4.2). Placing a

module in the /lib/modules directory may get noticed so attackers will often use the

simpler insmod method. The Linux utility lsmod will provide the user with a listing of

the currently inserted kernel modules. Lsmod gets the information by querying the /proc

directory, specifically /proc/modules. The Linux operating system provides a view into

the memory of a running system through the /proc directory. There are no files on a disk

associated with the entries in this directory, instead it is an interface for viewing various

parts of memory (Skoudis & Zeltser, 2003, p. 388). The /proc directory will be examined

in more detail in section “Kernel Mode Rootkit Examples”.

The second method used by attackers to inject a kernel mode rootkit is by using

the special character device /dev/kmem. This was first demonstrated with the release of

Phrack magazine #58 in 2001 with a rootkit named SucKIT. The authors state that the

name stands for “stupid ‘super user control kit’” (devik & sd, 2001).

Linux Rootkit Detection with OSSEC
!

9

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

The special device /dev/kmem points to an image of the running kernel’s memory

space. Using this technique the attacker modifies the running kernel in memory

interfering in the same way that a LKM might with the system call table (Skoudis &

Zeltser, 2003). Since these are changes made to the running kernel in memory, a system

reboot would cripple the rootkit. Because it was more often used by attackers than by

kernel developers, many current Linux distributions have disabled support for the

/dev/kmem device including Fedora distributions starting in 2005 with the release of

RHEL4 (Fedora wiki, 2014) and Ubuntu distributions in 2009 (Ubuntu wiki, 2014).

The third method used to inject a kernel mode rootkit is by using a special device

similar to /dev/kmem called /dev/mem. This points to an image of physical memory, that

is, not just kernel memory but the entire physical memory image. This was first

introduced at Blackhat in 2009 (Lineberry, 2009). Based on my research, this method

does not seem to have been widely used although there is a proof-of-concept rootkit from

2005 called phalanx (McClure et el. 2012, p. 304).

Because most Linux kernels still continue to support LKMs this is the method

most often chosen by attackers to inject a rootkit (Corbet & Rubini, 2005, p. 3). Section

5 discusses specific examples of kernel mode rootkits and gives details about how each

was injected.

2.2.2. How system calls are intercepted
After a kernel mode rootkit is injected it typically manipulates the system call

table in order to create a stealthy environment for itself. Remember that the system call

table is a kernel data structure that maps the memory locations for the system call

functions used by user mode processes. The rootkit may swap out addresses in the

system call table so that the address points not to the original function but instead to the

attacker’s malicious function. Or the attacker can modify the base location of the system

call table itself, basically replacing the entire legitimate call table with the attacker’s

table. Other methods, though not widely used, include listening in on and intercepting

system interrupts and intercepting communications with the virtual file system (McClure

et al., 2012, p. 305).

Linux Rootkit Detection with OSSEC
!

1
0

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

However the system calls are interfered with, the goal of the rootkit is to modify

information seen by users in order to hide its own processes and files and activities.

3. OSSEC
3.1. What is OSSEC?

OSSEC is a full-featured, multi-platform, host based intrusion detection system

that performs many functions with the goal of monitoring and protecting the host.

Although OSSEC can be installed on a single system and run as a standalone HIDS, this

test system was set up using the server/agent model. The central server receives and

analyzes data from each agent. Configurations, rules and alert log files are stored on the

server. The most up to date and complete documentation can be found at

http://www.ossec.net/doc/. Among OSSEC’s features are file integrity monitoring, log

integration and monitoring and rootkit detection for Windows and Linux systems. This

paper will focus specifically on OSSEC’s rootkit detection capabilities for Linux.

3.2. How OSSEC detects rootkits
OSSEC uses a variety of methods to detect rootkits. OSSEC can be configured to

receive all syslog messages from the OSSEC agents. The OSSEC server will analyze the

incoming messages by applying a set of configurable rules, similar to Snort. Some of

these rules may aid an administrator in detecting rootkits, such as, rules that indicate

privilege escalation for example. There are also two separate OSSEC modules that run

on every agent, Syscheck and Rootcheck. These modules perform various tests that aid

in detecting both user mode and kernel mode rootkits. Figure 4 organizes the various

methods of detection that OSSEC uses for each type of rootkit. While Rootcheck

performs most of the checks, syscheck is key when looking for user mode malicious

binary files. Detection for each type of rootkit is discussed separately in the following

sections.

Linux Rootkit Detection with OSSEC
!

1
1

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

''''''''Figure'4'

 OSSEC’s detection methods for user mode and kernel mode rootkits

3.2.1. User mode rootkit detection
As described in section 2.1, user mode rootkits typically modify or replace

existing operating system executable files and libraries. The OSSEC module Syscheck

performs regular file integrity checks on these files by comparing the current

cryptographic hash with a known good hash for the file. If the hashes do not match then

OSSEC reports a change to the file, indicating a possible rootkit. The database of known

good hashes is initially created the first time syscheck runs after an OSSEC agent is

installed. The agent sends an encrypted hash of every file in the directories defined in the

OSSEC configuration file, /var/ossec/etc/ossec.conf in the syscheck section,. Directories

that are hashed by default include /bin, /usr/bin, /sbin, /usr/sbin and /etc. The default

interval after the initial build of the syscheck database is 21600 seconds (6 hours)

according to the OSSEC online documentation at

Linux Rootkit Detection with OSSEC
!

1
2

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

http://www.ossec.net/doc/manual/syscheck/index.html and 79200 seconds (22 hours) in

the most recent version available for download at http://www.ossec.net/files/ossec-hids-

2.7.1.tar.gz. The interval that Syscheck runs as well as the directories that will be hashed

are easily configurable and require that the agent be restarted on the client machine

before any changes would take effect.

OSSEC also maintains two files used in rootkit detection. The first is

rootkit_files.txt and contains a list of file names known to be user mode rootkits. The

files are searched based on file name only and if OSSEC can open the file for reading

with the fopen() system call then an alert is logged for a possible user mode rootkit. The

second file maintained for rootkit detection is rootkit_trojans.txt. This file contains

signatures that known rootkits have embedded in the binary file. By default, the binaries

in the directories /bin, /sbin, /usr/bin and /usr/sbin are searched. Rootcheck extracts the

embedded strings from each binary file and uses a regular expression to identify a match.

OSSEC refers to this as signature detection because many rootkits contain unique strings

in trojaned versions of common utilities such as login or ps. Additional signatures may

be added to the /var/ossec/etc/shared/rootkit_trojans.txt file.

OSSEC’s rootcheck module runs at regular intervals and among other things

attempts to find both user mode and kernel mode rootkits by querying the system for

information in multiple ways and comparing the results. When the rootcheck module

finds discrepancies in information about a file, a process, port or network interface it will

raise an alert for a suspected rootkit.

The Linux utility stat will show the status of a file or directory. It provides

extensive information about a file or directory but of interest here the link count. When

stat is run on a directory the link count will show how many files the directory contains.

The rootcheck module will also use the readdir() system call to determine the link count

of a directory. If there is a discrepancy it is flagged as a possible rootkit. (Cid, 2011,

module check_rc_sys.c)

The Linux utility ps can show running processes on a system. Rootkits

commonly attempt to hide the attacker’s processes to prevent detection. A user mode

rootkit could do this by modifying the ps binary file so that it omits the attackers

Linux Rootkit Detection with OSSEC
!

1
3

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

processes from process listings. Rootcheck attempts to detect such behavior by issuing

multiple system calls and comparing the results to the output from ps. Rootcheck calls

getsid(), getpgid() and kill() for all process IDs and if any of them finds a process that is

not listed by ps then rootcheck logs an alert about a possible user mode rootkit or

“trojaned” version of the ps utility (Hay & Cid, 2008, p. 162). These system calls are

discussed in more detail in section 3.2.2.

Another common binary that a user mode rootkit might replace is the netstat

utility (Hay & Cid, 2008, p. 164). Netstat provides information about network

connections and open ports. Since malware will often attempt to connect back to an

attacker’s machine in order to transfer data between the attacker and victim, rootkits will

commonly attempt to hide those connections to help maintain stealth. Rootcheck uses the

netstat utility to show the open ports on the system. Then it uses the bind() system call to

attempt to connect to every TCP and UDP port. If it is unable to bind to a port then that

port must be in use and should also be found in the netstat output. If netstat does not

show the port, it is flagged as a possible rootkit because the netstat utility may have been

modified to hide it. In other words, it may indicate a trojaned version of netstat (Cid,

2011, module check_rc_ports.c)

Sniffing network traffic, especially in promiscuous mode, allows an attacker to

capture data transfers that may contain sensitive data. Attackers may attempt to conceal

the sniffer by installing a modified version of the ifconfig utility, which reports on the

state of network interfaces. Like other hardware on a computer system, every network

interface is managed by the kernel. The kernel uses a device driver as a “liaison” to the

interface. When a privileged user requests that an interface be put in to promiscuous

mode so that it is able to sniff all traffic on the network, the kernel asks the device driver

to set the IFF_PROMISC flag on that device (Corbet, Rubini, 2005, chap 14). One way

to detect a sniffer on the network is by looking for network interfaces that are operating

in promiscuous mode. Rootcheck uses two different methods to query the

IFF_PROMISC flag on network interfaces and then compares the results looking for a

discrepancy. First, it asks the kernel directly for the value in IFF_PROMISC and then it

runs the user mode utility ifconfig and examines the output to see what it thinks the value

Linux Rootkit Detection with OSSEC
!

1
4

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

of IFF_PROMISC is. If there is a discrepancy, it reports a possible user mode rootkit. In

other words, perhaps the ifconfig utility has been modified to hide the true status of a

network interface.

Additionally, the rootcheck module examines anomalous behavior on the system

looking for user mode rootkits as well. First, it will check files in the /dev directory. The

/dev directory should contain device files or directories containing device files. This

directory is carefully checked for anomalous files because rootkits commonly use this

location to hide their files. Next, rootcheck will look through the entire file system for

files that have characteristics commonly used by rootkits. For example, it will look for

and log all files that are owned by root but can be written to and/or executed by other

users. It will record files and directories that are hidden using “.” as the first character of

the file name. Additionally, it will record any binaries that have the SUID bit set. This

means that the file, when executed, inherits the permissions of the owner of the file

instead of as the user executing the file. This could allow a non-privileged user to

execute a program as a privileged user and OSSEC regards this as suspicious. (Hay &

Cid, 2008, p 162).

Linux Rootkit Detection with OSSEC
!

1
5

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

3.2.2. Kernel mode rootkit detection
Since a kernel mode rootkit makes changes to the kernel with the goal of

intercepting system calls as described in section 2.2, it can manipulate information sent to

and from user mode tools. OSSEC is a user mode application so it also relies on data

passed to it from the kernel. The rootcheck module looks for possible intercepted system

calls that may be hiding files and processes.

Figure 5 shows the system calls used by OSSEC’s rootcheck module to look for

the existence of hidden files used by known rootkits.

'
Figure'5'

&&&&&&&&&&&&&&&&&Rootcheck&module&makes&multiple&system&calls&to&check&for&known&rootkit&related&files

The list of files from known rootkits that rootcheck attempts to locate can be found on the

OSSEC server in /var/ossec/etc/shared/rootkit_files.txt. Rootcheck tries to open each file

using the system calls opendir(), chdir(), stats() and fopen(). Figure 5 illustrates an

example where rootcheck is able to open a file with the opendir() and chdir() system

calls but not with stats() or fopen(). This may be an indication that a rootkit has

intercepted the stats() and fopen() system calls but not the opendir() or chdir() calls. In

this example, rootcheck would report a possible kernel level rootkit based on that

discrepancy. This detection method will have limited success since the file names must

be present in rootkit_files.txt or rootcheck will not attempt detection. In other words, a

file hidden by a rootkit can only be detected if the name of the file is known. A custom

Linux Rootkit Detection with OSSEC
!

1
6

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

rootkit or simple modification of the source code for a known rootkit could thwart this

method of detection.

 In section 3.2.1 it was noted that rootkits often attempt to hide running processes

to maintain stealth. A user mode rootkit would hide a process by installing a modified

version of the ps utility. This may be detected during the file integrity checks of the

syscheck module or it may be detected by the rootcheck module when comparing the

output from the ps utility to the output from three different system calls that query

running processes. Similarly, rootcheck will look for processes hidden by a kernel mode

rootkit by querying the system using the getsid(), getpgid() and kill() system calls and

comparing their outputs. The Linux man pages for getsid() and getpid() explain that

every process has both a session ID and a process ID. The Linux man page for kill()

explains that sending a zero as the signal to a process ID will not kill a process but

instead will return a 0 if the process exists. If the process does not exist the return value

from kill() will be -1. Rootcheck cycles through all possible process IDs, issuing all three

system calls and comparing the results. If getsid() finds the process but getpgid() or kill()

does not it may indicate a kernel level rootkit that has intercepted a system call. In this

case, OSSEC will log an alert identifying the suspect process.

3.3. What OSSEC does not do
As noted in section 2.2, the most common method used to inject a kernel mode

rootkit is to insert a loadable kernel module. OSSEC does not detect the kernel module

loading, nor does it detect changes that a rootkit makes to the system call table.

4. User Mode Rootkit Examples
As described in section 2.1, user mode rootkits modify operating system

executable files or libraries that interact with the kernel on the user’s behalf. Rootkits

that replace Linux binary files are trivial to detect with OSSEC’s syscheck module.

Successful detection depends on proper tuning of the OSSEC configuration file.

Syscheck will only perform integrity checking on the files and directories specified in the

Linux Rootkit Detection with OSSEC
!

1
7

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

ossec.conf file. When syscheck discovers that the cryptographic hash for a file has

changed, an alert is logged that would look similar to Figure 6.

''''''Figure'6'

 Syscheck generated alert when a file’s cryptographic hash has changed

User mode rootkits that modify run time library functions prove to be more

difficult to detect because binary files on disk are not changed and so syscheck is not

effective at detection. Instead, malicious libraries are inserted into the running process

and exist only in memory. The OSSEC rootcheck module can be helpful in discovering

this type of user mode rootkit and is described in detail in the next section.

4.1. Jynx2
The jynx2 rootkit operates by loading malicious library functions into system

binaries dynamically at runtime instead of replacing the actual binary on the file system

with a modified version (ErrProne, 2012). This provides similarly stealthy results but has

the added bonus that a statically calculated hash over system binaries would not reveal

this rootkit.

4.1.1. Inserting the shared library
In Linux, when a program is executed, the system checks for any additional

shared libraries that need to be loaded at run time. This is done by first consulting the

files /etc/ld.so.conf and /etc/ld.so.preload. Any libraries found here will be loaded first

and will take precedence over other libraries. In addition, the environment variable

LD_PRELOAD may be used to point to a shared library that will be loaded and take

Linux Rootkit Detection with OSSEC
!

1
8

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

precedence just like a library in /etc/ld.so.preload (Wheeler 2000). The jynx2 rootkit

makes use of this feature by creating a shared library that will cause files, processes and

ports to be hidden when desired. Jynx2 forces the use of this library by adding it to the

/etc/ld.so.preload file. The /etc/ld.so.preload file is then hidden by the rootkit. Once the

rootkit has been injected, utilities like ls, ps and netstat will load the jynx2 shared library

causing it to insert functionality into the running process that will hide evidence of files,

processes and connections used by the malware. In addition, the rootkit provides a

shared library called reality.so that can be loaded when the attacker would like to view all

files, processes and network connections including the hidden ones. In other words, it

provides a way for the attacker to view the actual state of the compromised system.

This rootkit was tested on a Ubuntu distribution running Linux kernel version

2.6.32-21. The Linux command ldd will show shared libraries used by a process. Figure

7 shows the shared libraries used by the ps utility before the jynx2 rootkit was injected

and Figure 8 shows the shared libraries after the malware injection. Once the rootkit is

injected by adding an entry for it in /etc/ld.so.preload, the ps utility will load the jynx2.so

shared library every time it is run.

'
'Figure'7'

'
Shared library dependencies for the ps utility before rootkit injection
''
'Figure'8'

'
Shared library dependencies for the ps utility after rootkit injection
!

Running the ldd command on other utilities such as ls and netstat would show the

jynx2.so dependency as well.

Linux Rootkit Detection with OSSEC
!

1
9

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

OSSEC may log an alert when the user initially injects the rootkit because, as

noted above, the initial injection requires root privileges. If the elevation of privileges is

achieved by knowing or guessing a root level password, the su operation is logged by

default in OSSEC. Once the attacker has root privileges, if the subsequent actions taken

by were logged to syslog then OSSEC could be configured to alert on those actions. In

some environments this type of auditing may take place and would help to detect the

kernel module injection into the system. If the elevation of privilege occurs through

some exploit then it may go undetected. For this test, the initial elevation of privilege to

root was accomplished by logging in as the root user using the “su -“ command, which

was detected by OSSEC.

Once injected, OSSEC will not detect the change with syscheck, because the only

file that has been altered by the rootkit is /etc/ld.so.preload but that is hidden by the

rootkit so syscheck does not calculate a hash of the file. Rootcheck, however, will notice

that something is wrong. As noted in section 3.2.1, the rootcheck module will attempt to

query the system in different ways in order to detect hidden objects. Rootcheck runs the

stat utility on any directories specified in the ossec.conf file. Stat will return a count of

the number of files that it sees in the directory and calls it “link count”. Rootcheck then

does a cross check on that link count using the system call readdir(). If readdir() finds

more files than stat showed it is flagged as a possible kernel level rootkit. This could be

considered a user mode rootkit, however, because jynx2 is not actually changing the

kernel or modifying the system call table. Instead it is inserting a shared library into the

stat process that provides similar functionality but is modified to hide certain files.

'
'Figure'9'

Rootcheck logs an alert when file count returned from stat and readdir() differ.!
!

Figure 9 shows the alert generated when OSSEC runs the rootcheck module on

my test system infected with the jynx2 rootkit. Because the /etc/ld.so.preload file has

Linux Rootkit Detection with OSSEC
!

2
0

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

been hidden by the rootkit from one but not both of the system calls used by rootcheck,

stat() and readdir(), it logs an alert about that finding.

4.1.2. Jynx2 privilege escalation feature
The jynx2 rootkit also has as SUID shell or privilege escalation feature that is

implemented by defining an environment variable in the config.h include file for jynx2.

On the infected system at the command prompt, setting an environment variable that was

previously defined in the config.h file to some value other than NULL and issuing the

sudo command signals the rootkit to create a root shell. In this test the environment

variable name was “HIDEME”.

'''''''''''''''''''Figure'10'

 jynx2 privilege escalation goes undetected by OSSEC

Figure 10 shows how the jynx2 rootkit can create a root shell. A process with

setuid/setgid permissions is effectively running with the privileges of the owner of that

executable file, in this case root, so it has the ability to change its own UID to any value

(Bovet, Cesati, 2006, p. 810). The executable file sudo is owned by root and has the

setuid bit set so that any user launching the process will have an effective UID of 0. The

rootkit takes advantage of this setuid feature of Linux by using the effective UID 0

permissions of the running process to also change the process UID to 0 and then

spawning a shell. The spawned shell will inherit the permissions of the parent process.

In this example, the jynx2 library module is inserted dynamically into the running process

sudo. The rootkit examines the value of the HIDEME variable and detects that it not

NULL. That is a signal to the rootkit that the attacker is requesting a shell. The rootkit

causes the sudo process to change its UID to 0 and then spawn a shell that inherits root

permissions. By default, this action does not log to syslog so OSSEC is unaware of its

occurrence. If a message were logged to syslog on the infected host, that message would

Linux Rootkit Detection with OSSEC
!

2
1

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

also be received by the OSSEC server and would trigger an alert with a description like

“User successfully changed UID to root.” or “Successful sudo to ROOT executed” to

warn of a privilege escalation.

The behavior of the SUID shell feature of jynx2 was determined by analyzing the

source code for the rootkit (ErrProne, 2012, module jynx2.c)

4.1.3. Hiding ports and processes
Jynx2 will hide processes and ports as well. The SUID shell as described above

makes this a very easy procedure. First, the attacker launches a SUID shell as outlined

above. From that shell, the attacker uses su to change her account to the account

associated with the MAGIC_UID variable also from the config.h file. Any process

launched or listening ports opened at that point will be hidden from other users. Figure 11

shows the commands used to launch a netcat listener on port 4200 from a SUID shell.

Figure'11'

Starting a netcat listener using the “magic” UID. Only “su lp” gets noticed by OSSEC.

Figure 12 shows the status of ports and processes before the netcat listener was

launched. The process information output was filtered on the string “nc” for readability.

Linux Rootkit Detection with OSSEC
!

2
2

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure'12'

Open ports and nc processes prior to launching nc

!
 Figure 13 shows the state of open ports and processes as seen by any other user on

the jynx2 infected system. Both port 4200 and the nc process are hidden illustrating the

rootkit’s successful hiding technique.

Figure'13'

!
!Open ports and processes after launching nc!
!

 Figure 14 shows the “reality” state of the open ports and processes as seen

by a user when the rootkit’s reality.so shared library is loaded dynamically with the

netstat and ps processes.

Linux Rootkit Detection with OSSEC
!

2
3

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure'14'

!
Jynx2 module reality.so loaded at runtime will show true state of system!

! !

! Interestingly, OSSEC detects the hidden nc process although it does not detect the

listening TCP port. The OSSEC module rootcheck calls getsid(), getpgid() and kill() for

all possible process IDs and if any of them finds a process that is not listed by ps an alert

is logged such as the one shown in Figure 15. This alert indicates that there is a process

running that ps does not see. In this case, PID 5996 is hidden because the jynx2 rootkit

has loaded the runtime library, jynx2.so, into ps to hide any processes started by the

MAGIC_UID user.

'''Figure'15'

 OSSEC alerts when kill finds a process that ps did not

 OSSEC does not log an alert for the hidden TCP port. The OSSEC

documentation states that the rootcheck module will attempt to bind() to each port and

compare the results with output from netstat. Ports that OSSEC cannot bind to should be

in the netstat output, if not then the following alert would be logged:

Linux Rootkit Detection with OSSEC
!

2
4

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

“Port 4200 hidden. Kernel-level rootkit or trojaned version of

netstat.”. On this test machine, TCP port 4200 was hidden and tested in both a

LISTENING and an ESTABLISHED state. In both cases the event was not detected by

OSSEC.

4.1.4. OSSEC detection
The OSSEC server logged an alert for the initial privilege escalation in order to

install the rootkit and also when the “su lp” command was issued from the SUID shell.

OSSEC was able to detect hidden files and hidden processes, however, OSSEC was not

able to detect the SUID shell or the hidden TCP port.

5. Kernel Mode Rootkit Examples
Kernel mode rootkits manipulate the information sent back from the kernel to user

mode programs and accomplish this most often by interfering with the system call table.

The most common method of injection of kernel mode rootkits is by using loadable

kernel modules to inject malicious code into a running process. This section will detail

the exploration of three different kernel rootkits. All three use the LKM injection

technique but all three make use of the loaded module differently. OSSEC is able to alert

on some aspects of these rootkit but not all.

5.1. The /proc directory
The /proc directory in Linux provides information to processes about kernel

memory allocation. The directories found in /proc are sometimes called virtual

directories because they do not actually exist on disk. The /proc files are organized

representations of some of the information stored in memory regarding running processes

(Terrehon & Bauer, 1999). Every time a process starts or finishes, a new directory is

created under /proc. The PID for the process is used as the directory name. There are

other directories under /proc like /proc/modules and /proc/net. /proc/modules contains

information about loadable kernel modules and /proc/net contains information about

network connections. Some of the user mode utilities that system administrators use like

Linux Rootkit Detection with OSSEC
!

2
5

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

lsmod and netstat take the information stored in /proc and reformat it (Skoudis & Zeltser,

2003, Chap. 8). This implies that if rootkits can hide things in /proc they will also be

hidden from the user mode tools. We will see examples of this in the test results that

follow. OSSEC could be configured to monitor the /proc directory and alert on changes,

however, since this directory is constantly changing it would likely result in too many

false positives and would therefore be impractical.

5.2. Linux 2.6 rootkit backdoor
The Linux 2.6 Rootkit backdoor (LRK-BD) is a kernel mode rootkit that is

injected via an loadable kernel module (Analiz, 2012). Its functionality is limited to

privilege escalation. While it may seem counter intuitive to install a rootkit whose only

function is to provide root access, especially since the installation of the rootkit requires

root privileges, it provides the attacker with a stealthy method of privilege escalation after

the initial installation.

The LRK-BD consists of a kernel module called security.ko and a control

program called kontrol. The control program takes a password as input and launches a

shell, invoking the loaded kernel module security.ko. The source code for the kernel

module was not available, however, a search through the embedded strings provides

some insight as to how the privilege escalation may have been achieved. Among the

strings found in the kernel module are prepare_creds and commit_creds. As explained

by Perla and Massimiliano, there are credential structures associated with every process

in Linux kernel versions since 2.6.29 that contain the user and group IDs to help

determine the level of access to various resources by the running process. This credential

structure can be modified by creating a copy of the current credentials with

prepare_creds(), setting the UID/GID fields to 0 and using commit_creds() to make the

changes. This is a method often used by kernel mode rootkits to achieve privilege

escalation (Perla & Massimiliano, 2010, Chap. 4).

5.2.1. Inserting the kernel module
This rootkit was tested on a Ubuntu distribution running Linux kernel version

3.2.0-32. The insmod command was used to insert the kernel module. Since this

requires root level access, the initial privilege escalation was logged by OSSEC. In order

Linux Rootkit Detection with OSSEC
!

2
6

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

for this rootkit to provide stealthy privilege escalation to the attacker the kernel module

must persist across reboots. One way to accomplish this is to place the malicious module

in the /lib/modules directory and to edit the /etc/modules file, adding an entry for the

new kernel module (Loadable_modules, 2014). Since the OSSEC syscheck module

checks for changes to the files in the /etc directory, the change to the /etc/modules file

triggered the alert shown in Figure 16.

'
Figure'16'

OSSEC alert due to change in hash for the file /etc/modules

5.2.2. The privilege escalation function
To launch the LRK-BD privilege escalation, The control program, kontrol, sends

a command to the kernel module by sending a password to /proc/security. The file

/proc/security was created when the malicious kernel module, security.ko, was inserted

with the insmod command. The attacker can interact with the kernel module via this

virtual file in /proc. A simplified but equally effective version of the command is shown

below:

$ echo fabrika >> /proc/security
$ whoami
root
$ id
uid=0(root) gid=0(root) groups=0(root), 4(adm), 24(cdrom),
1000(sally)

The string “fabrika” is a password that the module requires and was found by examining

the kontrol.c source code. The elevation to UID 0 is not noticed by OSSEC but the root

shell process is not hidden so the shell could be detected using the ps command:

Linux Rootkit Detection with OSSEC
!

2
7

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

$ ps aux | grep bash
sally 3630 0.0 0.3 7120 3528 pts/0 Ss 13:38 0:00 bash
root 4797 0.7 0.3 7120 3528 pts/3 Ss+ 13:46 0:00 bash
sally 4902 0.0 0.0 4372 836 pts/0 S+ 13:46 0:00 grep
--color=auto bash

The LRK-BD rootkit was detected by OSSEC twice during installation but once

installed and operational, provides a stealthy privilege escalation exploit. The malicious

kernel module inserted by the attacker is not detected at any time by OSSEC but it can be

seen in /proc/modules and when using the lsmod command as shown in Figure 17.

''''''''''''''''''''''''''''''''''Figure'17'

 Malicious kernel module, security, can be seen in /proc/modules and with lsmod

5.3. Average Coder rootkit
The Average Coder rootkit was written by Matias Fontanini and uses the LKM

method of injection (Fontanini, 2011). This rootkit can hide the kernel module from user

mode tools that print the contents of /proc/modules, like lsmod, and it can also hide ports

and processes. It does not offer a file hiding function.

5.3.1. Inserting and hiding the kernel module
Figure 18 shows the kernel module being injected into the system, followed by a

test of the hide/show module functionality.

Linux Rootkit Detection with OSSEC
!

2
8

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

'''''''''''''''''''
'''''''''''''''''''''Figure'18'

'

! In this test, privilege was escalated initially using su, which caused OSSEC to log

an alert for privilege escalation.

" The insmod command is used to insert the kernel module and requires root

privilege. OSSEC did not notice that a kernel module was inserted.

The inserted module can be seen with the lsmod command and does not require

root privileges.

$ Step 4 hides the kernel module. “buddyinfo” is a standard Linux file found in the

/proc directory. It does not have write access for any users, so an attempt to write to it

with “echo hide” results in an error but since the rootkit has intercepted the write function

for this file it can receive the “echo hide” and interpret it as a command, in this case, a

command to hide the kernel module from users (Fontanini, 2011).

% “echo show” is interpreted by the rootkit as the command to stop hiding the

module; allow it to be seen by anyone.

Linux Rootkit Detection with OSSEC
!

2
9

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

5.3.2. Privilege escalation
The attacker can achieve escalation of privilege to root by sending the command

“root” along with the current shell’s process id to /proc/buddyinfo as shown in Figure 19

''''''''''''''''''Figure'19'

 Sending privilege escalation command to rootkit

 The user “sally” is an unprivileged user as shown by the UID associated with her

account, 1000. The PID of the running shell is 1986 and is stored in the built-in variable

“$$”. Sending the command “root” along with the PID of the user’s shell signals the

rootkit to elevate the privileges for this user. This elevation of privileges goes unnoticed

by OSSEC in our test system.

5.3.3. Hiding processes and ports
To test the OSSEC’s detection of hidden ports and processes, a netcat

listener was started on port 5678. Both the “nc” process and TCP port 5678 were

subsequently hidden using the rootkit commands as illustrated in Figure 20. The

hidden process was detected by OSSEC, however, the hidden port was not.

Linux Rootkit Detection with OSSEC
!

3
0

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

''''''''''''''Figure'20'

Both the process and the port are hidden from the user mode utilities ps and

netstat, however, they can still be found in the /proc directory as shown in Figure

20. Recall from section 5.1 that configuring OSSEC to monitor the /proc directory

would be impractical due to the high occurrence of false positives.

! The netcat listener is started in the elevated shell

" The PID of the nc process is 9404

Hide the nc process by sending the hpid command along with the PID to hide

$ confirm that the process is hidden from user mode tool, ps

% The process still exists and the command line invocation can be viewed if the

 PID is explicitly given

& Hide the listening port to prevent netstat or lsof from revealing it

' Netstat does not see the listening port 5678

Linux Rootkit Detection with OSSEC
!

3
1

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 21 shows the alert that was logged when OSSEC’s rootcheck module

detected that there may be a hidden process. It detects this because PID 9404 is not

found in the output from the ps command but it is found in output from one or more of

the getsid(), getpid() or kill() system calls.

Figure'21'

 The OSSEC alert when it discovers the hidden nc process

5.3.4. OSSEC detection
OSSEC detected the initial privilege escalation when the rootkit was injected and

the rootcheck module was able to detect the hidden process, however, it was unable to

detect the privilege escalation exploit. OSSEC’s rootcheck module uses the bind()

system call and the output from netstat to find hidden ports, however, it was not able to

detect the port hidden using this method.

5.4. KBeast
The Kernel Beast rootkit was written by Ipsecs and uses the LKM method of

injection. Kbeast hides the loaded kernel module as well as files, processes and ports. In

addition, this rootkit offers a password protected backdoor (Ipsecs, 2012). Kbeast was

installed on CentOS running Linux kernel version 2.6.18.

5.4.1. Inserting and hiding the kernel module
Like the other rootkits, an initial privilege escalation is required in order to insert

the malicious kernel module. In this test it was accomplished with the command “su –“

and was detected by OSSEC and logged.

The kernel module was loaded using the insmod command and is hidden from

/proc/modules as shown in Figure 22. Since lsmod uses the /proc/modules output as its

source of information about loaded modules it does not see the kbeast kernel module.

Linux Rootkit Detection with OSSEC
!

3
2

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

''
''''''''''''''''''''''''''''''''''''Figure'22'

 root inserts malicious kernel module and confirms it is hidden from users

The kbeast rootkit has a configuration file that can be edited before compiling. It

contains many settings for the rootkit, including the port number that the rootkit will

automatically hide, the backdoor password and the prefix to use for hidden files,

directories and processes. For this test, the default values were used. The hidden port

number is 13377, the backdoor password is “h4x3d”, and the special prefix is “_h4x_”.

5.4.2. Hiding files process and ports
How the rootkit hides files, processes and ports can be illustrated by setting up the

backdoor feature of kbeast. After starting the backdoor, Figure 23 shows that

the running process is hidden from ps even though the /proc virtual file system contains

information about PID 6202, for example, Figure 23 shows the command line invocation

for the process. The kbeast backdoor port number was defined in the configuration file as

TCP/13377. Figure 23 also shows that netstat does not recognize the listening

port 13377.

Linux Rootkit Detection with OSSEC
!

3
3

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

''''
'''''''''''''''''''Figure'23'

 Kbeast’s process and port hiding capabilities

As described in section 3.2.2, OSSEC compares the results from the system calls

getsid(), getpid() and kill() looking for discrepancies in order to discover hidden

processes. The kill() call is actually hooked by the rootkit. This can be discovered in the

comments from the rootkits configuration file and confirmed with an experiment. The

configuration file shows how to use the kill command to elevate privileges:

/* Magic signal & pid for local escalation */
#define _MAGIC_SIG_ 37 //kill signal
#define _MAGIC_PID_ 31337 //kill this pid

Indeed, sending the signal 37 to the kill command results in a privilege escalation

as demonstrated in Figure 24.

Linux Rootkit Detection with OSSEC
!

3
4

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure'24'

!
Logging in to the infected system via the kbeast backdoor and elevating privilege to root with kill

Additionally, the kbeast configuration file states that any processes starting with

the defined prefix of “_h4x_” will be protected from kill:

 /* All files, dirs, process will be hidden
 Protected from deletion & being killed */
 #define _H4X0R_ “_h4x_”

Figure 25 illustrates that using the kill command as root to query a process ID that

we know exists results in an error message. If the kill() system call has been intercepted

by the rootkit then it is also possible that OSSEC is receiving incorrect information and is

therefore unable to detect the hidden backdoor process.

'
'Figure'25'

 Attempting to kill a process protected by the kbeast rootkit

Linux Rootkit Detection with OSSEC
!

3
5

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Any files that begin with the special prefix “_h4x_” are successfully omitted from

ps output, but they are not hidden from OSSEC if the files are in a directory that OSSEC

has been told to scan. Figure 26 shows that files with the special prefix are hidden from ls

although the file exists as demonstrated by the cat command.

''''''''''''''''''
'''''''''''''''''Figure'26'

 Kbeast hides files that begin with special prefix

Figure 27 shows the OSSEC alert when the rootcheck module discovers that the

results from stat() and readdir() are not the same. When utilities or system calls report a

different number of files for a directory, OSSEC dutifully reports this discrepancy.

''Figure'27'

 OSSEC notices that a file may be hidden in this directory

5.4.3. OSSEC detection
On the CentOS test system, OSSEC was able to detect the hidden files but only in

the directories that it is configured to check. By default, the syscheck module examines

the /bin, /sbin, /usr/bin, /usr/sbin and /etc directories. OSSEC was not able to detect the

Linux Rootkit Detection with OSSEC
!

3
6

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

hidden process, the hidden ports or the rootkit’s privilege escalation using the kill

command.

6. How Did OSSEC Fare?
After extensive testing done on several different rootkits, OSSEC proves to be an

excellent tool for rootkit detection. It will find user mode rootkits quite readily providing

it is configured to look in the relevant directories that rootkits would likely hide. The

relevant directories may vary among systems but generally include the directories in

users’ paths. It may be necessary for a system administrator to edit the OSSEC

configuration file, ossec.conf, to include the correct directories for each system. OSSEC

will also pick up many “hints” when a kernel mode rootkit has infected a system. It

accomplishes this primarily with the rootcheck module because it is looking at behaviors

that many rootkits share such as attempting to hide files but only from some system calls.

OSSEC uses multiple methods to find files in a directory and compare the results.

Discrepancies in this output are abnormal and OSSEC alerts on that, giving us another

hint. Similarly, rootkits attempt to hide running processes but OSSEC can detect it if the

attacker has not hidden the process from multiple different system calls. OSSEC was less

successful detecting hidden ports.

Since OSSEC is not 100% successful in finding hidden objects, false negatives,

(the problem exists on the system, but the scanning tool either does not find it, or does

not report it), could occur. For this reason, perhaps OSSEC should not be the only tool

utilized by a system administrator for rootkit detection.

One aspect that all rootkits have in common and that OSSEC was always able to

detect in the above tests is the initial privilege escalation during installation of the rootkit.

Certainly, there are stealthy privilege escalation exploits that could be launched that

would evade OSSEC but it is worth noting that rootkits cannot get installed without root

access. Tuning OSSEC to alert on as many forms of privilege escalation as possible

could be helpful in detecting rootkit infections.

Linux Rootkit Detection with OSSEC
!

3
7

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

OSSEC is able to give the system administrator many hints that something is

amiss with the system, however, it still takes some sleuthing to confirm or deny that a

rootkit has been installed.

Linux Rootkit Detection with OSSEC
!

3
8

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

References

Analiz, (2012). Linux 2.6 Kernel /proc Rootkit [Software]. Available from

http://packetstormsecurity.com.

Bovet, D. P., Cesati, M. (2006). Understanding the Linux Kernel. 3rd ed.

Sevastopol, CA: O'Reilly.

Cid, D. (2011) OSSEC HIDS (Version 2.7.1) [Computer program]. Available at

http://www.ossec.net/files/ossec-hids-2.7.1.tar.gz (Accessed 15 December 2013)

Cid, D. B. (n.d.). OSSEC. Retrieved January 5, 2014, from

http://www.ossec.net/doc

Corbet, J., Rubini, A. (2005). Linux device drivers. 3rd ed. Beijing: O'Reilly.

devik, & sd (Dec 12 2001). Linux on-the-fly kernel patching without LKM.

retrieved Jan 06 2014, from Phrack magazine Web Site:

http://www.phrack.org/issues.html?issue=58&id=7#article

ErrProne, (2012). Jynx-Kit Release 2 [Software]. Available from

http://packetstormsecurity.com.

Fedora security features matrix. (n.d) retrieved Jan 06 2014, from Fedora wiki

Web Site: https://fedoraproject.org/wiki/Security_Features_Matrix

Fontanini, M. (2011). Average coder Linux rootkit [Software]. Available from

https://github.com/mfontanini/Programs-Scripts/tree/master/rootkit

Hay, A., Cid, D. (2008). OSSEC host-based intrusion detection guide. Burlington,

Mass.: Syngress Pub.

Henderson, B. (2001, Jun). Introduction to Linux loadable kernel modules.

retrieved Jan 05 2014, from http://www.tldp.org/HOWTO/Module-HOWTO/x73.html

Ipsecs (2012, Jan). Kernel Beast Linux Rootkit. [Software]. Available from

http://packetstormsecurity.com/files/108286/KBeast-Kernel-Beast-Linux-Rootkit-

2012.html

Linux Rootkit Detection with OSSEC
!

3
9

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Kerrisk, M (2013, April). Linux system calls. retrieved Jan 05 2014, from Linux

programmer's manual Web Site: http://man7.org/linux/man-pages/man2/syscalls.2.html

Lineberry, A (Mar 27, 2009). Malicious code injection via /dev/mem. retrieved

Jan 06 2014, from Blackhat Web Site: http://www.blackhat.com/presentations/bh-europe-

09/Lineberry/BlackHat-Europe-2009-Lineberry-code-injection-via-dev-mem.pdf

Mcclure, S., Scambray, J., Kurtz, G. (2012). Hacking Exposed 6: Network

Security Secrets and Solutions. 6th ed. San Francisco: McGraw-Hill Osborne.

Nguyen, B. (2004, July 30). Linux filesystem hierarchy. Retrieved January 4,

2014, from http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html

Perla, E., Massimiliano, O. (2010). A guide to kernel exploitation: attacking the

core. Burlington, MA: Syngress.

Skoudis, E., Zeltser, L. (2003). Malware: Fighting Malicious Code. E Rutherford:

Prentice Hall PTR.

Tanenbaum, A. S.. (2008). Modern operating systems. 3rd ed. Upper Saddle

River, N.J.: Pearson Prentice Hall.

Terrehon, B., & Bauer, B. ((1999, October 7)1999, October 7). The /proc

filesystem. Retrieved from

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Ubuntu features. (n.d) retrieved Jan 06 2014, from Ubuntu wiki Web Site:

https://wiki.ubuntu.com/Security/Features#dev-kmem

Loadable_modules. (2014, March 11). Retrieved from

https://help.ubuntu.com/community/Loadable_Modules

Wheeler, D. (2000). Program Library HOWTO. retrieved Mar 2 2014, from

http://tldp.org/HOWTO/Program-Library-HOWTO/introduction.html

