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Abstract 

Rootkits are one the most insidious forms of malware because they are designed to 
hide their existence on a system making them very difficult to detect. Yet there are 
utilities that claim to be effective at rootkit detection. OSSEC is one such utility. It is 
an open source host based IDS/IPS that also includes rootkit detection for Linux 
systems. This paper will examine and measure OSSEC’s ability to detect and identify 
several different Linux rootkits including both user mode and kernel mode variants.  
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1. Introduction 
Most malware consists of a malicious application that gets installed on a victim’s 

computer.  That application must somehow get executed, often by tricking the user into 

clicking on something that will cause the application to launch, and then the software can 

carry out its evil deed.  A rootkit is a special type of malware that actually replaces or 

makes changes to existing operating system components in order to alter the behavior of 

the system, usually with the intent of hiding itself and other processes, files, network 

connections or other operations that might expose the attacker’s activities (Skoudis & 

Zeltser, 2003, p. 303). 

OSSEC is a free, open source host based intrusion detection system that attempts 

to detect the presence of such rootkits on Linux systems (http://www.ossec.net/doc) using 

a combination of file integrity checking, signature based detection and anomaly detection 

(Cid, 2008, p.161).  

This paper will discuss in detail the methods OSSEC employs for rootkit 

detection and then summarize the results of live tests of several types of rootkits and 

OSSEC’s success at detecting them.   

2. What is a Rootkit? 
Rootkits are generally grouped into one of two categories: user mode rootkits and 

kernel mode rootkits. The first type, user mode, modifies or replaces operating system 

components or system binaries that are used directly by the user and run in what is called 

“user mode” and the second modifies the kernel itself.  Rootkits have taken on these 

names most likely because they accurately reflect the level at which they run on the 

computer.   
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Figure'1'

!
Kernel&mode&vs&user&mode&in&Linux&

 

Andrew Tanenbaum describes kernel mode and user mode in his book Modern 

Operating Systems (Tanenbaum, 2008, p.2).  He writes that the operating system runs in 

kernel mode and has full access to all hardware and resources in the computer.  All other 

software runs in user mode and must get access to hardware resources via the kernel or 

operating system.  Figure 1 shows Tanenbaum’s depiction of the relationship between 

user mode and kernel mode software.   If a user would like information about files, for 

example, the user would issue the ls command to show a listing of files. Ls is a Linux 

utility that runs in user mode.  The ls command will query the kernel or operating system 

because it controls the access to the file system.  The kernel will pass back the requested 

information to the ls command, which in turn gets passed back to the user. 
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Figure 2 shows where the two types of rootkits operate in this layered model of 

the computer’s organization.  User mode rootkits run at the same level as other user mode 

software often by replacing Linux utilities with modified, malicious versions.   Kernel 

mode rootkits operate in the protected and privileged space of the operating system. 

'
Figure'2'

 

Linux&user&mode&and&kernel&mode&rootkits&
!

Installing a rootkit on a system requires root level access for either type of rootkit.  

How an attacker gains root level access to a system is beyond the scope of this paper but 

may be accomplished, for example, by stealing credentials or launching an exploit of 

some sort. Once the attacker has root level access, the rootkit can be injected into the 

system.   

!

2.1. User mode rootkits 
A user mode rootkit modifies operating system executable files or libraries that 

interact with the kernel on the user’s behalf.  Examples of executable files that a rootkit 

might want to target include the system binaries ls, ps, netstat and sshd.  These allow the 

user to view files, processes, network connections and perform remote logins 

respectively.  Because Linux is open source software, an attacker can download the 

source to these programs and make any modifications she desires. This allows the 

attacker to build in functionality that effectively controls which files, processes, network 

connections and remote logons a user or system administrator ultimately sees, resulting in 
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“hidden” information of the attacker’s choosing.  For a user mode rootkit to be 

successful, the system administrator must also use these trojaned binary files to 

administer and monitor the system.  A system administrator who does not check the 

integrity of the executable files she is utilizing may very well be fooled by such a rootkit. 

This stealth may help the attacker maintain access to a system for a long time. 

2.1.1. How a user mode rootkit gets injected into a system 
Since the goal of a rootkit is to provide an attacker with a stealthy environment in 

which to carry out his activities,  the attacker does not want to raise any suspicion. In 

other words, it is paramount that the system appear to be functioning normally.  

Therefore, the executables that the attacker replaces must be placed where the users 

expect to find them.  On most Linux systems these files are located in either /bin, 

/usr/bin,  /sbin or /usr/sbin (Nguyen, 2004).  Typically, these directories are owned by 

root and other users are only allowed to execute the programs.  For this reason, the 

attacker must have root level access in order to place his malicious files on the system. 

Once the attacker gains root level access, perhaps by guessing or cracking the password, 

he can insert his own malicious executable files or libraries, for example, by using the cp 

(copy) command to overwrite the existing version of a binary like netstat with his version 

of netstat. 

2.1.2. How the user mode rootkit functions 
User mode rootkits provide a stealthy environment to the attacker by hiding the 

attackers activities.   This is usually accomplished by adding filtering capability to an 

executable file so that users, including system administrators,  receive only the output 

that the attacker wants them to receive.  For example, if the attacker wants to open up a 

port that he will use as a backdoor into the system, he will add functionality to programs 

like netstat or lsof that report information about open ports.  The added functionality will 

filter the output that is returned to the user, showing the state of all ports except the 

attacker’s chosen backdoor port.  The attacker adds this functionality by modifying the 

source code for those programs, compiling and then installing on the target computer.   

If the attacker wants to launch a process that will exfiltrate data from a system, he 

will hide his activities by modifying and installing malicious executables that report 
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information about both the processes running on the system and the current network 

connections.  These malicious executables will then “lie” to the user by omitting the 

attackers malicious process and port information. 

2.1.3. Detecting user mode rootkits 
When operating systems components are regularly checked using file integrity 

checking tools like OSSEC, detection of user mode rootkits is quite successful.  When an 

attacker replaces or modifies a binary file in system directories its cryptographic hash 

will change.  If a system administrator watches for changes to these cryptographic hashes 

on a regular basis, comparing the hashes with a table of known good hashes, the rootkit 

can be easily discovered.  Because detection is so straightforward, user mode rootkits are 

no longer common  (Mcclure et al., 2012, p. 303). 

2.2. Kernel mode rootkits 
A kernel mode rootkit makes modifications to the kernel itself.   As discussed 

above, the kernel is the interface between users and the hardware. Programs that a user or 

system administrator runs on a Linux system run in user mode and query the kernel for 

information about files, processes, network connections etc. as shown in Figure 1.  

Considering the example above, when the user wants a listing of files in the current 

directory the user would issue the ls command, which is a user mode utility.  The ls 

command would then query the kernel, the kernel would return the listing of files to the ls 

utility and the ls utility would return that information to the user.  A kernel mode rootkit 

would manipulate the information passed back from the kernel to the user mode utility.  

After performing a file integrity check of the ls binary confirming that it has not been 

tampered with, the system administrator trusts the ls command and so trusts the 

information it provides.  In other words, the system administrator  is not aware that he is 

not being told “the truth” about the directory listing he received.    

Kernel mode rootkits provide a stealthier environment in which an attacker can 

operate because they are harder to detect and they are more thorough.  It is trivial to 

determine that a user mode binary file has been tampered with.  This is done by regularly 

comparing the cryptographic hashes on the binaries against a known good database, as 

noted above.  However, detecting that the kernel has been tampered with is more difficult 
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because so many of the tools used for detection are user mode tools, which can be fed 

inaccurate information by an undermined kernel.  Kernel mode rootkits manipulate the 

information sent back from the kernel to user mode programs by interfering with the 

system call table (Skoudis, Zeltser, 2003, Chapter 8). System calls are the “fundamental 

interface between and application and the Linux kernel” according to the Linux manual 

(Kerrisk, 2013) and the system call table is a kernel data structure that maintains pointers 

to the locations in kernel memory where these system calls reside. Figure 3 shows the 

logical arrangement of the System call table in kernel mode space. 

'
Figure'3'

 

System&call&table&is&kernel&mode&data&structure&
 

A kernel mode rootkit can consistently “lie” to any user mode process that issues 

those system calls. For example, in order for a user mode rootkit to hide a file it would 

have to alter and install malicious copies of all binaries that show files on the system.  

Since most of those binaries are using the same system call to query the file system, the 

kernel mode rootkit can fool them all without even knowing who is asking.   Although 

the book was written over 10 years ago, Malware: Fighting Malicious Code gives an 

excellent fundamental overview of the Linux kernel, system calls and kernel mode 

rootkits (Skoudis, Zeltser, 2003, Chapter 8). 

A rootkit can be injected into the system in one of several ways.  Once injected 

into a system, the rootkit may use a variety of techniques to interfere with the system call 

table.   Each of these will be discussed in a section below.  
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2.2.1. How a kernel mode rootkit gets injected into the system 
There are currently three known methods for injecting a kernel mode rootkit into 

a system.  These are summarized below based on the detailed description in McClure’s 

book, Hacking Exposed: Network Security Secrets & Solutions (McClure et al., 2012, 

Chapter 5). 

The first and still the most common method is by installing a loadable kernel 

module (LKM).  LKMs were introduced to Linux around 1995 (Henderson, 2001).  

LKMs provide flexibility for both administrators and developers by allowing kernel level 

code to be added to or removed from a running kernel.  In other words, this feature 

allows privileged users to alter the functionality of the kernel without recompiling it and 

often without requiring a reboot.  LKMs were designed in 1995 to be used for device 

drivers, system calls, network drivers and some file system drivers (Henderson, 2001, 

Section 2.5).  But shortly thereafter, attackers began using LKMs to manipulate the 

kernel in order to hide their malicious activities.  The attacker must have root privileges 

but once she does, she can insert a malicious module into the kernel using, for example, 

the insmod or modprobe command.  Insmod is a simple utility that inserts a module from 

any path and modprobe will load a module and any dependencies but the module must 

exist in the /lib/modules directory (Corbet & Rubini, 2005, Section 2.4.2).   Placing a 

module in the /lib/modules directory may get noticed so attackers will often use the 

simpler insmod method.  The Linux utility lsmod will provide the user with a listing of 

the currently inserted kernel modules.  Lsmod gets the information by querying the /proc 

directory, specifically /proc/modules. The Linux operating system provides a view into 

the memory of a running system through the /proc directory.  There are no files on a disk 

associated with the entries in this directory, instead it is an interface for viewing various 

parts of memory (Skoudis & Zeltser, 2003, p. 388).  The /proc directory will be examined 

in more detail in section “Kernel Mode Rootkit Examples”.   

The second method used by attackers to inject a kernel mode rootkit is by using 

the special character device /dev/kmem.  This was first demonstrated with the release of 

Phrack magazine #58 in 2001 with a rootkit named SucKIT.  The authors state that the 

name stands for “stupid ‘super user control kit’”  (devik & sd, 2001).   
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The special device /dev/kmem points to an image of the running kernel’s memory 

space.  Using this technique the attacker modifies the running kernel in memory 

interfering in the same way that a LKM might with the system call table (Skoudis & 

Zeltser, 2003).   Since these are changes made to the running kernel in memory, a system 

reboot would cripple the rootkit.  Because it was more often used by attackers than by 

kernel developers, many current Linux distributions have disabled support for the 

/dev/kmem device including Fedora distributions starting in 2005 with the release of 

RHEL4  (Fedora wiki, 2014) and Ubuntu distributions in 2009 (Ubuntu wiki, 2014).   

The third method used to inject a kernel mode rootkit is by using a special device 

similar to /dev/kmem called /dev/mem.  This points to an image of physical memory, that 

is, not just kernel memory but the entire physical memory image.  This was first 

introduced at Blackhat in 2009 (Lineberry, 2009).  Based on my research, this method 

does not seem to have been widely used although there is a proof-of-concept rootkit from 

2005 called phalanx (McClure et el. 2012, p. 304). 

Because most Linux kernels still continue to support LKMs this is the method 

most often chosen by attackers to inject a rootkit (Corbet & Rubini, 2005, p. 3).  Section 

5 discusses specific examples of kernel mode rootkits and gives details about how each 

was injected. 

2.2.2. How system calls are intercepted 
After a kernel mode rootkit is injected it typically manipulates the system call 

table in order to create a stealthy environment for itself.  Remember that the system call 

table is a kernel data structure that maps the memory locations for the system call 

functions used by user mode processes.  The rootkit may swap out addresses in the 

system call table so that the address points not to the original function but instead to the 

attacker’s malicious function.  Or the attacker can modify the base location of the system 

call table itself, basically replacing the entire legitimate call table with the attacker’s 

table. Other methods, though not widely used, include listening in on and intercepting 

system interrupts and intercepting communications with the virtual file system (McClure 

et al., 2012, p. 305). 
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However the system calls are interfered with, the goal of the rootkit is to modify 

information seen by users in order to hide its own processes and files and activities. 

3. OSSEC 
3.1. What is OSSEC? 

OSSEC is a full-featured, multi-platform, host based intrusion detection system 

that performs many functions with the goal of monitoring and protecting the host.  

Although OSSEC can be installed on a single system and run as a standalone HIDS, this 

test system was set up using the server/agent model.  The central server receives and 

analyzes data from each agent.  Configurations, rules and alert log files are stored on the 

server.  The most up to date and complete documentation can be found at 

http://www.ossec.net/doc/.  Among OSSEC’s features are file integrity monitoring, log 

integration and monitoring and rootkit detection for Windows and Linux systems.  This 

paper will focus specifically on OSSEC’s rootkit detection capabilities for Linux. 

3.2. How OSSEC detects rootkits 
OSSEC uses a variety of methods to detect rootkits.  OSSEC can be configured to 

receive all syslog messages from the OSSEC agents.  The OSSEC server will analyze the 

incoming messages by applying a set of configurable rules, similar to Snort.  Some of 

these rules may aid an administrator in detecting rootkits, such as, rules that indicate 

privilege escalation for example.  There are also two separate OSSEC modules that run 

on every agent, Syscheck and Rootcheck.   These modules perform various tests that aid 

in detecting both user mode and kernel mode rootkits.  Figure 4 organizes the various 

methods of detection that OSSEC uses for each type of rootkit.  While Rootcheck 

performs most of the checks, syscheck is key when looking for user mode malicious 

binary files.  Detection for each type of rootkit is discussed separately in the following 

sections. 
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''''''''Figure'4'

 

      OSSEC’s detection methods for user mode and kernel mode rootkits 

 

3.2.1. User mode rootkit detection 
As described in section 2.1, user mode rootkits typically modify or replace 

existing operating system executable files and libraries.  The OSSEC module Syscheck 

performs regular file integrity checks on these files by comparing the current 

cryptographic hash with a known good hash for the file.  If the hashes do not match then 

OSSEC reports a change to the file, indicating a possible rootkit.  The database of known 

good hashes is initially created the first time syscheck runs after an OSSEC agent is 

installed.  The agent sends an encrypted hash of every file in the directories defined in the 

OSSEC configuration file, /var/ossec/etc/ossec.conf in the syscheck section,.  Directories 

that are hashed by default include /bin, /usr/bin, /sbin, /usr/sbin and /etc.  The default 

interval after the initial build of the syscheck database is 21600 seconds (6 hours) 

according to the OSSEC online documentation at 
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http://www.ossec.net/doc/manual/syscheck/index.html and 79200 seconds (22 hours) in 

the most recent version available for download at http://www.ossec.net/files/ossec-hids-

2.7.1.tar.gz.  The interval that Syscheck runs as well as the directories that will be hashed 

are easily configurable and require that the agent be restarted on the client machine 

before any changes would take effect. 

OSSEC also maintains two files used in rootkit detection.  The first is 

rootkit_files.txt and contains a list of file names known to be user mode rootkits.  The 

files are searched based on file name only and if OSSEC can open the file for reading 

with the fopen() system call then an alert is logged for a possible user mode rootkit.  The 

second file maintained for rootkit detection is rootkit_trojans.txt.  This file contains 

signatures that known rootkits have embedded in the binary file.  By default, the binaries 

in the directories  /bin, /sbin, /usr/bin and /usr/sbin are searched.  Rootcheck extracts the 

embedded strings from each binary file and uses a regular expression to identify a match. 

OSSEC refers to this as signature detection because many rootkits contain unique strings 

in  trojaned versions of common utilities such as login or ps.  Additional signatures may 

be added to the /var/ossec/etc/shared/rootkit_trojans.txt file. 

OSSEC’s rootcheck module runs at regular intervals and among other things 

attempts to find both user mode and kernel mode rootkits by querying the system for 

information in multiple ways and comparing the results.  When the rootcheck module 

finds discrepancies in information about a file, a process, port or network interface it will 

raise an alert for a suspected rootkit.  

The Linux utility stat will show the status of a file or directory.  It provides 

extensive information about a file or directory but of interest here the link count.   When 

stat is run on a directory the link count will show how many files the directory contains.  

The rootcheck module will also use the readdir() system call to determine the link count 

of a directory.   If there is a discrepancy it is flagged as a possible rootkit.  (Cid, 2011, 

module check_rc_sys.c) 

The Linux utility ps can show running processes on a system.  Rootkits 

commonly attempt to hide the attacker’s processes to prevent detection.  A user mode 

rootkit could do this by modifying the ps binary file so that it omits the attackers 
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processes from process listings.  Rootcheck attempts to detect such behavior by issuing 

multiple system calls and comparing the results to the output from ps.  Rootcheck calls 

getsid(), getpgid() and kill() for all process IDs and if any of them finds a process that is 

not listed by ps then rootcheck logs an alert about a possible user mode rootkit or 

“trojaned” version of the ps utility  (Hay & Cid, 2008, p. 162).   These system calls are 

discussed in more detail in section 3.2.2. 

Another common binary that a user mode rootkit might replace is the netstat 

utility (Hay & Cid, 2008, p. 164).   Netstat provides information about network 

connections and open ports.  Since malware will often attempt to connect back to an 

attacker’s machine in order to transfer data between the attacker and victim, rootkits will 

commonly attempt to hide those connections to help maintain stealth.  Rootcheck uses the 

netstat utility to show the open ports on the system. Then it uses the bind() system call to 

attempt to connect to every TCP and UDP port.  If it is unable to bind to a port then that 

port must be in use and should also be found in the netstat output.  If netstat does not 

show the port, it is flagged as a possible rootkit because the netstat utility may have been 

modified to hide it. In other words, it may indicate a trojaned version of netstat (Cid, 

2011, module check_rc_ports.c) 

Sniffing network traffic, especially in promiscuous mode, allows an attacker to 

capture data transfers that may contain sensitive data.  Attackers may attempt to conceal 

the sniffer by installing a modified version of the ifconfig utility, which reports on the 

state of network interfaces.  Like other hardware on a computer system, every network 

interface is managed by the kernel.  The kernel uses a device driver as a “liaison” to the 

interface.  When a privileged user requests that an interface be put in to promiscuous 

mode so that it is able to sniff all traffic on the network, the kernel asks the device driver 

to set the  IFF_PROMISC  flag on that device (Corbet, Rubini, 2005, chap 14).   One way 

to detect a sniffer on the network is by looking for network interfaces that are operating 

in promiscuous mode.  Rootcheck uses two different methods to query the 

IFF_PROMISC flag on network interfaces and then compares the results looking for a 

discrepancy.  First, it asks the kernel directly for the value in IFF_PROMISC and then it 

runs the user mode utility ifconfig and examines the output to see what it thinks the value 
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of IFF_PROMISC is.  If there is a discrepancy, it reports a possible user mode rootkit.  In 

other words, perhaps the ifconfig utility has been modified to hide the true status of a 

network interface. 

Additionally, the rootcheck module examines anomalous behavior on the system 

looking for user mode rootkits as well.  First, it will check files in the /dev directory.  The 

/dev directory should contain device files or directories containing device files.  This 

directory is carefully checked for anomalous files because rootkits commonly use this 

location to hide their files.  Next, rootcheck will look through the entire file system for 

files that have characteristics commonly used by rootkits.  For example, it will look for 

and log all files that are owned by root but can be written to and/or executed by other 

users.  It will record files and directories that are hidden using “.” as the first character of 

the file name.  Additionally, it will record any binaries that have the SUID bit set.  This 

means that the file, when executed, inherits the permissions of the owner of the file 

instead of as the user executing the file.  This could allow a non-privileged user to 

execute a program as a privileged user and OSSEC regards this as suspicious.  (Hay & 

Cid, 2008, p 162).   
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3.2.2. Kernel mode rootkit detection 
Since a kernel mode rootkit makes changes to the kernel with the goal of 

intercepting system calls as described in section 2.2, it can manipulate information sent to 

and from user mode tools.  OSSEC is a user mode application so it also relies on data 

passed to it from the kernel. The rootcheck module looks for possible intercepted system 

calls that may be hiding files and processes. 

Figure 5 shows the system calls used by OSSEC’s rootcheck module to look for 

the existence of hidden files used by known rootkits.   

'
Figure'5'

 

&&&&&&&&&&&&&&&&&Rootcheck&module&makes&multiple&system&calls&to&check&for&known&rootkit&related&files 
 

The list of files from known rootkits that rootcheck attempts to locate can be found on the 

OSSEC server in /var/ossec/etc/shared/rootkit_files.txt.  Rootcheck tries to open each file 

using the system calls opendir(), chdir(), stats() and fopen().  Figure 5 illustrates an 

example where rootcheck  is able to open a file with the opendir() and chdir() system 

calls but not with stats() or fopen(). This may be an indication that a rootkit has 

intercepted the stats() and fopen() system calls but not the opendir() or chdir() calls.  In 

this example, rootcheck would report a possible kernel level rootkit based on that 

discrepancy.  This detection method will have limited success since the file names must 

be present in rootkit_files.txt or rootcheck will not attempt detection.  In other words, a 

file hidden by a rootkit can only be detected if the name of the file is known.  A custom 
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rootkit or simple modification of the source code for a known rootkit could thwart this 

method of detection. 

 In section 3.2.1 it was noted that rootkits often attempt to hide running processes 

to maintain stealth.  A user mode rootkit would hide a process by installing a modified 

version of the ps utility.  This may be detected during the file integrity checks of the 

syscheck module or it may be detected by the rootcheck module when comparing the 

output from the ps utility to the output from three different system calls that query 

running processes.  Similarly, rootcheck will look for processes hidden by a kernel mode 

rootkit by querying the system using the getsid(), getpgid() and kill() system calls and 

comparing their outputs.  The Linux man pages for getsid() and getpid() explain that 

every process has both a session ID and a process ID. The Linux man page for kill() 

explains that sending a zero as the signal to a process ID will not kill a process but 

instead will return a 0 if the process exists.  If the process does not exist the return value 

from kill() will be -1.  Rootcheck cycles through all possible process IDs, issuing all three 

system calls and comparing the results.  If getsid() finds the process but getpgid() or kill() 

does not it may indicate a kernel level rootkit that has intercepted a system call.  In this 

case, OSSEC will log an alert identifying the suspect process. 

  

3.3. What OSSEC does not do 
As noted in section 2.2, the most common method used to inject a kernel mode 

rootkit is to insert a loadable kernel module.   OSSEC does not detect the kernel module 

loading, nor does it detect changes that a rootkit makes to the system call table. 

4. User Mode Rootkit Examples 
As described in section 2.1, user mode rootkits modify operating system 

executable files or libraries that interact with the kernel on the user’s behalf.   Rootkits 

that replace Linux binary files are trivial to detect with OSSEC’s syscheck module.  

Successful detection depends on proper tuning of the OSSEC configuration file.  

Syscheck will only perform integrity checking on the files and directories specified in the 
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ossec.conf file.  When syscheck discovers that the cryptographic hash for a file has 

changed, an alert is logged that would look similar to Figure 6. 

''''''Figure'6'

     

       Syscheck generated alert when a file’s cryptographic hash has changed 

 

User mode rootkits that modify run time library functions prove to be more 

difficult to detect because binary files on disk are not changed and so syscheck is not 

effective at detection.  Instead, malicious libraries are inserted into the running process 

and exist only in memory.  The OSSEC rootcheck module can be helpful in discovering 

this type of user mode rootkit and is described in detail in the next section.   

4.1. Jynx2 
The jynx2 rootkit operates by loading malicious library functions into system 

binaries dynamically at runtime instead of replacing the actual binary on the file system 

with a modified version (ErrProne, 2012).  This provides similarly stealthy results but has 

the added bonus that a statically calculated hash over system binaries would not reveal 

this rootkit.   

4.1.1. Inserting the shared library  
In Linux, when a program is executed, the system checks for any additional 

shared libraries that need to be loaded at run time.  This is done by first consulting the 

files /etc/ld.so.conf  and /etc/ld.so.preload.  Any libraries found here will be loaded first 

and will take precedence over other libraries.  In addition, the environment variable 

LD_PRELOAD may be used to point to a shared library that will be loaded and take 
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precedence just like a library in /etc/ld.so.preload (Wheeler 2000).  The jynx2 rootkit 

makes use of this feature by creating a shared library that will cause files, processes and 

ports to be hidden when desired.  Jynx2 forces the use of this library by adding it to the 

/etc/ld.so.preload file.  The /etc/ld.so.preload file is then hidden by the rootkit.  Once the 

rootkit has been injected, utilities like ls, ps and netstat will load the jynx2 shared library 

causing it to insert functionality into the running process that will hide evidence of files, 

processes and connections used by the malware.   In addition, the rootkit provides a 

shared library called reality.so that can be loaded when the attacker would like to view all 

files, processes and network connections including the hidden ones.  In other words, it 

provides a way for the attacker to view the actual state of the compromised system. 

This rootkit was tested on a Ubuntu distribution running Linux kernel version 

2.6.32-21.   The Linux command ldd will show shared libraries used by a process.  Figure 

7 shows the shared libraries used by the ps utility before the jynx2 rootkit was injected 

and Figure 8 shows the shared libraries after the malware injection.  Once the rootkit is 

injected by adding an entry for it in /etc/ld.so.preload, the ps utility will load the jynx2.so 

shared library every time it is run.   

'
'Figure'7'

'
Shared library dependencies for the ps utility before rootkit injection 
''
'Figure'8'

'
Shared library dependencies for the ps utility after rootkit injection 
!

Running the ldd command on other utilities such as ls and netstat would show the 

jynx2.so dependency as well. 
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OSSEC may log an alert when the user initially injects the rootkit because, as 

noted above, the initial injection requires root privileges.  If the elevation of privileges is 

achieved by knowing or guessing a root level password, the su operation is logged by 

default in OSSEC. Once the attacker has root privileges, if the subsequent actions taken 

by were logged to syslog then OSSEC could be configured to alert on those actions.  In 

some environments this type of auditing may take place and would help to detect the 

kernel module injection into the system.   If the elevation of privilege occurs through 

some exploit then it may go undetected.  For this test, the initial elevation of privilege to 

root was accomplished by logging in as the root user using the “su  -“ command, which 

was detected by OSSEC.  

Once injected, OSSEC will not detect the change with syscheck, because the only 

file that has been altered by the rootkit is /etc/ld.so.preload but that is hidden by the 

rootkit so syscheck does not calculate a hash of the file.  Rootcheck, however, will notice 

that something is wrong.  As noted in section  3.2.1, the rootcheck module will attempt to 

query the system in different ways in order to detect hidden objects.  Rootcheck runs the 

stat utility on any directories specified in the ossec.conf file.  Stat will return a count of 

the number of files that it sees in the directory and calls it “link count”.  Rootcheck then 

does a cross check on that link count using the system call readdir().  If readdir() finds 

more files than stat showed it is flagged as a possible kernel level rootkit.   This could be 

considered a user mode rootkit, however, because jynx2 is not actually changing the 

kernel or modifying the system call table.  Instead it is inserting a shared library into the 

stat process that provides similar functionality but is modified to hide certain files. 

'
'Figure'9'

  
Rootcheck logs an alert when file count returned from stat and readdir() differ.!
!

Figure 9 shows the alert generated when OSSEC runs the rootcheck module on 

my test system infected with the jynx2 rootkit.  Because the /etc/ld.so.preload file has 
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been hidden by the rootkit from one but not both of the system calls used by rootcheck, 

stat() and readdir(), it logs an alert about that finding. 

4.1.2. Jynx2 privilege escalation feature 
The jynx2 rootkit also has as SUID shell or privilege escalation feature that is 

implemented by defining an environment variable in the config.h include file for jynx2.  

On the infected system at the command prompt,  setting an environment variable that was 

previously defined in the config.h file to some value other than NULL and issuing the 

sudo command signals the rootkit to create a root shell.   In this test the environment 

variable name was “HIDEME”. 

'''''''''''''''''''Figure'10'

 
              jynx2 privilege escalation goes undetected by OSSEC 

 

Figure 10 shows how the jynx2 rootkit can create a root shell.  A process with 

setuid/setgid permissions is effectively running with the privileges of the owner of that 

executable file, in this case root, so it has the ability to change its own UID to any value 

(Bovet, Cesati, 2006, p. 810).  The executable file sudo is owned by root and has the 

setuid bit set so that any user launching the process will have an effective UID of 0.  The 

rootkit takes advantage of this setuid feature of Linux by using the effective UID 0 

permissions of the running process to also change the process UID to 0 and then 

spawning a shell.   The spawned shell will inherit the permissions of the parent process.  

In this example, the jynx2 library module is inserted dynamically into the running process  

sudo.  The rootkit examines the value of the HIDEME variable and detects that it not 

NULL.  That is a signal to the rootkit that the attacker is requesting a shell.  The rootkit 

causes the sudo process to change its UID to 0 and then spawn a shell that inherits root 

permissions.  By default, this action does not log to syslog so OSSEC is unaware of its 

occurrence.   If a message were logged to syslog on the infected host, that message would 
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also be received by the OSSEC server and would trigger an alert with a description like 

“User successfully changed UID to root.”  or  “Successful sudo to ROOT executed” to 

warn of a privilege escalation.   

The behavior of the SUID shell feature of jynx2 was determined by analyzing the 

source code for the rootkit (ErrProne, 2012, module jynx2.c) 

4.1.3. Hiding ports and processes 
Jynx2 will hide processes and ports as well.  The SUID shell as described above 

makes this a very easy procedure.  First, the attacker launches a SUID shell as outlined 

above.  From that shell, the attacker uses su to change her account to the account 

associated with the MAGIC_UID variable also from the config.h file.  Any process 

launched or listening ports opened at that point will be hidden from other users. Figure 11 

shows the commands used to launch a netcat listener on port 4200 from a SUID shell. 

 

Figure'11'

Starting a netcat listener using the “magic” UID. Only “su lp” gets noticed by OSSEC. 

 

Figure 12 shows the status of ports and processes before the netcat listener was 

launched.  The process information output was filtered on the string “nc” for readability. 
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Figure'12'

Open ports and nc processes prior to launching nc 

!
 Figure 13 shows the state of open ports and processes as seen by any other user on 

the jynx2 infected system.  Both port 4200 and the nc process are hidden illustrating the 

rootkit’s successful hiding technique.      

 

Figure'13'

!
!Open ports and processes after launching nc!
!

 Figure 14 shows the “reality” state of the open ports and processes as seen 

by a user when the rootkit’s reality.so shared library is loaded dynamically with the 

netstat and ps processes.    
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Figure'14'

!
Jynx2 module reality.so loaded at runtime will show true state of system!

! !

! Interestingly, OSSEC detects the hidden nc process although it does not detect the 

listening TCP port.   The OSSEC module rootcheck calls getsid(), getpgid() and kill() for 

all possible process IDs and if any of them finds a process that is not listed by ps an alert 

is logged such as the one shown in    Figure 15.  This alert indicates that there is a process 

running that ps does not see.   In this case, PID 5996 is hidden because the jynx2 rootkit 

has loaded the runtime library, jynx2.so, into ps to hide any processes started by the 

MAGIC_UID user. 

'''Figure'15'

 
   OSSEC alerts when kill finds a process that ps did not 

 OSSEC does not log an alert for the hidden TCP port.  The OSSEC 

documentation states that the rootcheck module will attempt to bind() to each port and 

compare the results with output from netstat.  Ports that OSSEC cannot bind to should be 

in the netstat output, if not then the following alert would be logged: 
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“Port 4200 hidden.  Kernel-level rootkit or trojaned version of 

netstat.”.  On this test machine, TCP port 4200 was hidden and tested in both a 

LISTENING and an ESTABLISHED state.  In both cases the event was not detected by 

OSSEC.   

4.1.4. OSSEC detection 
The OSSEC server logged an alert  for the initial privilege escalation in order to 

install the rootkit and also when the “su  lp”  command was issued from the SUID shell.  

OSSEC was able to detect hidden files and hidden processes, however, OSSEC was not 

able to detect the SUID shell or the hidden TCP port.   

    

5. Kernel Mode Rootkit Examples 
Kernel mode rootkits manipulate the information sent back from the kernel to user 

mode programs and accomplish this most often by interfering with the system call table.  

The most common method of injection of kernel mode rootkits is by using loadable 

kernel modules to inject malicious code into a running process.  This section will detail 

the exploration of three different kernel rootkits.  All three use the LKM injection 

technique but all three make use of the loaded module differently.  OSSEC is able to alert 

on some aspects of these rootkit but not all. 

5.1. The /proc directory 
The /proc directory in Linux provides information to processes about kernel 

memory allocation.  The directories found in /proc are sometimes called virtual 

directories because they do not actually exist on disk.  The /proc files are organized 

representations of some of the information stored in memory regarding running processes 

(Terrehon & Bauer, 1999).  Every time a process starts or finishes, a new directory is 

created under /proc.  The PID for the process is used as the directory name.  There are 

other directories under /proc like /proc/modules and /proc/net.  /proc/modules contains 

information about loadable kernel modules and /proc/net contains information about 

network connections.  Some of the user mode utilities that system administrators use like 
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lsmod and netstat take the information stored in /proc and reformat it (Skoudis & Zeltser, 

2003, Chap. 8).  This implies that if rootkits can hide things in /proc they will also be 

hidden from the user mode tools.  We will see examples of this in the test results that 

follow.   OSSEC could be configured to monitor the /proc directory and alert on changes, 

however, since this directory is constantly changing it would likely result in too many 

false positives and would therefore be impractical. 

5.2. Linux 2.6 rootkit backdoor 
The Linux 2.6 Rootkit backdoor  (LRK-BD) is a kernel mode rootkit that is 

injected via an loadable kernel module (Analiz, 2012).  Its functionality is limited to 

privilege escalation.  While it may seem counter intuitive to install a rootkit whose only 

function is to provide root access, especially since the installation of the rootkit requires 

root privileges, it provides the attacker with a stealthy method of privilege escalation after 

the initial installation.   

The LRK-BD consists of a kernel module called security.ko  and a control 

program called kontrol. The control program takes a password as input and launches a 

shell, invoking the loaded kernel module security.ko.  The source code for the kernel 

module was not available, however, a search through the embedded strings provides 

some insight as to how the privilege escalation may have been achieved.  Among the 

strings found in the kernel module are  prepare_creds and commit_creds. As explained 

by Perla and Massimiliano, there are credential structures associated with every process 

in Linux kernel versions since 2.6.29 that contain the user and group IDs to help 

determine the level of access to various resources by the running process.  This credential 

structure can be modified by creating a copy of the current credentials with 

prepare_creds(), setting the UID/GID fields to 0  and using commit_creds() to make the 

changes.   This is a method often used by kernel mode rootkits to achieve privilege 

escalation (Perla & Massimiliano, 2010, Chap. 4).   

5.2.1. Inserting the kernel module 
This rootkit was tested on a Ubuntu distribution running Linux kernel version 

3.2.0-32.   The insmod command was used to insert the kernel module.  Since this 

requires root level access, the initial privilege escalation was logged by OSSEC.  In order 
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for this rootkit to provide stealthy privilege escalation to the attacker the kernel module 

must persist across reboots.  One way to accomplish this is to place the malicious module 

in the /lib/modules directory and to edit the /etc/modules file, adding an entry for the 

new kernel module (Loadable_modules, 2014).  Since the OSSEC syscheck module 

checks for changes to the files in the /etc directory, the change to the /etc/modules file 

triggered the alert shown in Figure 16. 

'
Figure'16'

 
OSSEC alert due to change in hash for the file /etc/modules 

5.2.2. The privilege escalation function 
To launch the LRK-BD privilege escalation, The control program, kontrol,  sends 

a command to the kernel module by sending a password to /proc/security.  The file 

/proc/security was created when the malicious kernel module, security.ko, was inserted 

with the insmod command.  The attacker can interact with the kernel module via this 

virtual file in /proc.  A simplified but equally effective version of the command is shown 

below: 

$ echo fabrika >> /proc/security  
$ whoami 
root 
$ id 
uid=0(root) gid=0(root) groups=0(root), 4(adm),  24(cdrom), 
1000(sally) 

The string “fabrika” is a password that the module requires and was found by examining 

the kontrol.c source code.  The elevation to UID 0 is not noticed by OSSEC but the root 

shell process is not hidden so the shell could be detected using the ps command: 
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$ ps aux | grep bash 
sally   3630 0.0 0.3  7120 3528 pts/0  Ss  13:38  0:00 bash 
root    4797 0.7 0.3  7120 3528 pts/3  Ss+ 13:46  0:00 bash 
sally   4902 0.0 0.0  4372  836 pts/0  S+  13:46  0:00 grep 
--color=auto bash 
 

The LRK-BD rootkit was detected by OSSEC twice during installation but once 

installed and operational, provides a stealthy privilege escalation exploit.  The malicious 

kernel module inserted by the attacker is not detected at any time by OSSEC but it can be 

seen in /proc/modules and when using the lsmod command as shown in Figure 17. 

''''''''''''''''''''''''''''''''''Figure'17'

 
              Malicious kernel module, security, can be seen in /proc/modules and with lsmod 

 

 

5.3. Average Coder rootkit 
The Average Coder rootkit was written by Matias Fontanini and uses the LKM 

method of injection (Fontanini, 2011).   This rootkit can hide the kernel module from user 

mode tools that print the contents of /proc/modules, like lsmod, and it can also hide ports 

and processes.  It does not offer a file hiding function. 

5.3.1. Inserting and hiding the kernel module 
Figure 18 shows the kernel module being injected into the system, followed by a 

test of the hide/show module functionality. 
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'''''''''''''''''''
'''''''''''''''''''''Figure'18'

'
 

! In this test, privilege was escalated initially using su, which caused OSSEC to log 

an alert for privilege escalation.   

" The insmod command is used to insert the kernel module and requires root 

privilege.  OSSEC did not notice that a kernel module was inserted.  

# The inserted module can be seen with the lsmod command and does not require 

root privileges. 

$ Step 4 hides the kernel module.  “buddyinfo” is a standard Linux file found in the 

/proc directory. It does not have write access for any users, so an attempt to write to it 

with “echo hide” results in an error but since the rootkit has intercepted the write function 

for this file it can receive the “echo hide” and interpret it as a command, in this case, a 

command to hide the kernel module from users (Fontanini, 2011). 

% “echo show” is interpreted by the rootkit as the command to stop hiding the 

module; allow it to be seen by anyone. 
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5.3.2. Privilege escalation 
The attacker can achieve escalation of privilege to root by sending the command 

“root” along with the current shell’s process id to /proc/buddyinfo as shown in Figure 19 

 

''''''''''''''''''Figure'19'

            
             Sending privilege escalation command to rootkit 
 

 The user “sally” is an unprivileged user as shown by the UID associated with her 

account, 1000.  The PID of the running shell is 1986 and is stored in the built-in variable 

“$$”.  Sending the command “root” along with the PID of the user’s shell signals the 

rootkit to elevate the privileges for this user.  This elevation of privileges goes unnoticed 

by OSSEC in our test system.   

5.3.3. Hiding processes and ports 
To test the OSSEC’s detection of hidden ports and processes, a netcat 

listener was started on port 5678.  Both the “nc” process and TCP port 5678 were 

subsequently hidden using the rootkit commands as illustrated in Figure 20.  The 

hidden process was detected by OSSEC, however, the hidden port was not.   
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''''''''''''''Figure'20'

 

 

Both the process and the port are hidden from the user mode utilities ps and 

netstat, however, they can still be found in the /proc directory as shown in Figure 

20.  Recall from section 5.1 that configuring OSSEC to monitor the /proc directory 

would be impractical due to the high occurrence of false positives. 

! The netcat listener is started in the elevated shell 

" The PID of the nc process is 9404 

# Hide the nc process by sending the hpid command along with the PID to hide 

$ confirm that the process is hidden from user mode tool, ps 

% The process still exists and the command line invocation can be viewed if the  

 PID is explicitly given 

& Hide the listening port to prevent netstat or lsof from revealing it 

'  Netstat does not see the listening port 5678 
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Figure 21  shows the alert that was logged when OSSEC’s rootcheck module 

detected that there may be a hidden process.  It detects this because PID 9404 is not 

found in the output from the ps command but it is found in output from one or more of 

the getsid(), getpid() or kill() system calls. 

Figure'21'

 
  The OSSEC alert when it discovers the hidden nc process 

5.3.4. OSSEC detection 
OSSEC detected the initial privilege escalation when the rootkit was injected and 

the rootcheck module was able to detect the hidden process, however, it was unable to 

detect the privilege escalation exploit.  OSSEC’s rootcheck module uses the bind() 

system call and the output from netstat to find hidden ports, however, it was not able to 

detect the port hidden using this method. 

5.4. KBeast 
The Kernel Beast rootkit was written by Ipsecs and uses the LKM method of 

injection.  Kbeast hides the loaded kernel module as well as files, processes and ports.  In 

addition, this rootkit offers a password protected backdoor  (Ipsecs, 2012).  Kbeast was 

installed on CentOS running Linux kernel version 2.6.18. 

5.4.1. Inserting and hiding the kernel module 
Like the other rootkits, an initial privilege escalation is required in order to insert 

the malicious kernel module.  In this test it was accomplished with the command “su  –“ 

and was detected by OSSEC and logged. 

The kernel module was loaded using the insmod command and is hidden from 

/proc/modules as shown in Figure 22.  Since lsmod uses the /proc/modules output as its 

source of information about loaded modules it does not see the kbeast kernel module. 
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''
''''''''''''''''''''''''''''''''''''Figure'22'

                                       

                                        root inserts malicious kernel module and confirms it is hidden from users 
 

The kbeast rootkit has a configuration file that can be edited before compiling.  It 

contains many settings for the rootkit, including the port number that the rootkit will 

automatically hide, the backdoor password and the prefix to use for hidden files, 

directories and processes.  For this test, the default values were used.  The hidden port 

number is 13377, the backdoor password is “h4x3d”, and the special prefix is “_h4x_”.   

5.4.2. Hiding files process and ports 
How the rootkit hides files, processes and ports can be illustrated by setting up the 

backdoor feature of kbeast.   After starting the backdoor,                 Figure 23 shows that 

the running process is hidden from ps even though the /proc virtual file system contains 

information about PID 6202, for example, Figure 23 shows the command line invocation 

for the process.  The kbeast backdoor port number was defined in the configuration file as 

TCP/13377.                   Figure 23 also shows that netstat does not recognize the listening 

port 13377. 
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''''
'''''''''''''''''''Figure'23'

 

        Kbeast’s process and port hiding capabilities 

 

As described in section 3.2.2, OSSEC compares the results from the system calls 

getsid(), getpid() and kill() looking for discrepancies in order to discover hidden 

processes.  The kill() call is actually hooked by the rootkit.  This can be discovered in the 

comments from the rootkits configuration file and confirmed with an experiment.  The 

configuration file shows how to use the kill command to elevate privileges: 

/* Magic signal & pid for local escalation */ 
#define _MAGIC_SIG_ 37 //kill signal 
#define _MAGIC_PID_ 31337 //kill this pid 

 

Indeed, sending the signal 37 to the kill command results in a privilege escalation 

as demonstrated in Figure 24. 
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Figure'24'

!
Logging in to the infected system via the kbeast backdoor and elevating privilege to root with kill 

 

Additionally, the kbeast configuration file states that any processes starting with 

the defined prefix of  “_h4x_”  will be protected from kill: 

 /* All files, dirs, process will be hidden 
  Protected from deletion & being killed */ 
  #define  _H4X0R_  “_h4x_” 
 

Figure 25 illustrates that using the kill command as root to query a process ID that 

we know exists results in an error message.  If the kill() system call has been intercepted 

by the rootkit then it is also possible that OSSEC is receiving incorrect information and is 

therefore unable to detect the hidden backdoor process. 

'
'Figure'25'

 
 Attempting to kill a process protected by the kbeast rootkit 
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Any files that begin with the special prefix “_h4x_” are successfully omitted from 

ps output, but they are not hidden from OSSEC if the files are in a directory that OSSEC 

has been told to scan. Figure 26 shows that files with the special prefix are hidden from ls 

although the file exists as demonstrated by the cat command. 

''''''''''''''''''
'''''''''''''''''Figure'26'

 
                 Kbeast hides files that begin with special prefix 

 

Figure 27 shows the OSSEC alert when the rootcheck module discovers that the 

results from stat() and readdir() are not the same.  When utilities or system calls report a 

different number of files for a directory, OSSEC dutifully reports this discrepancy. 

 

''Figure'27'

 
 OSSEC notices that a file may be hidden in this directory 

5.4.3. OSSEC detection 
On the CentOS test system, OSSEC was able to detect the hidden files but only in 

the directories that it is configured to check.  By default, the syscheck module examines 

the /bin, /sbin, /usr/bin, /usr/sbin and /etc directories.  OSSEC was not able to detect the 
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hidden process, the hidden ports or the rootkit’s privilege escalation using the kill 

command. 

6. How Did OSSEC Fare? 
After extensive testing done on several different rootkits, OSSEC proves to be an 

excellent tool for rootkit detection.  It will find user mode rootkits quite readily providing 

it is configured to look in the relevant directories that rootkits would likely hide.  The 

relevant directories may vary among systems but generally include the directories in 

users’ paths.  It may be necessary for a system administrator to edit the OSSEC 

configuration file, ossec.conf, to include the correct directories for each system.  OSSEC 

will also pick up many “hints” when a kernel mode rootkit has infected a system.  It 

accomplishes this primarily with the rootcheck module because it is looking at behaviors 

that many rootkits share such as attempting to hide files but only from some system calls.  

OSSEC uses multiple methods to find files in a directory and compare the results.  

Discrepancies in this output are abnormal and OSSEC alerts on that, giving us another 

hint.  Similarly, rootkits attempt to hide running processes but OSSEC can detect it if the 

attacker has not hidden the process from multiple different system calls.  OSSEC was less 

successful detecting hidden ports.   

Since OSSEC is not 100% successful in finding hidden objects, false negatives, 

(the problem exists on the system, but the scanning tool either does not find it, or does 

not report it), could occur.  For this reason, perhaps OSSEC should not be the only tool 

utilized by a system administrator for rootkit detection. 

One aspect that all rootkits have in common and that OSSEC was always able to 

detect in the above tests is the initial privilege escalation during installation of the rootkit.  

Certainly, there are stealthy privilege escalation exploits that could be launched that 

would evade OSSEC but it is worth noting that rootkits cannot get installed without root 

access.  Tuning OSSEC to alert on as many forms of privilege escalation as possible 

could be helpful in detecting rootkit infections.   
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OSSEC is able to give the system administrator many hints that something is 

amiss with the system, however, it still takes some sleuthing to confirm or deny that a 

rootkit has been installed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Linux Rootkit Detection with OSSEC 
!

3
8 

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

References 

Analiz, (2012).  Linux 2.6 Kernel /proc Rootkit [Software].  Available from 

http://packetstormsecurity.com. 

Bovet, D. P., Cesati, M. (2006). Understanding the Linux Kernel. 3rd ed. 

Sevastopol, CA: O'Reilly. 

Cid, D. (2011) OSSEC HIDS (Version 2.7.1)  [Computer program]. Available at 

http://www.ossec.net/files/ossec-hids-2.7.1.tar.gz (Accessed 15 December 2013)  

Cid, D. B. (n.d.). OSSEC. Retrieved January 5, 2014, from 

http://www.ossec.net/doc 

Corbet, J., Rubini, A. (2005). Linux device drivers. 3rd ed. Beijing: O'Reilly. 

devik, & sd (Dec 12 2001). Linux on-the-fly kernel patching without LKM. 

retrieved Jan 06 2014, from Phrack magazine Web Site: 

http://www.phrack.org/issues.html?issue=58&id=7#article 

ErrProne, (2012).  Jynx-Kit Release 2 [Software].  Available from 

http://packetstormsecurity.com. 

Fedora security features matrix. (n.d) retrieved Jan 06 2014, from Fedora wiki 

Web Site: https://fedoraproject.org/wiki/Security_Features_Matrix 

Fontanini, M. (2011). Average coder Linux rootkit [Software]. Available from 

https://github.com/mfontanini/Programs-Scripts/tree/master/rootkit 

Hay, A., Cid, D. (2008). OSSEC host-based intrusion detection guide. Burlington, 

Mass.: Syngress Pub. 

Henderson, B. (2001, Jun). Introduction to Linux loadable kernel modules. 

retrieved Jan 05 2014, from http://www.tldp.org/HOWTO/Module-HOWTO/x73.html 

Ipsecs (2012, Jan). Kernel Beast Linux Rootkit. [Software]. Available from 

http://packetstormsecurity.com/files/108286/KBeast-Kernel-Beast-Linux-Rootkit-

2012.html 



Linux Rootkit Detection with OSSEC 
!

3
9 

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Kerrisk, M (2013, April). Linux system calls. retrieved Jan 05 2014, from Linux 

programmer's manual Web Site: http://man7.org/linux/man-pages/man2/syscalls.2.html 

Lineberry, A (Mar 27, 2009). Malicious code injection via /dev/mem. retrieved 

Jan 06 2014, from Blackhat Web Site: http://www.blackhat.com/presentations/bh-europe-

09/Lineberry/BlackHat-Europe-2009-Lineberry-code-injection-via-dev-mem.pdf 

Mcclure, S., Scambray, J., Kurtz, G. (2012). Hacking Exposed 6: Network 

Security Secrets and Solutions. 6th ed. San Francisco: McGraw-Hill Osborne. 

Nguyen, B. (2004, July 30). Linux filesystem hierarchy. Retrieved January 4, 

2014, from http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html 

Perla, E., Massimiliano, O. (2010). A guide to kernel exploitation: attacking the 

core. Burlington, MA: Syngress.    

Skoudis, E., Zeltser, L. (2003). Malware: Fighting Malicious Code. E Rutherford: 

Prentice Hall PTR.    

Tanenbaum, A. S.. (2008). Modern operating systems. 3rd ed. Upper Saddle 

River, N.J.: Pearson Prentice Hall. 

Terrehon, B., & Bauer, B. ((1999, October 7)1999, October 7). The /proc 

filesystem. Retrieved from 

https://www.kernel.org/doc/Documentation/filesystems/proc.txt   

Ubuntu features. (n.d) retrieved Jan 06 2014, from Ubuntu wiki Web Site: 

https://wiki.ubuntu.com/Security/Features#dev-kmem 

Loadable_modules. (2014, March 11). Retrieved from 

https://help.ubuntu.com/community/Loadable_Modules    

Wheeler, D. (2000). Program Library HOWTO. retrieved Mar 2 2014, from 

http://tldp.org/HOWTO/Program-Library-HOWTO/introduction.html 


