
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit
Analysis and Threat Indicators

GIAC (GCIA) Gold Certification

Author:	Luis	Rocha,	luiscrocha@gmail.com	
Advisor:	Angel	Alonso-Párrizas	

Accepted:	12st	April	2016	

Credits	to	Timo	Hirvonen,	@Kafeine,	SWITCH-CERT	and	HiddenCodes	

Abstract	

Exploit Kits are powerful and modular digital weapons that deliver malware in an
automated fashion to the endpoint. Exploit Kits take advantage of client side
vulnerabilities. These threats are not new and have been around for the past 10 years at
least. Nonetheless, they evolved and are now more sophisticated than ever. The malware
authors behind them enforce sophisticated capabilities that evade detection, thwart
analysis and deliver reliable exploits. These properties make detection and analysis
difficult. This paper demonstrates a set of tools and techniques to perform analysis of the
Neutrino Exploit Kit. The primary goal is to grow security expertise and awareness about
these types of threats. Those empowered to defend users and corporations should not only
study these threats, they must also be deeply involved in their analysis.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

2

	

Luis	Rocha	 	 	

1. Introduction

Exploit Kits are powerful and modular weapons that deliver malware in an

automated fashion to the endpoint by taking advantage of client side vulnerabilities (De

Maio et all, 2014). These threats are not new and have been around at least for the past 10

years or so (CERT –UK 2015). Nonetheless, they have evolved and are now more

sophisticated than ever (Stock, B., Livshits, B., & Zorn, B. 2015).

Exploit Kits in their basic sense introduce malicious code onto a web server

allowing an attacker to turn the web server into a mechanism to deliver malicious code

(Wang, G., Stokes, J. W., Herley, C., & Felstead, D. 2006). This attack vector is known

as watering hole attack (Messier, R. 2015). In recent years these multistage weaponized

malware kits have become sophisticated weapons resulting in profitable business for the

attackers involved (B. Eshete, et al 2015). Malware authors behind Exploit Kits enforce

sophisticated capabilities that evade detection, thwart analysis and deliver reliable

exploits (K. 2014, August 31).

This paper outlines the steps taken and the different techniques and tools used to

analyze in detail an exploit kit known as ‘Neutrino’ (K. 2013, March 7).

2. Neutrino EK Framework

The following analysis focus is on a drive-by-download campaign observed and

researched in January 2016. It leverages the Neutrino Exploit Kit to infect systems and

drop Crypto Wall malware. The diagram below illustrates the many different components

of the Neutrino Exploit Kit and how they interact together.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

3

	

Luis	Rocha	 	 	

Figure	1	–	Neutrino	EK	Framework	

1. User browses to the compromised web server.

2. Web server contacts the backend infrastructure in order perform various

checks and generates malicious JavaScript code. Checks include verification

of the victim IP address and its Geo-location. Furthermore, within the

malicious JavaScript code, there are new domain names and URLs that are

generated dynamically by the backend.

3. The browser processes and decodes the malicious JS. In the observed

infection, the malicious JavaScript checks the browser version; if it matches

the desired version, it stores a cookie and processes an HTML <iframe> tag.

4. The <iframe> tag triggers the browser to perform a request to another URL

that leads to the Neutrino Exploit Kit landing page.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

4

	

Luis	Rocha	 	 	

5. The landing page is usually hosted on a randomly generated host using DGA -

generated in step 2 - which needs to be resolved via DNS. The authoritative

domain to answer these domains is under the control of the threat actor. The

answers received by the DNS server have a time to live (TTL) of only a few

seconds. The domains are usually registered on freely available country code

top-level domains (ccTLD).

6. The victim computer then arrives in the Exploit Kit landing page, which in

turn delivers a small HTML page with an object tag defined in its body. This

object tag directs the browser to load Adobe Flash Player and then use it to

play the SWF file specified in the URL. In case the victim does not have

Adobe Flash player installed, the browser is instructed to download it.

7. The browser as instructed by the object tag downloads the malicious Flash

file.

8. The Flash Player plays the obfuscated and encrypted SWF file and exploits

trigger based on available vulnerabilities. The Flash file contains exploits

for CVE-2013-2551, CVE-2014-6332, CVE-2015-2419 affecting Internet

Explorer and CVE-2014-0569, CVE-2015-7645 affecting Adobe Flash Player

- Details in the Appendix A.

9. Shellcode executes in case the exploit is successful and then the malware

downloads, decrypts and launches. In this case the dropped malware is Crypto

Wall – Details about the shell code are in the Appendix B and about the

dropped malware in the Appendix C

Besides, Neutrino threat actors have been abusing the registration of free domains

registered inside the country code top level domains (ccTLD) such as .top, .pw, .xyz, .ml,

.space and others (John, M., & Deepen, D. 2015). Landing pages have been pointing to

different IP addresses. The IP addresses observed in this campaign are in the Appendix

D.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

5

	

Luis	Rocha	 	 	

3. Analysis
	

Due to the complex nature of Exploit Kits, in order to perform analyses one needs

to utilize a combination of both dynamic and static analysis techniques. The setup used to

catch and dissect the Neutrino Exploit kit is an enhanced version of the setup described

by Luis Rocha - the author of this paper - on his blog post ‘Dynamic Malware Analysis

with REMnux’ (Rocha, L. 2015, January 13).

	

3.1. JavaScript
	

The widespread install base of JavaScript allows malware authors to produce

malicious web code that runs in every browser and operating system version. Due to its

flexibility, the malware authors can be very creative when obfuscating the code within

the page content. In addition, due to the control the threat actors have over the

compromised sites, they utilize advanced scripting techniques that can generate

polymorphic code. This polymorphic code allows the JavaScript to be slightly different

each time the user visits the compromised site. This technique is a challenge for both

security analysts and security controls.

The infection starts with the victim browsing to a compromised website. The

compromised website replies with a HTTP response similar to the figure 2. Inside the

HTTP response, blended with the page content, there is malicious JavaScript code

combined with HTML tags. The Neutrino Exploit Kit backend dynamically generates the

JavaScript code, which contains multiple layers of obfuscation and encoding.

From an analysis perspective, the goal here is to understand the result of the

obfuscated JavaScript. To be able to perform this analysis one needs to have a script

debugger and a script interpreter.

There are good JavaScript interpreters like SpiderMonkey or Google Chrome v8

that can help in this task. SpiderMonkey is a standalone command line JavaScript

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

6

	

Luis	Rocha	 	 	

interpreter released by the Mozilla Foundation (SpiderMonkey). Google Chrome v8 is an

open source JavaScript engine and an alternative to SpiderMonkey (Introduction Chrome

V8).

In this particular case, the JavaScript contains dependencies of HTML

components. Because of this, it is necessary to use a tool that can interpret both HTML

and JavaScript. One tool option is JSDetox created by Sven Taute (JSDetox). JSDetox

allows us to statically analyze and deobfuscate JavaScript.

Another great Java Script debugger suite is Microsoft Internet Explorer Developer

Tools, which includes both a debugger for JavaScript and VBScript (IETool). This tool

allows the user to set breakpoints. In this case by stepping through the code using the

Microsoft IE Developer tool and watching the content of the different variables, the

deobfuscation can be easily done. Another option is to use Visual Studio client side

script debugging functionality in conjunction with Internet Explorer.

 In this case, the Microsoft Internet Explorer Developer was used and by

analyzing the deobfuscation loop, stepping over the lines of code, inserting breakpoints in

key lines and watching the different variables, the real code is revealed. After several

layers of obfuscation, the confusing code results in a JavaScript function that stores a

cookie and makes the browser processes a HTML <iframe> tag as shown in figure 2.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

7

	

Luis	Rocha	 	 	

Figure	2	-	HTTP	reply	from	compromised	website	
	

The line of code that contains the <iframe> tag is instrumental in the infection

chain. This line of code will instruct the browser to make a request to the URL

/term/player-27656254 that is hosted in the server wfmfldq.nonetip.top. This is

the server hosting the Neutrino Exploit landing page for this particular infection.

The "wfmfldq.nonetip.top" server name is generated using a domain generation

algorithm (DGA). To reach out to the server the operating system performs a DNS query

in order to finds its IP address. The name server (NS) who is authoritative for the domain

nonetip.top gives the DNS response. These NS servers are under the control of the threat

actor. In this particular case, the answer comes from ns1.nonetip.top domain. The answer

received by the DNS server has a very short time to live (TTL). This means that the

domain is only available for of a few seconds, which makes the blocking and analysis

much more difficult.

Noteworthy is the fact that for each new request to the compromised site there is a

new domain and URL generated dynamically by the Exploit Kit. This is a clever

technique and is possible to accomplish by abusing the registration of freely available

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

8

	

Luis	Rocha	 	 	

country code top level domains (ccTLD) (Biasini, N. 2016, March 1). Due to this

mechanism, it is much more challenging to build defenses that block these sites. Figure 2

shows the DNS answer received from the DGA name server with a TTL of 5 seconds.

Figure	3	-	DNS	Reply	with	short	TTL	

Then the victim lands in the Exploit Kit landing page that in turn delivers a small

HTML page with an object tag defined in its body. This object tag directs the browser to

load the Adobe Flash Player which is then used to play the SWF file from the URL

specified in the "src=" field. This object tag takes advantage of the bi-directionality

between JavaScript and Flash using the AS3 ExternalInterface API call (White, A 2009).

 For each new victim request there is a different landing URL. Figure 4 shows the

HTTP request and response of the Neutrino Exploit kit landing page.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

9

	

Luis	Rocha	 	 	

Figure	4	-	HTTP	Request	and	Response	from	the	Neutrino	EK	landing	page	
	

 The browser then downloads the malicious Flash file from the specified URL as

instructed by the object tag as shown in figure 4. In case the victim does not has Adobe

Flash installed, this object instructs the browser to download the latest version of Adobe

Flash. Then a HTTP request is made to the URL http// wfmfldq.nonetip.top

/extraordinary/consideration-10686515. The HTTP answer is of content type x-

shockwave-flash and the data downloaded starts with CWS (characters 'C','W','S' or bytes

0x43, 0x57, 0x53). This is the signature for a compressed Flash file.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

10

	

Luis	Rocha	 	 	

Figure	5	-	Flash	file	inside	the	HTTP	response.	

 Then the Flash file is processed. The next section covers the dissection of the

Flash file.

3.2. First Stage Flash Analysis and Unpacking

 Adobe Flash as a technology is very powerful and provides interface behavior and

rich content for the Web. Due to its presence in every modern endpoint and available

across different browsers and content displayers it makes it an attractive target for

malware authors (Caselden, D., Souffrant, C., & Jiang, G. 2015). In 2015, the security

industry saw an uptick of Adobe Flash vulnerabilities. Comparing the number of

disclosed vulnerabilities in 2014 with the year of 2015 there was an increase of

approximately 400%.

 Adobe Flash supports the scripting language known as ActionScript. The

ActionScript is interpreted by the Adobe ActionScript Virtual Machine (AVM). Current

Flash versions support two different versions of the ActionScript scripting language. The

Action Script (AS2) and the ActionScript 3 (AS3) that are interpreted by different

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

11

	

Luis	Rocha	 	 	

AVM's. The AS3 appeared in 2006 with Adobe Flash player 9 and uses AVM2. The

creation of a Flash file consists in compiling ActionScript code into byte code and then

packaging that byte code into a SWF container (Van Overveldt, T., Kruegel, C., & Vigna,

G. 2012). The combination of the complex SWF file format and the powerful AS3 makes

Adobe Flash an attractive attack surface (Wressnegger, C., Yamaguchi, F., Arp, D., &

Rieck, K. 2015). For example, SWF files contain containers called tag's that could be

used to store ActionScript code or data. This is an ideal place for exploit writers and

malware authors to conceal their intentions and to use it as vehicle for launching attacks

against client slide vulnerabilities. Furthermore, both AS2 and AS3 have the capability to

load SWF embedded files at runtime that are stored inside tags using the loadMovie and

Loader class respectively (Systems, A.). AS3 even goes further by allowing referencing

objects from one SWF to another SWF (Systems, A. 2011, September 15). As stated by

Wressnegger et al., this allows sophisticated capabilities that can leverage encrypted

payloads, polymorphism and runtime packers (Wressnegger, C., Yamaguchi, F., Arp, D.,

& Rieck, K. 2015). All these properties combined make detection of malicious Flash files

a difficult problem to solve.

 The observed Neutrino Exploit Kit landing page delivers an Adobe Flash file. In

order to understand the inner workings of Neutrino, one needs to analyze the Flash file.

The appendix A contains the details about the different files analyzed.

 The analysis and dissection of Flash SWF files is achieved using a combination of

dynamic and static analysis (Oh, J. W. 2014, October 06). This approach helps us to

understand the actions, behavior and inner workings of the malicious code. First, the file

capabilities and functionality should be determined by looking at its metadata. The

command line tool Exiftool created by Phill Harvey can display the metadata included in

the analyzed file (Harvey, P.). In this case, it shows that it takes advantage of the Action

Script 3.0 functionality. Information that is more comprehensive is available with the

usage of the swfdump.exe tool that is part of the Adobe Flex SDK, which displays the

different components of the Flash file. The output of swfdump displays that the SWF file

contains the DoABC and DefineBinaryData tags. This suggests the usage of ActionScript

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

12

	

Luis	Rocha	 	 	

3.0 and binary data containing other elements that might contain malicious code executed

at runtime.

 Second, the dissection of the file needs to be performed. Open source tools to

dissect SWF files exist such as Flare and Flasm written by Igor Kogan (Kogan, I.).

Regrettably, they do not support ActionScript 3. Another option is the Adobe SWF

Investigator. This tool was created by Peleus Uhley and released as open source by

Adobe Labs (Uhley, P.). The tool can analyze and disassemble ActionScript 2 (AS2),

ActionScript 3 (AS3) SWFs and include many other features. Unfortunately, sometimes

the tool is unable to parse the SWF file in case has been packed using commercial tools

like secureSWF and DoSWF (K.) (D.).

 One good alternative is to use JPEXS Flash File Decompiler (FFDec). FFDec is a

powerful, feature rich and open source flash decompiler built in Java and originally

written by Jindra Petřík. One key feature of FFDec is that it includes an Action Script

debugger that can be used to add breakpoints to allow you to step into or over the code.

Another feature is that it shows the decompiled ActionScript and its respective p-code.

 Malware authors behind Exploit Kits enforce sophisticated capabilities that make

analysis and detection difficult. Neutrino Exploit Kit is no exception. One popular tool

among Flash malware writers is secureSWF (K.). SecureSWF is a commercial product

used to protect the intellectual property of different businesses that use Adobe Flash

technology and want to prevent others copying it. Malware authors take advantage of this

and use it for their own purposes. This tool can enforce different protections to the code

level in order to defeat the decompiler (V. D., A. I., & D. V. 2015). Some of the features

include control flow obfuscation, statement level randomization, code wrapping using

branches, adding junk code and obfuscation of integer data. In addition to the different

protections done to the code logic, secureSWF can perform literal strings encryption

using RC4 or AES. Finally, it can be used to wrap an encrypted SWF inside another SWF

file using the encrypted loader function. The decryption occurs at runtime and the

decrypted file is loaded into memory.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

13

	

Luis	Rocha	 	 	

 Opening the SWF file using FFDec and observing its structure using Action

Script one can deduce that the file might have been obfuscated using secureSWF. FFDec

has a P-Code deobfuscation feature that can restore the control flow, remove traps and

remove dead code. In addition, there is a plugin that can help rename invalid identifiers.

 Figure 6 shows a snippet of the ActionScript code after it has been deobfuscated

by FFDec. Following the execution of the P-Code deobfuscation tool the Action Script

code can be easily understood. By reading the code, one can get insight into its behavior

and inner workings.

Figure	6	-	Deobfuscated	Neutrino	Flash	file.	

When performing static analysis of the Action Script code one can determine that

DefineBinaryData tags P, K, Y, O, V, G, H, T, J and M are concatenated and stored in var

loc41. Then the function this.c is invoked. This function decrypts the binary data using

RC4 variable key size stream cipher and uses _loc41_ and _loc51_ as parameters. The

variable _loc51_ contains the key that is stored in the DefineBinaryData tag W. After the

data has been decrypted the Loader.loadbytes() function is invoked using the decrypted

data. This will load the second stage code into memory. (Chechik, D. 2015) (K., 2014)

(Suri, H. 2015). This step shown in figure 6.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

14

	

Luis	Rocha	 	 	

 One way to carve the data is to extract the DefineBinaryData tags into files using

the Export All Parts functionality from FFDec and select the binary data. A Python script

can be used to concatenate the data and decrypt it using RC4 algorithm with the

followingRC4 key in hex format:

"\x39\xd6\xcc\xbf\x27\x0e\x56\x4e\xd5\xba\x0a\x9d\xe9\x15\x29\x74\xaf\xe5\x98\x57\x

1d\x4f\xc6\xea\x66\x6f\x00\xb9\xf7". The decrypted data contains a Flash file.

 Another way to carve the data is to use the Action Script debugger available in

FFDec. Essentially, setting a breakpoint in the LoadBytes() method. Then running the

Flash file and then when the breakpoint is triggered, use the FFDec Search SWF in

memory plugin in order to find SWF files inside the FFDec process memory address

space. This technique worked well with this sample.

 During Black Hat USA 2014, Timo Hirvonen presented a novel tool to perform

dynamic analysis of malicious Flash files. He released an open source tool named SULO

(Hirvonen, T. 2014). This tool uses the Intel Pin framework to perform binary

instrumentation in order to analyze Flash files dynamically. This method enables

automated unpacking of embedded Flash files that are either obfuscated or encrypted

using commercial tools like secureSWF and DoSWF. The code is available for download

on F-Secure GitHub repository (https://github.com/F-Secure/Sulo) and it should be

compiled with Visual Studio 2010. The compilation process creates a .DLL file that can

be used in conjunction with Intel Pin Kit for Visual Studio 2010. There are however

limitations in the versions of Adobe Flash Player supported by SULO. At the time of

writing only Flash versions 10.3.181.23 and 11.1.102.62 are supported. Nonetheless, one

can use SULO with the aim to extract the packed Flash file in a simple and automated

manner. In this case, the stand alone Flash player

flashplayer11_1r102_62_win_sa_32bit.exe has been used.

 When using SULO to analyze the Flash file, the second stage Flash file is

extracted automatically. The command shown in figure 7 will run and extract the packed

SWF file.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

15

	

Luis	Rocha	 	 	

Figure	7	-	SULO	

3.3. Second Stage Flash Analysis

 The next stage consists of analyzing the second stage SWF file. Once again, using

FFDec and observing its structure the Action Script code one can observe a similar

structure to the previous stage. The second stage Flash file also contains obfuscated code

and makes extensive use of DefineBinaryData tag’s to store encrypted data.

 Noteworthy here and as seen in figure 8 the name of the DefineBinaryData tags

suggests it contains exploit code for Flash and Browser as seen in other versions of the

Neutrino Exploit Kit.

Figure	8	-	Second	stage	Flash	file.	

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

16

	

Luis	Rocha	 	 	

 As a starting point, the analysis steps here are the same. Invoke the P-Code

deobfuscation feature in order to restore the control flow, remove traps and remove dead

code. In addition, the plugin to rename invalid identifiers was executed. After performing

these two steps, the Action Script code is more readable, even though the ActionScript

within this Flash file is more complex than the one from the first stage.

3.3.1. Strings Protection

 One of the features of secureSWF is string protection. This feature allows the

malware author to encrypt strings that are used across the code with a symmetric

encryption algorithm key. This feature is heavily used by the Flash file from Neutrino. A

detailed explanation of how this works is as follows.

 String decryption is performed by method_1() within Class_2. This method is

responsible to read the byte streams stored inside the DefineBinaryTag 7, 8 and 9. It starts

by reading a 32-bit integer from DefineBinaryData tag 9 which contains the value 0x37

0x62 0x80 0x93. This value is used by method_7() which XOR’s it with the value that is

passed as argument. This method is used in different parts of the code in order to

determine the offset of the decrypted string to use.

 Next, and as illustrated in figure 9, it reads one byte from DefineBinaryData tag

8. This byte contains the value 0x09 and defines the amount of keys used to decrypt the

byte stream. It then iterates over a loop and uses method_2() to read 9 values of 16-byte

each. Each value represents a RC4 key.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

17

	

Luis	Rocha	 	 	

Figure	9	-Strings	Decryption	
.

 Following that, it reads a 32-bit integer from DefineBinaryData tag 7 as

illustrated in figure 10. This dword has the value of 0x3F (63). In then iterates over a

loop and uses method_3() to read the size of each string and decrypts the byte stream

inside the DefineBinaryData tag 7. This function will decrypt 63 strings.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

18

	

Luis	Rocha	 	 	

Figure	10	-	String	protection	

 In summary DefineBinaryData tag 8 contains an array of nine 16-byte RC4 keys.

DefineBinaryData tag 7 contains 63 (0x3f) RC4-encrypted strings. The first dword

contains the total number of strings. Then each string starts with a dword that contains the

size of the string, followed by the RC4-encrypted data. The RC4 decryption routine uses

the 9 RC4 keys iteratively across the 63 strings. The decrypted strings are used on

different parts of the code. One of its main purposes is to verify the properties of the

system and runtime environment (Chechik, D. 2015).

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

19

	

Luis	Rocha	 	 	

3.3.2. System and runtime checks

 In order to evade detection and thwart analysis the second stage Flash file

contains many environmental checks that verify if the properties of the system and

runtime environment are the right ones.

 These checks are performed using a combination of the ExternalInterface class

(import flash.external.ExternalInterface) and the Capabilities class (import

flash.system.Capabilities). The goal of these checks are twofold. First to make the

analysis more difficult and evade detection. Second is to select the appropriate exploit

code to run.

 Inside Class_7.one could see the different checks. The code starts by verifying if

the environment is running on a headless browser or inside a JavaScript engine. In

addition, it verifies if it is running under a debugger.

 Following that, more checks are performed using the following strings:

isPhantom, isNodeJS, isCouchJS, isRhino and isDebugger. These strings come from the

63 strings that are encrypted on DefineBinaryData tag 7 and explained in the previous

section. If some of these checks are successful, the code will not proceed. Then, it

enumerates the different capabilities. Figure 10 shows a snippet of ActionScript code

where these checks are performed. The ActionScript make use of the ExternalInterface

class. Using this method ActionScript can call JavaScript functions, pass arguments and

receive return values. This works vice-versa and makes the code very versatile (Adobe,

2015).

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

20

	

Luis	Rocha	 	 	

Figure	11	-	Different	checks	performed	by	the	code	
	
 If the checks performed are successful, the result passes on back to JavaScript

who then by its turn sends this information back to the Neutrino server in a form of a ping

(Chechik, D. 2015).

3.3.3. Exploit code decryption

 The final stage of the malicious Flash file is to decrypt the exploit code. The

malicious code is stored in the DefineBinaryData tag 1 to 6. The byte streams are RC4-

encrypted. These byte streams contain 6 modules that exploit 5 different vulnerabilities.

Figure 11 shows a snippet of code from Class_7 that loads the different exploit modules

after the system and runtimes checks have been performed.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

21

	

Luis	Rocha	 	 	

Figure	12:		Code	that	invokes	the	different	exploit	modules	

 The first module to be loaded is within class_9. This module is referenced as

nw18_html and pwn18. This class invokes the RC4-encrypted byte stream from

DefineBinaryData tag 1 and the RC4 key is retrieved from the list of encrypted strings

within DefineBinaryData tag 7. After the decryption routine is complete, the data is then

uncompressed using the algorithm that is also stored in the list of encrypted strings.

These steps are illustrated in figure 13.

Figure	13	-	Decryption	of	Exploit	module	
	
 The decryption of this data can be automated using a Python script that reads the

data in the DefineBinaryData tags and then decrypts it using RC4 algorithm with the key

"qnigpeuktueb551166 ".

 For the DefineBinaryData tag 1, 3,5 and 6 the data needs to be uncompressed

with Zlib. Figure 11 shows a snippet of the exploit code from the nw18_html module

after decrypted and uncompressed.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

22

	

Luis	Rocha	 	 	

Figure	14	-	Exploit	code	nw18	

The exploits contained in the second stage Flash file are outlined in the Appendix

A. The exploit code used in nw18 is explained in detail in the Appendix B.

	

3.3.4. Configuration File

 Within the first stage Flash file there is one DefineBinaryData tag which is passed

to the second stage Flash file and then decrypted. In this sample, it's the

DefineBinaryData tag N. As shown in figure 15. The code reads the byte stream from

DefineBinaryData tag N and invokes function _loc15_.ep. This function is defined

within the second stage. This technique is possible due to the SWF to SWF

communication capability in AS3 (Systems, A. 2011, September 15). 	

	
Figure	15	-	First	stage	flash	passing	arguments	to	the	second	stage.	

	

 Then through confusing code logic, the byte stream from the tag N ends up in

var_18. Figure 14 shows the final step of decrypting this byte stream.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

23

	

Luis	Rocha	 	 	

	
Figure	16	-	Decryption	of	the	Neutrino	configuration	

	
 The first 3 bytes of the byte stream identify the size of the data to be decoded. In

this case, 0x33, 0x64, 0x65. This value is converted to a string i.e., 3DE. Then the value

is converted into decimal i.e., 990 bytes (O’Brien, D. 2015). Finally, these amounts of

bytes are decrypted using RC4 and processed as a JSON string. Figure 14 shows a

snippet of the decrypted data. Here we can see the different URL's used by the Exploit

Kit. Each one of the URL’s can be used to identify which exploit module was used.

	
Figure	17	-	Neutrino	Configuration	

	
	

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

24

	

Luis	Rocha	 	 	

4. Further Research
	 Several areas could be of interest for further research in the context of analyzing

Exploit Kits. First, exploration of the available options to perform automatic extraction of

the Flash files using dynamic analysis. One option could be to extend the work performed

by Timo Hirvonen on SULO in order to support a wide range of Flash version. To a

certain extent this work has been started by Hiddencodes.

 Another area could be a detailed study on the ability to perform automated

deobfuscation of malicious JavaScript using headless browsers and toolkits like

PhantomJS, NodeJS, CouchJS or Rhino.		

5. Conclusion
	

 All stages of the Neutrino Exploit Kit enforce different protection mechanisms

that slow down analysis, prevent code reuse and evade detection. It begins with multiple

layers of obfuscated JavaScript using junk code and string encoding that hides the code

logic. Then it goes further by having multiple layer of encrypted Flash files with

obfuscated ActionScript. The ActionScript is then responsible to invoke multiple exploits

with encoded shellcode that download encrypted payload. In addition, the modular

backend framework allows the threat actors to use different distribution mechanisms to

reach victims globally. Based on this modular backend different filtering rules are

enforced and different payloads can be delivered based on the victim Geolocation,

browser and operating system. This complexity makes these threats a very interesting

case study and difficult to defend against. Against these capable and dynamic threats, no

single solution is enough. The best strategy for defending against this type of attacks is to

understand them and to use a defense in depth strategy - multiple security controls at

different layers.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

25

	

Luis	Rocha	 	 	

6. References

ActionScript 3.0 Reference for the Adobe Flash Platform. (2015). Retrieved January 18,

2016, from

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/externa

l/ExternalInterface.html

ARROW: GenerAtingSignatuRes to Detect DRive-By DOWnloads

B. Eshete, A. Alhuzali, M. Monshizadeh, V. N. Venkatakrishnan, P. Porras, V.

Yegneswaran (2015) . EKHUNTER: A Counter-Offensive Toolkit for Exploit Kit

Infiltration.

Biasini, N. (2016, March 1). Cisco Talos Blog: Angler Attempts to Slip the Hook.

Retrieved March 07, 2016, from http://blog.talosintel.com/2016/03/angler-slips-

hook.html

Caselden, D., Souffrant, C., & Jiang, G. (2015, March 23). Flash in 2015 « Threat

Research. Retrieved January 15, 2016, from https://www.fireeye.com/blog/threat-

research/2015/03/flash_in_2015.html

CERT UK - Demystifying the exploit kit. (2015, December 14). Retrieved January 15,

2016, from https://www.cert.gov.uk/resources/best-practices/demystifying-the-

exploit-kit/

Chechik, D. (2015, December 28). Neutrino Exploit Kit -�“ One Flash File to Rule

Them All. Retrieved January 15, 2016, from

https://www.trustwave.com/Resources/SpiderLabs-Blog/Neutrino-Exploit-Kit-–-

One-Flash-File-to-Rule-Them-All/

D. (n.d.). DoSWF - Professional Flash SWF Encryptor. Retrieved March 07, 2016, from

http://www.doswf.org/

D. K. (2015, July 10). CVE-2015-5122 - Second Adobe Flash Zero-Day in HackingTeam

Leak « Threat Research. Retrieved January 21, 2016, from

https://www.fireeye.com/blog/threat-research/2015/07/cve-2015-5122_-

_seco.html

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

26

	

Luis	Rocha	 	 	

De Maio, G., Kapravelos, A., Shoshitaishvili, Y., Kruegel, C., &Vigna, G. (2014).PExy:

The other side of Exploit Kits. Springer.

F. L. (2015, March 02). Ads Gone Bad « Threat Research. Retrieved January 21, 2016,

from https://www.fireeye.com/blog/threat-research/2015/03/ads_gone_bad.html

H. S. (2009, June 19). Retrieving Kernel32's Base Address. Retrieved February 02, 2016,

from http://blog.harmonysecurity.com/2009_06_01_archive.html

Harvey, P. (n.d.). ExifTool by Phil Harvey. Retrieved March 07, 2016, from

http://www.sno.phy.queensu.ca/~phil/exiftool/

Hirvonen, T. (2014). Dynamic Flash Instrumentation For Fun And Profit. Retrieved

February 02, 2016, from https://www.blackhat.com/docs/us-14/materials/us-14-

Hirvonen-Dynamic-Flash-Instrumentation-For-Fun-And-Profit.pdf

How to use F12 Developer Tools to Debug your Webpages. (n.d.). Retrieved February

08, 2016, from https://msdn.microsoft.com/en-us/library/gg589507(v=vs.85).aspx

Introduction Chrome V8. (n.d.). Retrieved February 08, 2016, from

https://developers.google.com/v8/intro

John, M., & Deepen, D. (2015, August 20). Zscaler Research: Neutrino Campaign

Leveraging WordPress, Flash for CryptoWall. Retrieved January 15, 2016, from

http://research.zscaler.com/2015/08/neutrino-campaign-leveraging-

wordpress.html

JSDetox A javascript malware analysis tool.(n.d.). Retrieved February 8, 2016, from

http://www.relentless-coding.com/projects/jsdetox/info

K. (2013, March 7). Malware don't need Coffee: Hello Neutrino ! (just one more Exploit

Kit). Retrieved March 01, 2016, from

http://malware.dontneedcoffee.com/2013/03/hello-neutrino-just-one-more-

exploit-kit.html

K. (2014, August 31). Angler EK : Now capable of "fileless" infection (memory

malware). Retrieved March 01, 2016, from

http://malware.dontneedcoffee.com/2014/08/angler-ek-now-capable-of-

fileless.html

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

27

	

Luis	Rocha	 	 	

K. (2014, November 21). Neutrino : The come back ! (or Job314 the Alter EK).

Retrieved January 15, 2016, from

http://malware.dontneedcoffee.com/2014/11/neutrino-come-back.html

K. (2014, October 21). CVE-2014-0569 (Flash Player) integrating Exploit Kit. Retrieved

January 21, 2016, from http://malware.dontneedcoffee.com/2014/10/cve-2014-

0569.html

K. (2015, August 11). Malware don't need Coffee: CVE-2015-2419 (Internet Explorer)

and Exploits Kits. Retrieved January 21, 2016, from

http://malware.dontneedcoffee.com/2015/08/cve-2014-2419-internet-explorer-

and.html

K. (2015, July 11). CVE-2015-5122 (HackingTeam 0d two - Flash up to 18.0.0.203) and

Exploit Kits. Retrieved January 21, 2016, from

http://malware.dontneedcoffee.com/2015/07/cve-2015-5122-hackingteam-0d-

two-flash.html

K. (n.d.). Protect SWF files from Flash decompilers. Retrieved March 07, 2016, from

http://www.kindi.com/

Kogan, I. (n.d.). No|wrap.de - Flare. Retrieved March 07, 2016, from

http://www.nowrap.de/flare.html

Messier, R. (2015). Operating System Forensics. Syngress.

N. J. (n.d.). VUPEN Vulnerability Research Blog - Advanced Exploitation of Internet

Explorer 10 on Windows 8 (CVE-2013-2551 / MS13-037 / Pwn2Own 2013).

Retrieved January 21, 2016, from

https://web.archive.org/web/20150327031708/http://www.vupen.com/blog/20130

522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php

O’Brien, D. (2015, March 1). Data Obfuscation: Now you see me... Now you don't...

Retrieved January 15, 2016, from http://malwageddon.blogspot.ch/2015/03/data-

obfuscation-now-you-see-me-now-you.html

Oh, J. W. (2014, October 06). Playing with Adobe Flash Player Exploits and Byte Code.

Retrieved March 07, 2016, from http://community.hpe.com/t5/Security-

Research/Playing-with-Adobe-Flash-Player-Exploits-and-Byte-Code/ba-

p/6505942#.Vt3WS_krK70

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

28

	

Luis	Rocha	 	 	

P. P. (2015, July 11). Another Zero-Day Vulnerability Arises from Hacking Team Data

Leak. Retrieved January 21, 2016, from http://blog.trendmicro.com/trendlabs-

security-intelligence/another-zero-day-vulnerability-arises-from-hacking-team-

data-leak/

R. (2002, March). VX Heaven. Retrieved February 02, 2016, from

https://vxheaven.org/lib/vra06.html

R. F. (2014, November 11). IBM X-Force Researcher Finds Significant Vulnerability in

Microsoft Windows. Retrieved January 21, 2016, from

http://securityintelligence.com/ibm-x-force-researcher-finds-significant-

vulnerability-in-microsoft-windows/

Rajpal, M. S. (2014, December 04). CVE-2014-6332: Life is all Rainbows and Unicorns.

Retrieved January 21, 2016, from http://labs.bromium.com/2014/12/04/cve-2014-

6332-life-is-all-rainbows-and-unicorns/

Rocha, L. (2015, January 13). Dynamic Malware Analysis with REMnux v5 – Part 1.

Retrieved March 03, 2016, from

http://countuponsecurity.com/2015/01/13/dynamic-malware-analysis-with-

remnux-v5-part-1/

S. S., & D. C. (2015, August 10). CVE-2015-2419 – Internet Explorer Double-Free in

Angler EK « Threat Research. Retrieved January 21, 2016, from

https://www.fireeye.com/blog/threat-research/2015/08/cve-2015-2419_inte.html

SpiderMonkey.(n.d.). Retrieved February 08, 2016, from

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

Stock, B., Livshits, B., & Zorn, B. (2015). Kizzle: A Signature Compiler for Exploit Kits.

Microsoft Research.

Stokes.J., Andersen. R., Seifert C., Chellapilla K.: WebCop : locating neighbordhoods of

malware on the web. In: Proceeding of the 3rd USENIX Conference on Large-

Scale Exploits and Emergent Threats (2010)

Suri, H. (2015, September 17). Malware-Traffic-Analysis.net - 2015-09-17 - Guest blog

entry by HardikSuri - A closer look at Neutrino EK. Retrieved January 15, 2016,

from http://www.malware-traffic-analysis.net/2015/09/17/index.html

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

29

	

Luis	Rocha	 	 	

Systems, A. (n.d.). How to load external SWF files for Adobe Flash Player. Retrieved

March 30, 2016, from https://helpx.adobe.com/flash/kb/load-external-swf-

swf.html

Systems, A. (2011, September 15). SWF to SWF Communication when both swfs use

actionscript 3.0. Retrieved March 30, 2016, from

http://kb2.adobe.com/community/publishing/918/cpsid_91887.html

Uhley, P. (n.d.). Adobe SWF Investigator. Retrieved March 07, 2016, from

http://labs.adobe.com/technologies/swfinvestigator/

V. D., A. I., & D. V. (2015, April 22). How exploit packs are concealed in a Flash object.

Retrieved February 02, 2016, from

https://securelist.com/analysis/publications/69727/how-exploit-packs-are-

concealed-in-a-flash-object/

Van Overveldt, T., Kruegel, C., & Vigna, G. (2012). FlashDetect: ActionScript 3

malware detection.

Villas, M. (n.d.). Shellcode_tools. Retrieved March 07, 2016, from

https://github.com/MarioVilas/shellcode_tools

Wang, G., Stokes, J. W., Herley, C., & Felstead, D. (2006). Detecting malicious landing

pages in Malware Distribution Networks.

White, A. (2009). Chapter 23. In JavaScript Programmer's Reference 1st Edition. Wrox.

Wressnegger, C., Yamaguchi, F., Arp, D., & Rieck, K. (2015). Analyzing and Detecting

Flash-based Malware using Lightweight Multi-Path Exploration.

Zeltser, L. (n.d.). SANS FOR610: Reverse-Engineering Malware: Malware Analysis

Tools and Techniques.

Zhang, J., Seifert, C., Stokes, J.W., Lee, W.: Arrow: Generating signatures to detect

drive-by downloads. In: WWW (2011)

	

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

30

	

Luis	Rocha	 	 	

7. Appendix A – Exploit Arsenal
	
 The exploit arsenal available in Neutrino Exploit Kit consists of five (5) exploits

weaponized in a Flash file.

 The decrypted data from the DefineBinaryData tag 3 (nw2_html) contains code to

exploit CVE-2013-2551. This exploit has a CVSS score of 9.3 and exploits a Use-after-

free vulnerability in Microsoft Internet Explorer 6 through 10. This vulnerability was

initially discovered by VUPEN and demonstrated during the Pwn2Own contest at

CanSecWest in 2013 (N.J). After the detailed post from VUPEN, different exploit kits

started to adopt it. According to the NTT Global Threat Intelligence Report 2015, this

highly reliable exploit made its way to the top of being one of the most popular exploits

used across all Exploit Kits today.

 The decrypted data from DefineBinaryData tag 5 (nw7_html) contains code to

exploit CVE-2014-6332. This exploit has a CVSS score of 9.3 and exploits the Windows

OLE Automation Array. The IBM X-Force research team initially discovered this

vulnerability. (R. F. 2014). This vulnerability got the code name of unicorn bug because

of is extremely rarity to due to wide range of Microsoft operating systems and browser

versions it impacts (Rajpal, M. S. 2014).

 Inside the decrypted data from DefineBinaryData tag 6 (nw8_html) contains

exploit code for CVE-2015-2419. This exploit has a CVSS score of 9.3 and is known as

the JScript9 Memory Corruption Vulnerability. Vectra Networks originally discovered it.

This exploit was first adopted by the Angler Exploit Kit (S. S., & D. C. 2015) and soon

after adopted by Neutrino (K. 2015).

 In the interior of the DefineBinaryData tag 4 (nw6.swf)there is code to exploit

CVE-2014-0569. This exploit has a CVSS score of 10 and is known as integer overflow

vulnerability in Adobe Flash casi3. The exploit was disclosed trough the ZDI program

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

31

	

Luis	Rocha	 	 	

who then reported the vulnerability to Adobe (F. L. 2015, March 02). After the release of

the patch, the vulnerability was reversed and adopted by the different Exploit Kits (K.

2014, October 21).

 Finally, within the DefineBinaryData tag 2 (nw19_swf) there is code to exploit

CVE-2015-5122. This exploit has a CVSS score of 10 and is known as Adobe Flash

ActionScript 3 opaque Background Use-After-Free Vulnerability. This exploit was found

as a result of the public disclosure of the Hacking Team leak (D. K. 2015) (P. P. 2015,

July 11). In a matter of hours, the exploit was incorporated in the Angler Exploit Kit (K.

2015, July 11).

8. Appendix B – ShellCode

 Each of the five self-contained exploits has shellcode that is used to run malicious

code in the victims system. The shellcode objective is the same across of the exploits:

Download, decrypt and execute the malware.

 Examining the JavaScript that was extracted from the nw18_html

DefineBinaryData tag on the second stage Flash file one can see that there is a function

named EscapeHexString that contains a hex string of 2504 bytes which is passed to a

function that converts the string to Unicode notation followed by an unescape.

 This shellcode string can be copied and embedded into a skeletal executable that

can be analyzed using a debugger or a disassembler. First, the shellcode needs to be

converted into hex notation (\x). This can be done by coping the shellcode string into a

file and then running the following Perl one liner “$cat shellcode | perl -pe 's/(..)/\\x$1/g'

>shellcode.hex”. Then generate the skeletal shellcode executable with shellcode2exe.py

script written by Mario Villa and later tweaked by Anand Sastry (Villas, M.) The

command is “$shellcode2exe.py –s shellcode shellcode.exe” (Zeltser, L.). The result is a

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

32

	

Luis	Rocha	 	 	

windows executable for the x86 platform that can be loaded into a debugger. Another

way to convert shellcode is to use the converter tool from www.kahusecurity.com

 Next step is to load the generated executable into OllyDbg. Stepping through the

code one can see that the shellcode contains a deobfuscation routine. In this case, the

shellcode author is using a XOR operation with key 0x84. After looping through the

routine, the decoded shellcode shows a one liner command line.

Figure	18-	Shellcode	deobfuscation	

 After completing the XOR de-obfuscation routine the shellcode has to be able to

dynamically resolve the Windows API’s in order to make the necessary system calls on

the environment where is being executed. To make system calls the shellcode needs to

know the memory address of the DLL that exports the required function. Popular API

calls among shellcode writers are LoadLibraryandGetProcAddress. These are common

functions that are used frequently because they are available in the Kernel32.dll which is

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

33

	

Luis	Rocha	 	 	

almost certainly loaded into every Windows operating system. The author can then get

the address of any user mode API call made.

 Therefore, the first step of the shellcode is to locate the base address of the

memory image of Kernel32.dll. It then needs to scan its export table to locate the address

of the functions needed.

 How does the shellcode locate the Kernel32.dll? On 32-bit systems, the malware

authors use a well-known technique that takes advantage of a structure that resides in

memory and is available for all processes. The Process Environment Block (PEB). This

structure among other things contains linked lists with information about the DLLs that

have been loaded into memory. How do we access this structure? A pointer exists to the

PEB that resides insider another structure known as the Threat Information Block (TIB)

which is always located at the FS segment register and can be identified as

FS:[0x30](Zeltser, L.). Given the memory address of the PEB the shellcode author can

then browse through the different PEB linked lists such as the InLoadOrderModuleList

which contains the list of DLL’s that have been loaded by the process in load order. The

third element of this list corresponds to the Kernel32.dll. The code can then retrieve the

base address of the DLL. This technique was pioneered by one of the members of the

well-known and prominent virus and worm coder group 29A and written in volume 6 of

their e-zine in 2002 (R. 2002)(H.S. 2009).Figure 19 shows a snippet of the shellcode that

contains the different sequence of assembly instructions in order for the code to find the

Kernel32.dll.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

34

	

Luis	Rocha	 	 	

Figure	19	

 The next step is to retrieve the address of the required function. This can be

obtained by navigating through the Export Directory Table of the DLL. In order to find

the right API there is a comparison made by the shellcode against a string. When it

matches, it fetches its location and proceeds. This technique was pioneered and is well

described in the paper "Win32 Assembly Components" written in 2002 by The Last

Stage of Delirium Research Group (LSD). Finally, the code invokes the desired API. In

this case, the shellcode uses the CreateProcessA API where it will spawn a new process

that will carry out the command line specified in the command line string.

Figure	20	-	Process	Creation	

 This command will launch a new instance of the Windows command interpreter,

navigate to the users %temp% folder and then redirect a set of JavaScript commands to a

file named dre1.js. Finally it will invoke Windows Script Host and launch this JavaScript

file with two parameters. One is the decryption key and the other is the URL from where

to fetch the malicious payload. Essentially this shellcode is a downloader. The full

command is shown in figure 16.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

35

	

Luis	Rocha	 	 	

Figure	21	-	Command	invoked	by	the	shellcode.	

9. Appendix C – Dropped Malware
	

 After successful execution of the shellcode, the control is passed to the JavaScript,

which is responsible to make a HTTP GET request to a predefined URL to download,

decrypt and execute the RC4-encrypted payload. The payload is saved in the %temp%

directory using the following naming convention: rad[five uppercase hexadecimal

characters].tmp.exe. This is the final stage of Neutrino. Figure 17 shows the request made

and the RC4-encrypted payload.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

36

	

Luis	Rocha	 	 	

Figure	3	

 Knowing that the payload is RC4-encrypted and knowing the key use done can

write a Python script to decode the HTTP stream and get the malware sample. Another

way is to use the same technique as the malware author.

© 2016 The SANS Institute Author retains full rights.

Neutrino Exploit Kit Analysis and Threat Indicators
 	

37

	

Luis	Rocha	 	 	

10. Appendix D – IOC’s
	
The purpose of this section is to document the indicators of compromised observed
during the Neutrino Exploit Kit analysis.
	
Indicator Type Context
a6ddad392f597f85da316e2965d33e643c902d7f SHA1 First stage Flash file
6ddad392f597f85da316e2965d33e643c902d7f SHA1 Second stage Flash file
51fbeb0873f69ea580424b33e11c38fec7ac47d9 SHA1 nw2.html
d1227a1d515c4e52838443286acbfd33b15fcb37 SHA1 Nw7.html
a0471327d6de542086722b701b8196aa8d170da3 SHA1 Nw8.html
4034ab01d4a7831be5b15c1f099436efb9216a80 SHA1 Nw18.html
b6c5cb168828225ae6c482aa36e0b2bfac5fb96b SHA1 nw19.swf
9017628ced0f0d014b8e8f1cc536ab41f7086be9 SHA1 nw6.swf
db6fdd5ee8e1e8bff5099964262cd8b5659ecfde SHA1 Cryptolocker
45.32.238.202 IP Address Neutrino Landing

Server
89.38.144.75 IP Address Neutrino Landing

Server
89.38.146.229 IP Address Neutrino Landing

Server
37.157.195.55 IP Address Neutrino Landing

Server
185.12.178.219 IP Address Neutrino Landing

Server
81.2.244.197 IP Address Neutrino Landing

Server
6f2c1a8f9e3d8e35dc81c185a4b5a1656343cb4e SHA1 Neutrino Full Pcap
	

