
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!!
[2.0!June!2014]!

!
! !

Designing and Implementing a Honeypot for a

SCADA Network

GIAC (GCIA) Gold Certification

Author:!Charlie!Scott,!cscott@utexas.edu!
Advisor:!Richard!Carbone!

Accepted:!June!7,!2014!!
!

Abstract!
Supervisory!Control!and!Data!Acquisition!(SCADA)!networks!are!increasingly!under!
attack.!In!a!world!of!wireless!networks,!removable!media,!and!a!desire!to!move!to!
the!“Internet!of!Things,”!it!is!unrealistic!to!think!that!these!networks!can!be!isolated!
from!every!threat.!Devices!on!SCADA!networks!are!often!not!designed!with!security!
in!mind,!vendors!are!slow!to!create!patches,!and!the!systems!usually!are!critical!
enough!that!scheduling!downtime!is!a!problem.!A!layered!approach!to!securing!
SCADA!networks!that!includes!both!patching!and!monitoring!is!essential!to!the!
safety!of!those!systems.!This!paper!discusses!a!method!of!discovering!attacks!on!a!
SCADA!network!by!using!a!honeypot.!An!analysis!of!a!facilitiesQbased!SCADA!
network!was!performed,!a!honeypot!designed!and!built!to!mimic!the!common!
services!of!this!network,!and!monitoring!was!put!in!place!to!detect!when!the!
honeypot!was!targeted.!This!resulted!in!more!comprehensive!monitoring!of!the!
SCADA!network!for!attacks!and!added!another!layer!of!security!to!the!existing!
patching!routine.!
!

Designing and Implementing a Honeypot for a SCADA Network
!

2

!

Charlie!Scott,!cscott@utexas.edu! ! !

1. Introduction
This paper is based on a facilities network filled with Supervisory Control and

Data Acquisition (SCADA)-type devices, controlling and monitoring everything from

elevators, to pumps, to generators, to smart meters, to building access control systems.

The physical plant has a footprint that spans hundreds of acres and the digital footprint

includes over 2,000 devices. No single group is responsible for managing these devices

and, in many cases, vendors install these devices at the behest of a department and then

they are not touched for years. While this network is isolated from the greater Internet,

vendor contractors and technical staff often connect to it using outside laptops for

maintenance tasks. This facilities network has long been a concern of the information

security staff at the workplace because of the nature of the devices on the network, the

lack of central responsibility for those devices, and the fact that vendors connect to it

regularly. All of these concerns conspire to make it difficult to know if there is a bad

actor lurking about or a compromised system on the network.

The goal of this paper is to improve the security monitoring of SCADA and

facilities networks such as these, where information security operations groups may have

limited access and visibility into the devices on those networks. A low-interaction

honeypot was chosen because it required no modification of the existing network

topology or devices. This honeypot was configured to send alerts to the information

security operations staff via an intermediary Splunk server on a DMZ. From these alerts,

information security staff can take action, such as tracking down the attacking host for

incident handing purposes.

1.1. Challenges in Securing SCADA Networks
A common recommendation is to put SCADA devices on a network that is not

physically connected to any other network (Stouffer, Falco, & Scarfone, 2011). An “air

gapped” network, as it is often called, is not always an option, as there may be data from

those devices that needs to be accessed (Weiss, 2010; Knapp, 2011). In addition, patching

those devices may require a connection to either the Internet or a central patching server,

such as a Windows Server Update Service (WSUS) server in the case of Windows

Designing and Implementing a Honeypot for a SCADA Network
!

3

!

Charlie!Scott,!cscott@utexas.edu! ! !

systems, or a RedHat Satellite server in the case of RedHat Enterprise Linux. Stuxnet and

Flame can use USB removable media as a vector, so physically separating a network

does not guarantee that a system will remain unreachable to an attacker (Zetter, 2011;

Zetter, 2012). Consultants and vendors are also an issue, as they may bring malware in on

laptops and connect those systems to the SCADA network for maintenance purposes.

Any network-aware malware on those systems will then also have access to the SCADA

network. In other words, physical separation is not a guarantee that a SCADA network

will be safe from attack and it should be treated as just another layer of security (Luallen,

2013).

Another challenge in securing SCADA networks is that performing software

updates on SCADA devices can be difficult (Higgins, The SCADA Patch Problem,

2013). As mentioned, a physically separate or heavily firewalled network may prevent

devices from being updated using centralized device management tools or the Internet-

based software update services provided by Microsoft and Linux distributions such as

RedHat. Difficult patch management often means that updates will not take place on a

regular basis. Embedded devices, often running some stripped-down version of Linux,

Windows CE, or a proprietary OS, may be even more difficult to update and may require

a protocol such as TFTP or even a console connection. Updates for embedded OSes are

usually rarer than those of the standard desktop and server OSes.

In addition to the difficulty involved in updating the software on SCADA devices,

the vendors of these devices or the integrators used to bring them online may not allow

them to be updated without the vendor or integrator first performing appropriate

regression testing (Byres, 2012). Sometimes, updates on the part of the customer without

the vendor first approving them may violate the warranty or support agreement. At this

point, the customer is in a holding pattern while the vendor validates the patch, which

may take days, weeks, or months.

In addition to the vendor concerns, there is the fear of disturbing equipment that

has been operating fine for years, sometimes decades, for a security patch (Zubairi &

Mahboob, 2013). There is always a chance that the update could break something else or

Designing and Implementing a Honeypot for a SCADA Network
!

4

!

Charlie!Scott,!cscott@utexas.edu! ! !

that the hardware might fail upon reboot. This is especially unnerving in a plant

environment, where downtime may cost money or cause safety issues.

Finally, it may not be possible to implement additional security controls on

SCADA networks or devices. For example, implementing anti-virus or a host-based

intrusion detection system on SCADA-related workstations and servers might cause some

unexpected behaviors, such as system slowdowns or active responses to perceived attacks

(Wade, 2011). Intrusion prevention systems (IPS) placed inline on the SCADA network

may block traffic it misidentifies as malicious.

1.2. Brief Overview of Honeypots
A honeypot can be thought of as a lure to attract attackers (Provos & Holz, 2008).

Generally they take the form of physical or virtual systems that mimic the actual devices

on the network, with heavy monitoring and logging so an attacker’s actions can be

studied. Although it may seem paradoxical for a security professional to want an attacker

to be interested in them, there are a number of benefits that a honeypot provides.

Honeypots provide security researchers with a unique opportunity to study their

enemy. By analyzing how real-world attacks are taking place, how often they take place,

and what attackers are leaving behind (e.g. rootkits, Trojans, and exploits), a researcher

can come up with better ways to defend against such attacks. For incident handlers,

intrusion analysts, and others monitoring their network’s security, a well-monitored

honeypot can provide another indication of network attacks. Finally, a honeypot seeded

with false but convincing information that might be desirous to an internal or external

attacker (such as intellectual property or customer credit card numbers) can provide a

diversion from more valuable, legitimate targets.

It is important to note that in some jurisdictions the use of a honeypot could be

construed as entrapment (Provos & Holz, Virtual Honeypots: From Botnet Tracking to

Intrusion Detection , 2008). It is best to read up on applicable laws and consult with a

lawyer before embarking on this path.

Designing and Implementing a Honeypot for a SCADA Network
!

5

!

Charlie!Scott,!cscott@utexas.edu! ! !

1.2.1. Two Types of Honeypots
Researchers classify honeypots as either high-interaction or low-interaction

(Provos, Developments of the Honeyd Virtual Honeypot , 2008). This is not, however, a

measurement of the maintenance requirements for administrators of these honeypots

(though sometimes it can be), but rather how much an attacker is able to do with them. A

high-interaction honeypot is typically made up of the actual device, operating system, and

applications one wants to be attacked. For instance, a researcher interested in attacks on

Windows 2003 Server running the IIS 6 web server would actually build a physical or

virtual machine running this OS and software. In the case of SCADA devices, a

researcher might stand up an actual Schneider Electric Modicon M168 PLC. The primary

advantage of a high-interaction honeypot is that the attacker can do whatever he wants to

it, as he would against the actual device, because it is the actual device. This means that

exploits actually work and can be analyzed. This is also the greatest disadvantage as well;

because once the honeypot is compromised it will have to be rebuilt. Malware attacks

against the honeypot system’s BIOS, though rare, may make the system permanently

untrustworthy (Hruska, 2009). Regardless, it also means that the honeypot can be used as

a launching point for other attacks, which may cause legal complications.

A low-interaction honeypot takes an ordinary system, such as a Linux system, and

runs software on it that mimics the operating system, network stack, and services that the

researcher is interested in. In the abovementioned example of Windows 2003 with IIS 6,

it may present services such as the common SMB ports and an IIS 6.0 banner on TCP

ports 80 and 443. The honeypot will then log connections to these ports and any

commands sent to them. Often, that is the extent of what they allow. A low-interaction

honeypot simulating a Cisco router, for example, may present what looks like a standard

Cisco IOS Telnet banner, but never allow an attacker to actually log in. Instead, the

usernames and passwords they attempt (and other data sent) will be logged. Likewise, an

FTP server may allow anonymous logins, but might not implement the full compliment

of possible FTP commands. The primary advantage of a low-interaction honeypot is that

it is relatively easy to maintain because, among other reasons, it is less likely to actually

be compromised. Of course, this also means that a researcher may not get the full picture

of what an attacker is trying to do. A common low-interaction honeypot is honeyd, which

Designing and Implementing a Honeypot for a SCADA Network
!

6

!

Charlie!Scott,!cscott@utexas.edu! ! !

was created by Niels Provos for the Honeynet Project (Provos, Developments of the

Honeyd Virtual Honeypot , 2008).

1.2.2. Honeynets
Honeynets are simply collections of honeypots designed to look like common

network services and servers (Provos & Holz, Virtual Honeypots: From Botnet Tracking

to Intrusion Detection , 2008). For instance, you might have a honeypot that presents

itself as a Windows domain controller, another as an intranet web server, another as a

mail server, and so on, until it looks like a fairly complete corporate network. Honeynets

can be made up of high-interaction honeypots, low-interaction honeypots, or a

combination of both. Honeynets are often set up behind a system that serves as a

honeywall, which provides a bridge to the honeynet and includes network monitoring,

packet capture, and intrusion detection capabilities.

1.3. Benefits of Honeypots on SCADA Networks
There are several benefits to running a honeypot on a SCADA network as

opposed to using other security measures. A honeypot does not modify existing SCADA

network configurations including firewall and unified threat manager (UTM), or require

the insertion of additional inline devices. Installing inline devices would cause downtime

and, depending on the architecture, might be a single point of failure. The honeypot is

simply plugged into the network as any other system would be and set up to run services

that look like other devices on your SCADA network. Because the honeypot is not inline

and not actually blocking malicious traffic, like an IPS would, this reduces the likelihood

of network downtime caused by false positives.

Another advantage of a honeypot is that it can be configured to look like specific

devices on a typical SCADA network. That is, it does not have to look like a generic IIS

server on Windows, an OpenSSH service on Linux, or even a Telnet service on a Cisco

router. You can configure the honeypot to look like a heating, ventilation and cooling

(HVAC) system, building access control system (BACS) or industrial control system

(ICS). This allows for the monitoring of attacks designed specifically to target the current

infrastructure.

Designing and Implementing a Honeypot for a SCADA Network
!

7

!

Charlie!Scott,!cscott@utexas.edu! ! !

For all the upsides of running a honeypot on a SCADA network, there is one

major downside: The system has to be monitored and alerts acted upon. Unlike an IPS, a

honeypot will not automatically block attacks. Network security staff time may have to

be allocated for monitoring, investigation, and remediation.

1.4. Existing Honeypots for SCADA Networks
Using a honeypot to help secure a SCADA network is not a completely new idea.

Pothametsy and Franz from Cisco Systems proffered the idea as early as 2004 and

created the SCADA Honeynet Project (Pothametsy & Franz, 2005). Their goal was to

create a module that worked with honeyd and would simulate a programmable logic

controller (PLC), which is a specialized computer used for the control of machinery. The

specific protocols that it simlulated include FTP, HTTP, Modbus TCP, and Telnet.

Modbus is a serial communications protocol used in PLCs for communication with other

industrial electronic devices developed in 1979 by Modicon, now part of Schneider

Electric (Knapp, 2011). This project is interesting and can still be used for simulation of

PLCs, though the code has not been updated since 2005.

Digital Bond, an ICS security research and consulting company, also created a

SCADA honeynet comprised of two virtual machines and has made them publically

available (Digital Bond, Inc., 2014). One virtual machine acts as a PLC honeypot, while

the other runs a honeywall that monitors network traffic. The honeywall can also be used

to monitor a high-interaction honeypot in the form of a real PLC. On the honeywall,

Digital Bond has included the Snort IDS and a number of signatures specific to the PLC.

Services that the PLC honeypot simulates include FTP, Telnet, HTTP, SNMP, and

Modbus TCP. The latest version of the honeynet, as of this writing, is 0.8 and is dated

from 2011.

A more recent SCADA honeypot is Conpot (Rist, Vestergaard, & Haslinger,

2014), which simulates a Siemens SIMATIC S7-200 PLC, including the Modbus TCP,

SNMP, and HTTP protocols. It was still being actively developed as of early 2014.

Conpot is affiliated with the Honeynet Project and can be optionally configured to report

back attack data to that project, in order to provide researchers with an idea about how

widespread attacks are.

Designing and Implementing a Honeypot for a SCADA Network
!

8

!

Charlie!Scott,!cscott@utexas.edu! ! !

2. Designing and Implementing the Honeypot
Before deploying a honeypot, it is important for a network or security

administrator to understand the network attack surface. If a network is consists primarily

of Windows systems and the administrator is mimicking a FreeBSD host using a

honeypot, that honeypot will not likely provide the administrator with useful information

concerning the network. Likewise, with a SCADA network, an administrator would not

want to set up a honeypot with the personality of an Internet-facing DMZ. Mapping the

SCADA network will give an administrator a better idea of what operating systems and

services are running on the network. Once those services are identified, then he will have

to choose which ones to include in the honeypot. Finally, he will need to implement the

honeypot itself, architected so that results will still be accessible.

2.1. Mapping the Network Attack Surface
For this paper, the author chose to use Tenable’s Nessus to map the attack surface

of his facilities network. Any tool that can perform a discovery scan of a network should

work. A good discovery scan will include not only hosts and ports that it finds, but also

make an attempt to determine the operating system and the types of services that are

running therein. However, Nessus was used because in addition to being able to perform

a discovery scan, it also includes a number of SCADA-related vulnerability checks,

including those for Modbus TCP service and Modicon PLCs (Tenable Network Security,

2014). One caveat: It can be very dangerous to run any kind of vulnerability or service

scanner against a SCADA network, so it is best to get written permission, do the scan

after-hours, and notify staff that support the devices on the network that this is being

done.

2.2. Choosing the Honeypot and Services
The services included in the honeypot should mirror what is actually found in the

facilities network in which it will reside. Having it mimic an existing device of some sort

is ideal, especially if it concerns attackers who know what they are looking for. For this

paper, the author chose to support, at a minimum, HTTP, SNMP, and Modbus. Modbus

was chosen so that it would indicate to an attacker that this is some sort of SCADA

device. SNMP was chosen because it can provide reconnaissance information to a would-

Designing and Implementing a Honeypot for a SCADA Network
!

9

!

Charlie!Scott,!cscott@utexas.edu! ! !

be attacker. Finally, HTTP was chosen to provide some sort of interesting human-

machine interface (HMI) to the attacker.

A device discovered on the facilities network that has all three of these protocols

is the Schneider Electric PowerLogic ION6200 smart meter, pictured below.

Figure'1:'A'Schneider'Electric'PowerLogic'ION6200'smart'meter'(Photo'source:'Schnieder'
Electric,'2010.).'
!

Because HTTP, SNMP, and Modbus were of primary concern, the author chose to

use the Conpot honeypot. The fact that it is still community-supported, as opposed to the

SCADA Honeynet Project and the Digital Bond Honeynet, was also a factor, as

supportability is important for maintenance of the honeypot.

2.3. Implementing the Honeypot on the Network
The author installed the honeypot on a facilities network consisting of elevator

controls, building access controls, smart meters for measuring power consumption,

pumps, generators, and other devices used for the normal functioning and monitoring of

facilities systems. There are three primary segments in this configuration, including the

facilities network itself, a facilities DMZ network that contains tools and interfaces used

to monitor or manage the devices on the facilities network, and the control network from

which people manage or monitor the devices on the facilities network from the systems

on the DMZ network. The control network and facilities DMZ are separated by a

firewall, as are the facilities DMZ and facilities network. There is no direct

Designing and Implementing a Honeypot for a SCADA Network
!

1
0

!

Charlie!Scott,!cscott@utexas.edu! ! !

communication between the control network and the facilities network; all traffic

between the two must pass through the facilities DMZ. A high-level diagram of the

network follows:

!
Figure'2:'Diagram'showing'control'network,'facilities'DMZ'network,'and'facilities'network'
prior'to'honeypot'placement.'
!

The honeypot itself is placed on the facilities network so that it looks like just

another ION6200 smart meter. Rules are changed within the firewall to allow outbound

Syslog (514/UDP) traffic from the honeypot to the Syslog and Splunk server on the

facilities network DMZ. Additionally, Splunk’s default port (8000/TCP) is allowed

inbound from the control network so that Splunk can be accessed by those monitoring the

honeypot. Finally, outbound SMTP (25/TCP) traffic is allowed from the Splunk server

for email alerts. The following diagram illustrates this:

Designing and Implementing a Honeypot for a SCADA Network
!

1
1

!

Charlie!Scott,!cscott@utexas.edu! ! !

!
Figure'3:'Diagram'showing'honeypot'placement'on'facilities'network'(Honeypot'graphic'by'
Jonas'Bock,'Creative'Commons'AttributionRShare'Alike'3.0'Unported).'
!

2.4. Configuring the Honeypot
Originally, the author wanted to use RedHat as the Conpot host OS in order to be

consistent with other supported devices in the environment, but the Conpot developers

have not tested the honeypot on that platform and there were problems with

dependencies. With some work, RedHat may have been possible, but it could present

challenges with future updates and was abandoned in favor of a tested and functional

distribution.

Ubuntu 12.04 LTS was the chosen distribution as it is tested by the Conpot team

and has a relatively easy installation process (Glastopf Developers, 2013). The Ubuntu

community, led by Canonical Ltd., will support Ubuntu 12.04 LTS until April 2017

(Ubuntu Community, 2014).

2.4.1. OS Modifications and Hardening
This paper will not cover the installation of Ubuntu in detail, as the standard

installation procedure was used. The server edition of Ubuntu 12.04 LTS was used

because a graphical user interface and desktop applications (office applications, games,

etc.) are not needed for this honeypot. Using a server edition keeps things simple.

Installation and configuration of the honeypot took place on a network that had

access to the public Internet in order to update the operating system and install Conpot.

This network was behind a firewall with network address translation (NAT) to protect it

Designing and Implementing a Honeypot for a SCADA Network
!

1
2

!

Charlie!Scott,!cscott@utexas.edu! ! !

during installation. Then, later, it was moved to the facilities network, which does not

have direct access to the public Internet. Another option would be to use physical media,

such as a USB thumb drive, to transfer Conpot to the system. Additionally, the system

should be scanned for potential malware using a tool such as ClamAV or chkrootkit.

On an Ubuntu 12.04 LTS server installation, very little hardening is required as

by default, no network-enabled services are running. If using a different distribution, it

may be necessary to disable the firewall services that are running by default. Conpot has

its own SNMP, HTTP, and Modbus services, so there is no need to run an Apache

webserver or an SNMP daemon. In order to avoid conflicts or potential host-based

vulnerable services, it is best to turn off all services.

Depending on the organization’s security policy, it may be necessary to have a

warning banner displayed at logon. The author modified /etc/issue and /etc/issue.net with

the standard authorized warning banner for his organization:

Unauthorized-use-of-UT-Austin-computer-and-networking-resources-is-prohibited.-If-
you-log-on-to-this-computer-system,-you-acknowledge-your-awareness-of-and-
concurrence-with-the-UT-Austin-Acceptable-Use-Policy.-The-University-will-prosecute-
violators-to-the-full-extent-of-the-law.-
!

The SSH daemon was also installed and enabled during setup to assist with

configuration using Ubuntu’s APT package manager:

$ sudo apt-get install ssh

The following line in /etc/ssh/sshd_config was also uncommented so that the

warning banner is displayed when someone attempts to connect via SSH:

Banner /etc/issue.net

SSHD was then restarted:

$ sudo service ssh restart

After the configuration is complete and SSH is no longer required, it was stopped

and disabled with the following commands:

$ sudo service ssh stop

$ sudo update-rc.d ssh disable

Designing and Implementing a Honeypot for a SCADA Network
!

1
3

!

Charlie!Scott,!cscott@utexas.edu! ! !

It is important that the honeypot not have any visible services that would not

normally be on the type of device it is trying to mimic. SSHD, for instance, is not a

service one would expect on an ION6200 smart meter, so it was disabled. If such a

service must run then it is important to heavily firewall said service such that an attacker

will not see those ports. Restrict access to only the machines from which they will be

managed.

2.4.2. Installing Conpot
Installing Conpot on Ubuntu 12.04 LTS is very straightforward (Glastopf

Developers, 2013; Haslinger, 2014), though on the server version of Ubuntu it will

require a number of dependencies. The following dependencies were installed before

installing Conpot:

$ sudo apt-get install git
$ sudo apt-get install cython
$ sudo apt-get install python-dev
$ sudo apt-get install python-pip
$ sudo apt-get install build-essential
$ sudo apt-get install libxml2-dev
$ sudo apt-get install libxslt1-dev
$ sudo apt-get install libevent-dev
$ sudo apt-get install snmp-mibs-downloader

After the dependencies were installed, GIT was used to clone modbus-tk, which is

an implementation of the Modbus protocol in Python (Rist, glastopf/modbus-tk, 2013).

$ cd /opt
$ sudo git clone http://github.com/glastopf/modbus-tk.git
$ cd modbus-tk/
$ sudo python setup.py install

Finally, Conpot itself was installed and started to verify that it worked (note that

the console log below has been truncated):

$ cd /opt
$ sudo git clone http://github.com/glastopf/conpot.git
$ cd conpot
$ sudo python setup.py install
$ sudo conpot
 _
 ___ ___ ___ ___ ___| |_
 | _| . | | . | . | _|
 |___|___|_|_| _|___|_|

Designing and Implementing a Honeypot for a SCADA Network
!

1
4

!

Charlie!Scott,!cscott@utexas.edu! ! !

 |_|

 Version 0.2.2
 Glastopf Project

2014-05-25 12:19:03,094 Starting Conpot using template
found in: /usr/local/lib/python2.7/dist-packages/Conpot-
0.2.2-py2.7.egg/conpot/templates/default.xml
2014-05-25 12:19:03,095 Starting Conpot using configuration
found in: /usr/local/lib/python2.7/dist-packages/Conpot-
0.2.2-py2.7.egg/conpot/conpot.cfg
2014-05-25 12:19:03,095 Starting Conpot using www templates
found in: /usr/local/lib/python2.7/dist-packages/Conpot-
0.2.2-py2.7.egg/conpot/www/
…
2014-05-25 12:19:03,591 S7Comm server started on:
('0.0.0.0', 102)
2014-05-25 12:19:03,592 SNMP server started on: ('0.0.0.0',
161)
2014-05-25 12:19:03,719 HTTP server started on: ('0.0.0.0',
80)
2014-05-25 12:19:08,722 Privileges dropped, running as
nobody/nogroup.

As previously mentioned, Conpot’s default template simulates a Siemens

SIMATIC S7-200 PLC. While this might produce some interesting data, it is even more

interesting to have the honeypot mimic something actually on the current facilities

network; in this case a Schneider Electric PowerLogic ION6200 smart meter.

2.4.3. Modifying Conpot to Simulate an ION6200
Conpot is flexible enough that it can be modified to simulate other makes and

models of SCADA-type devices. The majority of the configuration options are in a file

called default.xml found in the templates/ directory off of the directory where Conpot was

installed (in this case, the setup.py program put it in /usr/local/lib/python2.7/dist-

packages/Conpot-0.2.2-py2.7.egg/conpot/). The first step in modifying the default.xml

file is to make a backup of the old one:

$ cd /usr/local/lib/python2.7/dist-packages/Conpot-0.2.2-
py2.7.egg/conpot/templates
$ sudo cp default.xml default.xml.bak

Then copy default.xml to ion6200.xml, delete the original, and create a symbolic

link between ion6200.xml and default.xml:

Designing and Implementing a Honeypot for a SCADA Network
!

1
5

!

Charlie!Scott,!cscott@utexas.edu! ! !

$ sudo cp default.xml ion6200.xml
$ sudo rm default.xml
$ sudo ln -s ion6200.xml default.xml

In order to know what to modify in the ion6200.xml file, it is important to know

how the ION6200 presents itself on the network. One way to do this is to go back to the

Nessus scan used to get a map of the network attack surface and use what was

discovered.

The following TCP ports and services were shown to be up during the scan of an

ION6200: 80 (HTTP) and 502 (Modbus). The only UDP port open was 161 (SNMP). In

addition, the SNMP walk that Nessus performed gathered the following information

(with the revealed sysContact, sysName, and sysLocation redacted):

sysDescr!!!!!:!ION!6200!to!Ethernet!
sysObjectID!!:!1.3.6.1.4.1.4346.11.1.2.1.1.1.15!
sysUptime!!!!:!0d!0h!0m!0s!
sysContact!!!:!REDACTED!
sysName!!!!!!:!REDACTED!
sysLocation!!:!REDACTED!
sysServices!!:!12!

Rather than walk through the entire ion6200.xml configuration, the author has

highlighted XML elements that need to be changed in the table below.

Table'1:'Modified'XML'elements'in'the'ion6200.xml'configuration'file.'
Element(s) Attribute/Sub-Element Description

<conpot_template> name Template name

<conpot_template> description Template description

<core><databus> <key_value_mappings> Contains the key!value

mappings for information

referenced elsewhere in the

configuration, such as the

SystemDescription used by

SNMP and other services.

<modbus> <device_info> Contains elements with the

Designing and Implementing a Honeypot for a SCADA Network
!

1
6

!

Charlie!Scott,!cscott@utexas.edu! ! !

Modbus VendorName,

ProductCode, and

MajorMinorRevision of the

device.

<s7comm> enabled This should be set to “False” as it

is a protocol specific to the S7-

200 PLC.

In addition, the entire ion6200.xml configuration file is included in its entirety in

Appendix A.

Conpot also supports a HMI via the HTTP server on TCP port 80 and can be

configured to display a page of one’s choosing. An actual home page from an ION 6200

was recursively scraped using the wget tool:

$ wget -r -l 2 -t 1 --timeout=10 -nc -i ~/ions.txt
!

The wget tool created a directory from each IP address that included the HTML

pages of the ION 6200’s web servers. Note that this is a dangerous process and could

have repercussions on the equipment on a given network including the accidental

modification of configurations. It should be approached with caution and it is better to

obtain the pages from a test, rather than production, device.

In order to make these pages available to Conpot, a directory for the pages was

created in Conpot’s root directory:

$ cd /usr/local/lib/python2.7/dist-packages/Conpot-0.2.2-
py2.7.egg/conpot/
$ sudo mkdir www
$ sudo mkdir www/htdocs

The pages from an ION 6200 were then copied into the www/htdocs directory. Of

course, on a real ION 6200 the pages are dynamic, but static pages are appropriate for a

low-interaction honeypot such as this. The author is primarily looking for evidence of an

attacker on the network (especially since nothing should be directly connected to it that

Designing and Implementing a Honeypot for a SCADA Network
!

1
7

!

Charlie!Scott,!cscott@utexas.edu! ! !

should not be there), rather than a deep knowledge of how they are attacking this

particular device. The home page of the device is then visible on the honeypot when

visited with a browser, as shown in the following screen capture.

!
Figure'4:'Screen'capture'of'the'ION6200'HMI.'
!

2.5. Monitoring and Alerting on the Honeypot Results
They honeypot is on a facilities network that is not directly accessible from the

control network. This means that if an attacker’s activity generates logs on the honeypot,

a human being will not know about it unless they are logged directly into the honeypot

itself. Conpot can be configured to send logs to a remote Syslog server, which solves part

of the problem as the logs can then be sent to a system on the facilities DMZ. However,

there still needs to be a good way to view and search through the logs, as well as send

alerts when there is activity. A useful tool for doing this is Splunk Enterprise, which will

index logs for easier searching and alerting (Splunk, Inc., 2014).

Designing and Implementing a Honeypot for a SCADA Network
!

1
8

!

Charlie!Scott,!cscott@utexas.edu! ! !

2.5.1. Syslog Server Configuration
A logging server was set up in the facilities DMZ running rsyslog. Rsyslog is a

high-performance, modular version of syslog (Rsyslog Community, 2014). In directory

/etc/rsyslog.d an additional configuration file called 60-conpot.conf was added. The

number sixty appended to the file name means that the Conpot-related configuration file

will load last. What follows is the file’s content:

module(load="imudp")
input(type="imudp" port="514")
local0.* /var/log/conpot.log

This file loads the imudp module, which sets up rsyslogd to use UDP, and

configures it to listen on port 514. For any messages that come in to the local0 syslog

facility it will log them to /var/log/conpot.log.

On the Conpot system, the conpot.cfg file in /usr/local/lib/python2.7/dist-

packages/Conpot-0.2.2-py2.7.egg/conpot/ was edited. Under the [syslog] section, the

“enabled” parameter was set to True, the host set to the IP address of the Rsyslog server,

and the “socket” set to “udp” so that it would send the messages to the remote host

instead of the local device. The final portion of the configuration follows:

[syslog]
enabled = True
device = /dev/log
host = 10.20.14.130
port = 514
facility = local0
socket = udp ; udp (sends to host:port), dev (sends to
device)

!
As previously mentioned, the firewall between the facilities network and the

facilities DMZ would also have to be configured to allow UDP port 514 from the Conpot

server to the Rsyslog server. Once done, a restart of the Rsyslog service and of Conpot

then sends the logs to the remote host, as show in this snippet:

May 26 15:38:20 Done scanning for mib files, recursive scan
was initiated from 1 directories and found 0 MIB files of 7
scanned files.
May 26 15:38:20 10.19.14.153 DataBus: Get value from key:
[SystemDescription]
May 26 15:38:20 10.19.14.153 Registered: OID (1, 3, 6, 1,

Designing and Implementing a Honeypot for a SCADA Network
!

1
9

!

Charlie!Scott,!cscott@utexas.edu! ! !

2, 1, 1, 1) Instance (0,) ASN.1 (sysDescr @ SNMPv2-MIB)
value ION 6200 E1176 dynrsp.
May 26 15:38:20 10.19.14.153 DataBus: Get value from key:
[Uptime]
May 26 15:38:20 10.19.14.153 Registered: OID (1, 3, 6, 1,
2, 1, 1, 3) Instance (0,) ASN.1 (sysUpTime @ SNMPv2-MIB)
value 0 dynrsp.
May 26 15:38:20 10.19.14.153 DataBus: Get value from key:
[sysContact]
May 26 15:38:20 10.19.14.153 Registered: OID (1, 3, 6, 1,
2, 1, 1, 4) Instance (0,) ASN.1 (sysContact @ SNMPv2-MIB)
value Charlie Scott dynrsp.
May 26 15:38:20 10.19.14.153 DataBus: Get value from key:
[sysName]
May 26 15:38:20 10.19.14.153 Registered: OID (1, 3, 6, 1,
2, 1, 1, 5) Instance (0,) ASN.1 (sysName @ SNMPv2-MIB)
value FAC eMeter dynrsp.

Now that Rsyslog is working, Splunk can be used as a means to view the logs and

generate alerts.

2.5.2. Splunk Configuration
Splunk’s configuration is based on indexes, which are repositories for Splunk data

(Splunk, Inc., 2014). While all logs can be sent to the same index, having multiple

indexes makes searching easier and more granular (as well as making it simpler to start

over if something goes wrong). Therefore, the first thing to be done as a Splunk

administrator is to create an index by going to the Settings menu and choosing

Data!Indexes. Then add a new index called “conpot” and save it with the default values.

!
Figure'5:'Adding'a'new'index'called'“conpot”'in'Splunk.'

After the index is created, it is time to add a data source. This is done from the

Splunk home screen by clicking on the Add Data button. Choose the data type as “A file

or directory of files” and on then choose to consume any file on the Splunk server.

Browse the server for the location of /var/log/conpot.log.

Designing and Implementing a Honeypot for a SCADA Network
!

2
0

!

Charlie!Scott,!cscott@utexas.edu! ! !

!
Figure'6:'Adding'the'/var/log/conpot.log'data'source'in'Splunk.'
!!

Source types tell Splunk how to deal with certain types of data formats. For

instance, there are source types for Syslogs and Apache logs. Splunk does not come with

a source type that matches the format of Conpot logs, so it is best to select to “Start a new

source type.” In Conpot, each line of a log is a discrete event, so choose “Every line is

one event.”

Designing and Implementing a Honeypot for a SCADA Network
!

2
1

!

Charlie!Scott,!cscott@utexas.edu! ! !

!
Figure'7:'Telling'Splunk'how'events'are'broken'up'in'Conpot’s'logs.''

Then name the new source type as “conpot.”

!
Figure'8:'Naming'the'new'source'type'as'“conpot.”'
!

Finally, set “conpot” as the destination index.

Designing and Implementing a Honeypot for a SCADA Network
!

2
2

!

Charlie!Scott,!cscott@utexas.edu! ! !

!
Figure'9:'Setting'the'“conpot”'index'as'the'destination'for'the'“conpot”'source'type.'
!
!

When finished, a simple search on the “index=conpot” or “sourcetype=conpot”

will show the Conpot log entries so far, though the search can be further refined. The

following screen capture shows a search for all HTTP GET requests after a scan with a

web application vulnerability scanner.

!
Figure'10:'A'simple'search'in'Splunk'for'HTTP''GET'requests'in'the'Conpot'logs.'

2.5.3. Alerting On Results
Splunk can generate alerts on results and either send an email or launch a script.

For this project, the author chose to have Splunk send an email, which also requires

Designing and Implementing a Honeypot for a SCADA Network
!

2
3

!

Charlie!Scott,!cscott@utexas.edu! ! !

outbound SMTP traffic from the Splunk server to the mail server. The Splunk alerts were

configured with the following information:

Table'2:'Alerts'added'to'Splunk'for'interesting'Conpot'events.'
Alert Name Severity Search

Conpot SNMP Session Medium index="conpot" sourcetype="conpot" "New snmp session

from"

Conpot HTTP GET Request High index=conpot sourcetype=conpot HTTP "GET request"

Conpot Modbus Traffic Critical index="conpot" sourcetype="conpot" "Modbus traffic

from"

!!
Each alert was assigned a severity rating. The Modbus alert was given the highest

severity rating of Critical, because it is very unlikely that a system would randomly be

probing the Modbus service on TCP port 502. The HTTP GET request was given a High

severity rating because it is the service someone might to use to configure the mimicked

ION6200. Finally, the Conpot SNMP session was given the severity of Medium, since

not much except reconnaissance can be done from that service.

To set up an alert, after a search is successful click on the “Save As” menu in

Splunk and select “Alert.” All alerts were configured from a real-time search, meaning

that they would go off as soon as the trigger activity was detected. Splunk requires a

trigger condition to determine when an alert should fire. For example, trigger conditions

can be based on each result in the search, or a certain number of results in a search. The

author used a condition that would generate an alert when the number of results from the

search was greater than one within a one-minute window.

Designing and Implementing a Honeypot for a SCADA Network
!

2
4

!

Charlie!Scott,!cscott@utexas.edu! ! !

Figure'11:'Creating'the'trigger'condition'in'Splunk'for'a'Conpot'event'alert.'

A very determined attacker, willing to go slowly, might not be detected, but most

likely will set off an alert during a port or service scan. On the next page (as shown in the

following screen capture), the alert is configured to show in the Triggered Alerts activity

within Splunk, the severity is set, and the recipient email address configured. The author

configured the alert to include only the links to the alert and search results so that

sensitive information is not included in the email. Instead, someone will have to log into

Splunk and view the generated alerts.

Designing and Implementing a Honeypot for a SCADA Network
!

2
5

!

Charlie!Scott,!cscott@utexas.edu! ! !

!
Figure'12:'Setting'the'actions'in'Splunk'for'the'Conpot'event'alert.'

2.5.4. Generating and Reading Alerts
A Nessus scan of the Conpot honeypot using a default, Basic scan profile will

trigger all three of these alerts: HTTP, SNMP, and Modbus. Indeed, doing so triggered an

email alert sent to the author, as seen in the following screen capture.

!
Figure'13:'Sample'email'alert'from'Splunk'generated'by'Modbus'traffic'against'the'honeypot.'

Designing and Implementing a Honeypot for a SCADA Network
!

2
6

!

Charlie!Scott,!cscott@utexas.edu! ! !

!
The “Conpot Modbus Traffic” hyperlink in the email links to the trigger history

for that alert, while the “View results” hyperlink links to the specific search that caused

the email alert. Also, under the Activity menu, there is a Triggered Alerts option that

displays a report showing the fired alerts, including their severity, as shown in the

following screen shot.

!
Figure'14:'A'“Triggered'Alerts”'report'in'Splunk.'

3. Conclusion
SCADA networks typically contain business-critical and mission-critical devices.

Consequently, anything that might cause support or downtime issues, such as an anti-

virus, IDS, or firewall, is often avoided. A low-interaction honeypot can be an effective

means of detecting hostile scanning and other activity on a SCADA network without

modifying the existing network and system configurations. One caveat with honeypots is

that they present potential legal complications, so it is best to check with a lawyer before

embarking on this path.

Designing and Implementing a Honeypot for a SCADA Network
!

2
7

!

Charlie!Scott,!cscott@utexas.edu! ! !

There are several SCADA honeypot projects that already exist, making

implementation easier than starting from scratch with a generic honeypot configuration.

Conpot is a good choice because it is under active development. This honeypot can be

even more effective if it simulates a device that actually exists on the SCADA network,

so understanding the attack surface of that network is important, and can be done with a

scanner such as Nmap, Nessus, or other tools. To keep it simple, choose a device that has

only a few services, but that might still be interesting to a potential attacker. Once a

device is chosen, it is trivial to modify the Conpot configuration to match the HTTP,

SNMP, and Modbus configurations on that host.

Because the SCADA network is not connected directly to a control network,

intermediary logging and monitoring systems are required to collect and present

information to the operators. Sending the honeypot logs to a Syslog server and indexing

them with Splunk can allow the security operator to easily search honeypot activity, and

be alerted when it appears that an attack is in progress. This allows a security operator to

respond quickly to an event that might not have even been detectable before.

Designing and Implementing a Honeypot for a SCADA Network
!

2
8

!

Charlie!Scott,!cscott@utexas.edu! ! !

4. References
Byres,!E.!(2012,!October!12).!The-Critical-SCADA-Security-Patch-that-your-Control-
System-Isn’t-Getting.!Retrieved!March!8,!2014,!from!Tofino!Security:!
https://www.tofinosecurity.com/blog/criticalQscadaQsecurityQpatchQyourQcontrolQ
systemQisn%E2%80%99tQgetting!
!
Digital!Bond,!Inc.!(2014,!March!1).!SCADA-Honeynet.!Retrieved!March!1,!2014,!from!
Digital!Bond:!https://www.digitalbond.com/tools/scadaQhoneynet/!
!
Forner,!E.,!&!Meixell,!B.!(2013,!July!27).!Out-of-Control:-Demonstrating-SCADA-
Exploitation.!Retrieved!January!12,!2014,!from!Black!Hat!Security!Conference!Media:!
https://media.blackhat.com/usQ13/USQ13QFornerQOutQofQControlQDemonstratingQ
SCADAQWP.pdf!
!
Glastopf!Developers.!(2013,!January!1).!Ubuntu-12.04-LTS.!Retrieved!May!21,!2014,!
from!Conpot!0.2.2!Documentation:!
https://glastopf.github.io/conpot/installation/ubuntu.html!
!
Haslinger,!D.!(2014,!April!18).!Conpot-not-initialising-#125.!Retrieved!May!24,!2014,!
from!Github:!https://github.com/glastopf/conpot/issues/125!
!
Higgins,!K.!J.!(2014,!January!15).!SCADA-Researcher-Drops-ZeroSDay,-ICSSCERT-Issues-
Advisory.!Retrieved!February!1,!2014,!from!Dark!Reading:!
http://www.darkreading.com/applications/scadaQresearcherQdropsQzeroQdayQicsQ
cert/240165420!
!
Higgins,!K.!J.!(2013,!January!15).!The-SCADA-Patch-Problem.!Retrieved!January!12,!
2014,!from!Dark!Reading:!http://www.darkreading.com/vulnerability/theQscadaQ
patchQproblem/240146355!
!
Hruska,!J.!(2009,!March!25).!BIOSSlevel-rootkit-attack-scary,-but-hard-to-pull-off.!
Retrieved!May!28,!2014,!from!Ars!Technica:!
http://arstechnica.com/gadgets/2009/03/researchersQdemonstrateQbiosQlevelQ
rootkitQattack/!
!
Knapp,!E.!D.!(2011).!Industrial-Network-Security.!Waltham,!MA,!USA:!Syngress.!
!
Luallen,!M.!E.!(2013,!February!1).!SANS-SCADA-and-Process-Control-Security-Survey.!
Retrieved!January!12,!2014,!from!SANS!Institute:!https://www.sans.org/readingQ
room/analystsQprogram/sansQsurveyQscadaQ2013!
!
Pothametsy,!V.,!&!Franz,!M.!(2005,!July!15).!SCADA-HoneyNet-Project:-Building-
Honeypots-for-Industrial-Networks.!Retrieved!February!1,!2014,!from!SCADA!

Designing and Implementing a Honeypot for a SCADA Network
!

2
9

!

Charlie!Scott,!cscott@utexas.edu! ! !

HoneyNet!Project:!Building!Honeypots!for!Industrial!Networks!:!
http://scadahoneynet.sourceforge.net/!
!
Provos,!N.!(2008,!July!15).!Developments-of-the-Honeyd-Virtual-Honeypot-.!Retrieved!
March!8,!2014,!from!Developments!of!the!Honeyd!Virtual!Honeypot!:!
http://www.honeyd.org/!
!
Provos,!N.,!&!Holz,!T.!(2008).!Virtual-Honeypots:-From-Botnet-Tracking-to-Intrusion-
Detection-.!Boston,!Massachusetts,!US:!Pearson!Education,!Inc.!
!
Rist,!L.!(2013,!November!11).!glastopf/modbusStk.!Retrieved!May!25,!2014,!from!
Github:!https://github.com/glastopf/modbusQtk!
!
Rist,!L.,!Vestergaard,!J.,!&!Haslinger,!D.!(2014,!February!1).!CONPOT.!Retrieved!
February!1,!2014,!from!CONPOT:!http://conpot.org/!
!
Rsyslog!Community.!(2014,!May!28).!rsyslog.!Retrieved!May!28,!2014,!from!rsyslog:!
http://www.rsyslog.com/!
!
Schnieder!Electric.!(2010,!January!1).!Gain-energy-and-insight-with-Power-Logic.!
Retrieved!May!14,!2014,!from!Schneider!Electric!Corporate:!
http://download.schneiderQ
electric.com/files?p_File_Id=27479876&p_File_Name=PLSED106014EN.pdf!
!
Splunk,!Inc.!(2014,!May!29).!What-is-Splunk-Enterprise?!Retrieved!May!29,!2014,!
from!Splunk:!http://www.splunk.com/view/splunk/SPQCAAAG57!
!
Stouffer,!K.,!Falco,!J.,!&!Scarfone,!K.!(2011,!June!1).!NIST-Special-Publication-800S82:-
Guide-to-Industrial-Control-Systems-(ICS)-Security-.!Retrieved!March!8,!2014,!from!
NIST.gov!Q!Computer!Security!Division!Q!Computer!Security!Resource!Center:!
http://csrc.nist.gov/publications/nistpubs/800Q82/SP800Q82Qfinal.pdf!
!
Tenable!Network!Security.!(2014,!04!13).!Plugins:-SCADA.!Retrieved!04!13,!2014,!
from!Tenable!Nework!Security:!
http://www.tenable.com/plugins/index.php?view=all&family=SCADA!
!
Ubuntu!Community.!(2014,!May!20).!Releases.!Retrieved!May!21,!2014,!from!Ubuntu!
Wiki:!https://wiki.ubuntu.com/Releases!
!
Wade,!S.!M.!(2011,!1!1).!SCADA-Honeynets:-The-attractiveness-of-honeypots-as-critical-
infrastructure-security-tools-for-the-detection-and-analysis-of-advanced-threats.-
Retrieved!February!3,!2014,!from!Graduate!Theses!and!Dissertations:!
http://lib.dr.iastate.edu/etd/12138/!
!

Designing and Implementing a Honeypot for a SCADA Network
!

3
0

!

Charlie!Scott,!cscott@utexas.edu! ! !

Weiss,!J.!(2010).!Protecting-Inudstrial-Control-Systems-from-Electronic-Threats.!New!
York,!New!York,!United!States!of!America:!Momentum!Press,!LLC.!
!
Zetter,!K.!(2011,!July!11).!How-Digital-Detectives-Deciphered-Stuxnet,-the-Most-
Menacing-Malware-in-History.!Retrieved!January!12,!2014,!from!Wired:!
http://www.wired.com/threatlevel/2011/07/howQdigitalQdetectivesQdecipheredQ
stuxnet/!
!
Zetter,!K.!(2012,!May!28).!Meet-‘Flame,’-The-Massive-Spy-Malware-Infiltrating-Iranian-
Computers.!Retrieved!March!8,!2013,!from!Wired:!
http://www.wired.com/threatlevel/2012/05/flame/all/!
!
Zubairi,!J.!A.,!&!Mahboob,!A.!(2013,!December!11).!Securing-SCADA-Systems-with-
Open-Source-Software.!Retrieved!March!8,!2014,!from!DHA!Suffa!University:!
http://www.dsu.edu.pk/index.php/en/downloads/category/7QdsuQ
workshop?download=60:protectingQscadaQsystemsQusingQopenQsourceQsoftwareQ
honetQ2013!

Designing and Implementing a Honeypot for a SCADA Network
!

3
1

!

Charlie!Scott,!cscott@utexas.edu! ! !

!

5. Appendix A – ion6200.xml Modified Template
!
The!ion6200.xml!file!from!/usr/local/lib/python2.7/distSpackages/ConpotS0.2.2S
py2.7.egg/conpot/templates,!used!to!configure!Conpot!to!simulate!a!Schneider!
Electric!PowerLogic!ION6200!smart!meter.!
!
<conpot_template!name="ION6200"!description="Simulation!of!a!Schneider!Electric!
ION6200!Smart!Meter">!
!!!!<core>!
!!!!!!!!<databus>!
!!!!!!!!!!!!<!QQ!Core!value!that!can!be!retrieved!from!the!databus!by!key!QQ>!
!!!!!!!!!!!!<key_value_mappings>!
!!!!!!!!!!!!!!!!<key!name="FacilityName">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"FAC"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="SystemName">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"FAC!eMeter"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="SystemDescription">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"ION!6200!E1176"</value>!
!!!!!!!!!!!!!!!!</key>!
! ! <key!name="Uptime">!
!!!!!!!!!!!!!!!!!!!!<value!type="function">conpot.emulators.misc.uptime.Uptime</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="sysObjectID">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"1.3.6.1.4.4346.11.1.2.1.1.15"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="sysContact">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"Charlie!Scott"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="sysName">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"FAC!eMeter"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="sysLocation">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"FAC"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="sysServices">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">"12"</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="memoryModbusSlave1BlockA">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">[random.randint(0,1)!for!b!in!
range(0,128)]</value>!
!!!!!!!!!!!!!!!!</key>!

Designing and Implementing a Honeypot for a SCADA Network
!

3
2

!

Charlie!Scott,!cscott@utexas.edu! ! !

!!!!!!!!!!!!!!!!<key!name="memoryModbusSlave1BlockB">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">[random.randint(0,1)!for!b!in!range(0,32)]</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="memoryModbusSlave1BlockC">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">[random.randint(0,1)!for!b!in!range(0,8)]</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="memoryModbusSlave1BlockD">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">[0!for!b!in!range(0,32)]</value>!
!!!!!!!!!!!!!!!!</key>!
! ! <key!name="Copyright">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">""</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="s7_id">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">""</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="s7_module_type">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">""</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!!!!!<key!name="empty">!
!!!!!!!!!!!!!!!!!!!!<value!type="value">""</value>!
!!!!!!!!!!!!!!!!</key>!
!!!!!!!!!!!!</key_value_mappings>!
!!!!!!!!</databus>!
!!!!</core>!
!!!!<protocols>!
!!!!!!!!<snmp!enabled="True"!host="0.0.0.0"!port="161">!
!!!!!!!!!!!!<config>!
!!!!!!!!!!!!!!!!<!QQ!Configure!individual!delays!for!SNMP!commands!QQ>!
!!!!!!!!!!!!!!!!<entity!name="tarpit"!command="get">0.1;0.2</entity>!
!!!!!!!!!!!!!!!!<entity!name="tarpit"!command="set">0.1;0.2</entity>!
!!!!!!!!!!!!!!!!<entity!name="tarpit"!command="next">0.0;0.1</entity>!
!!!!!!!!!!!!!!!!<entity!name="tarpit"!command="bulk">0.2;0.4</entity>!
!
!!!!!!!!!!!!!!!!<!QQ!Configure!DoS!evasion!thresholds!
(req_per_ip/minute;req_overall/minute)!QQ>!
!!!!!!!!!!!!!!!!<entity!name="evasion"!command="get">120;240</entity>!
!!!!!!!!!!!!!!!!<entity!name="evasion"!command="set">120;240</entity>!
!!!!!!!!!!!!!!!!<entity!name="evasion"!command="next">240;600</entity>!
!!!!!!!!!!!!!!!!<entity!name="evasion"!command="bulk">120;240</entity>!
!!!!!!!!!!!!</config>!
!!!!!!!!!!!!<mibs>!
!!!!!!!!!!!!!!!!<mib!name="SNMPv2QMIB">!
!!!!!!!!!!!!!!!!!!!!<symbol!name="sysDescr">!
!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!Value!is!key!in!databus!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!<value>SystemDescription</value>!

Designing and Implementing a Honeypot for a SCADA Network
!

3
3

!

Charlie!Scott,!cscott@utexas.edu! ! !

!!!!!!!!!!!!!!!!!!!!</symbol>!
!!!!!!!!!!!!!!!!!!!!<symbol!name="sysUpTime">!
!!!!!!!!!!!!!!!!!!!!!!!!<value>Uptime</value>!
!!!!!!!!!!!!!!!!!!!!</symbol>!
!!!!!!!!!!!!!!!!!!!!<symbol!name="sysContact">!
!!!!!!!!!!!!!!!!!!!!!!!!<value>sysContact</value>!
!!!!!!!!!!!!!!!!!!!!</symbol>!
!!!!!!!!!!!!!!!!!!!!<symbol!name="sysName">!
!!!!!!!!!!!!!!!!!!!!!!!!<value>sysName</value>!
!!!!!!!!!!!!!!!!!!!!</symbol>!
!!!!!!!!!!!!!!!!!!!!<symbol!name="sysLocation">!
!!!!!!!!!!!!!!!!!!!!!!!!<value>sysLocation</value>!
!!!!!!!!!!!!!!!!!!!!</symbol>!
!!!!!!!!!!!!!!!!!!!!<symbol!name="sysServices">!
!!!!!!!!!!!!!!!!!!!!!!!!<value>sysServices</value>!
!!!!!!!!!!!!!!!!!!!!</symbol>!
!!!!!!!!!!!!!!!!</mib>!
!!!!!!!!!!!!</mibs>!
!!!!!!!!</snmp>!
!!!!!!!!<modbus!enabled="True"!host="0.0.0.0"!port="502">!
!!!!!!!!!!!!<device_info>!
!!!!!!!!!!!!!!!!<VendorName>Schneider!Electric</VendorName>!
!!!!!!!!!!!!!!!!<ProductCode>PowerLogic</ProductCode>!
!!!!!!!!!!!!!!!!<MajorMinorRevision>ION6200</MajorMinorRevision>!
!!!!!!!!!!!!</device_info>!
!!!!!!!!!!!!<slaves>!
!!!!!!!!!!!!!!!!<slave!id="1">!
!!!!!!!!!!!!!!!!!!!!<blocks>!
!!!!!!!!!!!!!!!!!!!!!!!!<block!name="memoryModbusSlave1BlockA">!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!COILS/DISCRETE_OUTPUTS!aka.!binary!output,!power!on/power!
off!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Here!we!map!modbus!addresses!1!to!127!to!S7Q200!PLC!Addresses!
Q0.0!to!Q15.7!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<type>COILS</type>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<starting_address>1</starting_address>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<size>128</size>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<content>memoryModbusSlave1BlockA</content>!
!!!!!!!!!!!!!!!!!!!!!!!!</block>!
!!!!!!!!!!!!!!!!!!!!!!!!<block!name="memoryModbusSlave1BlockB">!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!CONTACTS/DISCRETE_INPUTS!aka.!binary!input.!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Map!modbus!addresses!10001Q10032!to!S7Q200!PLC!inputs!
starting!from!I0.0!!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<type>DISCRETE_INPUTS</type>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<starting_address>10001</starting_address>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<size>32</size>!

Designing and Implementing a Honeypot for a SCADA Network
!

3
4

!

Charlie!Scott,!cscott@utexas.edu! ! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!<content>memoryModbusSlave1BlockB</content>!
!!!!!!!!!!!!!!!!!!!!!!!!</block>!
!!!!!!!!!!!!!!!!!!!!</blocks>!
!!!!!!!!!!!!!!!!</slave>!
!!!!!!!!!!!!!!!!<slave!id="2">!
!!!!!!!!!!!!!!!!!!!!<!QQ!This!slave!does!some!measuring.!(analog!inputs).!
!!!!!!!!!!!!!!!!!!!!!!!!!Map!modbus!addresses!30001Q30009!to!S7!PLC!analog!input!bits!
AIW0QAIW8!QQ>!
!!!!!!!!!!!!!!!!!!!!<blocks>!
!!!!!!!!!!!!!!!!!!!!!!!!<block!name="memoryModbusSlave1BlockC">!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!Will!be!parsed!with!eval()!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<type>ANALOG_INPUTS</type>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<starting_address>30001</starting_address>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<size>8</size>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<content>memoryModbusSlave1BlockC</content>!
!!!!!!!!!!!!!!!!!!!!!!!!</block>!
!!!!!!!!!!!!!!!!!!!!!!!!<block!name="memoryModbusSlave1BlockD">!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!Maps!to!S7Q200!PLC!addresses!HoldStart+8!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<type>HOLDING_REGISTERS</type>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<starting_address>40001</starting_address>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<size>8</size>!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!<content>memoryModbusSlave1BlockD</content>!
!!!!!!!!!!!!!!!!!!!!!!!!</block>!
!!!!!!!!!!!!!!!!!!!!</blocks>!
!!!!!!!!!!!!!!!!</slave>!
!!!!!!!!!!!!</slaves>!
!!!!!!!!</modbus>!
!!!!!!!!<s7comm!enabled="False"!host="0.0.00"!port="102">!
!!!!!!!!!!!!<system_status_lists>!
!!!!!!!!!!!!!!!!<ssl!id="W#16#xy1C"!name="Component!Identification">!
!!!!!!!!!!!!!!!!!!!!<system_name!id="W#16#0001">SystemName</system_name>!
!!!!!!!!!!!!!!!!!!!!<module_name!id="W#16#0002">SystemDescription</module_name>!
!!!!!!!!!!!!!!!!!!!!<plant_ident!id="W#16#0003">FacilityName</plant_ident>!
!!!!!!!!!!!!!!!!!!!!<copyright!id="W#16#0004">Copyright</copyright>!
!!!!!!!!!!!!!!!!!!!!<serial!id="W#16#0005">s7_id</serial>!
!!!!!!!!!!!!!!!!!!!!<module_type_name!
id="W#16#0007">s7_module_type</module_type_name>!
!!!!!!!!!!!!!!!!!!!!<oem_id!id="W#16#000A">empty</oem_id>!
!!!!!!!!!!!!!!!!!!!!<location!id="W#16#000B">empty</location>!
!!!!!!!!!!!!!!!!</ssl>!
!!!!!!!!!!!!!!!!<ssl!id="W#16#xy11"!name="Module!Identification">!
!!!!!!!!!!!!!!!!!!!!<!QQ!Not!really!sure!what!these!are!supposed!to!contain!QQ>!
!!!!!!!!!!!!!!!!!!!!<module_identification!
id="W#16#0001">empty</module_identification>!

Designing and Implementing a Honeypot for a SCADA Network
!

3
5

!

Charlie!Scott,!cscott@utexas.edu! ! !

!!!!!!!!!!!!!!!!!!!!<hardware_identification!
id="W#16#0006">empty</hardware_identification>!
!!!!!!!!!!!!!!!!!!!!<firmware_identification!
id="W#16#0006">empty</firmware_identification>!
!!!!!!!!!!!!!!!!</ssl>!
!!!!!!!!!!!!</system_status_lists>!
!!!!!!!!</s7comm>!
!!!!!!!!<http!enabled="True"!host="0.0.0.0"!port="80">!
!!!!!!!!!!!!<global>!
!!!!!!!!!!!!!!!!<config>!
!!!!!!!!!!!!!!!!!!!!<!QQ!what!protocol!shall!we!use!by!default?!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="protocol_version">HTTP/1.1</entity>!
!!!!!!!!!!!!!!!!!!!!<!QQ!if!we!find!any!date!header!to!be!delivered,!should!we!update!it!to!a!
real!value?!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="update_header_date">true</entity>!
!!!!!!!!!!!!!!!!!!!!<!QQ!should!we!disable!the!HTTP!HEAD!method?!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="disable_method_head">false</entity>!
!!!!!!!!!!!!!!!!!!!!<!QQ!should!we!disable!the!HTTP!TRACE!method?!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="disable_method_trace">false</entity>!
!!!!!!!!!!!!!!!!!!!!<!QQ!should!we!disable!the!HTTP!OPTIONS!method?!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="disable_method_options">false</entity>!
!!!!!!!!!!!!!!!!!!!!<!QQ!TARPIT:!how!much!latency!should!we!introduce!to!any!response!by!
default?!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="tarpit">0</entity>!
!!!!!!!!!!!!!!!!</config>!
!
!!!!!!!!!!!!!!!!<!QQ!these!headers!will!be!sent!with!each!response!QQ>!
!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!<!QQ!this!date!header!will!be!updated,!if!enabled!above!QQ>!
!!!!!!!!!!!!!!!!!!!!<entity!name="Date">Sat,!28!Apr!1984!07:30:00!GMT</entity>!
!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!</global>!
!
!!!!!!!!!!!!<!QQ!how!should!the!different!URI!requests!be!handled!QQ>!
!!!!!!!!!!!!<htdocs>!
!!!!!!!!!!!!!!!!<node!name="/">!
!!!!!!!!!!!!!!!!!!!!<!QQ!force!response!status!code!to!302!QQ>!
!!!!!!!!!!!!!!!!!!!!<status>302</status>!
!!!!!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!these!headers!will!be!sent!along!with!this!response!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="Location">/index.html</entity>!
!!!!!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!!!!!</node>!
!!!!!!!!!!!!!!!!<node!name="/index.html">!

Designing and Implementing a Honeypot for a SCADA Network
!

3
6

!

Charlie!Scott,!cscott@utexas.edu! ! !

!!!!!!!!!!!!!!!!!!!!<!QQ!this!tarpit!will!override!the!globally!set!tarpit!for!this!node!QQ>!
!!!!!!!!!!!!!!!!!!!!<tarpit>0.0;0.3</tarpit>!
!!!!!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="LastQModified">Tue,!19!May!1993!09:00:00!
GMT</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="SetQcookie">path=/</entity>!
!!!!!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!!!!!</node>!
!!!!!!!!!!!!!!!!<node!name="/index.htm">!
!!!!!!!!!!!!!!!!!!!!<!QQ!this!node!will!inherit!the!payload!from!the!referenced!alias!node!
without!telling!the!browser!QQ>!
!!!!!!!!!!!!!!!!!!!!<alias>/index.html</alias>!
!!!!!!!!!!!!!!!!</node>!
!
!!!!!!!!!!!!!!!!<!QQ!the!following!nodes!are!used!for!unit!testing!and!should!be!removed!for!
production!QQ>!
!!!!!!!!!!!!!!!!<node!name="/tests/unittest_base.html">!
!!!!!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="LastQModified">Tue,!19!May!1993!09:00:00!
GMT</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!!!!!</node>!
!!!!!!!!!!!!!!!!<node!name="/tests/unittest_databus.html">!
!!!!!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="LastQModified">Tue,!19!May!1993!09:00:00!
GMT</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!!!!!</node>!
!!!!!!!!!!!!!!!!<node!name="/tests/unittest_tarpit.html">!
!!!!!!!!!!!!!!!!!!!!<tarpit>5</tarpit>!
!!!!!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="LastQModified">Tue,!19!May!1993!09:00:00!
GMT</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!!!!!</node>!
!!!!!!!!!!!!!!!!<node!name="/tests/unittest_subselects.html">!
!!!!!!!!!!!!!!!!!!!!<triggers>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!
appendix="5459fa05e5c1db37f2679b65a5175bcf">action=unit;subaction=test</en
tity>!
!!!!!!!!!!!!!!!!!!!!</triggers>!

Designing and Implementing a Honeypot for a SCADA Network
!

3
7

!

Charlie!Scott,!cscott@utexas.edu! ! !

!!!!!!!!!!!!!!!!!!!!<headers>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="LastQModified">Tue,!19!May!1993!09:00:00!
GMT</entity>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!!!!!</headers>!
!!!!!!!!!!!!!!!!</node>!
!!!!!!!!!!!!</htdocs>!
!
!!!!!!!!!!!!<!QQ!how!should!the!different!status!codes!be!handled!QQ>!
!!!!!!!!!!!!<statuscodes>!
!!!!!!!!!!!!!!!!<status!name="400">!
!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!400!(BAD!REQUEST)!errors!should!be!super!fast!and!responsive!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!<tarpit>0</tarpit>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!</status>!
!!!!!!!!!!!!!!!!<status!name="404">!
!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!404!(NOT!FOUND)!errors!should!be!super!fast!and!responsive!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!<tarpit>0</tarpit>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!</status>!
!!!!!!!!!!!!!!!!<status!name="501">!
!!!!!!!!!!!!!!!!!!!!!!!!<!QQ!501!(NOT!IMPLEMENTED)!errors!should!be!super!fast!and!
responsive!QQ>!
!!!!!!!!!!!!!!!!!!!!!!!!<tarpit>0</tarpit>!
!!!!!!!!!!!!!!!!!!!!!!!!<entity!name="ContentQType">text/html</entity>!
!!!!!!!!!!!!!!!!</status>!
!!!!!!!!!!!!</statuscodes>!
!!!!!!!!</http>!
!!!!</protocols>!
</conpot_template>!
!

