GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Using Network Based Security Systems to Search

for STIX and TAXII Based Indicators of Compromise

GIAC (GCIA) Gold Certification

Author: Jason Mack, jasonmack@gmail.com
Advisor: Richard Carbone
Accepted: July 15, 2015

Abstract

As the interest in collecting actionable cvber intelligence has grown substantially over the
last several years in response to the growing sophistication of attackers, with it has come
the need for organizations to moic readily process indicators of compromise — and act
immediately upon them to determine if they are present in a given enterprise
environment. While host-based tools have been designed for this very purpose, they can
be challenging to deploy on an enterprise-wide basis and are dependent on frequent
updates. This paper will propose several methodologies by which these indicators of
compromisc may be visible within network traffic. It will further study how key network
security devices (e.g. Snort IDS, [PTables Firewall, Web Proxy, etc.) can be used to
effectivcly identify and alert on indicators of compromise both on the way into the
network and also via analysis of outbound traffic. In addition, STIX and TAXII will be
thoroughly investigated as individual protocols, including how they can best be

incorporated into the rapid generation of customized network monitoring rules.

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

1. Introduction

The field of cyber intelligence is a new but quickly growing discipline within Information
Security. As successful attacks have become both more complex and more frequent, the
need has never been greater to work collaboratively to stop malicious attackers before
they are able to do harm to protected systems. One of the most effective ways to
establish this collaboration has been through the creation and sharing of so-called

“Indicators of Compromise” (I0C).

The OpenlOC project, an open source initiative founded by Mandiant and located at

http://www.OpenlOC.org, defines an I0OC as “specific artifacts left by an intrusion, or

greater sets of information that allow for the detection of intrusions or other activities
conducted by attackers.” (OpenlOC) Common 10OCs may include hashes of known
malicious files, I[P addresses or DNS names of Command and Control (C&C) servers,
registry keys and the contents of files (Decianno). The entire process by which IOCs are

created and compared is summed up in this diagram from the OpenlOC project:

» Network 10Cs
» Host I0Cs
(Y
Analyze Data
Deploy 10Cs

» LR data review

» Forensic analysis » IDS/PS
» Log analysis ITERATIVE » HIDS/HIPS
» Malware analysis PROCESS . SIEM
» False positive » Investigative tools
identification r
= Forensic image
» LR data collection |
» Log data

Figure 1: An Introduction to OpenlOC (Source:
http://OpenlOC.org/resources/An Introduction to OpenlOC.pdf).

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 3

In the above example, we see that the process begins with initial leads (which can also be
thought of as intelligence collection), followed by IOC creation and deployment, and
finally ends with a review for the presence of indicators in daily system and network

activity.

Although this paper will touch upon all of these phases, the primary concentration wiil be
on I0OC deployment and identification within network traffic. In addition, although
OpenlOC provides a framework to automate nearly all parts of the aforementioned
process, we will be investigating the new STIX and TAXII standards — complementary
but different technologies that have been adopted by NIST and MITRE for standardizing
the sharing of IOCs.

However, before we can look at standardization in sharing, it is important to understand
the technical basis of an IOC. Each specific IOC, be it shared via intelligence
collaboration or collected internally, has 2 rcason for its existence and a corresponding set
of network technologies that would make the best choice for the implementation of
detective and preventive controls. We will look at different examples of IOCs but will
start with the most basic: making use of a network firewall to identify traffic from a

known malicious IP addiess.

2. Finding evil - Common Indicators of Compromise

2.1. 1P Addresses

As mentioned, probably the most trivial IOC to work with is a simple IP address. In most
modern host and network-based compromises, at least one C&C system is normally
involved, although certainly the protocol it uses (HTTP, HTTPS, DNS) may vary (Qinetq
2). Most C&C systems are deployed as part of a Botnet to send instructions to nodes
known as zombies. These botnets can be extremely large, with one that was recently

taken down numbering upwards of 1.9 million compromised hosts (Symantec).

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 4

Identifying IP address communication is fundamental when monitoring IPV4 based
communication. Consider the following example connection to google.com, captured

using Wireshark (resolved via DNS to 195.122.30.55):

398 4.91925100192.168.1.104 195.122.30.55 TCP 66 27581-80 [SYN] Seq=0 win=8192 Len=0 MSS=1460 WS=4 SACK_PERM=1

399 4.91951900192.168.1.104 195.122.30.55 TCP 66 2758280 [SYN] Seq=0 win=8192 Len=0 M55=1460 WS=4 SACK_PERM=1

444 5.04648400192.168.1.104 195.122.30.55 TCP 54 27580-80 [Ack] seq=1 Ack=1 win=65700 Len=0

446 5.04785300192.168.1.104 195.122.30.55 TCP 54 2758180 [ACK] Seq=1 Ack=1 Win=65700 Len=0

448 5.04885200192.168.1.104 195.122.30.55 TCP 54 27578-80 [ACK] seq=1 Ack=1 win=65700 Len=0

450 5.04893900192.168.1.104 195.122.30.55 TCP 54 27579-80 [ACK] Seq=1 Ack=1 Win=65700 Len=0

452 5.05182300192.168.1.104 195.122.30.55 TCP 54 27582-80 [ACK] Seq=l Ack=1 win=65700 Len=0

454 5.13140600192.168.1.104 195.122.30.55 HTTP 395 GET / HTTP/1.1

461 5.32250300192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=2921 win=65700 Len=0

464 5.32323800192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=5841 Win=65700 Len=0

467 5.32420800192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=8761 Win=65700 Len=0

470 5.32521500192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=11681 Win=64240 Len=0

473 5.32543500192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=14601 win=61320 Len=0

474 5.32642000192.168.1.104 195.122.30.55 TCP 54 [TCP window Update] 27580-80 [ACK] Seq=342 Ack=14601 Win=62780 Len=
475 5.32653600192.168.1.104 195.122.30.55 TCP 54 [TCP window update] 27580-80 [ACK] Seq=342 Ack=14601 win=65700 Len=0
479 5.45184000192.168.1.104 195.122.30.55 TCP 54 27580-80 [Ack] seq=342 Ack=17521 win=65700 Len=0

482 5.45265200192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=20441 Win=65700 Len=0

485 5.47387400192.168.1.104 195.122.30.55 TCP 54 27580-80 [Ack] seq=342 Ack=23361 win=65700 Len=0

488 5.47465600192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=26281 Win=65700 Len=0

491 5.48703300192.168.1.104 195.122.30.55 TCP 54 27580-80 [Ack] seq=342 Ack=29201 win=65700 Len=0

494 5.48758500192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=342 Ack=32121 Win=65700 Len=0

497 5.49996400192.168.1.104 195.122.30.55 TCP 54 27580-80 [Ack] seq=342 Ack=35041 win=65700 Len=0

500 5.64849000192.168.1.104 195.122.30.55 HTTP 970 GET /gen_204?v=3&s=webhp&imc=1&imn=1&imp=0&ei=M10p Vb2 NIKDSAGZLYOQDW&e=4011550,4011551,4011557,4011559,402
506 6.01639400192.168.1.104 195.122.30.55 TCP 54 27580-80 [ACK] Seq=1258 Ack=36337 win=64404 Len=(

Figure 2: Sample connection to Google obtaincd using live testing.

In this example, as seen in the third column of the packet capture (after the timestamp),
Google’s destination IP address can be clearly identified in the TCP/IP header. It is
therefore possible to either alert or tlock connections to known compromised IP
addresses (whether they come from open source intelligence, honeypots, or an

organization’s own intelligence colicction efforts) using either a firewall or an IDS/IPS.

In practice, identifying an 1OC within firewall logs is a relatively simple process. For
example, analyzing the network addresses of known BlackPOS Malware C&C systems
that were identiiied in a recent community intelligence bulletin from Crowdstrike, we can

use [PTables to identify and block the I0Cs:

iptables -N LOGGING

iptables -A INPUT -j LOGGING

iptables -A LOGGING -m limit --limit 2/min -j LOG --log-prefix "IPTables Packet
Dropped: " --log-level 7

iptables -A INPUT -s 199.188.204.182 -- dport 21 j DROP

iptables -A INPUT -s 50.87.167.144 -- dport 21 j DROP

iptables -A INPUT -5 63.111.113.99 -- dport 21 j DROP

(Source: Natarjan).

Similar rules may be implemented using the Snort IDS/IPS to alert on the presence of

known C&C destination traffic:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

© 2015 The SANS Institute

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

alert tcp any any <> 199.188.204.182 21 (msg: "TargetBreach Exfil C2"; sid: xxx;)
alert tcp any any <> 50.87.167.144 21 (msg: "TargetBreach Exfil C2"; sid: xxx;)
alert tcp any any <>63.111.113.99 21 (msg: "TargetBreach Exfil C2"; sid: xxx;)

(Source: Crowdstrike).

2.2. Domain Names and DNS

While IP addresses may be simple, a large portion of the network traffic that traverses the
Internet every day is Domain Name-based. Domain names are the mapping between a
URL and an IP address. When an IOC is presented as a domain nane, it can be useful to
both monitor it for active connections and block it in the future. !n its simplest form, any
host attempt to connect to a domain name will be predicated by a DNS request. The

following is a simple but useful diagram of this proccss:

“Thats in my cache! £ me&ps to

this IP gddress: 7wl 2.751.42%

DNS
Server

“Great! Pl cache that
for a while in case |
BEL MORE PequEsls”

P ‘Thank, for the
Jaections! Now to

T baks of grE-_.at
imformatian! DNS
Server
E “The: domain name
ww howsiuivorks. com
1] i ot in my database of
“I need dirzctions to cache. I'll try anothir
http: S www, howstuffworks.com® DMS server”

Figure 3: How Domain Name Servers Work (Source:
http://computer.howstuffworks.com/dns.htm).

This diagram depicts that in order to capture potentially malicious DNS traffic, we need

only capture traffic destined from client systems to DNS servers — at which point it would

Jason Mack, jasonmack@gmail.com

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

then be possible to map client requests back to the domains being specifically requested.
In practice, this traffic is relatively easy to identify through the use of a typical packet
capture utility like Wireshark:

480 3. 20474700100, 168,104 192.168.1.1 5 T2 Stadard query D56 A wnsis. el o\ |

481 3, 4565500192 168, 1.1 J.166.0.104 NS 100 Standard query respomse Oufc3 A 66,3478 2%
480 3, 4605900192, 1681104 192.168.1.1 DN B4 Standard query (x7365 A wa. SeCty nqtheuman. org
34 3, 26247600192 166, 1.1 L6114 D B Standard query response OvSfh & 83550213
2 3, 26007200192, 168, 1104 192.168.1.1 NS 73 Standard query QU438 * adadi sor.net

Figure 4: Sample DNS connection traffic obtained using live testing.

In this very simple example, we see a DNS query and subsequent response in packets 480
and 508 (identified by the packet ID field in the first column of each line). Packet 480
indicates that a client system (likely a web browser but it could be an application or even
malware) has made a request to the local domain server for the IP address of sans.org.
Subsequently packet 508 contains the rcsponse from the DNS server: that the IP address
for sans.org is 66.35.59.213. As a result of analyzing this short packet capture, we can
further determine that 192.168.1.104 was the client that made the original DNS request,
so if sans.org were in fact a malicious site, incident responders could then take

appropriate action now knowing that 192.168.1.104 may be infected.

Realistically, however, this is not likely the most efficient way to monitor DNS traffic for
known comproinised sites. Probably one of the best tools available to do this is a web
proxy. In fact, “there are numerous other ways to slice and dice Web proxy logs to find
bad things. For example, comparing a list of currently known malicious domains or Zeus
maiware domains and IPs to the proxy logs can help find hosts that have been attacked or

infected, but not blocked by the Web proxy.” (Sawyer 2011)

In addition to web proxies, there are also many content filtering tools, both commercial
and free that have similar functionality. A recent survey from SMB-centric community
site Spiceworks provides a long list of products that stem from OpenDNS, to BlueCoat,

to Squid Proxy (Spiceworks). Once a web proxy or content filtering device is deployed,

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 7

it is as simple as alerting on known bad sites or actively monitoring the logs. Log
formats can differ based upon the product deployed, but will likely look something like
the following:

Source Host | Destination URL / | Action Taken (ie: Categorization (If :

Domain Name Blocked, Allowed) | content filter) |

Besides web proxies, IDS/IPS devices can also be used to look for counections to
malicious domain names — by automating much of what was previously described using
Wireshark. Here are sample Snort IDS rules covering two IOCs: one that alerts on any
direct connection attempt using a known malicious string, and another that alerts on DNS

requests to an identified malicious system:

alert tcp SHOME_NET any -> SEXTERNAL NET SHTTP_PORTS (msg:”Trojan
Command And Control Request”; flow:established,to_server;
uricontent:”/control_me_i_am_yours.php”; nocase; classtype:trojan-activity;
sid:1233333; rev:1;)

alert udp !SDNS_SERVERS any -> SDNS_SERVERS 53 (msg:”DNS request for
iamacontrolserver.ru”; content:” |01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”iamacontrolserver|02|ru”; nocase; distance:0; classtype:trojan-
activity; sid:1232313; rev:1;)

(Source: Kaffeilews).

2.3. HTTP Application Headers

Althiough TP addresses and DNS traffic both make for easy to process IOCs, they can be
highly prone to false positives since by their nature they are of only limited specificity.

Particularly with IP addresses, the following complaint is common:

“Although IP addresses are a great pivot point because of their ubiquity and the
amount of sources available to check against, there is one major problem with
using IP addresses as a pivot point: a high rate of false-positives. The time to live
(TTL) for an IP address as an effective indicator of compromise can be very low.
Compromised hosts get patched, illicitly acquired hosting space is turned off, and
malicious hosts are quickly identified and blocked or the traffic is black-holed by
the ISP. Even when an IP address is being used for malicious activity it can

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 8

sometimes be hard to block. Blocking an IP address on a shared hosting server
with thousands of other legitimate sites, means also blocking all of those sites.”

(Lindka 108)

As a result, it can be useful to create and process IOCs that are more specific than just ¢
basic IP address or domain name. These are some examples using Snort to target the
same POS malware previously discussed in Section 2.1, but with specitic rules for

digging into the HTTP headers themselves:

alert tcp SHOME_NET any -> SEXTERNAL _NET SHTTP_PORTS {msg:"MALWARE-
CNC Win.Tinybanker variant outbound connection”; flow:.to_server,established;
content:"User-Agent: Mozilla/5.0 (compatible|3B| MSIE 9.0|3B| Windows NT
6.1|3B| Trident/5.0)|OD OA|Content-Type: application/x-www-form-
urlencoded|0D OA|Host: "; fast_pattern:only; httg_header; content:"|0D
0A|Content-Length: 13|0D 0A|Connection: Close|0D 0A | Cache-Control: no-
cache|OD OA OD 0A|"; pcre:"/[*\x20-\x7e\r\n]{3}/P"; metadata:impact_flag red,
policy balanced-ips drop, policy security-ips drop, ruleset community, service
http; reference:url,blog.avast.com/2014/07/17/tinybanker-trojan-targets-
banking-customers/;
reference:url,www.virustotal.com/en/file/b88b978d00b9b3a011263f398faba21
098aba714db14f7e71062ca4a6b2e974e/analysis/; classtype:trojan-activity;
sid:31641; rev:1;)

alert tcp SHOME_NET any -> SEXTERNAL _NET SHTTP_PORTS (msg:"MALWARE-
CNC Win.Tinybanker variant outbound connection”; flow:to_server,established;
urilen:4; content:"/de/"; fast_pattern:only; http_uri; content:"User-Agent:
Mozilla/5.0 (compatible|3B| MSIE 9.0|3B| Windows NT 6.1|3B| Trident/5.0)|0D
DA | Cornitent-Type: application/x-www-form-urlencoded | 0D OA|Host: ";
content:"Content-Length: 13|0D 0A|Connection: Close |0OD 0A|Cache-Control:
no-cache|0OD 0A 0D 0OA|"; distance:0; metadata:impact_flag red, policy balanced-
ips drop, policy security-ips drop, ruleset community, service http;
reference:url,blog.avast.com/2014/07/17/tinybanker-trojan-targets-banking-
customers/;
reference:url,www.virustotal.com/en/file/b88b978d00b9b3a011263f398faba21
098aba714db14f7e71062eadabb2e974e/analysis/; classtype:trojan-activity;
sid:31642; rev:1;)

(Source: Crowdstrike).

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 9

In these examples, we see that rather than target only a single impacted system, Snort is
instead performing deep packet inspection, a task that it does in its default configuration.
Dissecting the rules, alerts would occur only on outbound established connections, with
specific user agents — likely to eliminate false positives for those platforms that are not
affected by the suspected malware. Further packet matching occurs by inspecting the
HTTP header only, and looking for specific “raw data” within the packet payioad itself.
Similar to an IDS/IPS, any tool that is capable of viewing and dissecting Layer 7 headers
would be able to perform similar functionality. An excellent example ot this might be an

application firewall.

2.4. In File Contents

As mentioned at the very beginning, IOCs may include specific data in files; for example,
malicious registry keys found in Windows “.reg” files. Although using network-based
tools to identify a specific registry key alreacdy in place in the Windows system registry is
not likely, it is quite feasible to identify this common indicator when it is in transit via

IDS/IPS and through raw packet capture.

In the case of an IDS/IPS. we are able to make use of Snort’s extensive rule content-
searching capabilities to lock for specific strings, phrases and values. Here are a couple
of good examples from the Emerging Threats rule library located at

http://rules.emergingthreats.net/open/snort-2.9.0/emerging-all.rules:

alert tcp SEXTERNAL_NET any -> $HOME_NET any (msg:"ET MALWARE IE
homepage hijacking"; flow: from_server,established; content:"wsh.RegWrite";
nocase; content:"HKLM\\\\Software\\\\Microsoft\\\\Internet
Explorer\\\\Main\\\\Start Page"; nocase;
reference:url,www.geek.com/news/geeknews/2004Jun/gee20040610025522.ht
m; reference:url,doc.emergingthreats.net/bin/view/Main/2000514;
classtype:misc-attack; sid:2000514; rev:7;)

alert tcp SSMTP_SERVERS any -> SEXTERNAL_NET 25 (msg:"ET DELETED SMTP
US Confidential PROPIN"; flow:to_server,established; content:"Subject|3A|";
pcre:"/(CONFIDENTIAL | C)//[\s\w,/-]*PROPIN[\s\w,/-]*(?=//(25)?X[1-9])/ism";
reference:url,doc.emergingthreats.net/bin/view/Main/2002447;
classtype:policy-violation; sid:2002447; rev:4;)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 1

In the first rule, Snort alerts on browser hijack attempts by identifying any packets
containing code that would modify the Windows Registry setting for Internet Explorer’s
default homepage. For the second rule, Snort would trigger an alert for any email
message that contained confidential markings within its body. Both of these exaimnpics
are of course quite simple and may be prone to false positives (particularly the second
rule), however, they do represent an overall perspective of the power of Snort for

detecting file content patterns if an IOC requires it.

Another potential mechanism to accomplish the payload file raatching of network traffic
is a live packet capture accompanied by an appropriate countent searching tool. While
some packet capture applications (notably Wireshark) have the capability to search
output using sophisticated search strings based on regular expressions, a better option for
this task would be YARA. This is a tool that suppoits the creation of signatures to search
the contents of files, network traffic or any cther type of input for known malicious
strings or IOCs. YARA is also based oi Perl regular expressions with the signatures
themselves contained in text files that are then processed for analysis (French). As an

example, here is a YARA signaturc for the Scraze malware:

rule Scraze

{
strings:
$strvall = "C:\Windows\ScreenBlazeUpgrader.bat"
$strval2 = "\ScreenBlaze.exe "
condition:
all of them
}

2.5. Specific File Hashes

Although all of the examples presented thus far are important and represent a large
percentage of the network-based IOCs available in common intelligence data sets, we
would be remiss if we did not address file hashes. This is because file hashes,

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 1
]

particularly those derived by the MDS5 algorithm, are very commonly used to identify
known malware samples. In many cases, IOCs start out as very simple — involving only a
hash and a filename for a known bad file (Gibb 2013). Indeed, it has been this author’s
personal experience that when receiving a document containing known 10Cs (particulaily
from law enforcement sources), more often than not it will contain some sort of MD5 file

hash.

A real world example of this was recently provided by the US Departricnt of Homeland
Security’s US-CERT — in a public bulletin issued to network defcnders in response to a

major cyber-attack: https://www.us-cert.gov/ncas/alerts/TA14-253A. This bulletin also

represents a demonstrable case for why MDS5 hashing corntinues to persist in the field of
cyber threat intelligence despite the fact that SHA1 and SHA2 have long been considered
cryptographically superior. While MD5 is certainly a weak hash for comparing files
when integrity must be absolutely guaranteed. in the case of threat intelligence sharing
the data is only as good as what is provided — as in the example here by US-CERT.
Thus, as long as threat intelligence providers continue to share file hashes using MD5 and
not the superior SHA1/2 algorithms (in order to ensure maximum compatibility or
usability), MD5 will continue to be the hashing algorithm implemented in IOC

processing.

The technical process of searching for file hashes within network traffic is not in and of
itself difficuit. [t involves two types of tools: A packet capture program and an MDS5 file
calculation tool. For example, using Wireshark, we are able to analyze traffic destined to
,ans.org in order to identify the presence of a specific file, as shown in the following

figure:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

o5 [T s (e

mey © sheury 2 dung=H (210083 sy Juug 7 anes I pug |

(55149 096%) uonesRAUD 23

[W 1r

[9ne 1 puoIos

Jued ulen

®pL 21 pueisuoun ALLEnde nof ey swods 11 usded nof uy sespy pus s19e Quaway NOA deya Wwedoduj sy AT “uaded 4ad saula Uszop ¥ qfeu UBul Biou 10U pue debe ed

45d 35U0 UBYL BoW 10U ‘quAY 4o B[Nl & sv -aujod B BYeWw 01 S310nD 335 p 35N ALUD "A[SALSSAIXE OS O 20U PLNOYS MOA -S310mb UL 3} 3SOLOUB 1SMW NOA ‘33N0S JBYIOUE WO} “DuSIuES B 4o 1sed sbre| E Jo “sdusiuss e Adod> nok 1

“310ND OL MOH ¥O 3IL1OND OL IVHM IANS LON 3¥Y NOA 41 HOSIAQY

UNOA MSY "SNOILWDI4ILIN3D HOI¥d 40 NOLLWDOAIMN ONY ¥3dWd WNOA 40 NOILD=(3¥ L T¥ AVAW ONY NOLLYTOIA SDIHLI SNOI¥IS ¥V SI SIINIYIJSIW ONV SILOND ONIAJLINIAI LON "SIDNIWIJFY ANV SILOND TI¥ AJIINIAL ATHIO¥d OL IAVH NOA : INVIHOWI
WSIYVIDV1d,

“S1U21U0> JO 31qR3 B 2PNLOUL 10U PLAOUS NOA

*(533U3J343. pue obed Jaaod L) sabed Jalao L@ sapn|aul

ang “xipusdde Leuorado ue sopny3xa) sebed 0f psedxa 2ou Aew aded dnoa -uosiApe UnoA yitm suoiadedxs ssnosip pue ssbed 0z-ST ul pauonod Aleaenbope oq ued 1eya didoa e @sou> -buol ssbed 0z-sT punote si Joded ploo VIS [e>idAa v
“(-p-u ‘15e49113) WOD-1SE491L> MM 1 JoILIoURD UOLIRILD UL DS SR AW NOA ‘A[339.4J03 S93UBUS4od IRWJ03 MoK doY 01 51001 oney ALjE3LdA1 SJ0Ss2304d puoM ULSPOW (6007 ‘UOLIRLIOSSY

Le316010udASd URDLIaWY) IPWI0S B3UDIB491 ¥dV BUL 01 ALIDLI5 LIS oM -33UBI949d B AQ QN p3dIEA oG PLNDYS e NOA IuoWs1els yoEa pue ddod SYI DULONPO.IUL DU NOA -SEIUIIRJ9. U0 Anesy oq 03 sey taded oy o 2ued SLUL -uesu splaLd
43pesy U1 Jeyh 110QE SLLEIS 3u1 LIk WOUX 20U Rew i3peai Ul ng 3i043q Sueideip -y Ue=c sey pue Uiew xey ‘dunpd>3 InoQe sMouy Japea. sUl BuNsse pLnoM noA ‘sses sty UI -yidsa UL U0L138130 UOLSNJIUT ‘£0G33S SYEI 01 Apesd si
U3PEa Y3 BUNSSR ‘UO|1ED[}1A4BD VIS E Joy Jeded e Buliim ase nok 31 ‘3|duwexs Jod -ss®[3 Suvc sALidadsal sy exel 01 paainbal seaisinbes-aud syl || ARy Asyl sunssy -JsPeal Ul 404 pUNOJBYDRQ SUOS BpiA0sd O UOLIOMPOIIUYL BUL SN
u0L35npoaLL -

ATINHFUYD NOILDIS WSIMYIOWId ML Qv3Y LSVIT Ly 3W3IM 3513 ONIHL ANY Gv3¥ L°NOQ NOA I

- W3y 358 135qe /SRS /URdoos) - Ap3 113 *333 M/ /1d13Y ¢, (UL 19813548 /SARS5a /UBdO0N~/NpS N> 353 W/ /1d13Y, WNITHIAAH * 130PIISGE UE 31Lm nok d|ay 03 33UsI33. Pook

Jeuzeuy ouaded plos ¢To B sL Sua ELL SAUSURIEIS SN0LAGo ploAY “3uled B3 03 pUE SJous oqgincy qe Uv'suoiafilos JaU30 UPU 433130 SL 1L AU pU UOLINLOS MoK JSS34d PALLBULS “Hon 3-UGp A3 A pUE W3LG0dd sL3 2aL0S
03 001 o1 dosd_soueoudde 4oy10 01 U0 BAGW -BULALOS Yldom pue bulisessaut si WLgoud SLUy Aym BUL el dk 95UoaUBS B pusds ‘IxaN We Godd DUl 93NPOJIUL 01 SIUBIUSS ISL3 U3 @SN 03 SL Yoeoudde suo -uoded 4noA peoa 01 wela 39b 01 pue
suaded 950y bulsSmo4q ouOSWOS 2.unades 03 uawSIELs buluado JnoA S| SLUL -Jspesd Leliusiod e 01 Jeded unoA |(as 01 ydedbesed suo anoge osn -buliaewlol sodosd O3 1BWNOOP SLYI UL BLAIS 1DBJISAY UL-ILLNG BYI ISN -IDLUISGE UR SL SLUL
13e1150Y

»T0z Jequeidas uoLsuaA B1eldusL

(dostape unok Aq paidadde SL 1jeup [BuLy Jnok 21e0) “pT0Z YIST Jaquaidas :pandaddy
3WRN JOSLAY :10SLADY

SSauppeg|lews ‘3weN JUSpN1S :JoyIny

UOLYBSLJ1343D PLOD (D) IVID

al3LL 3y3 St SLL

pJomsw/uo1edy |dde :3dAL-1ua1u0D
aAL[¥-daay :uo1153uu0d

0OE=XeW ‘ET=1n0aWl} :3AL|y-d33)
¥30(g=2pollfT :U0i33330.d-S5X-X
NIDTHOIWVS :suoLido-awedi-X
44tusou’ :suorado-=dAl-usau03-x
0r98% :yibusi-1uaiuod

5314q :sabuey-1da30v
..07ZP308TEEE06-009q-3T£0TS, :beL3
p:9T $T0Z d8S OT “SNL :p3LJLPOW-15ET
ayoedy :JaAJas,

WD SE:0T:8T STOZ Jdv TT ‘IeS :23RQ
30 002 T'T/dLLH

(Pap LA0.1d0Z5%30U) =123 | 3 LURG.I0=PUdaN | (3 LU 40)=U2dUan |31 B00B=4SoUaN *T*T*L0852/82+T ¥86608E8 T-2UIN |¥B6698EST-JUIN !TST6Z8SL/8ZhT 62 PB66OBEBT=AUIN T /085//82HT"2085//82VT " L08S/82FT '3S82LESI T vB669BEET-RUIN 1213000
§°0=biua‘sn-us :abenbuel-adedav

Uops ‘ale|lap ‘dizb :buiposus-daddv

98 "/£G/ LIRSS ST Z4ZZ 0 Ty/3W0yd (03239 3Ll “TWLHI) © §/71igema |ddv (yomom T°9 LN SMOpULM) 0°S/Bl[LZoW :1uaby-tasn

pLob/suol1e31112193,/610 38 16 “mwn//:d21y : sa10 g0

aar|e-dsay :u0i1dBul0d

6.0 "3E16 "win 150K

T°T/dLin Jop 21e|dwal p| oo OvID/p|o6/suoLiedL L1430, /e1pan,/ 139

oy weang

T

ing.

test

1ve

Sample download of file from sans.org obtained using 1

Figure 5

By identifying and following the established TCP stream within Wireshark, we are able

to recreate the file that was requested, and if needed then download it locally. This

Jason Mack, jasonmack@gmail.com

Author retains full rights.

© 2015 The SANS Institute

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 1

becomes much more useful when there is reason to believe that the file downloaded may
be malicious because once the file is downloaded locally, without even needing to do any
kind of malware analysis or reverse engineering, we can quickly compare its MDS5 hash

to determine if it matches any known 1OCs:

PR
B C\Windows\system32\cmd.exe oS ™ -

C:nmdSsum.exe mayhemalicious.doc
JeeaSafbbhf33d6B6558h4321d59863f2 *mayhemalicious.doc

Gy

Figure 6: Sample execution of md5sum against a file obtained via Wireshark from Figure
5 obtained using live testing.

Obviously, following this process in each suspected case of malicious system
communication would be highly inefficient. However, when combining this strategy of
automated search using packet capture along with a recording appliance such as those
from Fluke, NetScout, NetWitness or Sclera — it becomes possible to extract streams such

as these automatically and subsequently perform hashing and follow-up comparisons.

3. Generating IOCs Based on Local Network Traffic
3.1. Background

All of the previous IOC types have one thing in common: they are based on the
processing of iitelligence that was likely received from network and system data
obscived by others. It can be extremely useful, however, to generate IOCs based directly
n ancinalous activity seen on a local network. We have already discussed the types of
1etwork security devices that could be used to identify this traffic — firewalls, IDS/IPS,
DNS servers, packet capture appliances and web proxy devices. This simply leaves us to
determine which network activity we should be identifying that constitutes an IOC. Or
more specifically, we need to ask the question: “What type of network traffic would

likely represent malicious activity?”

Although this will of course be different for each environment, the information obtained

from the following table is a good starting point:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

Table 1: “Top 15 Indicators of Compromise” (Source:
http://www.darkreading.com/attacks-breaches/top-15-indicators-of-compromise/d/d-

1d/1140647?)

Description

Examples

Unusual Outbound Network Traffic

Requests to multiple sequential IP
addresses, Connections to known C&C
systems, Requests on unusual ports

Unusual Privileged User Account Activity

Admin accounts logging in at odd times,
accessing files they don’t normaily

Traffic from unexpected geographic
locations

Interaction with an IP in a country that
would have no legitimate reason for
connectivity, logins to the same UserID
from multiple geographic locations

Unusual login information

Failed logins tor accounts that don’t exist,
off hour logins, logins for multiple
accoun's in a short time period

Increase in volume of database accesses

An unusually high number of database
ueiies — or large transfer amount

Particularly large HTML Response Sizes

' Responses to get requests greater than a

normal HTML page indicating successful
SQL injection or database compromise

Large number of requests for the same file

Accessing the same PHP, JSP, ASP file
repetitively but changing the URL string

Application requests on netw ork pbrts

Traffic that looks like DNS on port 80,
HTTP traffic on port 25, FTP over port 22

Suspicious registry or systcin file changes

Anything different from a baseline,
changes to Autorun, creation of hidden
files in system directories

Anomalous DNS Requests

A larger than normal volume of DNS
requests, DNS responses without requests,
DNS traffic to unusual geographic sites

| Un :-Aﬂq—ted patching of systems

Patches applied outside of schedule

Unexplained mobile device profile change

Creation of new mobile device profiles,
changes to existing (e.g. new certificates)

Large amounts of data in unusual
locations

Unexplained large file archives, important
files in Recycle Bin, executables in temp

Web traffic that appears to not be
originating from a human requestor

Large volume of web traffic in a short
time, unexpected browser user agent,
invalid browser usage agent string

Any indication of DDOS Activity

Slow network or host performance,
website unavailability, failover of critical
devices, unusually high network load

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 1

While obviously these are only some examples of traffic that could be seen as malicious,
they form a good basis for generating IOCs when reviewing local network traffic. In
addition, while some of these indicators may require a host agent to optimally monitor
and discover threats, they at least give the analyst an idea of what particular activities
should be acted upon when seen. Typical response actions should include the
implementation of blacklists, enhanced logging and monitoring or the commencement of

the incident response process.

3.2. Examples

Now that we have described what constitutes an IOC, the ncxt logical step is to be able to
actually identify them, ideally in an automated fashion. Mcthodologies for this can range
from the basic running of a grep command to look {or suspicious patterns, to
implementing a Security Incident and Event Management (SIEM) tool with correlation
rules, to creating OpenlOC objects to automate the searching for each individual

indicators. We will investigate each of these methods in detail.

Grep is a tool available by defauit in nearly all Unix installations, and can be downloaded
and installed for free if minning Windows. It provides a scriptable method to parse logs
for suspicious traffic and has the capability of identifying just about anything using
regular expressions. For example, we can identify files with encoding types potentially

used to hide malware:

crep -Er "(gzinfl|base64 d)" *

(Source: Reilink)

While grep is quite simple to install and execute, full implementation of a SIEM is a
much more complex process, the details of which are beyond the scope of this paper.
However, using Open Source Security Information Management (OSSIM) as an example,
it is possible once implemented to easily ingest indicators identified by most of the tools

previously described in Section 2 and create automatic alerts. These rules are known as

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

o

correlation rules, and they are essentially an XML chain of rules that query logs of

network devices. So looking at two example rules prior to correlation:

<rule type="detector" name="Windows cmd.exe detected" reliability="6"
time_out="60" occurrence="1" from="1:DST_IP" to="1:SRC_IP"
port_from="2:DST_PORT" port_to="2:SRC_PORT" plugin_id="1001"
plugin_sid="2123">

<rule type="monitor" name="Established session against abnormz! nort"
reliability="10" from="1:SRC_IP" to="1:DST_IP" port_from="2:SRC_PORT"
port_to="2:DST_PORT" plugin_id="2005" plugin_sid="248" condition="ge"
value="10" interval="20" absolute="true" />

(Source: Karg)

Correlation is as simple as creating an XML list of ruics and identifying priorities. Using

the previous two examples, a correlation rule couid look like this:

<rule type="detector" name="Windows cmd.exe detected"
<rule type="detector" name="Strange connection after 135/tcp or 445/tcp“

While SIEM rules can be very good for automatic notification and likely should be part
of any IOC monitoring stratcgy no matter what technique is used, it is useful to have a
purpose-built language {or the sole purpose of creating new I0OCs quickly and acting on
them. In the introduction, we introduced the concept of OpenlOC and we will revisit it
now as it provides an ideal methodology for creating IOCs based on live traffic. Here is
an example 10C object called “Jason’s Evil Indicator” which identifies the characteristics

highlighted in bold:

<?xml version="1.0" encoding="us-ascii"?>

<ioc xmlins:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema" id="23d1895c-1f57-4267-
8f9d-a290b99e8f21" last-modified="2015-07-11T14:23:50"
xmlins="http://schemas.mandiant.com/2010/ioc">

<short_description>Jason Mack</short_description>

<description>Example OpenlOC Indicator for SANS 503.

We saw some suspicious traffic with the following characteristics on our
network:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 1

1. Port 80 HTTP traffic to 10.11.12.13 2. DNS Traffic to
www.definitielyevil.com 3. User Agent is "Mozilla/5.0 (Windows; U;
Windows NT 5.1; de; rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3". 4. Payload
content EITHER "12596" OR "35935"
</description>
<authored_by>Jason's Evil Indicator</authored by>
<authored_date>2015-07-11T14:03:59</authored_date>
<links />
<definition>
<Indicator operator="0OR" id="71d34d22-b178-4607-8b6a-5f5af154cd1ab">
<Indicator operator="AND" id="a66ba37d-2774-4bbf-83a5-cce542d1al111">
<Indicatorltem id="97560b0e-bb03-4060-a105-7fb077c212b6" condition="is">
<Context document="Portltem" search="Portltem/remotepPort" type="mir" />
<Content type="int">80</Content>
</Indicatorltem>
<Indicatorltem id="16e91343-c739-45cd-936e-78a8596b2cab6"
condition="contains">
<Context document="Portltem" search="Portltem/remotelP" type="mir" />
<Content type="IP">10.11.12.13</Content>
</Indicatorltem>
<Indicatorltem id="920eba7b-8242-4640-8a01-080217534f0b"
condition="contains">
<Context document="Network" search="Network/DNS" type="mir" />
<Content type="string">definitelyevil.com</Content>
</Indicatorltem>
<Indicator!teim id="dd3c3b03-0dc4-46b3-a946-76c769985d43"
condition="contains">
<Context document="Network" search="Network/UserAgent" type="mir" />
<Content type="string"> "Mozilla/5.0 (Windows; U; Windows NT 5.1; de;
rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3"</Content>
‘/Indicatorltem>
/Indicator>
<Indicator operator="0OR" id="812d03d8-a157-4a8f-a180-6d655035e87b">
<Indicatorltem id="c8533755-475e-4951-8c1d-75eb426899ae"
condition="contains">
<Context document="Network" search="Network/String" type="mir" />
<Content type="string">"12596"</Content>
</Indicatorltem>
<Indicator operator="0OR" id="0dec26a2-4fc5-4fc6-9680-a56f3ca79685">
<Indicatorltem id="c6bccad4-42ea-4d8e-9744-d9a9cf1b4828"
condition="contains">
<Context document="Network" search="Network/String" type="mir" />
<Content type="string">"35935"</Content>

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 1

</Indicatorltem>
</Indicator>
</Indicator>
</Indicator>
</definition>
</ioc>

Using OpenlOC as both a framework and an implementation tool, indicators can be
created rapidly, and enabled for deployment to both monitoring and endpcint security
devices — while also sharing “with the community at large. After all, in nearly all of the
previous examples, we have been referring to intelligence that lilkely has been derived
from external sources — and the field of cyber intelligence is only as good as those

organizations that are willing to share observations.

Although OpenlOC was previously referred to as a “complementary” technology to STIX
& TAXII, a better description might be an “enabler” of them. The framework forms the
first link in an effective, repeatable and automated chain by which IOCs can be created
using OpenlOC, converted to STTX {ormat, and then shared or deployed to network

security devices using TAXTTL.

4. Tying it a!! together: STIX and TAXII

41. STIX

Due to their time sensitive nature, IOCs are maximally effective when they can be shared
and acted upon as quickly as possible. With this goal in mind, STIX (Structured Threat
Information eXpression) development began in 2010 by NIST. Its goal was to provide a
common methodology and language by which all cyber threat intelligence professionals
would be able to exchange data freely. The STIX format relies on what are known as
“observables” or details of the specific activity that is occurring (Barnum). For example,
phishing campaigns, a DDoS or a malware attack would all be examples of observables.

Within each observable, STIX supports the following data elements:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

Table 2: STIX Standard Protocol Description (Source: official STIX project
documentation at http://stixproject.github.io/data-model/1.1/).

O —

Category

Description

Examples

Specific signs unique to the malicious

activity

IP Addresses, DNS names, MD35

hashes

Systems, networks, and locations

where the activity has been seen

External Mail Servers, Members

of the G8, The SANS Institute

The specific tools & methods being

used

Malware signatures, exploits,

source IPs, social engineering

ExploitTarget

Vulnerabilities or other weakness

being exploited

C'VEs, configuration issue, end

users, third party vendors

&

Campaign

Motivation and reasoning for the

activity

Cybercrime, Cyberespionage,

Hacktivism

ThreatActor

Who is responsible for the activity

4

Course of Action

Org. Crime, Nation State, Inside
Threat

What can be done to stop the activity

Apply patch, block in firewall,
IDS/IPS rule

As our focus has been primarily IOCs, the primary STIX observable type of interest

would be indicators. According to best practices, an indicator should contain at least the

following items (StixProject):

e Some sort of observable to identify the malicious code or pattern that is being
looked for;
o A title;

e A type (for example: malware, botnet, etc.);

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

e Valid Time Position (The period of time for which the indicator should be
considered valid);

e Indicated TTP (A reference to a separate STIX Tactics, Techniques, and
Procedures object);

e Level of confidence that the indicator is valid.

Many additional values may be part of the STIX indicator field. Some of the more
interesting ones include (StixProject):
e A reference from a different source (e.g. a Snort rule or an intelligence bulletin
ID);
e A “negate” value to indicate that it is actually the absence of the indicator that
would be a sign of compromise;
e A description in human readable format as to what exactly the IOC is detecting;
e Which if any phases of the “Kill Chain” that this IOC is part of;
e Suggested test mechanism to verify the presence of the indicator;
e The likely impact to an individual system if the indicator were to be found;
e Suggested next steps should the indicators be found,
e Any special handling instructions;
e Notable history of sightings;

e Other relaied indicators or campaigns.

With this information available, it is then possible to build a STIX object that contains
snough data to be both understandable and automatable. The implementation of STIX
objects themselves has been largely automated by MITRE, through the creation of the
STIX project located at https://github.com/STIXProject. Every major observable type as

described in Table 2 has been implemented in Python — and can be easily called by any
script or application that implements the STIX design standard (See Appendix 8.2 for
implementation of the “Indicator” observable specifically). An example of just such a
script is MITRE’s Python conversion script for converting OpenlOC objects to STIX

format. As we saw previously in Section 3.2, it is possible to express live network

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

indicators in OpenlOC format, so when coupled with this script these indicators can be
placed into a fully compliant STIX object. Appendix 8.1 contains the source code for the

OpenlOC -> STIX script, and makes use of the Indicator library source code included in

Appendix 8.2.

4.2. TAXII

TAXII was developed concurrently with STIX by the same authors and is ai acronym
for Trusted Automated eXchange of Indicator Information. It was developed with the
goal of guaranteeing secure transport of STIX content and includes four core services:
Discovery, Feed Management, Poll and Inbox. Together thesc services ensure the secure

transfer and delivery of STIX objects as described by the foilowing diagram (MITRE):

//l_ y -~
Feed ‘ l)

Get G?r:lfr;ec'ﬂf‘" I Pull recent data
from the hub

=@ @- O
Spoke > _— Spoke
1 Subscribe to \ \—A O/ 4

data feeds \‘_/
Push recent

data to a spoke

Push new data
(O | tothe hub &
Spoke Spoke
2 3

Figure 6: A Description of the TAXII specification (Source:
TAXII Overview briefing July 2013.pdf from https://taxii.mitre.org).

The discovery service provides a list of available TAXII capable services supported by a
given endpoint and when queried by a client will provide its TAXII capabilities. Feed
management, as its name suggests, will provide the list of data feeds that are hosted on

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2
2

the TAXII endpoint. The poll function provides the ability to request updated STIX feed

data on demand. Finally, the inbox feature serves as a way to receive feed data in STIX

format as it is delivered in real time (MITRE).

Just as was the case with STIX, MITRE has also provided a full Python implementation
of the TAXII protocol through the development of LibTAXII (See Appendix 8.3 for most
of the relevant code). This code, located at http://github.com/TAXIIProject/libtaxii, is

slightly different than the previously discussed STIXProject code in that it is not
necessarily designed to be a standalone implementation of the protocol. The primary
reason for this lies in the fact that STIX is more of a design standard, while TAXII
actually functions as the primary application for the transicr of STIX content. Putting
both of these pieces together is what makes STIX & TAXII function in implementation.

4.3. Plugging IOCs into the STIX and TAXII Infrastructure

In addition to the development of the StixProject, MITRE has also developed support for
many of the examples previously dcscribed in Section 2. For example, a Snort rule can
be expressed as a STIX object usting the indicator module while also including the
relevant portions of the TTP and Exploit Target modules as well. Here is an example of

this in practice for the rccent Heartbleed vulnerability:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

ID
Title
Confidence
Value
TestMechanism
Efficacy
Value

Rule

Rule

Producer

Reference

Identity
Name

Indicated TTP

idref

example:indicator-bdalb982-7660-4alb-b16b-a5b25321023a

Snort Signature for Heartbleed

High HighMediumLow\Vocab-1.0

SnortTestMechanismType

Low HighMediumLowVocab-1.0

alerttcp any any->any any (msg:"FOX-SRT - Flowbit - TLS-SSL
ClientHello"; flow:established; dsize:<500; content:"| 16
03]"; depth:2; byte_test:1, <=, 2, 3; byte_test:1, 1=,2, 1;
content:" | 01|"; offset:S; depth:1; content:" | 03| "; offsets;
byte_test:1,<=, 3, 10; byte_test:1, =, 2, 9; content:" |00 0f
00]"; i i i
threshold:type limit, track by_sc, count 1, seconds 60;

i ,2014-0160; cl. bad-unknown; sid:
21001130; rev:s;)

alerttcp any any-> any any (msg:"FOX-SRT - Suspicious- TLS-
SSL Large b " fil blished,;
flowbits:isset, foxsslsession; content:"| 1803 | "; depth: 2;
byte_test:1,<=, 3, 2; byte_test:1,1=,2, 1; byte_test:2,>, 200,
3; threshold:type limit, track by_src, count 1, seconds 600;

e,2014-0160; unknowry; sid:
21001131; rev:5;)

http://blog.fox-it.com/2014/04/08/openss|-heartbleed-bug:
live-blog/

IdentityType
FOXIT

— ID

example:ttp-93904695-2607-448b-8fed-5de4622d94f7

example:ttp-93904695-2607-448b-8fed-5de4622d94f7

Title GenericHeartbleed Exploits

Exploit Target

—idref example:et-fc5fab16-ac9d-4d41-9c3a-2eee3ds0dsfs

Exploit Target

d-4d41-9c3a- T

D ‘ fesfal
Title ‘ Heartbleed
Vulnerability

CVEID CVE-2014-0160

Figure 7: Sample Indicator integration into a Snort Signature (Source:
http://stixproject.github.io/documentation/idioms/snort-test-mechanism).

Studying this example, the author has created a STIX Observable of type “Rule” and

created the required title, a confidernice value of high, reference and pointers to both a

related TTP and Exploit Target. [t is worth noting that the author did not include a valid

time position, mentioned cailier as being a STIX best practice to include.

Here is an additional example, this time embedding a firewall rule:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

\S)

Course of Action

ID example:coa-55f57cc?-ddd5-467b-a3a2-6fd602549d%e
Title Block trafficto PIVY C2 Server(10.10.10.10)
Stage Response COAStageVocab-1.0
Type Perimeter Blocking CourseCfActionTypeVocab-1.0
Objective

Description Block communication between the PIVY agents and the C2 Server

Applicability Confidence

Value High HighMediumLowVocab-1.0
Impact
Value Low HighMediumLowVocab-1 '
Description ThisIP address is not used for legitimate hosting sothere sho g ba

no operational impact.

Cost

Value Low HighMe< a1 n. Jocab-1.0
Efficacy
Valua High - diumLowVocab-1.0

Parameter_Observables
Observable
Object
Properties Address Object

Address_Value 10.10.10.10

Category IPV4 Adcres

Figure 8: Sample Indicator integration into a firewall rule from
http://stixproject.github.io/documentation/idioms/block-network-traffic/.

In this example, rather than using the “Indicator” module we are instead making use of
the “Course of Action” imodule. The IOC is an IP address of 10.10.10.10 that is being
associated with the PIVY C&C Server Infrastructure in the form of a TTP. As this is in
fact a “course of action” and not an “indicator,” the STIX object is essentially indicating
that Glocking this particular TTP would serve as a way to eliminate the threat or avoid it

in the {irst place.

Both of these examples could be either automatically created using the previously
described STIX libraries, or by being converted into STIX format using a script similar to
the OpenlOC -> STIX tool. Once all the necessary STIX objects have been created, we
would then rely on TAXII to share them and move them to sensors and monitoring

points. Currently, there are two well-known TAXII clients: Soltra Edge, located at

http://www.soltra.com, and TAXII Project available at https://github.com/TAXIIProject.

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

Soltra Edge is free to use (but not open source), while the TAXIIProject is a direct
implementation by MITRE with source code available. While Soltra is functional
essentially out of the box, MITRE’s solution requires a few additional components.
Specifically, the Django-Taxii-Services are required in order to provide an
implementation-ready instance of LibTaxii and YETTI is necessary to provide the actual
client functionality. YETI does not currently implement feed management, icaving it to
the user to manually manage all TAXII feed subscriptions. In actuality, this is not a
significant limitation however, as the number of publicly accessible, non-proprietary
TAXII feeds currently available is quite limited. Just about the only current example is

the Hail A Taxii project, maintained by one of the Soltra developers:

HATISIT o

AVAILABLE FEEDS

HOWTOCONNECT

Figure 9: Screenshot of http://www.hailataxii.com

Jail A Taxii aggregates content from Dshield, Emerging Threats, Phishtank, and several
others. No matter which TAXII client is used, however, the process for obtaining data

from the site is the same:

1. The discovery service identifies the site as TAXII compliant and establishes
communication;
2. The feed management service identifies all the content available on the site and

allows the user to select any or all of it for download in STIX format;

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

3. The poll function allows for the actual download of the feeds;

4. The inbox feature receives the STIX content, and processes it in a way that is
dependent on the client itself. This can be as simple as a grouping of files in the
case of YETI, or as complex as a searchable database in the case of Soltra Edge;

5. Once the STIX data has been processed through the inbox, the TAXII protocol
has finished its job — and it is then the role of additional, non STIX/TAXIil
software to process the indicators and send them to various monitoring and

defense points where they can be best used (e.g. SIEM, IDS, Firewall).

Unfortunately, even though there are two well-known TAXII clients available for use,
there is still no native support by the more popular network security tools themselves —
such as Snort. As a result, direct integration of STIX and TAXII based content with
Snort is not possible, although this certainly does not mean it cannot be done. The easiest
solution is to use one of the previously descrtbed TAXII clients alongside either
automated scripts (Soltra develops several directly) or a well-established auto updater

such as Oinkmaster in order to implement this functionality.

5. Limitations of Current Technology

Despite some of the strategies presented thus far, the process of identifying IOCs in
network traffic 1s far from perfect. Primary limitations currently exist in two areas. The
first lies in the capabilities and inherent weaknesses of the network security devices
themselves, while the second is the lack of widespread STIX and TAXII adoption.
Automated threat intelligence sharing could be vastly improved with appropriate

advances in both of these areas.

As previously mentioned, a network firewall is one of the simplest devices in the network
security stack — and as such, its ability to do any kind of “deep dive” for IOCs is limited.
Additional functionality can be found in application firewalls that are able to more
accurately inspect packet headers; however, this will limit traffic visibility to supported
protocols such as HTTP and HTTPS, not to mention introduce more significant overhead.

In addition, as firewalls are typically employed as detective and preventive controls
Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

between security zones, they do not have the capability to detect a system that is already

compromised but that is not actively beaconing outbound traffic.

Network IDS/IPS devices suffer from a similar inherent limitation in detecting non-
beaconing compromised systems. In addition, although network IDS/IPS systenis such
as Snort do a great job at deep packet inspection and make it possible to do deeper level
packet analysis than just about any other network based technologys, it still has limited
capabilities when it comes to assembling very large streams. As a result, it is not able to
look for specific file hashes of known malware such as a host-based system might be able
to. Moreover, although its SSL preprocessor allows for the detection of anomalies that
may actually be IDS evasion techniques, Snort (or any nctwork device for that matter)
would not have the capability to directly inspect SST. encrypted traffic — a common

avenue for malicious activity.

Although network devices do have their teclinical limitations, the biggest challenge is
likely the adoption of the STIX and TAXII standards themselves. While the OpenlOC
project has been around for some tiine, STIX and TAXII as a standard has only been
introduced over the last few years so adoption has only just begun. This is quite evident
when one looks at the rciatively minimal number of TAXII clients available — and the
fact that, as previously discussed, major security products such as Snort do not provide
native suppoit. While these standards have been completely embraced by some large

vendors. [ike any new technology, full adoption will take time.

6. Conclusion

Automated sharing of IOCs is a growing requirement. Nothing makes this statement
more evident than the recent executive order instituted by President of the United States

Barack Obama in response to the substantial increase in major cyber incidents:

“In order to address cyber threats to public health and safety, national security,
and economic security of the United States, private companies, nonprofit
organizations, executive departments and agencies (agencies), and other entities

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

must be able to share information related to cybersecurity risks and incidents and
collaborate to respond in as close to real time as possible.”

(Source: https://www.whitehouse.gov/the-press-office/2015/02/13/executive-
order-promoting-private-sector-cybersecurity-information-shari)

While the President has mandated that sharing of intelligence be made easier, the primaiy
method by which this occurs, via the collection and distribution of IOCs, are only of use
if they can be acted on quickly and if the indicator is accurate from the begiiining.
Consequently, as threat actors continue to develop the ability to more quickly modify
their TTPs, traditional IOCs become less relevant and their usefu! liietime become
shorter. Fortunately, with the development of fuzzy hashing, it is possible to “compare
two distinctly different items and determine a fundamenta! level of similarity (expressed

as a percentage) between the two” (Fuzzy Clarity).

However, just like STIX and TAXII, this techinology is only as good as the ability of the
network security devices that support it. Fuzzy hashing capabilities, as well as the more
mainstream support of full file reconstiuction and hash comparison within common
network security systems like Snort is critical to a future where IOCs can still prove to be
useful. In addition, the adoption of STIX and TAXII must also continue as it represents
the best current opportunity for all sharing parties (whether they are private industry,
government or individuals) to react rapidly to new threats. In an age when it seems that a
new cyber event is reported every day, it is more important than ever to stay one-step
ahead of the threat actors. With some improvements to the capabilities of network
security devices along with the full adoption of STIX and TAXII this will become a
reality.

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 2

7. References

Actionable Indicators for Detection of Signs of Compromise from Target-related
Breaches » Adversary Manifesto. (2014, January 16). Retrieved from:

http://blog.crowdstrike.com/actionable-indicators-detection-signs-compromise-

target-related-breaches.

Barnum, S. (n.d.). Standardizing Cyber Threat Intelligence Information with the
Structured Threat Information eXpression (STIX™). Retrieved from:

https://stix.mitre.org/about/documents/STIX_ Whitepaper v1.i.pdf.

Best Content Filtering Appliance. (n.d.). Retrieved from:

http://community.spiceworks.com/spice lists/7.

Command & Control: Understanding, denying, detecting. (n.d.). Retrieved from:
http://www.cpni.gov.uk/documents/pubhications/2014/2014-04-11-

cc_ginetiq_report.pdf.

Decianno, J. (2014, December 9). Tidicators of Attack vs. Indicators of Compromise »

Adversary Manifesto. Retricved from: http://blog.crowdstrike.com/indicators-

attack-vs-indicators-compromise.

Detecting Malware intcctions with Snort DNS Monitoring | KaffeNews. (n.d.). Retrieved

from: hitp://blog kaffenews.com/2010/03/04/detecting-malware-infections-with-

snort-dns-monitoring.

French, D. Writing Effective YARA Signatures to Identify Malware » SEI Blog.

Retrieved from: http://blog.sei.cmu.edu/post.cfm/writing-effective-yara-
signatures-to-identify-malware.

“FUZZY CLARITY” Using Fuzzy Hashing Techniques to Identify Malicious Code.

(n.d.). Retrieved from:

http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.pdf.

Gibb, W. (n.d.). OpenlOC Series: Investigating with Indicators of Compromise (IOCs) —

Part I retrieved from: https://www.mandiant.com/blog/OpenlOC-series-

investigating-indicators-compromise-10Cs-part.

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

w

Grappling with the ZeroAccess Botnet. (n.d.). Retrieved from:

http://www.symantec.com/connect/blogs.

Hurcombe, J. (n.d.). Malicious links: Spammers change malware delivery tactics.

Retrieved from: http://www.symantec.com/connect/blogs/malicious-links-

spammers-change-malware-delivery-tactics.

Jordan, B. (n.d.). STIX and TAXII: On the road to becoming the de facto staudard | Blue

Coat. Retrieved from: https://www.bluecoat.com/security-blog/2014-08-26/stix-

and-taxii-road-becoming-de-facto-standard.

Karg, Dominique. (n.d). OSSIM: Coorolation Engine Expliained. Retried from:
https://www.alienvault.com/docs/correlation_cngine_explained_rpc_dcom_

example.pdf
Liska, A., & Gallo, T. (n.d.). Building an inteltigence-led security program.

Meltzer, D. (2015, March 3). Look How Fasy TAXII Is. Retrieved from:

http://www tripwire.com/state-of-security/security-data-protection/cyber-

security/look-how-easy-taxii-is.

Natarjan, R. (n.d.). 25 Most Frequently Used Linux [PTables Rules Examples. Retrieved
from: http://www.thegeekstuff.com/2011/06/iptables-rules-examples.

Reilink, Jan (n.d.). Using grep.exe for forensic log parsing and analysis on Windows

Server and IIS. Retrieved from: https://www.saotn.org/using-grep-exe-for-

forensic-log-parsing-and-analysis-on-windows-server-iis/

Sawyer, J. (n.d.). Mining Web Proxy Logs For Interesting, Actionable Data. Retrieved
from: http://www.darkreading.com/risk/mining-web-proxy-logs-for-interesting-

actionable-data/d/d-1d/11350027.

SNORT User’s Manual 2.9.7. (n.d.). Retrieved from: http://manual.snort.org.

StixProject. IndicatorTypelndicator Schema. (n.d.). Retrieved from:

http://stixproject.github.io/data-model/1.1.1/indicator/IndicatorType.

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 3

8. Appendix
8.1. Python Conversion Script for OpenIOC to STIX

The following scripts is by MITRE Corporation which is free to use according to their
license. It has been included here so that the reader can readily study the code to better
understand the technical details of OpenlOC and STIX.

Copyright (c) 2015, The MITRE Corporation. All rights reserved.
See LICENSE.txt for complete terms.

OpenlOC to STIX Script
Wraps output of OpenlOC to CybOX Script
#v0.13

import sys

import os

import traceback

import warnings

import openioc #OpenlOC Bindings

import openioc_to_cybox #OpenlOC to CybOX Script
from cybox.core import Observables

import stix.utils

from stix.indicator import Indicator

from stix.core import STIXPackage, STIXHeader

__ VERSION__ =0.13

USAGE_TEXT="""
OpenlOC --> STIX Translator
v0.13 BETA // Compatible with STIX v1.1.1 and CybOX v2.1

Outputs a STIX Package with one or more STIX Indicators containing
CybOX Observables translated from an input OpenlOC XML file.

Usage: python openioc_to_stix.py -i <openioc xml file> -o <stix xml file>

nn

#Print the usage text
def usage():
print USAGE _TEX1
sys.exit(1)

def main():
infilename ="
outfilename ="

Get the command-line arguments
args = sys.argv[1:]

if len(args) < 4:
usage()
sys.exit(1)

for i in range(0,len(args)):
if args[i] == "-i":
infilename = args[i+1]
elif args[i] =="-0":
outfilename = args[i+1]
if os.path.isfile(infilename):
try:
Perform the translation using the methods from the OpenlOC to CybOX Script
openioc_indicators = openioc.parse(infilename)
observables obj = openioc_to_cybox.generate cybox(openioc_indicators, infilename, True)
observables_cls = Observables.from_obj(observables obj)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

Set the namespace to be used in the STIX Package
stix.utils.set_id namespace({"https://github.com/STIXProject/openioc-to-stix":"openiocToSTIX"})

Wrap the created Observables in a STIX Package/Indicator
stix_package = STIXPackage()

Add the OpenlOC namespace

input_namespaces = {"http://openioc.org/":"openioc"}
stix_package. input namespaces = input_namespaces

for observable in observables_cls.observables:
indicator dict = {}
producer_dict = {}
producer_dict['tools'] = [{'name":'OpenlOC to STIX Utility", 'version":str(_ VERSION)}]
indicator_dict['producer'] = producer_dict
indicator_dict['title'] = "CybOX-represented Indicator Created from OpenlOC File"
indicator = Indicator.from_dict(indicator dict)
indicator.add_observable(observables_cls.observables[0])
stix_package.add_indicator(indicator)

Create and write the STIX Header

stix_header = STIXHeader()

stix_header.package intent = "Indicators - Malware Artifacts"

stix_header.description = "CybOX-represented Indicators Translated from OpenlOC File"
stix_package.stix_header = stix_header

Write the generated STIX Package as XML to the output file
outfile = open(outfilename, 'w')
Ignore any warnings - temporary fix for no schemalocation w/ namespace
with warnings.catch warnings():
warnings.simplefilter("ignore")
outfile.write(stix_package.to_xml())
warnings.resetwarnings()
outfile.flush()
outfile.close()
except Exception, err:
print("\nError: %s\n' % str(err))
traceback.print_exc()
else:
print("\nError: Input file not found or inaccessible.")
sys.exit(1)
if _name_ ="
main()

' main_":

8.2. Python Source Code for the STIX “Indicator'" Observable

w

The tollowing scripts is by MITRE Corporation which is free to use according to their
license. it has been included here so that the reader can readily study the code to better

uvnaerstand the technical details STIX.

Copyright (c) 2015, The MITRE Corporation. All rights reserved.
See LICENSE.txt for complete terms.

external
from cybox.core import Observable, ObservableComposition
from cybox.common import Time

internal

import stix

import stix.utils as utils

from stix.common import (
Identity, InformationSource, VocabString, Confidence,
RelatedTTP, Statement, CampaignRef

)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

from stix.common.related import (
GenericRelationshipList, RelatedCOA, RelatedIndicator, RelatedCampaignRef,
RelatedPackageRefs

)

from stix.common.vocabs import IndicatorType

from stix.common.kill_chains import KillChainPhasesReference

import stix.bindings.indicator as indicator_binding

relative

from .test_mechanism import TestMechanisms
from .sightings import Sightings

from .valid_time import _ValidTimePositions

class SuggestedCOAs(GenericRelationshipList):
"""The "SuggestedCOAs"" class provides functionality for adding
:class: stix.common.related.RelatedCOA’ instances to an :class: Indicator’
instance.

The “*SuggestedCOAs"" class implements methods found on
““collections.MutableSequence'" and as such can be interacted with as a

“list™ (e.g., “append()').

The “‘append()'" method can accept instances of
:class: stix.common.related.RelatedCOA" or :class: 'stix.coa.CourseOfAction’
as an argument.

Note:
Calling ““append()'" with an instance of
:class:'stix.coa.CourseOfAction’ will wrap that instance in a
:class: stix.common.related.RelatedCOA" layer, with the “item set to
the :class:'stix.coa.CourseOfAction" instance.

Examples:
Append an instance of :class: stix.coa.CourseOfAction" to the
“Indicator.suggested coas" property. The instance of
:class:"stix.coa.CourseOfAction’ will be wrapped in an instance of
:class: stix.common.related.Related COA®

>>> coa = CourseOfAction()

>>> indicator = Indicator()

>>> indicator.suggested coas.append(coa)
>>> print type(indicator.suggested_coas[0])
<class 'stix.common.related.Related COA™

Iterate over the " 'suggested coas' property of an :class: Indicator’
instance and print the ids of each underlying
:class:'stix.coa.CourseOfAction” instance.
>>= for related_coa in indicator.suggested coas:

rint related_coa.item.id

Args:
suggested_coas(list): A list of :class: stix.coa.CourseOfAction’
or :class: stix.common.related.RelatedCOA" instances.
scope (str): The scope of the items. Can be set to *"inclusive"""
or "exclusive"". See
:class:"stix.common.related. GenericRelationshipList™ documentation
for more information.

Attributes:
scope (str): The scope of the items. Can be set to " "inclusive""”
or "exclusive"". See
:class: stix.common.related. GenericRelationshipList” documentation
for more information.

"

_namespace = "http://stix.mitre.org/Indicator-2"
_binding = indicator_binding

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 3

_binding_class = indicator_binding.SuggestedCOAsType
_binding_var = "Suggested COA"

_contained_type = RelatedCOA

_inner_name = "suggested coas"

def init (self, suggested coas=None, scope=None):
super(SuggestedCOAs, self).__init__(scope, suggested coas)

class RelatedIndicators(GenericRelationshipList):
"""The *"RelatedIndicators’" class provides functionality for adding
:class: stix.common.related.RelatedIndicator™ instances to an
:class: Indicator" instance.

The “"RelatedIndicators™" class implements methods found on
““collections.MutableSequence'" and as such can be interacted with as a
“list™ (e.g., “append()’).

The “append()'" method can accept instances of
:class: stix.common.related.RelatedIndicator™ or
:class:'Indicator’ as an argument.

Note:
Calling ““append()'"* with an instance of
:class: stix.coa.CourseOfAction” will wrap that instance in a
:class:'stix.common.related.RelatedIndicator" layer, with *“item""
set to the :class:"Indicator’ instance.

Examples:
Append an instance of :class: Indicator’ to the
“‘Indicator.related_indicators* property. The instance of
:class:'Indicator’ will be wrapped in an instance of
:class:'stix.common.related.RelatedIndicator:

>>> related = Indicator()

>>>parent_indicator = Indicator()
>>>parent_indicator.related_indicators.append(related)
>>> print type(indicator.related_indicators[0])

<class 'stix.common.related.RelatedIndicator™

Iterate over the “'related_indicators’ property of an
:class:"Indicator” instance and print the ids of each underlying
:class:"Indicator’" instance

>>> for related in indicator.related_indicators:
>>> print related.item.id_

Args:
related_indicators (list, optional): A list of :class: Indicator" or
:class: stix.common.related.RelatedIndicator” instances.
scope (str, optional): The scope of the items. Can be set to
" "inclusive" or " "exclusive" . See
:class:"stix.common.related. GenericRelationshipList documentation
for more information.

Attributes:
scope (str): The scope of the items. Can be set to *"inclusive"""
or ""exclusive"". See
:class:'stix.common.related.GenericRelationshipList" documentation
for more information.

"

_namespace = "http://stix.mitre.org/Indicator-2"

_binding = indicator_binding

_binding_class = indicator_binding.RelatedIndicatorsType
_binding_var = "Related_Indicator"

_contained_type = RelatedIndicator

_inner_name = "related_indicators"

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 3

def init (self, related_indicators=None, scope=None):
super(RelatedIndicators, self).__init (scope, related_indicators)

class Indicator(stix.BaseCoreComponent):
"""Implementation of the STIX Indicator.

Args:

id_ (optional): An identifier. If ""None™", a value will be generated
via 'mixbox.idgen.create id()"". If set, this will unset the
“idref property.

idref (optional): An identifier reference. If set this will unset the
“id_"" property.

title (optional): A string title.

timestamp (optional): A timestamp value. Can be an instance of
““datetime.datetime’" or “'str'’.

description (optional): A string description.

short_description (optional): A string short description.

_binding = indicator_binding

_binding_class = indicator_binding.IndicatorType

_namespace = 'http://stix.mitre.org/Indicator-2'

_version ="2.2"

_ALL_VERSIONS = ("2.0","2.0.1", "2.1", "2.1.1", "2.2")
“ALLOWED_COMPOSITION_OPERATORS = ('AND', 'OR")
_ID_PREFIX = "indicator"

def init (self, id =None, idref=None, timestamp=None, title=None,
description=None, short_description=None):

super(Indicator, self). _init (
id_=id_,
idref=idref,
timestamp=timestamp,
title=title,
description=description,
short_description=short_description

)

self.producer = None

self.observables = None

self.indicator_types = Indicatoi Types()
self.confidence = None

self.indicated ttps = IndicatedTTPs()

self.test mechanisms = TestMechanisms()
self.alternative 1d = None

self.sugeested coas = SuggestedCOAs()
self.sightings = Sightings()
scif.composite_indicator expression = None
self.kiil _chain_phases = KillChainPhasesReference()
self.valid_time positions = _ValidTimePositions()
selfirelated_indicators = None
self.related_campaigns = RelatedCampaignRefs()
self.observable_composition_operator = "OR"
self.likely_impact = None

self.negate = None

self.related packages = RelatedPackageRefs()

(@property

def producer(self):
"""Contains information about the source of the :class: Indicator’.
Default Value: *"None™
Returns:

An instance of
:class: stix.common.information_source.InformationSource’

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

Raises:
ValueError: If set to a value that is not *"None™* and not an
instance of
:class:'stix.common.information_source.InformationSource’

nn

return self._producer

(@producer.setter
def producer(self, value):
self._set var(InformationSource, try cast=False, producer=value)

@property

def observable(self):
"""A convenience property for accessing or setting the only
““cybox.core.Observable™" instance held by this Indicator.

Default Value: Empty list™".

Setting this property results in the ““observables'" property being
reinitialized to an empty *'list'* and appending the input value,
resulting in a *'list"" containing one value.

Note:
If the ““observables'" list contains more than one item, this
property will only return the first item in the list.

Returns:
An instance of *‘cybox.core.Observable'.

Raises:
ValueError: If set to a value that cannot be converted to an
instance of *‘cybox.core.Observable'".

"

if self.observables:

return self.observables[0]
else:

return None

(@observable.setter
def observable(self, observable):
self._observables = Observables(observable)

(@property

def observables(setf):
"""A list of " cybox.core.Observable' instances. This can be set to
a single object mstance or a list of objects.

nNote:
I the input value or values are not instance(s) of
““cybox.core.Observable', an attempt will be made to
convert the value to an instance of **cybox.core.Observable'".

Default Value: Empty "list™

Returns:
A "list™ of “"cybox.core.Observable'" instances.

Raises:

ValueError: If set to a value that cannot be converted to an
instance of "‘cybox.core.Observable'".

"

return self._observables

(@observables.setter
def observables(self, value):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

self._observables = Observables(value)

def add_observable(self, observable):
"""Adds an observable to the ‘observables'" list property of the
:class: Indicator’.

If the "observable' parameter is *"None'', no item will be added
to the "observables'" list.

Note:
The STIX Language dictates that an :class: Indicator’ can have only
one "Observable’” under it. Because of this, the ““to_xml()"
method will convert the *“observables'" list into an
““cybox.core.ObservableComposition™ instance, in which each item
in the ““observables'" list will be added to the composition. By
default, the ““operator'" of the composition layer will be set to
"""OR""". The “‘operator™" value can be changed via the
““observable composition_operator'" property.

Args:
observable: An instance of *'cybox.core.Observable'* or an object
type that can be converted into one.

Raises:
ValueError: If the ‘observable’ param cannot be converted into an
instance of *‘cybox.core.Observable'".

"

self.observables.append(observable)

(@property
def alternative id(self):
"""An alternative identifi er for this :class: Indicator’

This property can be set to a single string identifier or a list of
identifiers. If set to a single object, the object will be inserted
into an empty list internally.

Default Value: Empty "list™

Returns:
A list of alternative ids.

nn

return self._alternative id

(@alternative 1d.setter
def alternative id(self, value):
scif. alternative id =[]
if not value:
ctuin
clif utils.is_sequence(value):
self._alternative id.extend(x for x in value if x)
else:
self. alternative id.append(value)

def add_alternative id(self, value):
"""Adds an alternative id to the “alternative id"" list property.

Note:
If "'None™" is passed in no value is added to the

“alternative _id'" list property.

Args:
value: An identifier value.

"

if not value:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

return
self.alternative_id.append(value)

(@property
def valid_time_positions(self):
""" A list of valid time positions for this :class: Indicator".

This property can be set to a single instance or a list of
:class:'stix.indicator.valid_time.ValidTime" instances. If set to a
single instance, that object is converted into a list containing
one item.

Default Value: Empty *list™

Returns:
A list of
:class: stix.indicator.valid time.ValidTime" instances.

"

return self._valid time positions

(@valid_time_positions.setter
def valid_time_positions(self, value):
self._valid_time_positions = _ValidTimePositions(value)

defadd valid_time position(self, value):
"""Adds an valid time position to the “*valid_time positions'" property
list.

If *value’ is *"None™", no item is added to the ““value_time_positions'"
list.

Args:
value: An instance of :class:'stix.indicator.valid _time.ValidTime'.

Raises:
ValueError: If the ‘value' argument is not an instance of
:class:'stix.indicator.valid_time.Validlime'.
i

self.valid_time positions.append(value)

(@property
def indicator_types(se!f)
"""A list of indicator types for this :class: Indicator’.

This property can be set to lists or single instances of *'str*
or :class: stix.common.vocabs.VocabString™ or an instance
of :class: IndicatorTypes'.

Not
If an instance of “'str'" is passed in (or a “'list’* containing
“str'* values) an attempt will be made to convert that string
value to an instance of :class:'stix.common.vocabs.IndicatorType".

Default Value: An empty *'IndicatorTypes'" instance.

See Also:
Documentation for :class: IndicatorTypes'.

Returns:
An instance of *‘IndicatorTypes"".

"

return self._indicator_types

@indicator_types.setter
def indicator_types(self, value):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 3

self._indicator types = IndicatorTypes(value)

def add_indicator_type(self, value):
"""Adds a value to the “‘indicator_types'" list property.

The ‘value' parameter can be a *'str'" or an instance of
:class:'stix.common.vocabs.VocabString'.

Note:
If the “value' parameter is a “'str'" instance, an attempt will be
made to convert it into an instance of
:class: stix.common.vocabs.IndicatorType’

Args:
value: An instance of :class: stix.common.vocabs.VocabString’
or str.

Raises:
ValueError: If the "value' param is a *'str’* instance that cannot
be converted into an instance of
:class:'stix.common.vocabs.IndicatorType'.

nn

self.indicator_types.append(value)

(@property
def confidence(self):
"""The confidence for this :class: Indicator".

This property can be set to an instance of “'str'",
:class:'stix.common.vocabs.VocabString', or
:class:'stix.common.confidence.Confidence’.

Default Value: “*None™

Note:
If set to an instance of *str'* or
:class: stix.common.vocabs.VocabString", that value will be wrapped
in an instance of
:class:'stix.common.confidence.Confidence’.

Returns:
An instance of of
:class: stix.common.confidence.Confidence'.

Raises:
ValueError: Tf set to a “'str' value that cannot be converted into
an instance of :class:"stix.common.confidence.Confidence'.

"

return self._confidence

@confidence.setter
def confidence(self, value):
self._set var(Confidence, confidence=value)

@property
def indicated_ttps(self):
return self._indicated_ttps

(@indicated_ttps.setter
def indicated_ttps(self, value):
self._indicated ttps = IndicatedTTPs(value)
def add_indicated_ttp(self, v):
"""Adds an Indicated TTP to the *“indicated ttps'" list property

of this :class: ' Indicator".

The v’ parameter must be an instance of
:class:'stix.common.related.Related TTP" or :class: 'stix.ttp. TTP".

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

If the 'v' parameter is *"None'", no item wil be added to the
“indicated_ttps'" list property.

Note:
If the "v' parameter is not an instance of
:class:"stix.common.related.Related TTP" an attempt will be made
to convert it to one.

Args:
v: An instance of :class: stix.common.related.RelatedTTP" or
:class: stix.ttp. TTP".

Raises:
ValueError: If the 'v' parameter cannot be converted into an
instance of :class: stix.common.related.Related TTP®

"

self.indicated_ttps.append(v)

(@property
def test_mechanisms(self):
return self._test mechanisms

(@test_mechanisms.setter
def test mechanisms(self, value):
self._test mechanisms = TestMechanisms(value)

defadd test mechanism(self, tm):
"""Adds an Test Mechanism to the *“test mechanisms'" list property
of this :class: " Indicator’.

The “tm" parameter must be an instance of a
:class:"stix.indicator.test_mechanism. BaseTestMechanism'
implementation.

If the "tm’ parameter is *"None'", no item will be added to the
““test_mechanisms'" list property.

See Also:
Test Mechanism implementations are found under the
:mod: stix.extensions.test_mechanism" package.

Args:
tm: An instance of
:class:"stix.indicator.test_mechanism. BaseTestMechanism'
implementation.

Raises:
ValueError: If the 'tm’ parameter is not an instance of
:class:'stix.indicator.test_mechanism. BaseTestMechanism'

"m

self.test_mechanisms.append(tm)

(@property
def related_indicators(self):
return self. related indicators

(@related_indicators.setter
def related indicators(self, value):
if isinstance(value, RelatedIndicators):
self._related_indicators = value
else:
self. related indicators = RelatedIndicators(value)

def add related_indicator(self, indicator):
"""Adds an Related Indicator to the “‘related indicators’" list
property of this :class: Indicator".

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

The “indicator’ parameter must be an instance of
:class:'stix.common.related.RelatedIndicator" or
:class: Indicator’.

If the “indicator’ parameter is *'None'', no item wil be added to the
“'related_indicators'" list property.

Calling this method is the same as calling ““append()’* on the
“'related_indicators'" proeprty.

See Also:
The :class: RelatedIndicators’ documentation.

Note:
If the tm’ parameter is not an instance of
:class: stix.common.related.RelatedIndicator” an attempt will be
made to convert it to one.

Args:
indicator: An instance of :class: Indicator’ or
:class: stix.common.related.RelatedIndicator’.

Raises:
ValueError: If the "indicator’ parameter cannot be converted into
an instance of :class: stix.common.related.RelatedIndicator’

"

self.related_indicators.append(indicator)

(@property
def related campaigns(self):
return self._related campaigns

(@related_campaigns.setter
def related_campaigns(self, value):
if isinstance(value, RelatedCampaignRefs)
self._related_campaigns = value
else:
self._related_campaigns = RelatedCampaignRefs(value)

def add_related_campaign(self, value):
"""Adds a Related Campaign to this Indicator.

The “value' parameter must be an instance of :class:'.RelatedCampaignRef"
or :class:’.CampaignRef".

If the value' parameter is *"None', no item wil be added to the
“related _campaigns’ collection.

Calling this method is the same as calling *‘append()"" on the
“related_campaigns' property.

See Also:
The :class:".RelatedCampaignRef” documentation.

Note:
If the ‘value™ parameter is not an instance of
:class:'.RelatedCampaignRef" an attempt will be made to convert it
to one.

Args:
value: An instance of :class:".RelatedCampaignRef™ or
:class:’.Campaign’.
Raises:

ValueError: If the "value™ parameter cannot be converted into
an instance of :class:".RelatedCampaignRef"

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 4

nn

self.related_campaigns.append(value)

(@property
def observable composition_operator(self):
return self._observable composition_operator

(@observable composition_operator.setter
def observable composition_operator(self, value):
if value in self. ALLOWED_ COMPOSITION_OPERATORS:
self._observable composition_operator = value
return

error = "observable composition_operator must one of {0}"
error = error.format(self. ALLOWED COMPOSITION OPERATORS)
raise ValueError(error)

(@property
def likely impact(self):
return self._likely impact

@likely_impact.setter
def likely impact(self, value):
self._set var(Statement, likely impact=value)

(@property
def negate(self):
return self. negate

(@negate.setter
def negate(self, value):
self. negate = utils.xml_bool(value)

(@property
defkill_chain_phases(self):
return self._kill chain_phases

(@kill_chain_phases.setter
defkill _chain_phases(self, value):
self._kill chain_phases = KillChainPhasesReference(value)

defadd kill chain phase(self, vaiue):
"""Add a new Kill Chain Phase reference to this Indicator.

Args:
value: a :class: stix.common.kill chains.KillChainPhase" or a “str’
representing the phase id of. Note that you if you are defining
a custoimn Kill Chain, you need to add it to the STIX package
separately.

J
"

self.kiil chain_phases.append(value)

@property
detfrelated_packages(self):
return self._related packages

(@related_packages.setter
def related packages(self, value):
self._related packages = RelatedPackageRefs(value)

def add related_package(self, value):
self.related_packages.append(value)

def set producer identity(self, identity):
"""Sets the name of the producer of this indicator.

This is the same as calling
“indicator.producer.identity.name = identity"".

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

If the “*producer’ property is *"None'', it will be initialized to
an instance of
:class:'stix.common.information_source.InformationSource’.

If the “identity'" property of the ““producer’ instance is "None'",
it will be initialized to an instance of
:class:'stix.common.identity.Identity".

Note:
if the “identity’ parameter is not an instance
:class: stix.common.identity.Identity" an attempt will be made
to convert it to one.

Args:
identity: An instance of str'’ or
*'stix.common.identity.Identity".

"

def unset_producer_identity():
try:
self.producer.identity.name = None
except AttributeError:
pass

if not identity:
unset_producer_identity()
return

if not self.producer:
self.producer = InformationSource()

if isinstance(identity, Identity):
self.producer.identity = identity
return

if not self.producer.identity:
self.producer.identity = Identity()

self.producer.identity.name = str(identity)

def set_produced_time(self, produccd tiime):
"""Sets the “‘produced_time " property of the *‘producer’" property
instance fo “produced_time’

This is the same as calling
“indicator.producer.time.produced_time = produced_time"".

The ‘produced time' parameter must be an instance of “'str'",
“datetime.datetime’’, or *cybox.common.DateTimeWithPrecision™".

nNote:

If "produced_time" isa *'str'" or “'datetime.datetime’ " instance
an attempt will be made to convert it into an instance of
““cybox.common.DateTimeWithPrecision"".

Args:

produced_time: An instance of “str'’,
“datetime.datetime’’, or *'cybox.common.DateTimeWithPrecision™".

nn

if not self.producer:
self.producer = InformationSource()

if not self.producer.time:
self.producer.time = Time()

self.producer.time.produced_time = produced time

def get_produced_time(self):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

"""Gets the produced time for this :class: Indicator".

This is the same as calling
“produced_time = indicator.producer.time.produced_time"'.

Returns:
“None'" or an instance of *"cybox.common.DateTimeWithPrecision"".

nnn
try:

return self.producer.time.produced_time
except AttributeError:

return None

def set received time(self, received_time):
"""Sets the received time for this :class: ' Indicator’.

This is the same as calling
“‘indicator.producer.time.produced_time = produced_time"".

The ‘received time' parameter must be an instance of str',
*‘datetime.datetime’", or *‘cybox.common.DateTimeWithPrecision'".

Args:
received_time: An instance of “'str'’,
““datetime.datetime’", or *"cybox.common.DateTimeWithPrecision"".

Note:
If ‘received _time' is a “'str'* or datetime.datetime’" instance
an attempt will be made to convert it into an instance of
““cybox.common.DateTimeWithPrecision".

"

if not self.producer:
self.producer = InformationSource()

if not self.producer.time:
self.producer.time = Time()

self.producer.time.received_time = reccived_time

def get_received_time(self):
"""Gets the received time for this :class: Indicator’.

This is the same as calling
“received_time = indicator.producer.time.received_time'".

Returns:
“"None or an instance of *cybox.common.DateTimeWithPrecision™".

try:
return self.producer.time.received_time
cxcept AttributeError:
return None
def merge observables(self, observables):
observable_composition = ObservableComposition()
observable_composition.operator = self.observable composition operator

for observable in observables:
observable composition.add(observable)

root_observable = Observable()
root_observable.observable composition = observable composition

return root_observable

def add_object(self, object):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

"""Adds a python-cybox Object instance to the "observables'" list
property.

This is the same as calling *“indicator.add_observable(object)*".

Note:
If the "object’ param is not an instance of *"cybox.core.Object™
an attempt will be made to to convert it into one before wrapping
it in an “‘cybox.core.Observable'" layer.

Args:
object : An instance of *cybox.core.Object’” or an object
that can be converted into an instance of
““cybox.core.Observable™

Raises:
ValueError: if the “object ' param cannot be converted to an
instance of "cybox.core.Observable'".
if not object :
return

observable = Observable(object)
self.add_observable(observable)

def'to_obj(self, return_obj=None, ns_info=None):
if not return_obj:
return_obj = self._binding_class()

super(Indicator, self).to_obj(return_obj=return_obj, ns_info=ns info)
return_obj.negate = True if self.negate else None

if self.confidence:

return_obj.Confidence = self.confidence.to_obj(ns_info=ns_info)
if self.indicator_types:

return_obj.Type = self.indicator_types.to cbj(ns_info=ns_info)
if self.indicated_ttps:

return_obj.Indicated TTP = self.indicated_ttps.to_obj(ns_info=ns_info)
if self.producer:

return_obj.Producer = self.producer.to_obj(ns_info=ns_info)
if self.test mechanisms:

return_obj.Test Mechanisms = self.test mechanisms.to_obj(ns_info=ns_info)
if self.likely impact:

return_obj.Likely Tmpact = self.likely impact.to_obj(ns_info=ns_info)
if self.alternative 1d:

return_obj.Alternative _ID = self.alternative id
if self.-valid_time positions:

return_obj.Valid_Time Position = self.valid_time positions.to_obj(ns_info=ns_info)
if self.suggested coas:

cturn_obj.Suggested COAs = self.suggested_coas.to_obj(ns_info=ns_info)

if sclf.sightings:

return_obj.Sightings = self.sightings.to_obj(ns_info=ns_info)
if self.composite_indicator expression:

return_obj.Composite Indicator Expression = self.composite_indicator expression.to_obj(ns_info=ns_info)
if self.kill chain_phases:

return_obj.Kill Chain_Phases = self.kill _chain_phases.to_obj(ns_info=ns_info)
if self.related indicators:

return_obj.Related Indicators = self.related_indicators.to_obj(ns_info=ns_info)
if self.related_campaigns:

return_obj.Related Campaigns = self.related_campaigns.to_obj(ns_info=ns_info)
if self.related packages:

return_obj.Related Packages = self.related_packages.to_obj(ns_info=ns_info)
if self.observables:

if len(self.observables) > 1:

root_observable = self._merge observables(self.observables)
else:
root_observable = self.observables[0]
return_obj.Observable = root_observable.to_obj(ns_info=ns_info)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 4

return return_obj

@classmethod
def from_obj(cls, obj, return_obj=None):
if not obj:
return None
if not return_obj:
return_obj = cls()

super(Indicator, cls).from_obj(obj, return_obj=return_obj)

if isinstance(obj, cls._binding_class):
return_obj.negate = obj.negate
return_obj.producer = InformationSource.from_obj(obj.Producer)
return_obj.confidence = Confidence.from_obj(obj.Confidence)
return_obj.sightings = Sightings.from_obj(obj.Sightings)
return_obj.composite_indicator expression = CompositelndicatorExpression.from_obj(obj.Composite Indicator Expression)
return_obj.kill chain_phases = KillChainPhasesReference.from_obj(obj.Kill Chain Phases)
return_obj.related_indicators = RelatedIndicators.from_obj(obj.Related Indicators)
return_obj.likely impact = Statement.from_obj(obj.Likely Impact)
return_obj.indicator_types = IndicatorTypes.from_obj(obj.Type)
return_obj.test mechanisms = TestMechanisms.from_obj(obj.Test Mechanisms)
return_obj.suggested_coas = SuggestedCOAs.from_obj(obj.Suggested COAs)
return_obj.alternative _id = obj.Alternative ID
return_obj.indicated ttps = IndicatedTTPs.from_obj(obj.Indicated TT}
return_obj.valid time positions = ValidTimePositions.from_obj(obj.Valid_Time Position)
return_obj.observable = Observable.from_obj(obj.Observable)
return_obj.related _campaigns = RelatedCampaignRefs.from obj(obj.Related Campaigns)
return_obj.related packages = RelatedPackageRefs.from obj(obj.Related Packages)

return return_obj

defto_dict(self):
keys = (‘'observables', 'observable composition operator', 'negate')
d = utils.to_dict(self, skip=keys)

if self.negate:
d['negate'] = True

if self.observables:
if len(self.observables) == 1:
d['observable'] = seli.observables[0].to_dict()

else:
composite obscrvable = self._merge observables(self.observables)
d['observable'| = composite_observable.to_dict()
return d

@classmethod
det from_dict(cls, dict_repr, return_obj=None):
if not dict_repr:
return None
if not return_obj:
return_obj = cls()

super(Indicator, cls).from_dict(dict_repr, return_obj=return_obj)

get = dict_repr.get

return_obj.negate = get('negate')

return_obj.alternative id = get(‘alternative id')

return_obj.indicated ttps = IndicatedTTPs.from_dict(get('indicated_ttps'))

return_obj.test mechanisms = TestMechanisms.from_list(get('test mechanisms'))
return_obj.suggested coas = SuggestedCOAs.from_dict(get('suggested coas'))
return_obj.sightings = Sightings.from_dict(get('sightings'))
return_obj.composite_indicator_expression = CompositelndicatorExpression.from_dict(get('composite_indicator expression'))
return_obj.kill chain_phases = KillChainPhasesReference.from_dict(get('kill_chain_phases'))
return_obj.related indicators = RelatedIndicators.from_dict(get('related indicators'))
return_obj.likely impact = Statement.from_dict(get('likely_impact'))

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 4

return_obj.indicator_types = IndicatorTypes.from_list(get('indicator_types'))
return_obj.confidence = Confidence.from_dict(get(‘confidence'))

return_obj.valid_time positions = ValidTimePositions.from_dict(get('valid_time_positions'))
return_obj.observable = Observable.from_dict(get('observable'))

return_obj.producer = InformationSource.from_dict(get(‘producer'))
return_obj.related_campaigns = RelatedCampaignRefs.from_dict(get('related_campaigns'))
return_obj.related_packages = RelatedPackageRefs.from_dict(get('related_packages'))

return return_obj

class CompositelndicatorExpression(stix.EntityList):
"""Implementation of the STIX "*CompositelndicatorExpressionType"".

The “*CompositelndicatorExpression’ class implements methods found on
““collections.MutableSequence'" and as such can be interacted with as a

Vlist™ (e.g., “append()™).

Note:
The “append()’” method can only accept instances of :class: " Indicator’.

Examples:
Add a :class:"Indicator’ instance to an instance of
:class:' CompositelndicatorExpression:

>>> i = Indicator()
>>> comp = CompositelndicatorExpression()
>>> comp.append(i)

Create a :class:"CompositeIndicatorExpression’ from a list of
:class:'Indicator’ instances using **args'* argument list:

>>> list_indicators = [Indicator() for i in xrange(10)]

>>> comp = CompositeIndicatorExpression(CompositelndicatorExpression.OP_OR, *list_indicators)
>>> len(comp)

10

Args:
operator (str, optional): The logical composition operator. Must be *'"AND""* or
AR nORm N .
*args: Variable length argument list of :class:'Indicator’ instances.

Attributes:
OP_AND (str): String " "AND""
OP_OR (str): String """OR"™"
OPERATORS (tuple): Tuple of allowed *“operator'* values.
operator (str): The logical composition operator. Must be *""AND""" or
SCUMOR™Y,

nn

_binding = indicator_binding
binding class = indicator_binding.CompositeIndicatorExpressionType
_namespace = 'http://stix.mitre.org/Indicator-2'
_contained_type = Indicator
_binding_var = "Indicator"

_inner_name = "indicators"

OP_AND ="AND"
OP_OR ="OR"
OPERATORS = (OP_AND, OP_OR)

def init (self, operator="OR", *args):

super(CompositeIndicatorExpression, self). _init__(*args)
self.operator = operator

(@property
def operator(self):
return self._operator

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 4

(@operator.setter
def operator(self, value):
if not value:
raise ValueError("operator must not be None or empty")
elif value not in self. OPERATORS:
raise ValueError("operator must be one of: %s" % (self. OPERATORS,))
else:
self._operator = value

def nonzero (self):
return super(CompositeIndicatorExpression, self). nonzero ()

def'to_obj(self, return_obj=None, ns_info=None):
list_obj = super(CompositeIndicatorExpression, self).to_obj(return_obj=return_obj, ns_info=ns_info)
list_obj.operator = self.operator
return list_obj

def'to_dict(self):
d = super(CompositeIndicatorExpression, self).to_dict()
if self.operator:
d['operator'] = self.operator
return d

(@classmethod
def from_obj(cls, obj, return_obj=None):
if not obj:
return None
if return_obj is None:
return_obj = cls()

super(CompositeIndicatorExpression, cls).from_obj(obj, return_obj=return_obj)
return_obj.operator = obj.operator
return return_obj

(@classmethod
def from_dict(cls, dict_repr, return_obj=None
if not dict_repr:
return None
if return_obj is None:
return_obj = cls()

super(CompositelndicatorExpression, cls).from_dict(dict_repr, return_obj=return_obj)
return_obj.operator = dict_repr.get(‘'operator')
return return_obj

class RelatedCampaignRets(GenericRelationshipList):
_namespace = "http://stix.mitre.org/Indicator-2"
_binding = indicator_binding
_binding class = _binding.RelatedCampaignReferencesType
_binding var ='Related_Campaign'
contained_type = RelatedCampaignRef
_mner_name = "related_campaigns"

def init (self, related_campaign refs=None, scope=None):
super(RelatedCampaignRefs, self). _init (scope, related _campaign_refs)

def fix value(self, value):
from stix.campaign import Campaign

if isinstance(value, Campaign) and value.id_:

return RelatedCampaignRef(CampaignRef(idref=value.id))
else:

return super(RelatedCampaignRefs, self). fix value(value)

#NOT ACTUAL STIX TYPES!
class IndicatorTypes(stix. TypedList):
"""A :class: stix.common.vocabs.VocabString" collection which defaults to

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 4

:class:'stix.common.vocabs.IndicatorType'. This class implements methods
found on "collections.MutableSequence’* and as such can be interacted with
like a “list™".

Note:
The “append()'" method can accept “‘str'* or
:class:'stix.common.vocabs.VocabString" instances. If a *'str'* instance
is passed in, an attempt will be made to convert it to an instance of
:class: stix.common.vocabs.IndicatorType'.

Examples:
Add an instance of :class: stix.common.vocabs.IndicatorType':

>>> from stix.common.vocabs import IndicatorType

>>> itypes = IndicatorTypes()

>>>type = IndicatorType(IndicatorType. TERM_IP_ WATCHLIST)
>>> jtypes.append(type)

>>> print len(itypes)

1

Add a string value:

>>> from stix.common.vocabs import IndicatorType

>>> jtypes = IndicatorTypes()

>>> type(IndicatorType. TERM_IP_ WATCHLIST)

<type 'str'™>

>>> jtypes.append(IndicatorType. TERM [P WATCHLIST)
>>> print len(itypes)

1

Args:
*args: Variable length argument list of strings or
:class:"stix.common.vocabs.VocabString" instances.

_namespace = "http://stix.mitre.org/Indicator-2'
_contained_type = VocabString

def fix value(self, value):
return IndicatorType(value)

class _Indicated TTPs(stix.TypedList):
_contained type = Related T Tt

‘

class _Observa stix. TypedList):
_contained type = Observable

3.3. Python Source Code for LibTaxii — Base Code for TAXII Clients

‘The following scripts is by MITRE Corporation which is free to use according to their
license. It has been included here so that the reader can readily study the code to better
understand the technical details of TAXII.

Copyright (C) 2013 - The MITRE Corporation
For license information, see the LICENSE.txt file

Contributors:

* Alex Ciobanu - calex@cert.europa.eu

* Mark Davidson - mdavidson@mitre.org
* Bryan Worrell - bworrell@mitre.org

* Benjamin Yates - byates@dtcc.com

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

nn

Creating, handling, and parsing TAXII 1.0 messages.

nn

try:
import simplejson as json
except ImportError:
import json
import 0s
import StringlO
import warnings

from Ixml import etree

from .common import (parse, parse_datetime_string, append _any content_etree, TAXIIBase,
get_required, get optional, get optional text)

from .validation import do_check, uri_regex, check timestamp label, message id regex 10

from constants import *

def validate xml(xml_string):
Note that this function has been deprecated. Please see
libtaxii.validators.SchemaValidator.

Validate XML with the TAXII XML Schema 1.0.

Args:
xml_string (str): The XML to validate.

Example:
.. code-block:: python

is_valid = tm10.validate_xml(message.to_xml())

nn

warnings.warn('Call to deprecated function: libtaxii.messages 10.validate xml()',
category=DeprecationWarning)

if isinstance(xml_string, basestring):
f'= StringlO.StringlO(xml_string)
else:
f=xml string

etree_xml = parse(f)
package dir, package filcname = os.path.split(__ file)
schema_file path.join(package dir, "xsd", "TAXII XMLMessageBinding Schema.xsd")
taxii_schema doc = parse(schema_file)
xml_schema = ctree. XMLSchema(taxii_schema_ doc)
valid = xm! schema.validate(etree_xml)
if not valid:
return xml_schema.error log.last_error
return valid

def get_message from xml(xml_string):
"""Create a TAXIIMessage object from an XML string.

This function automatically detects which type of Message should be created
based on the XML.

Args:
xml_string (str): The XML to parse into a TAXII message.

Example:
.. code-block:: python

message xml = message.to_xml()
new_message = tm10.get_message from_ xml(message xml)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

nn

if isinstance(xml_string, basestring):
= StringlO.StringlO(xml_string)
else:
f=xml_string

etree_xml = parse(f)
qn = etree.QName(etree_xml)
if gn.namespace !=ns_map|['taxii']:
raise ValueError('Unsupported namespace: %s' % qn.namespace)

message_type = qn.localname

if message type ==MSG DISCOVERY REQUEST:
return DiscoveryRequest.from_etree(etree_xml)
if message_type == MSG_DISCOVERY_RESPONSE:
return DiscoveryResponse.from_etree(etree_xml)
if message type ==MSG _FEED INFORMATION REQUEST:
return FeedInformationRequest.from_etree(etree_xml)
if message type ==MSG _FEED INFORMATION RESPONSE:
return FeedInformationResponse.from_etree(etree_xml)
if message_type == MSG_POLL_REQUEST:
return PollRequest.from_etree(etree_xml)
if message type == MSG_POLL RESPONSE:
return PollResponse.from_etree(etree_xml)
if message type == MSG_STATUS_MESSAGE:
return StatusMessage.from_etree(etree_xml)
if message_type == MSG_INBOX_MESSAGE:
return InboxMessage.from_etree(etree_xml)
if message_type == MSG_MANAGE_FEED_SUBSCRIPTION REQUEST:
return ManageFeedSubscriptionRequest.from_etree(etree_xml)
if message_type == MSG_MANAGE_FEED SUBSCRIPTION_RESPONSE:
return ManageFeedSubscriptionResponse.from_etree(ctree_xml)

raise ValueError('Unknown message_type: %s' % incssage_type)

def get_message from_dict(d):
"""Create a TAXIIMessage object from a dicionary.

This function automatically detects which type of Message should be created
based on the 'message_type' key n the dictionary.

Args:
d (dict): The dictionary to build the TAXII message from.

Example:
.. code-block:: python

message_dict = message.to_dict()
1ew message = tm10.get_message from_dict(message dict)
mnnn
if 'message_type' not in d:
raise ValueError('message _type is a required field!")

message_type = d['message_type']

if message type == MSG_DISCOVERY_REQUEST:
return DiscoveryRequest.from_dict(d)

if message type == MSG_DISCOVERY_RESPONSE:
return DiscoveryResponse.from_dict(d)

if message_type == MSG_FEED INFORMATION_REQUEST:
return FeedInformationRequest.from_dict(d)

if message_type == MSG_FEED_INFORMATION_RESPONSE:
return FeedInformationResponse.from_dict(d)

if message type ==MSG POLL REQUEST:
return PollRequest.from_dict(d)

if message type ==MSG POLL RESPONSE:
return PollResponse.from_dict(d)

if message_type == MSG_STATUS_MESSAGE:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

return StatusMessage.from_dict(d)

if message_type == MSG_INBOX_ MESSAGE:
return InboxMessage.from_dict(d)

if message_type == MSG_MANAGE_FEED_SUBSCRIPTION_REQUEST:
return ManageFeedSubscriptionRequest.from_dict(d)

if message_type == MSG_MANAGE_FEED_ SUBSCRIPTION_RESPONSE:
return ManageFeedSubscriptionResponse.from_dict(d)

raise ValueError('Unknown message_type: %s' % message_type)

def get message from json(json_string):
"""Create a TAXIIMessage object from a JSON string.

This function automatically detects which type of Message should be created
based on the JSON.

Args:
json_string (str): The JSON to parse into a TAXII message.

"

return get message from_dict(json.loads(json_string))

class TAXIIBasel0(TAXIIBase):
version = VID_TAXII XML_10

class DeliveryParameters(TAXIIBase10):
"""Delivery Parameters.

Args:

inbox_protocol (str): identifies the protocol to be used when pushing
TAXII Data Feed content to a Consumer's TAXII Inbox Service
implementation. **Required**

inbox_address (str): identifies the address of the TAXII Daemon hosting
the Inbox Service to which the Consumer requests content for this
TAXII Data Feed to be delivered. **Required**

delivery _message binding (str): identifies the message binding to be
used to send pushed content for this subscription. **Required**

content_bindings (list of str): contains Content Binding IDs
indicating which types of contenis the Consumer requests to
receive for this TAXIT Data Feed. **Optional**

A

nn

TODO: Should the default arguments of these change? I'm not sure these are
actually optiona!

def init (sclf, inbox_protocol=None, inbox_address=None,
delivery message binding=None, content bindings=None):
self.inbox_protocol = inbox_protocol
self.inbox_address = inbox_address
self.delivery_message binding = delivery_message binding
self.content_bindings = content_bindings or []

@property
def sort_key(self):
return self.inbox_address

(@property
def inbox_protocol(self):
return self._inbox_protocol

(@inbox_protocol.setter
def inbox_protocol(self, value):

do_check(value, 'inbox_protocol', regex_tuple=uri_regex)
self._inbox_protocol = value

(@property

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

def inbox_address(self):
return self._inbox_address

@inbox_address.setter

def inbox_address(self, value):
TODO: Can inbox_address be validated?
self._inbox_address = value

(@property
def delivery_message binding(self):
return self._delivery message binding

(@delivery message binding.setter

def delivery_message binding(self, value):
do_check(value, 'delivery_message binding', regex tuple=uri_regex)
self._delivery message binding = value

(@property
def content_bindings(self):
return self._content_bindings

(@content_bindings.setter

def content_bindings(self, value):
do_check(value, 'content_bindings', regex_tuple=uri_regex)
self._content bindings = value

def'to_etree(self):
xml = etree.Element('{%s} Push_Parameters' % ns_map['taxii'])

if self.inbox_protocol is not None:
pb = etree.SubElement(xml, '{%s} Protocol Binding' % ns_map|'taxii'])
pb.text = self.inbox_protocol

if self.inbox_address is not None:
a = etree.SubElement(xml, '{%s} Address' % s _map['taxii'])
a.text = self.inbox_address

if self.delivery message binding is not None:
mb = etree.SubElement(xml, '{%s} Message Binding' % ns_map|['taxii'])
mb.text = self.delivery message binding

for binding in self.content bindings:

cb = etree.SubElement(xml, ' {%s}Content_Binding' % ns_map]['taxii'])
cb.text = binding

return xml

def'to_dict(self)
d={}

if seif.anbox_protocol is not None:
d['inbox_protocol'] = self.inbox_protocol

if self.inbox_address is not None:
d['inbox_address'] = self.inbox_address

if self.delivery_message binding is not None:
d['delivery message binding'] = self.delivery message binding

d['content bindings'] =[]
for binding in self.content bindings:
d['content_bindings'].append(binding)
return d
def'to_text(self, line_prepend="):
s =line_prepend + "=== Push Parameters ===\n"

s +=line prepend + " Inbox Protocol: %s\n" % self.inbox_protocol
s +=line prepend +" Address: %s\n" % self.inbox_address

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

W

s +=line prepend +" Message Binding: %s\n" % self.delivery_message binding
if len(self.content_bindings) > 0:

s +=line_prepend +" Content Bindings: Any Content\n"
for cb in self.content bindings:

s +=line prepend +" Content Binding: %s\n" % str(cb)

return s

(@staticmethod
def from_etree(etree_xml):

inbox_protocol = get optional text(etree xml, './taxii:Protocol Binding', ns_map)
inbox_address = get_optional_text(etree_xml, './taxii:Address', ns_map)
delivery message binding = get optional text(etree xml, './taxii:Message Binding', ns_map)

content_bindings = []
for binding in etree_xml.xpath('./taxii:Content Binding', namespaces=ns_map):
content_bindings.append(binding.text)

return DeliveryParameters(inbox_protocol, inbox_address, delivery message binding, content_bindings)

(@staticmethod
def from_dict(d):
return DeliveryParameters(**d)

class TAXIIMessage(TAXIIBasel0):
"""Encapsulate properties common to all TAXII Messages (such as headers).

This class is extended by each Message Type (e.g., DiscoveryRequest), with
each subclass containing subclass-specific information

"

message_type = '"TAXIIMessage'

def init (self, message id, in_response_to=None, extended_headers=None):
"""Create a new TAXIIMessage

Arguments:
- message_id (string) - A valuc identifying this message.
- in_response_to (string) - Contains the Message ID of the message to
which this is a response.
- extended_headers (dictionary) - A dictionary of name/value pairs for
use as Extended Headers
nun
self.message _id = message id
self.in response to=in_response_to
if extended_headers is None:
self.extended_headers = {}
CIsC.
sclf.extended_headers = extended headers

(@property
def message_id(self):
return self._message id

(@message_id.setter

def message_id(self, value):
do_check(value, 'message id', regex_tuple=message id regex 10)
self._ message id = value

(@property
defin_response_to(self):
return self._in_response to

@in_response_to.setter
defin_response_to(self, value):
do_check(value, 'in_response_to', regex_tuple=message id regex 10, can_be none=True)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

self._in_response_to = value

(@property
def extended headers(self):
return self. extended headers

(@extended headers.setter

def extended headers(self, value):
do_check(value.keys(), 'extended headers.keys()', regex_tuple=uri_regex)
self._extended_headers = value

defto_etree(self):
"""Creates the base etree for the TAXII Message.

Message-specific constructs must be added by each Message class. In

general, when converting to XML, subclasses should call this method

first, then create their specific XML constructs.

root_elt = etree.Element('{%s} %s' % (ns_map['taxii'], self.message_type), nsmap=ns_map)
root_elt.attrib['message id'] = str(self.message _id)

if self.in_response_to is not None:
root_elt.attrib['in_response_to'] = str(self.in_response_to)

if len(self.extended_headers) > 0:
ch = etree.SubElement(root_elt, '{%s}Extended_Headers' % ns_map['taxii'])

for name, value in self.extended_headers.items():
h = etree.SubElement(eh, '{%s} Extended_Header' % ns_map|'taxii'])
h.attrib['name'] = name
append_any_content_etree(h, value)
h.text = value
return root_elt

def to_xml(self, pretty print=False):
"""Convert a message to XML.

Subclasses shouldn't implement this method. as it is mainly a wrapper
for cls.to_etree.

"

return etree.tostring(self.to_etree(). pretty print=pretty print)

defto_dict(self):
"""Create the base dictionary for the TAXII Message.

Message-specific constructs must be added by each Message class. In
general, w converting to dictionary, subclasses should call this
method first, then create their specific dictionary constructs.

d={}
d['message_type'] = self.message_type
d['message_id'] = self.message id
if self.in_response_to is not None:
d['in_response_to'] = self.in_response_to
d['extended headers'] = {}
for k, v in self.extended headers.iteritems():
if isinstance(v, etree._Element) or isinstance(v, etree. ElementTree):
v = etree.tostring(v)
elif not isinstance(v, basestring):
v = str(v)
d['extended headers'|[k] = v

return d

defto_json(self):
return json.dumps(self.to_dict())

defto_text(self, line_prepend="):
s = line_prepend + "Message Type: %s\n" % self.message_type

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

s +=line_prepend + "Message ID: %s" % self.message id
if self.in_response to:
s +="; In Response To: %s" % self.in_response_to
s +="\n"
for k, v in self.extended headers.iteritems():
s +=line_prepend + "Extended Header: %s = %s" % (k, v)

return s

@classmethod
def from_etree(cls, src_etree, **kwargs):
"""Pulls properties of a TAXII Message from an etree.

Message-specific constructs must be pulled by each Message class. In
general, when converting from etree, subclasses should call this method
first, then parse their specific XML constructs.

"

Check namespace and element name of the root element
expected_tag ="'{%s}%s' % (ns_map['taxii'], cls.message_type)
tag = src_etree.tag
if tag != expected_tag:

raise ValueError('%s != %s' % (tag, expected_tag))

Get the message ID
message id = get_required(src_etree, '/taxii:*/@message id', ns_map)

Get in response to, if present
in_response_to = get optional(src_etree, '/taxii:*/@in_responsc to', ns_imap)
if in_response_to:

kwargs['in_response_to'] =in_response_to

Get the Extended headers
extended header list = src_etree.xpath('/taxii: */taxii:Extended Headers/taxii:Extended Header', namespaces=ns_map)
extended_headers = {}
for header in extended_header _list:
eh_name = header.xpath('./@name')[0]
eh_value = header.text
if len(header) == 0: # This has string coutent
eh_value = header.text
else: # This has XML content
eh_value = header[0]

extended headers[eh name]=eh value

return cls(message id, extended headers=extended headers, **kwargs)

@classmethod
def from xml(cls, xml):
""Parse a Message from XML.

Subclasses shouldn't implemnet this method, as it is mainly a wrapper
for cls.from_etree.
if isinstance(xml, basestring):
f= StringlO. StringlO(xml)
else:
f=xml

etree_xml = parse(f)
return cls.from_etree(etree_xml)

(@classmethod
def from_dict(cls, d, **kwargs):
"""Pulls properties of a TAXII Message from a dictionary.

Message-specific constructs must be pulled by each Message class. In
general, when converting from dictionary, subclasses should call this

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

method first, then parse their specific dictionary constructs.
message_type = d['message_type']
if message_type != cls.message type:
raise ValueError('%s = %s' % (message_type, cls.message_type))
message_id = d['message_id']
extended_headers = {}
for k, v in d['extended headers'].iteritems():
try:
v = parse(V)
except etree. XMLSyntaxError:
pass
extended headers[k] =v

in_response_to = d.get('in_response_to')
if in_response_to:
kwargs['in_response to'] =in_response_to

return cls(message _id, extended headers=extended headers, **kwargs)

(@classmethod
def from_json(cls, json_string):
return cls.from_dict(json.loads(json_string))

class ContentBlock(TAXIIBasel0):
"""A TAXII Content Block.

Args:

content_binding (str): a Content Binding ID or nesting expression
indicating the type of content contained in the Content field of this
Content Block. **Required**

content (string or etree): a piece of content of the type specified
by the Content Binding. **Required**

timestamp_label (datetime): the Timestamp Iabel associated with this
Content Block. **Optional**

padding (string): an arbitrary amount of padding for this Content
Block. **Optional**

"

NAME = 'Content_Block'

def init (self, content_binding, content, timestamp_label=None, padding=None):
self.content_binding = content_binding
self.content, sclf.content is xml = self._stringify content(content)
self.timestamp fabel = timestamp_label
self.padding = padding

@property
det sort_key(self):
return self.content[:25]

(@property
def content_binding(self):
return self._content binding

(@content binding.setter

def content_binding(self, value):
do_check(value, 'content_binding', regex_tuple=uri_regex)
self. _content binding = value

(@property
def content(self):
if self.content is_xml:
return etree.tostring(self._content)
else:
return self._content

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 5

(@content.setter

def content(self, value):
do_check(value, 'content') # Just check for not None
self._content, self.content_is_xml = self._stringify content(value)

(@property
def content_is_xml(self):
return self._content is_xml

(@content_is_xml.setter

def content is_xml(self, value):
do_check(value, 'content is_xml', value tuple=(True, False))
self._content_is_xml = value

(@property
def timestamp_label(self):
return self._timestamp_label

(@timestamp_label.setter

def timestamp_label(self, value):
value = check timestamp_label(value, 'timestamp _label', can_be none=True)
self._timestamp_label = value

def stringify content(self, content):
"""Always a string or raises an error.
Returns the string representation and whether the data is XML.
i
If it's an etree, it's definitely XML
if isinstance(content, etree. ElementTree):
return content.getroot(), True

if isinstance(content, etree. Element):
return content, True

if hasattr(content, 'read’): # The content is file-lik
try: # Try to parse as XML
xml = parse(content)
return xml, True
except etree. XMLSyntaxError: # Conteiit is not well-formed XML; just treat as a string
return content.read(), False
else: # The Content is not file-itk
try: # Attempt to parse string as XML
sio_content = StringlO.StiinglO(content)
xml = parse(sio_content)
return xml, Tru
except etrec. XMLSyntaxError: # Content is not well-formed XML; just treat as a string
if isinstance(content, basestring): # It's a string of some kind, unicode or otherwise
return content, False
else: # It's some other datatype that needs casting to string
return str(content), False

def to_ctree(self):
block = etree.Element('{%s}Content_Block' % ns_map['taxii'], nsmap=ns_map)
cb = etree.SubElement(block, '{%s} Content Binding' % ns_map]['taxii'])
cb.text = self.content_binding
¢ = etree.SubElement(block, '{%s}Content' % ns_map|['taxii'])

if self.content is xml:
c.append(self._content)
else:
c.text = self._content

if self.timestamp_label:
tl = etree.SubElement(block, '{%s} Timestamp_Label' % ns_map] 'taxii'])
tl.text = self.timestamp_label.isoformat()

if self.padding is not None:

p = etree.SubElement(block, '{%s}Padding' % ns_map|['taxii'])
p.text = self.padding

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

return block

def'to_dict(self):
block = {}
block['content_binding'] = self.content_binding

if self.content is_xml:

block['content'] = etree.tostring(self._content)
else:

block['content'] = self._content
block['content is_xml'] = self.content_is xml

if self.timestamp_label:
block['timestamp_label'] = self.timestamp_label.isoformat()

if self.padding is not None:
block['padding'] = self.padding

return block

def'to_json(self):
return json.dumps(self.to_dict())

def'to_text(self, line_prepend="):

s = line_prepend + "=== Content Block ===\n"
s +=line_prepend +" Content Binding: %s\n" % self.content_binding
s +=line prepend +" Content Length: %s\n" % len(self.content)
s +=line prepend +" (Only content length is shown for brevity)n"
if self.timestamp_label:

s +=line_prepend +" Timestamp Label: %s\n" % self.timestamp_label.isoformat()
s +=line_prepend +" Padding: %s\n" % self.padding

return s

(@staticmethod
def from_etree(etree_xml):
kwargs = {}

kwargs['content_binding'] = get required(etree_xml, './taxii:Content Binding', ns_map).text
kwargs['padding'] = get optiona! text(etree_xml, './taxii:Padding', ns_map)

ts_text = get optional text(ctree xml, './taxii:Timestamp_Label', ns_map)
if ts_text:
kwargs['timestamp label'] = parse_datetime_string(ts_text)

content = get required(etree_xml, './taxii:Content', ns_map)

if len(content) == 0: # This has string content
cwargs|'content'] = content.text

elsc: # This has XML content
kwargs['content'] = content[0]

return ContentBlock(**kwargs)

(@staticmethod

def from_dict(d):
kwargs = {}
kwargs['content_binding'] = d['content binding']
kwargs['padding'] = d.get('padding')

if d.get('timestamp_label'):
kwargs['timestamp_label'] = parse _datetime_string(d['timestamp _label'])

is_xml = d.get('content_is_xml', False)
ifis_xml:
#FIXME: to parse or not to parse the content - this should be configurable

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

kwargs['content'] = parse(d['content'])
else:
kwargs['content'] = d['content']

cb = ContentBlock(**kwargs)
return cb

@classmethod
def from_json(cls, json_string):
return cls.from_dict(json.loads(json_string))

TAXII Message Classes

class DiscoveryRequest(TAXIIMessage):

"

A TAXII Discovery Request message.

Args:
message _id (str): A value identifying this message. **Required**
extended_headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**

"

message type = MSG_DISCOVERY_ REQUEST

@TAXIIMessage.in_response_to.setter
def'in_response_to(self, value):
if value:
raise ValueError('in_response_to must be None')
self._in_response to = value

class DiscoveryResponse(TAXIIMessage):

nn

A TAXII Discovery Response message

Args:

message_id (str): A value identifying this message. **Required**

in_response_to (str): Contains the Message ID of the message to
which this is a response. **Optional**

extended_headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**

service_instances (list of ‘Servicelnstance'): a list of
service instances that this response contains. **Optional**

"

message (ype = MSG_DISCOVERY_ RESPONSE

det init _(self, message id, in_response_to, extended_headers=None, service instances=None):
super(DiscoveryResponse, self). init (message_id, in_response_to, extended headers)
self.service _instances = service_instances or []

@TAXIIMessage.in_response_to.setter

def in_response_to(self, value):
do_check(value, 'in_response_to', regex_tuple=uri_regex)
self._in_response to = value

@property
def service_instances(self):
return self._service instances

(@service_instances.setter

def service instances(self, value):
do_check(value, 'service_instances', type=Servicelnstance)
self._service instances = value

def to_etree(self):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

xml = super(DiscoveryResponse, self).to_etree()
for service_instance in self.service instances:

xml.append(service_instance.to_etree())
return xml

def'to_dict(self):
d = super(DiscoveryResponse, self).to_dict()
d['service instances'] =[]
for service instance in self.service instances:
d['service_instances'].append(service_instance.to_dict())
return d

def'to_json(self):
return json.dumps(self.to_dict())

def'to_text(self, line_prepend="):
s = super(DiscoveryResponse, self).to_text(line_prepend)
for si in self.service instances:
s +=si.to_text(line_prepend + STD INDENT)

return s

(@classmethod
def from_etree(cls, etree_xml):
msg = super(DiscoveryResponse, cls).from_etree(etree_xml)
msg.service_instances =[]
for service instance in etree_xml.xpath('./taxii:Service Instance', namespaces=ns_map):
si = Servicelnstance.from_etree(service_instance)
msg.service_instances.append(si)
return msg

(@classmethod
def from_dict(cls, d):
msg = super(DiscoveryResponse, cls).from_dict(d)
msg.service instances = []
for service instance in d['service instances'|
si = Servicelnstance.from_dict(service instance)
msg.service_instances.append(si)
return msg

class Servicelnstance(TAXIIBasc10):

nn

The Service Instance component of a TAXII Discovery Response Message.

Args:

service type (string): identifies the Service Type of this
Service Instance. **Required**

services version (string): identifies the TAXII Services
Specification to which this Service conforms. **Required**

protocol_binding (string): identifies the protocol binding
supported by this Service. **Required**

service_address (string): identifies the network address of the
TAXII Daemon that hosts this Service. **Required**

message bindings (list of strings): identifies the message
bindings supported by this Service instance. **Required**

inbox_service accepted content (list of strings): identifies
content bindings that this Inbox Service is willing to accept.
Optional

available (boolean): indicates whether the identity of the
requester (authenticated or otherwise) is allowed to access this
TAXII Service. **Optional**

message (string): contains a message regarding this Service
instance. **Optional**

The “'message bindings™" list must contain at least one value.

"

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

def init (self, service_type, services_version, protocol binding,

service address, message bindings,
inbox_service_accepted_content=None, available=None,
message=None):

self.service type = service type

self.services version = services_version

self.protocol_binding = protocol binding

self.service _address = service address

self.message bindings = message bindings

self.inbox_service accepted content = inbox_service_accepted_content or []

self.available = available

self.message = message

(@property
def sort_key(self):
return self.service_address

(@property
def service_type(self):
return self._service type

(@service_type.setter

def service type(self, value):
do_check(value, 'service_type', value tuple=SVC_TYPES)
self._service_type = value

(@property
def services_version(self):
return self._services version

(@services_version.setter

def services_version(self, value):
do_check(value, 'services_version', regex_tuple=uri_regex)
self._services_version = value

(@property
def protocol_binding(self):
return self._protocol binding

(@protocol_binding.setter

def protocol binding(self, value):
do_check(value, 'protocol binding', regex_tuple=uri_regex)
self. protocol binding = value

@property
def service_address(self)
return self. service address

(@service address.setter
def service address(self, value):
self._service_address = value

(@property
def message bindings(self):
return self._message bindings

(@message bindings.setter

def message bindings(self, value):
do_check(value, 'message bindings', regex tuple=uri_regex)
self._message bindings = value

(@property
def inbox_service accepted_content(self):
return self._inbox_service accepted content

@inbox_service accepted_content.setter
def inbox_service accepted content(self, value):

do_check(value, 'inbox_service accepted content', regex tuple=uri_regex)
self._inbox_service accepted content = value

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

(@property
def available(self):
return self._available

(@available.setter

def available(self, value):
do_check(value, 'available', value tuple=(True, False), can_be none=True)
self._available = value

defto_etree(self):
si = etree.Element('{%s} Service_Instance' % ns_map['taxii'])
si.attrib['service_type'] = self.service_type
si.attrib['service version'] = self.services_version
if self.available:
si.attrib['available'] = str(self.available).lower()

protocol_binding = etree.SubElement(si, '{%s} Protocol_Binding' % ns_map['taxii'])
protocol_binding.text = self.protocol_binding

service_address = etree.SubElement(si, '{%s} Address' % ns_map['taxii'])
service_address.text = self.service address

for mb in self.message bindings:
message_binding = etree.SubElement(si, '{%s}Message Binding' % ns_map]| taxii'])
message binding.text = mb

for cb in self.inbox_service_accepted_content:
content_binding = etree.SubElement(si, '{%s} Content Binding' % ns_map['taxii'])
content_binding.text = cb

if self.message is not None:
message = etree.SubElement(si, '{%s} Message' % ns_map|'taxii'])
message.text = self.message

return si

def to_dict(self):
d={}
d['service_type'] = self.service type
d['services_version'] = self.services version
d['protocol_binding'] = self protocol_binding
d['service address'] = seil.service address
d['message bindings'] = seli.message bindings
d['inbox_service accepted_content'] = self.inbox_service accepted content
d['available'] = seif.available
d['messag self message
return d

def to_text(self, line_prepend="):
s = line prepend + "=== Service Instance===\n"
s += line_prepend + " Service Type: %s\n" % self.service type
s +=line_prepend +" Services Version: %s\n" % self.services_version
s +=line prepend +" Protocol Binding: %s\n" % self.protocol binding
s +=line prepend + " Address: %s\n" % self.service address
for mb in self.message bindings:
s +=line prepend +" Message Binding: %s\n" % mb
if len(self.inbox_service accepted content) == 0:
s +=line_prepend +" Inbox Service Accepts: %s\n" % None
for isac in self.inbox_service accepted_content:
s +=line prepend +" Inbox Service Accepts: %s\n" % isac
s +=line prepend + " Available: %s\n" % self.available
s +=line_prepend + " Message: %s\n" % self.message

return s
(@classmethod

def from_etree(cls, etree_xml): # Expects a taxii:Service Instance element
service _type = etree_xml.attrib['service type']

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

services_version = etree_xml.attrib['service version']
available = None
if etree_xml.attrib.get(‘available'):
tmp_available = etree_xml.attrib['available']
available = tmp_available.lower() == 'true'

protocol_binding = get_required(etree_xml, './taxii:Protocol_Binding', ns_map).text
service address = get_required(etree_xml, './taxii:Address', ns_map).text

message bindings =[]
for mb in etree_xml.xpath('./taxii:Message Binding', namespaces=ns_map):
message bindings.append(mb.text)

inbox_service accepted contents = []
for cb in etree_xml.xpath('./taxii:Content Binding', namespaces=ns_map):
inbox_service_accepted_contents.append(cb.text)

message = get optional text(etree xml, './taxii:Message', ns_map)

return Servicelnstance(service_type, services_version, protocol binding,
service_address, message bindings, inbox_service accepted contents,
available, message)

(@staticmethod
def from_dict(d):
return Servicelnstance(**d)

class FeedInformationRequest(TAXIIMessage):

"

A TAXII Feed Information Request message.

Args:
message _id (str): A value identifying this message. **Required**
extended_headers (dict): A dictionary of name/valuc pairs for
use as Extended Headers. **Optional**

nn

message_type = MSG_FEED INFORMATION_REQUEST

@TAXIIMessage.in_responsc_to.setter
defin_response_to(self, vaiue):
if value:
raise ValueError('in response_to must be None')
self._in_response_to = value

class FeedInformationResponse(TAXIIMessage):

nn

A TAXII Feed Information Response message.
Args:
message_id (str): A value identifying this message. **Required**
in_response_to (str): Contains the Message ID of the message to
which this is a response. **Required**
extended headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**
feed_informations (list of FeedInformation): A list
of FeedInformation objects to be contained in this response.
**Optional **

nn

message type = MSG_FEED INFORMATION RESPONSE

def init (self, message id, in_response_to, extended headers=None, feed_informations=None):
super(FeedInformationResponse, self). init (message id, in_response to, extended headers=extended headers)
self.feed informations = feed informations or []

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

@TAXIIMessage.in_response_to.setter

defin_response_to(self, value):
do_check(value, 'in_response_to', regex_tuple=message id regex 10)
self._in_response_to = value

(@property
def feed_informations(self):
return self. feed informations

(@feed_informations.setter

def feed_informations(self, value):
do_check(value, 'feed_informations', type=FeedInformation)
self._feed_informations = value

defto_etree(self):
xml = super(FeedInformationResponse, self).to_etree()
for feed in self.feed informations:
xml.append(feed.to_etree())
return xml

def'to_dict(self):
d = super(FeedInformationResponse, self).to_dict()
d['feed_informations'] =[]
for feed in self.feed informations:
d['feed_informations'].append(feed.to_dict())
return d
def'to_text(self, line_prepend="):
s = super(FeedInformationResponse, self).to_text(line_prepend)
for feed in self.feed informations:
s += feed.to_text(line_prepend + STD INDENT)

return s

(@classmethod

def from_etree(cls, etree_xml):
msg = super(FeedInformationResponse, cis).from_etree(etree_xml)
msg.feed informations = []
feed informations = etree_xml.xpath('./taxii:Feed', namespaces=ns_map)
for feed in feed_informations:

msg.feed informations.append(FecdInformation.from_etree(feed))

return msg

@classmethod
def from_dict(cls, d):
msg = super(l'cedinformationResponse, cls).from_dict(d)
msg.feed informations = []
for feed in df'feed_informations']:
msg.feed_informations.append(FeedInformation.from_dict(feed))
return msg

>

class FeedInformation(TAXIIBase10):

The Feed Information component of a TAXII Feed Information Response
Message.

Arguments:

feed_name (str): the name by which this TAXII Data Feed is
identified. **Required**

feed_description (str): a prose description of this TAXII
Data Feed. **Required**

supported_contents (list of str): Content Binding IDs
indicating which types of content are currently expressed in this
TAXII Data Feed. **Required**

available (boolean): whether the identity of the requester
(authenticated or otherwise) is allowed to access this TAXII
Service. **Optional** Default: *"None'", indicating "unknown"

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

push_methods (list of PushMethod objects): the protocols that
can be used to push content via a subscription. **Optional**

polling_service_instances (list of PollingServicelnstance objects):
the bindings and address a Consumer can use to interact with a
Poll Service instance that supports this TAXII Data Feed.
Optional

subscription_methods (list of SubscriptionMethod objects): the
protocol and address of the TAXII Daemon hosting the Feed
Management Service that can process subscriptions for this TAXII
Data Feed. **Optional**

The absense of “"push_methods’" indicates no push methods. The absense
of “polling_service_instances'" indicates no polling services. At

least one of “‘push_methods™ and “‘polling_service instances ' must not
be empty. The absense of “'subscription_methods'" indicates no
subscription services.

"

def init (self, feed name, feed description, supported_contents,
available=None, push_methods=None,
polling_service instances=None, subscription_methods=None):

self.feed name = feed name

self.available = available

self.feed_description = feed_description

self.supported contents = supported contents
self.push_methods = push_methods or []
self.polling_service_instances = polling_service_instances or []
self.subscription_methods = subscription_methods or []

(@property
def sort_key(self):
return self.feed_name

(@property
def feed_name(self):
return self. _feed name

(@feed_name.setter

def feed _name(self, value):
do_check(value, 'feed name', regex _tuple=uri_regex)
self._feed name = value

@property
def available(self)
return self._available

(@available setter

def available(sclt, value):
do_check(value, 'available', value tuple=(True, False), can_be none=True)
self._available = value

@property
def supported_contents(self):
return self._supported_contents

(@supported_contents.setter

def supported_contents(self, value):
do_check(value, 'supported_contents', regex_tuple=uri_regex)
self._supported_contents = value

(@property
def push_methods(self):
return self. push_methods

@push_methods.setter
def push_methods(self, value):

do_check(value, 'push_methods', type=PushMethod)
self._push_methods = value

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

(@property
def polling_service instances(self):
return self._polling_service_instances

@polling_service_instances.setter

def polling_service instances(self, value):
do_check(value, 'polling_service instances', type=PollingServicelnstance)
self. polling service instances = value

(@property
def subscription_methods(self):
return self._subscription_methods

(@subscription_methods.setter

def subscription_methods(self, value):
do_check(value, 'subscription_methods', type=SubscriptionMethod)
self._subscription_methods = value

def to_etree(self):
f=etree.Element('{%s}Feed' % ns_map]['taxii'])
f.attrib['feed_name'] = self.feed_name
if self.available:
f.attrib['available'] = str(self.available).lower()
feed_description = etree.SubElement(f, '{%s} Description' % ns_map['taxii'])
feed description.text = self.feed_description

for binding in self.supported_contents:
cb = etree.SubElement(f, '{%s} Content_Binding' % ns_map['taxii'])
cb.text = binding

for push_method in self.push _methods:
f.append(push_method.to_etree())

for polling_service in self.polling_service_instanices:
f.append(polling_service.to_etree())

for subscription_method in self.subscription methods:
f.append(subscription_method.to_etree())

return f

defto_dict(self):

d={}

d['feed_name'] = se

if self.available:
d['available'] = seif.available

d['feed description'] = self.feed_description

d['supported_contents'] = self.supported contents

d['push _methods'] =[]

{for push_method in self.push_methods:
d['push_methods'].append(push_method.to_dict())

d['polling_service instances'] = []

for polling_service in self.polling_service instances:
d['polling_service_instances'].append(polling_service.to_dict())

d['subscription_methods'] =[]

for subscription_method in self.subscription_methods:
d['subscription_methods'].append(subscription_method.to_dict())

return d

1

feed_name

defto_text(self, line prepend="):

s = line_prepend + "=== Data Feed ==\n"
s +=line_prepend +" Feed Name: %s\n" % self.feed_name
if self.available:

s +=line prepend +" Available: %s\n" % self.available
s +=line prepend +" Feed Description: %s\n" % self.feed_description
for sc in self.supported contents:

s +=line prepend +" Supported Content: %s\n" % sc
for pm in self.push_methods:

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

s +=pm.to_text(line_prepend + STD_ INDENT)
for ps in self.polling_service_instances:

s +=ps.to_text(line_prepend + STD_INDENT)
for sm in self.subscription_methods:

s +=sm.to_text(line_prepend + STD INDENT)

return s

(@staticmethod
def from_etree(etree_xml):
kwargs = {}
kwargs['feed_name'] = etree_xml.attrib['feed_name']
kwargs['available'] = None
if 'available' in etree xml.attrib:
tmp = etree_xml.attrib['available']
kwargs['available'] = tmp.lower() == 'true'

kwargs['feed_description'] = get required(etree _xml, './taxii:Description’, ns_map).text

kwargs|['supported contents'] =[]
for binding_elt in etree_xml.xpath('./taxii:Content_Binding', namespaces=ns_map):
kwargs['supported_contents'].append(binding_elt.text)

kwargs['push_methods'] =[]
for push_method_elt in etree_xml.xpath('./taxii:Push_Method', namespaces=ns_map):
kwargs['push_methods'].append(PushMethod.from_etree(push_method clt))

kwargs['polling_service_instances'] =[]
for polling_elt in etree_xml.xpath('./taxii:Polling_Service', namespaces—ns_map):
kwargs['polling_service_instances'].append(PollingServicelnstance.from_etree(polling_elt))

kwargs['subscription_methods'] =[]
for subscription_elt in etree_xml.xpath('./taxii:Subscription_Service', namespaces=ns_map):
kwargs|['subscription_methods'].append(Subscription)Vethod.from_etree(subscription_elt))

return FeedInformation(**kwargs)

(@staticmethod

def from_dict(d):
kwargs = {}
kwargs['feed name'] = d['feed name'}
kwargs['available'] = d.get('available')

kwargs['feed_description'] = d['feed_description']

kwargs['supported contents'] =[]

for binding in d.get('supported_contents', []):
kwargs|'supported_contents'].append(binding)

kwargs|'push_methods'] =[]

for push. method in d.get('push_methods', []):
cwargs|'push_methods'].append(PushMethod.from_dict(push_method))

kwargs['polling_service_instances'] =[]

for polling in d.get('polling_service_instances', []):
kwargs['polling_service_instances'].append(PollingServicelnstance.from_dict(polling))

kwargs['subscription_methods'] =[]

for subscription_method in d.get('subscription_methods', []):

kwargs['subscription_methods'].append(SubscriptionMethod.from_dict(subscription_method))

return FeedInformation(**kwargs)
class PushMethod(TAXIIBasel0):

"

The Push Method component of a TAXII Feed Information
component.

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 6

Args:
push_protocol (str): a protocol binding that can be used
to push content to an Inbox Service instance. **Required**
push_message bindings (list of str): the message bindings that
can be used to push content to an Inbox Service instance
using the protocol identified in the Push Protocol field.
Required

"

def _init (self, push_protocol, push_message bindings):
self.push_protocol = push_protocol
self.push_message bindings = push_message bindings

(@property
def sort_key(self):
return self.push_protocol

(@property
def push_protocol(self):
return self._push_protocol

(@push_protocol.setter

def push_protocol(self, value):
do_check(value, 'push_protocol', regex_tuple=uri_regex)
self._push_protocol = value

(@property
def push_message bindings(self):
return self. push_message bindings

(@push_message bindings.setter

def push_message bindings(self, value):
do_check(value, 'push_message bindings', regex_tuple=ui1_iegex)
self._push_message bindings = value

def'to_etree(self):
x = etree.Element(' {%s} Push_Method' % ns map|['taxii'])
proto_bind = etree.SubElement(x, '{’4s; Protocol_Binding' % ns_map['taxii'])
proto_bind.text = self.push_protocol
for binding in self.push_message bindings:
b = etree.SubElement(x, '{%s!Message Binding' % ns_map['taxii'])
b.text = binding
return X

def'to_dict(self):
d={}
d['push_protocol'] = self.push_protocol
d['push message bindings'] =[]
for binding in self.push_message bindings:
df'push _message bindings'].append(binding)
retuin «

def to_text(self, line_prepend="):
s = line_prepend + "=== Push Method ===\n"
s +=line prepend +" Protocol Binding: %s\n" % self.push_protocol
for mb in self.push_message bindings:
s +=line_prepend +" Message Binding: %s\n" % mb

return s

(@staticmethod
def from_etree(etree_xml):
kwargs = {}
kwargs['push_protocol'] = get required(etree_xml, './taxii:Protocol Binding', ns_map).text
kwargs['push_message bindings'] =[]
for message binding in etree_xml.xpath('./taxii:Message Binding', namespaces=ns_map):
kwargs['push_message bindings'].append(message binding.text)
return PushMethod(**kwargs)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 7

(@staticmethod
def from_dict(d):
return PushMethod(**d)

class PollingServicelnstance(TAXIIBase10):

"

The Polling Service Instance component of a TAXII Feed
Information component.

Args:
poll_protocol (str): the protocol binding supported by
this Poll Service instance. **Required**
poll address (str): the address of the TAXII Daemon
hosting this Poll Service instance. **Required**
poll message bindings (list of str): the message bindings
supported by this Poll Service instance. **Required**

"

NAME = 'Polling_Service'

def init (self, poll_protocol, poll_address, poll_message bindings):
self.poll_protocol = poll_protocol
self.poll_address = poll_address
self.poll_message bindings = poll_message bindings

(@property
def sort_key(self):
return self.poll_address

(@property
def poll_protocol(self):
return self._poll_protocol

@poll_protocol.setter

def poll_protocol(self, value):
do_check(value, 'poll_protocol', regex_tuple=uri_regex)
self._poll_protocol = value

(@property
def poll_message bindings(self)
return self._poll message bindings

@poll_message bindings.setter

def poll_message bindings(self, value):
do_check(value, ‘poll message bindings', regex tuple=uri_regex)
self._poll_message bindings = value

defto etree(selh):
x = etrec. Element('{%s} Polling_Service' % ns_map['taxii'])
proto_bind = etree.SubElement(x, '{%s}Protocol_Binding' % ns_map['taxii'])
proto_bind.text = self.poll_protocol
address = etree.SubElement(x, '{%s} Address' % ns_map]['taxii'])
address.text = self.poll_address
for binding in self.poll_message bindings:
b = etree.SubElement(x, '{%s}Message Binding' % ns_map['taxii'])
b.text = binding
return X

def'to_dict(self):
d={
d['poll_protocol'] = self.poll_protocol
d['poll_address'] = self.poll_address
d['poll_message bindings'] =[]
for binding in self.poll message bindings:

d['poll_message bindings'].append(binding)

return d

def'to_text(self, line_prepend="):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

s = line_prepend + "=== Poll Service Instance ===\n"
s +=line prepend +" Protocol Binding: %s\n" % self.poll_protocol
s +=line prepend +" Address: %s\n" % self.poll address
for mb in self.poll message bindings:
s +=line prepend +" Message Binding: %s\n" % mb

return s

(@classmethod

def from_etree(cls, etree_xml):
protocol = get_required(etree_xml, './taxii:Protocol Binding', ns_map).text
addr = get required(etree_xml, './taxii:Address', ns_map).text

bindings =[]

for message binding in etree_xml.xpath('./taxii:Message Binding', namespaces=ns_map):
bindings.append(message_binding.text)

return cls(protocol, addr, bindings)

@classmethod
def from_dict(cls, d):
return cls(**d)

class SubscriptionMethod(TAXIIBasel0):

"

The Subscription Method component of a TAXII Feed Information
component.

Args:

subscription_protocol (str): the protocol binding supported by
this Feed Management Service instance. **Required*”

subscription_address (str): the address of the TAXII Daemon
hosting this Feed Management Service instance.
Required.

subscription_message bindings (list of str): the message
bindings supported by this Feed Management Service
Instance. **Required**

nn

NAME = 'Subscription_Service'

def init (self, subscription_protocol, subscription_address,
subscription_message bindings):
self.subscription protoco! = subscription_protocol
self.subscription address = subscription_address
self.subscription _message bindings = subscription_message bindings

(@property
def sort_key(self):
return self.subscription_address

(@property
def subscription_protocol(self):
return self._subscription_protocol

(@subscription_protocol.setter

def subscription_protocol(self, value):
do_check(value, 'subscription_protocol', regex_tuple=uri_regex)
self._subscription_protocol = value

(@property
def subscription_message bindings(self):
return self._subscription_message_bindings

(@subscription_message bindings.setter
def subscription_message bindings(self, value):

do_check(value, 'subscription_message bindings', regex_tuple=uri_regex)
self._subscription_message bindings = value

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

|

def'to_etree(self):
x = etree.Element('{%s} %s' % (ns_map]['taxii'], self. NAME))
proto_bind = etree.SubElement(x, '{%s}Protocol Binding' % ns_map['taxii'])
proto_bind.text = self.subscription_protocol
address = etree.SubElement(x, '{%s} Address' % ns_map| 'taxii'])
address.text = self.subscription_address
for binding in self.subscription_message bindings:
b = etree.SubElement(x, '{%s}Message Binding' % ns_map['taxii'])
b.text = binding
return X

def'to_dict(self):

d={}

d['subscription_protocol'] = self.subscription_protocol

d['subscription_address'] = self.subscription_address

d['subscription_message bindings'] =[]

for binding in self.subscription_message bindings:
d['subscription_message bindings'].append(binding)

return d

def'to_text(self, line_prepend="):
s = line_prepend + "=== Subscription Method ===\n"
s +=line_prepend +" Protocol Binding: %s\n" % self.subscription_protocol
s +=line_prepend +" Address: %s\n" % self.subscription_address
for mb in self.subscription_message bindings:
s +=line_prepend +" Message Binding: %s\n" % mb

return s

(@classmethod
def from_etree(cls, etree_xml):
protocol = get_required(etree_xml, './taxii:Protocol Binding', ns_map).text
addr = get_required(etree_xml, '/taxii:Address', ns_map).texi
bindings =[]
for message binding in etree_xml.xpath('./taxii:Message Binding', namespaces=ns_map):
bindings.append(message binding.text)
return cls(protocol, addr, bindings)

(@classmethod
def from_dict(cls, d):
return cls(**d)

class PollRequest(TAXTMessage):

"

A TAXII Poll Request message.

Arguments:

message 1d (str): A value identifying this message. **Required**

cxtended_headers (dict): A dictionary of name/value pairs for
usc as Extended Headers. **Optional**

feed_name (str): the name of the TAXII Data Feed that is being
polled. **Required**

exclusive begin timestamp_label (datetime): a Timestamp Label
indicating the beginning of the range of TAXII Data Feed content the
requester wishes to receive. **Optional**

inclusive_end timestamp label (datetime): a Timestamp Label
indicating the end of the range of TAXII Data Feed content the
requester wishes to receive. **Optional**

subscription_id (str): the existing subscription the Consumer
wishes to poll. **Optional**

content_bindings (list of str): the type of content that is
requested in the response to this poll. **Optional**, defaults to
accepting all content bindings.

nn

message type = MSG_POLL REQUEST

def init (self, message id, extended_headers=None,

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 7

feed name=None, exclusive begin_timestamp label=None,
inclusive_end_timestamp_label=None, subscription_id=None,
content_bindings=None):
super(PollRequest, self). _init (message id, extended headers=extended headers)
self.feed name = feed name
self.exclusive begin_timestamp label = exclusive begin_timestamp_label
self.inclusive_end_timestamp_label = inclusive_end_timestamp_label
self.subscription_id = subscription_id
self.content bindings = content_bindings or []

@TAXIIMessage.in_response_to.setter
defin_response_to(self, value):
if value:
raise ValueError('in_response to must be None')
self._in_response to = value

(@property
def feed name(self):
return self._feed name

(@feed_name.setter

def feed_name(self, value):
do_check(value, 'feed name', regex_tuple=uri_regex)
self._feed name = value

(@property
def exclusive begin_timestamp_label(self):
return self._exclusive_begin_timestamp_label

(@exclusive_begin_timestamp_label.setter

def exclusive_begin_timestamp_label(self, value):
value = check timestamp_label(value, 'exclusive begin timestamp_label', can_be none=True)
self._exclusive begin_timestamp_label = value

(@property
def'inclusive_end timestamp_label(self):
return self._inclusive _end timestamp labe

@inclusive_end_timestamp_label.setter

def inclusive_end_timestamp_label(sclt, vaiue):
value = check timestamp_labei(valug, 'inclusive_end timestamp label', can_be none=True)
self._inclusive_end_timestamp !abel = value

(@property
def subscription_id(self)
return self._subscription_id

@subscription_id.setter

def subscription_id(self, value):
do_check(value, 'subscription_id', regex_tuple=uri_regex, can_be none=True)
self._subscription_id = value

@property
def content_bindings(self):
return self._content_bindings

(@content_bindings.setter

def content bindings(self, value):
do_check(value, 'content_bindings', regex_tuple=uri_regex)
self._content bindings = value

defto_etree(self):
xml = super(PollRequest, self).to_etree()
xml.attrib['feed_name'] = self.feed name
if self.subscription_id is not None:
xml.attrib['subscription_id'] = self.subscription_id

if self.exclusive begin_timestamp label:
ebt = etree.SubElement(xml, '{%s} Exclusive_Begin_Timestamp' % ns_map['taxii'])

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 7

TODO: Add TZ Info
ebt.text = self.exclusive_begin timestamp_label.isoformat()

if self.inclusive_end_timestamp_label:
iet = etree.SubElement(xml, '{%s} Inclusive_End_Timestamp' % ns_map|'taxii'])
TODO: Add TZ Info
iet.text = self.inclusive_end_timestamp_label.isoformat()

for binding in self.content bindings:
b = etree.SubElement(xml, '{%s}Content_Binding' % ns_map['taxii'])
b.text = binding

return xml

def'to_dict(self):
d = super(PollRequest, self).to_dict()
d['feed name'] = self.feed name
if self.subscription_id is not None:
d['subscription_id'] = self.subscription_id
if self.exclusive begin_timestamp label: # TODO: Add TZ Info
d['exclusive_begin_timestamp_label'] = self.exclusive begin timestamp_label.isoformat()
if self.inclusive_end_timestamp_label: # TODO: Add TZ Info
d['inclusive_end timestamp label'] = self.inclusive_end timestamp_label.isoformai()
d['content_bindings'] =[]
for bind in self.content_bindings:
d['content_bindings'].append(bind)
return d

def'to_text(self, line_prepend="):
s = super(PollRequest, self).to_text(line_prepend)
s +=line prepend +" Feed Name: %s\n" % self.feed name
if self.subscription_id:
s +=line_prepend +" Subscription ID: %s\n" % self subscription_id

if self.exclusive begin_timestamp_label:

s +=line_prepend +" Excl. Begin Timestamp Label: %s\n" % self.exclusive_begin_timestamp_label.isoformat()
else:

s +=line_prepend +" Excl. Begin Timestamp Label: %s\n" % None

if self.inclusive_end_timestamp label:

s +=line_prepend +" Incl. End Timestamp Label: %s\n" % self.inclusive_end_timestamp_label.isoformat()
else:

s +=line prepend -+ " Incl. End Timestamp Label: %s\n" % None

if len(self.content bindings) == 0:
s +=line prepend + " Content Binding: Any Content\n"

for cb in seli.content_bindings:
s+=line_prepend +" Content Binding: %s\n" % cb

retuin ¢

(@classmethod

def from_etree(cls, etree_xml):
kwargs = {}
kwargs['feed_name'] = get required(etree_xml, '/@feed name', ns_map)
kwargs['subscription_id'] = get_optional(etree_xml, './@subscription_id', ns_map)

ebt_text = get optional text(etree_xml, '/taxii:Exclusive_Begin Timestamp', ns_map)
if ebt_text:
kwargs['exclusive begin timestamp label'] = parse_datetime string(ebt_text)

iet_text = get_optional text(etree xml, './taxii:Inclusive_End Timestamp', ns_map)
ifiet text:

kwargs|['inclusive_end timestamp label'] = parse_datetime_string(iet_text)
kwargs['content_bindings'] =[]

for binding in etree_xml.xpath('./taxii:Content Binding', namespaces=ns_map):
kwargs['content_bindings'].append(binding.text)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 7

msg = super(PollRequest, cls).from_etree(etree_xml, **kwargs)
return msg

(@classmethod
def from_dict(cls, d):
kwargs = {}
kwargs|['feed name'] = d['feed name']

kwargs['subscription_id'] = d.get('subscription_id')

kwargs['exclusive begin timestamp label'] = None
if d.get(‘'exclusive_begin_timestamp_label'):
kwargs['exclusive begin timestamp label'] = parse datetime_string(d['exclusive_begin timestamp label'])

kwargs['inclusive_end_timestamp_label'] = None
if d.get('inclusive_end timestamp label'):
kwargs['inclusive_end timestamp label'] = parse datetime_string(d['inclusive_end timestamp label'])

kwargs['content_bindings'] = d.get('content_bindings', [])

msg = super(PollRequest, cls).from_dict(d, **kwargs)
return msg

class PollResponse(TAXIIMessage):

nn

A TAXII Poll Response message.

Args:

message _id (str): A value identifying this message. **Required **

in_response_to (str): Contains the Message ID of the message to
which this is a response. **Required**

extended_headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**

feed_name (str): the name of the TAXII Data Feed that was polled.
Required

inclusive_begin_timestamp_labe! (datctime): a Timestamp Label
indicating the beginning of the range this response covers.
Optional

inclusive_end_timestamp_labei (datetime): a Timestamp Label
indicating the end of the range this response covers. **Required**

subscription_id (str): the Subscription ID for which this content
is being provided. **Optional**

message (str): additional information for the message recipient.
Optional

content blocks (list of ContentBlock): piece of content
and additional information related to the content. **Optional**

nn

message type = MSG_POLL_RESPONSE

def _init (self, message id, in_response to, extended headers=None,

feed name=None, inclusive_begin_timestamp_label=None,
inclusive_end_timestamp_label=None, subscription_id=None,
message=None, content_blocks=None):

super(PollResponse, self). _init (message id, in_response_to, extended headers)

self.feed name = feed name

self.inclusive_end_timestamp_label = inclusive_end_timestamp_label

self.inclusive_begin_timestamp_label = inclusive_begin_timestamp_label

self.subscription_id = subscription_id

self.message = message

self.content_blocks = content_blocks or []

@TAXIIMessage.in_response_to.setter
def'in_response_to(self, value):

do_check(value, 'in_response_to', regex tuple=uri_regex)
self._in_response to = value

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

(@property
def feed_name(self):
return self._feed name

@feed name.setter

def feed_name(self, value):
do_check(value, 'feed name', regex_tuple=uri_regex)
self. feed name = value

(@property
def inclusive_end timestamp_label(self):
return self._inclusive end timestamp label

@inclusive end_timestamp_label.setter

def inclusive_end timestamp_label(self, value):
value = check timestamp_label(value, 'inclusive_end_timestamp_label')
self._inclusive end timestamp label = value

(@property
def inclusive_begin_timestamp_label(self):
return self._inclusive begin timestamp label

@inclusive begin_timestamp_label.setter

def inclusive begin timestamp_label(self, value):
value = check timestamp_label(value, 'inclusive_begin timestamp label', can_be none=True)
self._inclusive begin_timestamp label = value

(@property
def subscription_id(self):
return self._subscription_id

(@subscription_id.setter

def subscription_id(self, value):
do_check(value, 'subscription_id', regex_tuple=uri_regex, can_be none=True)
self._subscription_id = value

(@property
def content_blocks(self):
return self._content blocks

(@content_blocks.setter

def content_blocks(self, valuc)
do_check(value, 'content _blocks', type=ContentBlock)
self._content blocks = value

def'to_etree(seli)
xml = super(PoliResponse, self).to_etree()
xml.attrib['teced _name'] = self.feed name
if self.subscription_id is not None:
xml.attrib['subscription_id'] = self.subscription_id

if sclf.message is not None:
m = etree.SubElement(xml, '{%s}Message' % ns_map]['taxii'])
m.text = self.message
if self.inclusive_begin_timestamp_label:
ibt = etree.SubElement(xml, '{%s} Inclusive Begin_Timestamp' % ns_map]['taxii'])

ibt.text = self.inclusive begin timestamp_label.isoformat()

iet = etree.SubElement(xml, '{%s}Inclusive_End Timestamp' % ns_map['taxii'])
iet.text = self.inclusive_end timestamp label.isoformat()

for block in self.content_blocks:
xml.append(block.to_etree())

return xml

defto_dict(self):
d = super(PollResponse, self).to_dict()

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

|

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 7

d['feed_name'] = self.feed_name
if self.subscription_id is not None:
d['subscription_id'] = self.subscription_id
if self.message is not None:
d['message'] = self.message
if self.inclusive_begin_timestamp_label:
d['inclusive begin_timestamp label'] = self.inclusive_begin_timestamp label.isoformat()
d['inclusive_end_timestamp_label'] = self.inclusive end timestamp label.isoformat()
d['content blocks'] =[]
for block in self.content blocks:
d['content blocks'].append(block.to_dict())

return d

def'to_text(self, line_prepend="):
s = super(PollResponse, self).to_text(line_prepend)
s +=line prepend +" Feed Name: %s\n" % self.feed_name
if self.subscription_id:
s +=line prepend +" Subscription ID: %s\n" % self.subscription_id
s +=line_prepend +" Message: %s\n" % self.message

if self.inclusive begin_timestamp_label:

s +=line_prepend +" Incl. Begin Timestamp Label: %s\n" % self.inclusive begin_timestamp_label.isoformat()
else:

s +=line_prepend +" Incl. Begin Timestamp Label: %s\n" % None

s +=line prepend +" Incl. End Timestamp Label: %s\n" % self.inclusive_end_timestamp_label.isoformat()

for cb in self.content_blocks:
s +=cb.to_text(line_prepend + STD_INDENT)

return s

(@classmethod
def from_etree(cls, etree_xml):
kwargs = {}

kwargs['feed name'] = get required(etrce xml, '/@feed name', ns_map)
kwargs['subscription_id'] = get optional(etree_xml, './@subscription_id', ns_map)
kwargs['message'] = get_optiona! texi(etree_xml, './taxii:Message', ns_map)

ibts_text = get_optional text(etree_xml, '/taxii:Inclusive_Begin Timestamp', ns_map)
if ibts_text:
kwargs['inclusive begin_timestamp_label'] = parse_datetime_string(ibts_text)

iets_text = get required(etree_xml, './taxii:Inclusive End Timestamp', ns_map).text
kwargs['inclusive_end_timestamp_label'] = parse_datetime_string(iets_text)

kwargs| 'content_blocks'] =[]

blocks = etree_xml.xpath('./taxii:Content_Block', namespaces=ns_map)

for block in blocks:
kwargs['content_blocks'].append(ContentBlock.from_etree(block))

msg = super(PollResponse, cls).from_etree(etree_xml, **kwargs)
return msg

(@classmethod
def from_dict(cls, d):
kwargs = {}
kwargs['feed_name'] = d['feed name']

kwargs['message'] = d.get('message')
kwargs|['subscription_id'] = d.get('subscription_id")

kwargs['inclusive_begin_timestamp_label'] = None
if d.get('inclusive_begin_timestamp_label"):
kwargs|['inclusive_begin timestamp label'] = parse_datetime_string(d['inclusive_begin timestamp_label'])

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

kwargs['inclusive_end_timestamp_label'] = parse datetime_string(d['inclusive_end_timestamp_label'])

kwargs['content_blocks'] =[]

for block in d['content_blocks']:
kwargs['content_blocks'].append(ContentBlock.from_dict(block))

msg = super(PollResponse, cls).from_dict(d, **kwargs)

return msg

class StatusMessage(TAXIIMessage):

"

A TAXII Status message.

Args:

message_id (str): A value identifying this message. **Required**

in_response_to (str): Contains the Message ID of the message to
which this is a response. **Required**

extended_headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**

status_type (str): One of the defined Status Types or a third-party-
defined Status Type. **Required**

status_detail (str): A field for additional information about
this status in a machine-readable format. **Optional or Prohibited**
depending on “‘status_type"'. See TAXII Specification for details.

message (str): Additional information for the status. There is no
expectation that this field be interpretable by a machine; it is
instead targeted to a human operator. **Optional**

message type = MSG_STATUS_MESSAGE

def init (self, message id, in_response to, extended hcadeis=None,
status_type=None, status_detail=None, message=None):
super(StatusMessage, self). _init (message id, in_response_to, extended_headers=extended_headers)
self.status_type = status_type
self.status_detail = status_detail
self.message = message

@TAXIIMessage.in_response_to.setter
defin_response_to(self, value):
do_check(value, 'in_response to', regex_tuple=uri_regex)
self._in_response to = value

@property
def status_type(selfl):
return self._status_typ

(@status_type.sctter
def status_type(sclf, value):
do_check(value, 'status_type')
self._status_type = value
1ODO: is it possible to check the status detail?
def'to_etree(self):
xml = super(StatusMessage, self).to_etree()
xml.attrib['status_type'] = self.status_type
if self.status_detail is not None:
sd = etree.SubElement(xml, '{%s} Status_Detail' % ns_map]['taxii'])
sd.text = self.status_detail
if self.message is not None:
m = etree.SubElement(xml, '{%s}Message' % ns_map]['taxii'])
m.text = self.message

return xml

def to_dict(self):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

|

d = super(StatusMessage, self).to_dict()

d['status_type'] = self.status_type

if self.status_detail is not None:
d['status_detail'] = self.status_detail

if self.message is not None:
d['message'] = self.message

return d

def'to_text(self, line_prepend="):
s = super(StatusMessage, self).to_text(line_prepend)
s +=line prepend + " Status Type: %s\n" % self.status_type
if self.status_detail:
s +=line prepend +" Status Detail: %s\n" % self.status_detail
s +=line prepend +" Status Message: %s\n" % self.message
return s

(@classmethod
def from_etree(cls, etree_xml):
kwargs = dict(
status_type = etree_xml.attrib['status_type'],
status_detail = get optional text(etree_xml, '/taxii:Status_Detail', ns_map),
message = get_optional text(etree_xml, './taxii:Message', ns_map),

)

msg = super(StatusMessage, cls).from_etree(etree_xml, **kwargs)
return msg

(@classmethod
def from_dict(cls, d):
kwargs = dict(
status_type = d['status_type'],
status_detail = d.get('status_detail'),
message = d.get('message')

)

msg = super(StatusMessage, cls).from_dict(d, **kwargs)
return msg

class InboxMessage(TAXIIMessage):

"

A TAXII Inbox message.

Args:
message id (str): A value identifying this message. **Required**
extended headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**
message (str): prose information for the message recipient. **Optional**
bseription_information (SubscriptionInformation): This
{icld is only present if this message is being sent to provide
content in accordance with an existing TAXII Data Feed
subscription. **Optional**
content_blocks (list of ContentBlock): Inbox content. **Optional**

nn

%

message_type = MSG_INBOX_ MESSAGE
def init (self, message id, in_response_to=None, extended_headers=None,
message=None, subscription_information=None,
content_blocks=None):
super(InboxMessage, self). init (message id, extended headers=extended headers)
self.subscription_information = subscription_information
self.message = message
self.content blocks = content blocks or []

@TAXIIMessage.in_response_to.setter

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 8

def'in_response_to(self, value):
if value:
raise ValueError('in_response_to must be None')
self._in_response_to = value

(@property
def subscription_information(self):
return self._subscription_information

(@subscription_information.setter

def subscription_information(self, value):
do_check(value, 'subscription_information', type=SubscriptionInformation, can_be none=True)
self._subscription_information = value

(@property
def content_blocks(self):
return self. _content blocks

(@content_blocks.setter

def content_blocks(self, value):
do_check(value, 'content_blocks', type=ContentBlock)
self._content_blocks = value

def'to_etree(self):
xml = super(InboxMessage, self).to_etree()
if self.message is not None:
m = etree.SubElement(xml, '{%s}Message' % ns_map(['taxii'])
m.text = self.message

if self.subscription_information:
xml.append(self.subscription_information.to_etree())

for block in self.content_blocks:
xml.append(block.to_etree())

return xml

def'to_dict(self):
d = super(InboxMessage, self).to dict()
if self.message is not None:
d['message'] = self.message

if self.subscription_information:
d['subscription information'] = self.subscription_information.to_dict()

d['content blocks'| =]
for block in self.content_blocks:
d['content_blocks'].append(block.to_dict())

return d

def'to_text(self, line_prepend="):
s = super(InboxMessage, self).to_text(line_prepend)
s +=line prepend +" Message: %s\n" % self.message
if self.subscription_information:
s += self.subscription_information.to_text(line_prepend + STD INDENT)
s +=line_prepend + " Message has %s Content Blocks\n" % len(self.content_blocks)
for ¢b in self.content _blocks:
s +=cb.to_text(line_prepend + STD INDENT)

return s
@classmethod
def from_etree(cls, etree_xml):
msg = super(InboxMessage, cls).from_etree(etree_xml)

msg.message = get_optional text(etree xml, './taxii:Message', ns_map)

subs_info = get_optional(etree_xml, './taxii:Source_Subscription', ns_map)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 8

if subs_info is not None:
msg.subscription_information = SubscriptionInformation.from_etree(subs_info)

content_blocks = etree_xml.xpath('./taxii:Content_Block', namespaces=ns_map)

msg.content_blocks =[]

for block in content_blocks:
msg.content_blocks.append(ContentBlock.from_etree(block))

return msg

(@classmethod
def from_dict(cls, d):
msg = super(InboxMessage, cls).from_dict(d)

msg.message = d.get('message’)

msg.subscription_information = None
if 'subscription_information' in d:
msg.subscription_information = SubscriptionInformation.from_dict(d['subscription_information'j)

msg.content_blocks =[]
for block in d['content_blocks']:
msg.content_blocks.append(ContentBlock.from_dict(block))

return msg

class SubscriptionInformation(TAXIIBase10):

"

The Subscription Information component of a TAXII Inbox message.

Arguments:

feed_name (str): the name of the TAXII Data Feed from
which this content is being provided. **Required**

subscription_id (str): the Subscription ID for which this
content is being provided. **Required*

inclusive_begin_timestamp_label (datctime): a Timestamp Label
indicating the beginning of the time range this Inbox Message
covers. **Optional**

inclusive_end_timestamp_labei (datctime): a Timestamp Label
indicating the end of the time range this Inbox Message covers.
Optional

nn

def init (seli, feed name, subscription _id,
inclusive begin_timestamp_label,
inclusive end_timestamp_label):
self.feed name = feed name
scif.subscription_id = subscription_id
self.inclusive_begin_timestamp_label = inclusive_begin_timestamp_label
self.inclusive_end_timestamp_label = inclusive_end_timestamp_label

(@property
def feed_name(self):
return self._feed name

@feed name.setter

def feed_name(self, value):
do_check(value, 'feed _name', regex_tuple=uri_regex)
self. feed name = value

(@property
def subscription_id(self):
return self._subscription_id

(@subscription_id.setter
def subscription_id(self, value):
do_check(value, 'subscription_id', regex tuple=uri_regex)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 8

self._subscription_id = value

(@property
def inclusive begin_timestamp_label(self):
return self._inclusive begin timestamp label

@inclusive_begin_timestamp_label.setter

def inclusive_begin timestamp_label(self, value):
value = check timestamp_label(value, 'inclusive_begin_timestamp label')
self._inclusive_begin_timestamp_label = value

(@property
def inclusive_end_timestamp_label(self):
return self._inclusive end timestamp label

@inclusive_end_timestamp_label.setter

def inclusive_end timestamp_label(self, value):
value = check timestamp label(value, 'inclusive_end timestamp label')
self._inclusive_end_timestamp label = value

def'to_etree(self):
xml = etree.Element('{%s} Source Subscription' % ns_map]['taxii'])
xml.attrib['feed_name'] = self.feed name
xml.attrib['subscription_id'] = self.subscription_id

ibtl = etree.SubElement(xml, '{%s} Inclusive_Begin_Timestamp' % ns_map|'taxii'])
ibtl.text = self.inclusive begin_timestamp_label.isoformat()

ietl = etree.SubElement(xml, '{%s}Inclusive_End_Timestamp' % ns_map['taxii'])
ietl.text = self.inclusive_end timestamp label.isoformat()

return xml

defto_dict(self):
d={}
d['feed_name'] = self.feed name
d['subscription_id'] = self.subscription_id

d['inclusive begin_timestamp_label'] = self.inclusive begin_timestamp_label.isoformat()
d['inclusive_end_timestamp_label'| = sc!f.inclusive_end timestamp label.isoformat()
return d

def'to_text(self, line_prepend="):
s = line_prepend + "=== Subscription Information ===\n"
s +=line prepend +" Feed Name: %s\n" % self.feed_name
s +=line_prepend + " Subscription ID: %s\n" % self.subscription_id
s +=line prepend +" Incl. Begin TS Label: %s\n" % self.inclusive_begin_timestamp_label.isoformat()
s +=line_prepend + " Incl. End TS Label: %s\n" % self.inclusive_end_timestamp_label.isoformat()
return

@staticmethod
def from_ectree(etree_xml):
feed name = etree_xml.attrib['feed_name']

subscription_id = etree_xml.attrib['subscription_id']

ibtl = parse_datetime_string(get_required(etree_xml, './taxii:Inclusive_Begin Timestamp', ns_map).text)
ietl = parse_datetime_string(get_required(etree_xml, './taxii:Inclusive_End Timestamp', ns_map).text)

return SubscriptionInformation(feed_name, subscription_id, ibtl, ietl)
(@staticmethod
def from_dict(d):

feed_name = d['feed_name']

subscription_id = d['subscription_id']

ibtl = parse datetime_string(d['inclusive begin_timestamp label'])
ietl = parse_datetime_string(d['inclusive_end_timestamp_label'])

return SubscriptionInformation(feed name, subscription_id, ibtl, ietl)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

class ManageFeedSubscriptionRequest(TAXIIMessage):

nn

A TAXII Manage Feed Subscription Request message.

Args:

message id (str): A value identifying this message. **Required**

extended headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**

feed_name (str): the name of the TAXII Data Feed to which the
action applies. **Required**

action (str): the requested action to take. **Required**

subscription_id (str): the ID of a previously created subscription.
Required if ““action=="":py:data:’ ACT UNSUBSCRIBE", else
Prohibited.

delivery parameters (list of DeliveryParameters): the delivery parameters
for this request. **Optional** Absence means delivery is not requested.

"

message type = MSG_MANAGE FEED SUBSCRIPTION REQUEST

def init (self, message id, extended headers=None,
feed name=None, action=None, subscription_id=None,
delivery parameters=None):
super(ManageFeedSubscriptionRequest, self). init (message id, extended headers=extended headers)
self.feed name = feed name
self.action = action
self.subscription_id = subscription_id
self.delivery parameters = delivery parameters

@TAXIIMessage.in_response_to.setter
def'in_response_to(self, value):
if value:
raise ValueError('in_response_to must be Noric')
self._in_response_to = value

(@property
def feed_name(self):
return self. feed name

(@feed_name.setter

def feed_name(self, valuc):
do_check(value, 'feed name', regex_tuple=uri_regex)
self. feed name = value

(@property
def action(self):
return self. _action

(@action.setier

def action(self, value):
do_check(value, 'action’, value_tuple=ACT TYPES)
self._action = value

@property
def subscription_id(self):
return self._subscription id

(@subscription_id.setter

def subscription_id(self, value):
do_check(value, 'subscription_id', regex_tuple=uri_regex, can_be none=True)
self._subscription_id = value

@property

def delivery parameters(self):
return self._delivery parameters

(@delivery parameters.setter

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

o0

def delivery_parameters(self, value):
do_check(value, 'delivery_parameters', type=DeliveryParameters, can_be none=True)
self._delivery parameters = value

defto_etree(self):
xml = super(ManageFeedSubscriptionRequest, self).to_etree()
xml.attrib['feed_name'] = self.feed name
xml.attrib['action'] = self.action
if self.subscription_id is not None:
xml.attrib['subscription_id'] = self.subscription_id

if self.delivery parameters:
xml.append(self.delivery parameters.to_etree())
return xml

def'to_dict(self):
d = super(ManageFeedSubscriptionRequest, self).to_dict()
d['feed name'] = self.feed name
d['action'] = self.action
d['subscription_id'] = self.subscription_id
d['delivery parameters'] = None
if self.delivery parameters:
d['delivery parameters'] = self.delivery parameters.to_dict()
return d

def'to_text(self, line_prepend="):
s = super(ManageFeedSubscriptionRequest, self).to_text(line_prepend
s +=line_prepend +" Feed Name: %s\n" % self.feed_name
s +=line_prepend +" Action: %s\n" % self.action
s +=line_prepend +" Subscription ID: %s\n" % self.subscription id
if self.delivery parameters:
s += self.delivery_parameters.to_text(line_prepend + STD TNDENT)
return s

(@classmethod
def from_etree(cls, etree_xml):
kwargs = dict(
feed name = get_required(etree xmi, "/@fced name', ns_map),
action = get_required(etree_xmi. "/(@action’, ns_map),

subscription_id is not required tor action 'SUBSCRIBE'
subscription_id = get optional(ctree_xml, './@subscription_id', ns_map),

)

marked as required in spec but as optional is XSD
delivery = get_optional(etree_xml, '/taxii:Push Parameters', ns_map)
if delivery ot None:
kwargs['delivery parameters'] = DeliveryParameters.from_etree(delivery)

msg = super(ManageFeedSubscriptionRequest, cls).from_etree(etree_xml, **kwargs)
retuimn msg

(@classmethod
def from_dict(cls, d):
kwargs = dict(
feed name = d['feed_name'],
action = d['action'],
subscription_id = d['subscription_id"],
delivery parameters = DeliveryParameters.from_dict(d['delivery_parameters'])

msg = super(ManageFeedSubscriptionRequest, cls).from_dict(d, **kwargs)
return msg

class ManageFeedSubscriptionResponse(TAXIIMessage):

"

A TAXII Manage Feed Subscription Response message.

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 8

Args:

message_id (str): A value identifying this message. **Required**

in_response_to (str): Contains the Message ID of the message to
which this is a response. **Required**

extended_headers (dict): A dictionary of name/value pairs for
use as Extended Headers. **Optional**

feed_name (str): the name of the TAXII Data Feed to which
the action applies. **Required**

message (str): additional information for the message recipient.
Optional

subscription_instances (list of Subscriptionlnstance): **Optional**

"

message type = MSG_MANAGE FEED SUBSCRIPTION RESPONSE

def init (self, message id, in_response to, extended headers=None,
feed_name=None, message=None, subscription_instances=None):
super(ManageFeedSubscriptionResponse, self). init (message id, in_response_to, extended_headers=extended headers)
self.feed name = feed_name
self.message = message
self.subscription_instances = subscription_instances or []

@TAXIIMessage.in_response_to.setter
def'in_response_to(self, value):
do_check(value, 'in_response_to', regex_tuple=uri_regex)
self._in_response to = value

(@property
def feed_name(self):
return self._feed_name

(@feed_name.setter

def feed name(self, value):
do_check(value, 'feed name', regex tuple=uri rcgex)
self. feed name = value

(@property
def subscription_instances(self):
return self._subscription_instanccs

(@subscription_instances.setter

def subscription_instances(sclf, value):
do_check(value, 'subscription_instances', type=SubscriptionInstance)
self._subscription instances = value

def'to_etree(seln:

xml = super(ManageFeedSubscriptionResponse, self).to_etree()

xml.atiribf'feed _name'] = self.feed name

if self message is not None:
1 = ctree.SubElement(xml, '{%s} Message' % ns_map['taxii'])
m.text = self.message

for subscription_instance in self.subscription_instances:
xml.append(subscription_instance.to_etree())

return xml

def'to_dict(self):

d = super(ManageFeedSubscriptionResponse, self).to_dict()

d['feed name'] = self.feed name

if self.message is not None:
d['message'] = self.message

d['subscription_instances'] = []

for subscription_instance in self.subscription_instances:
d['subscription_instances'].append(subscription_instance.to_dict())

return d

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

def'to_text(self, line_prepend="):
s = super(ManageFeedSubscriptionResponse, self).to_text(line_prepend)
s +=line prepend +" Feed Name: %s\n" % self.feed_name
s +=line prepend +" Message: %s\n" % self.message
for si in self.subscription_instances:
s +=si.to_text(line_prepend + STD_INDENT)
return s

(@classmethod
def from_etree(cls, etree_xml):
kwargs = {}
kwargs['feed_name'] = etree_xml.attrib['feed_name']

kwargs['message'] = get_optional text(etree xml, './taxii:Message', ns_map)

kwargs['subscription_instances'] =[]
for si in etree_xml.xpath('./taxii:Subscription', namespaces=ns_map):
kwargs['subscription_instances'].append(SubscriptionInstance.from_etree(si))

msg = super(ManageFeedSubscriptionResponse, cls).from_etree(etree_xml, **kwargs)
return msg

(@classmethod

def from_dict(cls, d):
kwargs = {}
kwargs['feed name'] = d['feed_name']
kwargs['message'] = d.get('message')

kwargs['subscription_instances'] =[]
for instance in d['subscription_instances']:
kwargs['subscription_instances'].append(SubscriptionInstance. from_dict(instance))

msg = super(ManageFeedSubscriptionResponse, cls).trom_dict(d, **kwargs)
return msg

class SubscriptionInstance(TAXIIBase10):

nn

The Subscription Instance componcnt of the Manage Feed Subscription
Response message.

Args:
subscription_id (str): the id of the subscription. **Required**
delivery paramecters (DeliveryParameters): the parameters
for this subscription. **Required** if responding to message
with “action=="":py:data:' ACT_STATUS", otherwise **Prohibited**
poll_instances (list of PollInstance): Each Poll
Instance represents an instance of a Poll Service that can be
contacted to retrieve content associated with the new
Subscription. **Optional**

i

det _init (self, subscription_id, delivery parameters=None,
poll_instances=None):
self.subscription_id = subscription_id
self.delivery parameters = delivery parameters
self.poll_instances = poll_instances or []

(@property
def sort_key(self):
return self.subscription_id

(@property
def subscription_id(self):

return self._subscription_id

(@subscription_id.setter
def subscription_id(self, value):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise 8

do_check(value, 'subscription_id', regex_tuple=uri_regex)
self._subscription_id = value

(@property
def delivery parameters(self):
return self._delivery parameters

(@delivery parameters.setter

def delivery parameters(self, value):
do_check(value, 'delivery_parameters', type=DeliveryParameters, can_be none=True)
self._delivery parameters = value

(@property
def poll_instances(self):
return self._poll instances

@poll _instances.setter

def poll_instances(self, value):
do_check(value, 'poll_instances', type=PollInstance, can_be none=False)
self._poll_instances = value

def'to_etree(self):
xml = etree.Element('{%s} Subscription' % ns_map['taxii'])
xml.attrib['subscription_id'] = self.subscription_id

if self.delivery parameters:
xml.append(self.delivery parameters.to_etree())

for poll_instance in self.poll_instances:
xml.append(poll_instance.to_etree())

return xml

defto_dict(self):
d={}

d['subscription_id'] = self.subscription_id

if self.delivery parameters:

d['delivery parameters'] = self.delivery parameters.to_dict()
else:

d['delivery parameters'] = Non

d['poll_instances'] =[]
for poll_instance in self.poll_instances:
d['poll_instances'].append(poll_instance.to_dict())

return d

defto text(self, line_indent="):
s = line_indent + "=== Subscription Instance ===\n"
s +=lIme_indent +" Subscription ID: %s\n" % self.subscription_id
if sclf.delivery parameters:
s += self.delivery_parameters.to_text(line_indent + STD INDENT)
for pi in self.poll_instances:
s +=pi.to_text(line_indent + STD_INDENT)
return s

(@staticmethod
def from_etree(etree_xml):
subscription_id = etree_xml.attrib['subscription_id']

_delivery parameters = get optional(etree_xml, './taxii:Push Parameters', ns_map)
if _delivery_parameters:

delivery parameters = DeliveryParameters.from_etree(_delivery parameters)
else:

delivery_parameters = None

poll instances =[]
for poll_instance in etree_xml.xpath('./taxii:Poll_Instance', namespaces=ns_map):

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

poll_instances.append(PollInstance.from_etree(poll_instance))
return Subscriptionlnstance(subscription_id, delivery _parameters, poll instances)

(@staticmethod
def from_dict(d):
subscription_id = d['subscription_id']

if d.get('delivery parameters'):

delivery_parameters = DeliveryParameters.from_dict(d['delivery_parameters'])
else:

delivery parameters = None

poll instances =[]
for poll_instance in d['poll_instances']:
poll_instances.append(Polllnstance.from_dict(poll_instance))

return Subscriptionlnstance(subscription_id, delivery parameters, poll instances)

class Polllnstance(TAXIIBase10):

"

The Poll Instance component of the Manage Feed Subscription
Response message.

Args:

poll_protocol (str): The protocol binding supported by this
instance of a Polling Service. **Required**

poll_address (str): the address of the TAXII Daemon hosting
this Poll Service. **Required**

poll_message bindings (list of str): one or more message bindings
that can be used when interacting with this Poll Servic
instance. **Required**

nn

def init (self, poll_protocol, poll_address, poll message bindings=None):
self.poll_protocol = poll_protocol
self.poll_address = poll_address
self._poll message bindings = poll message bindings or []

(@property
def sort_key(self):
return self.poll_address

(@property
def poll_protocol(selt):
return self. poll _protocol

@poll protocol.setter

dei poli_protocol(self, value):
do_check(value, 'poll_protocol', regex tuple=uri_regex)
self._poll_protocol = value

@property
def poll_message bindings(self):
return self._poll message bindings

@poll_message bindings.setter

def poll_message bindings(self, value):
do_check(value, 'poll_message bindings', regex tuple=uri_regex)
self. poll _message bindings = value

defto_etree(self):
xml = etree.Element('{%s} Poll_Instance' % ns_map['taxii'])

pb = etree.SubElement(xml, '{%s} Protocol Binding' % ns_map['taxii'])
pb.text = self.poll_protocol

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

Using Network Based Security Systems to Search for STIX and TAXII Based Indicators of Compromise

a = etree.SubElement(xml, '{%s} Address' % ns_map]['taxii'])
a.text = self.poll_address

for binding in self.poll_message bindings:
b = etree.SubElement(xml, '{%s}Message Binding' % ns_map['taxii'])
b.text = binding

return xml

def'to_dict(self):
d={}

d['poll_protocol'] = self.poll_protocol

d['poll_address'] = self.poll_address

d['poll_message bindings'] =[]

for binding in self.poll_message bindings:
d['poll_message bindings'].append(binding)

return d

defto_text(self, line_prepend="):
s = line_prepend + "=== Poll Instance ===\n"
s +=line_prepend +" Protocol Binding: %s\n" % self.poll_protocol
s +=line_prepend +" Address: %s\n" % self.poll_address
for mb in self.poll_message bindings:
s +=line_prepend +" Message Binding: %s\n" % mb
return s

(@staticmethod

def from_etree(etree_xml):
poll_protocol = get_required(etree_xml, './taxii:Protocol Binding', ns_map).text
address = get_required(etree_xml, './taxii:Address', ns map).text

poll_message bindings =[]
for b in etree_xml.xpath('./taxii:Message Binding', namespaces=ns_map):
poll_message bindings.append(b.text)

return PollInstance(poll_protocol, address, poll_message bindings)
(@staticmethod

def from_dict(d):
return Polllnstance(**d)

ITRTRTRTRTNTRT NIRRT RIRTNTRTN IR TRIRTRTNTNTNT) RTRTRT NIRRT RN TN T TN RN IR TN TN TN TRTOTNTRINT]
HHH

HHHHHHHIHEHHHE R, Y it
EVERYTHING BELOW HERE IS FOR BACKWARDS COMPATIBILITY
HEHHEHHHHH R St AR R

Add top-level classes as nested classes for backwards compatibility
DiscoveryResponse.Servicelnstance = Servicelnstance
FeedInformationResponse.FeedInformation = FeedInformation
Feedinformation.PushMethod = PushMethod
FeedInformation.PollingServicelnstance = PollingServicelnstance
FeedInformation.SubscriptionMethod = SubscriptionMethod
ManageFeedSubscriptionResponse.Polllnstance = Polllnstance
ManageFeedSubscriptionResponse.SubscriptionInstance = SubscriptionInstance
InboxMessage.SubscriptionInformation = SubscriptionInformation

Constants not imported in ‘from constants import **
MSG_TYPES =MSG_TYPES_10

ST_TYPES =ST_TYPES_10

ACT _TYPES =ACT TYPES 10

SVC_TYPES =SVC_TYPES 10

from common import (generate_message _id)

Jason Mack, jasonmack@gmail.com

© 2015 The SANS Institute

Author retains full rights.

