
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

! ! !

!

!

A Performance Comparison of Intrusion Detection
Systems with Regard to IPv6

GIAC (GCIA) Gold Certification

Author: Jon Mark Allen, jm@allensonthe.net

Advisor: Kees Leune

Accepted: 12 May 2015

!

Abstract

This paper will examine the current support of IPv6 amongst three of the most popular
open source intrusion detection systems: Snort, Suricata, and Bro. It will also examine
support of the IPv6 protocol within the publicly available signatures and rules for each
system, where applicable. All three IDS products will be presented with the same
network captures of a web application vulnerability scan - one over IPv4, and one over
IPv6 - running on the same operating system installation and hardware. The performance
of each system will be measured and compared first against itself and then the other two
IDS products.
! !

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 2!
!

Jon Mark Allen, jm@allensonthe.net!

1 History and Overview
1.1 An Extremely Brief History of IPv6

When the Internet was first conceived, it was not expected to need to accommodate

the number of devices the world now uses on a daily basis. According to a study

published in August of 2014 by ABI Research, "the installed base of active wireless

connected devices will exceed 16 billion in 2014, about 20% more than in 2013”, and

“the number of devices will more than double from the current level, with 40.9 billion

forecasted for 2020" (ABI Research, 2014).

That is a problem, since IPv4 only supports around 4 billion public IP addresses. As

of early 2015, there are about 7.2 billion humans in the world (U.S. Census Bureau, n.d.),

though obviously not everyone has an IP address. Techniques like Network Address

Translation (NAT) have also allowed us to delay moving away from IPv4, but those

workarounds won’t last forever.

The IETF quickly saw that the available addresses would eventually be exhausted

(along with a few other issues with IPv4) and set out to develop the next version of the

Internet Protocol. They apparently did not want to come up short on space with this

version; a goal that they quite probably achieved when they expanded the address space

from IPv4’s 32 bits, supporting over 4 billion devices, to 128 bits, supporting

about 3.4 x 1038 devices. That is - quite literally - an astronomical number of addresses.

As Charles Kozierok at the TCP/IP Guide website (2005) described it:

"That's about 340 trillion, trillion, trillion addresses. As I said, it's pretty hard to grasp

just how large this number is. Consider:

• It's enough addresses for many trillions of addresses to be assigned to every

human being on the planet.

• The earth is about 4.5 billion years old. If we had been assigning IPv6 addresses

at a rate of 1 billion per second since the earth was formed, we would have by

now used up less than one trillionth of the address space.

• The earth's surface area is about 510 trillion square meters. If a typical computer

has a footprint of about a tenth of a square meter, we would have to stack

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 3!
!

Jon Mark Allen, jm@allensonthe.net!

computers 10 billion high blanketing the entire surface of the earth to use up that

same trillionth of the address space."
Or, as Aaron Toponce (2009) stated:

"If each IP was a single pixel, this would produce an image

18,446,744,073,709,551,616 pixels square. Now, my monitor has the capability of

showing 105 pixels per linear inch. This means my monitor would need to be

2,772,778,991,358 miles in length and width if I wanted to see the image without any

scrolling. Just for comparison, a light year is 5,865,696,000,000 miles. It would take

almost 6 months traveling at the speed of light to start from one end of my monitor to

reach the opposite."

Up to the time of this writing, the unallocated IPv4 address space is as follows

(Huston, n.d.):
IANA Unallocated Address Pool Exhaustion:
 03-Feb-2011

Projected RIR Address Pool Exhaustion Dates:
RIR Projected Exhaustion Date Remaining Addresses in RIR Pool (/8s)
 APNIC: 19-Apr-2011 (actual) 0.7464
 RIPE NCC: 14-Sep-2012 (actual) 1.0245
 LACNIC: 10-Jun-2014 (actual) 0.1846
 ARIN: 15-Jun-2015 0.2629
 AFRINIC: 23-Jan-2019 2.6311

But despite the fact that the IPv4 address space is so depleted, the adoption of IPv6

has been slow in coming. However, as of early 2015, with the backing of several large

telcos and hardware manufacturers, (e.g. Akamai, Google, and Cisco) at least some

momentum has been gained. 1

According to the Measurements page of the Internet Society’s World IPv6 Launch

website, just over 14% of the Alexa Top 1,000 websites were accessible over IPv6

(Internet Society, n.d.). What's more, since 6 June 2012 (aka "World IPv6 Launch Day"),

companies like Google, Facebook, Cisco, and others have been making decent strides to

push the adoption of IPv6 (Internet Society, n.d., Infographic). As of 31 January 2015,

Google reports that 5.72% of their users reach Google sites over IPv6 - more than triple

!!
1 See http://6lab.cisco.com, http://www.akamai.com/ipv6, and

https://www.google.com/ipv6.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 4!
!

Jon Mark Allen, jm@allensonthe.net!

the amount of traffic prior (ibid.). In fact, the World IPv6 Launch group estimates IPv6

will be the dominant protocol on the Internet by 2019 (Google Inc., n.d.).

1.2 Why Snort, Suricata, and Bro?
Without getting involved in the debate of which IDS is best, these three IDS solutions

are certainly very common choices for both small and large organizations alike. Each

product also has at least some level of support for IPv6 and is included by default in the

popular Security Onion Linux distribution, which focuses on Network Security

Monitoring and includes both network and host-based IDS technologies.

Snort and Suricata are considered to be signature or rule-driven IDS engines which

"look at network traffic for fingerprints and identifiers that match known malicious,

anomalous or otherwise suspicious traffic”, While Bro aims more for an analysis driven

model (Burks, n.d.). As the Security Onion documentation describes it: “Unlike

rule-based systems that look for needles in the haystack of data, Bro says, ‘Here’s all

your data and this is what I’ve seen. Do with it what you will and here’s a framework so

you can.’” (ibid.)

Each of these IDS solutions have strengths and weaknesses, and the purpose of this

paper is not to judge which is “best” overall, but simply to measure and compare their

adoption and support of IPv6, specifically.

1.3 Security Onion and the configuration used for the test
Security Onion is a self-contained Linux distribution, which comes with all three IDS

systems pre-installed. This made it a very attractive option for this test, since the test was

to be conducted on comparable hardware. All efforts were made to use out-of-the-box

configurations and tuning where possible, so as not to introduce bias based on the skill of

the IDS analyst. Obviously, in a production environment, both alerts and performance

would be greatly improved with proper tuning to the specific environment.

Table 1, on the next page, lists the virtual machines created in VirtualBox2 for this

lab.

!

!!
2 http://www.virtualbox.org

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 5!
!

Jon Mark Allen, jm@allensonthe.net!

Security)Onion) eth0!(management!interface)!
) DHCP!
) Attached!to!the!VirtualBox!NAT!network!for!system!updates.!
) !
) eth1!(monitor!only!interface)!
) Attached!to!a!VirtualBox!Internal!Network,!which!in!this!lab!

was!named!“victimnet”).!
) !
Kali)Linux) eth0!
) Virtual!Box!Internal!Network!(“victimnet”).!
) Static!IP!assignments:!
) P 10.10.2.22/24!
) P fc00::2/7!
) !
Metasploitable) eth0!
) P Disabled!
) !
) eth1!
) VirtualBox!Internal!Network!(“victimnet”)!
) Static!IP!assignments:!
) P 10.10.2.21/24!
) P fc00::1/7!
Table&1.&Virtual&Machine&Configurations&

This test was run with the most up-to-date versions of all Security Onion components

as of this writing, starting with the securityonion-12.04.5-20140908.iso

installation image, followed by the installation of all available updates via the soup

utility.

1.4 Description and Setup of the Traffic Captures
Each traffic capture consisted of a web application vulnerability scan performed using

the OWASP Zed Attack Proxy (OWASP ZAP) – installed by default on the Kali virtual

machine - against the Mutillidae web application running on the Metasploitable virtual

machine, followed by a benchmark test run of “regular” traffic generated by Apache

Bench, which is also installed by default on Kali.

OWASP ZAP does not support scanning IPv6 addresses directly, but has no issues

scanning hostnames that resolve to an IPv6 address. Therefore, the /etc/hosts file on

Kali was edited to include two hostnames: one resolving to the IPv4 address of

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 6!
!

Jon Mark Allen, jm@allensonthe.net!

Metasploitable, and the other resolving to the IPv6 address. Using two separate names

was not necessary, but did make it easier during the execution and analysis phase to keep

the scans separated.

A minor configuration change was needed on the Metasploitable Apache instance,

since it does not listen on IPv6 by default.

Out of the box, the /etc/apache2/ports.conf file looks like this:
Listen 0.0.0.0:80

<IfModule mod_ssl.c>
 Listen 0.0.0.0:443
</IfModule>

Once the IPv6 address was applied to the interface, the ports.conf file was updated

as follows to listen on both IPv4 and IPv6 addresses:
Listen 10.10.2.21:80
Listen [fc00::1]:80

<IfModule mod_ssl.c>
 Listen 10.10.2.21:443
 Listen [fc00::1]443
</IfModule>

! !
If you’re following along at home, please note that you will need to be root or utilize

sudo to be able to edit the ports.conf file. The Apache services were then restarted

(/etc/init.d/apache2 restart) -- again, as root -- to apply the changes.

Traffic for both the scan and the “regular” requests was captured by running tcpdump

on the Kali VM. For ease of measurement, separate capture files were used for the

OWASP ZAP scan and the Apache Bench traffic, e.g.:
root@kali:~# tcpdump –i eth1 –w ipv4_owasp_zap.pcap –nv

The default scanning profile from OWASP ZAP was used for all scans. Once the scan

was complete, the tcpdump capture was stopped, and a new capture started:
root@kali:~# tcpdump –i eth1 –w ipv4_ab_4000_25.pcap -nv

For comparison, from a different terminal, Apache Bench was then used to generate a

reasonable number of “normal” HTTP requests:
root@kali:~# ab –n 4000 –c 25 \
http://metasploitable.localhost/mutillidae/

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 7!
!

Jon Mark Allen, jm@allensonthe.net!

Again for the sake of clean packet captures, when the scans and traffic generation

were completed for IPv4, the tcpdump capture was stopped, and a new one started to

capture the IPv6 traffic. The OWASP ZAP scan was then repeated, but with the IPv6

hostname, instead. This was followed by yet a fourth tcpdump capture and a new Apache

Bench run. (Note that with sufficient resources, either on one machine or multiple, both

attack traffic and “legitimate” requests could be executed simultaneously for a somewhat

more accurate representation of IDS performance.)

Before these packet capture files were ready to be replayed across the monitoring

interface of Security Onion, the checksums had to be recalculated3. While this could be

accomplished via the tcprewrite utility, for this paper, a small python script4 was created,

using the Scapy library ("Scapy," n.d.).

2 Security Onion IDS Configuration
Security Onion is configured via the custom sosetup GUI utility, located on the

Desktop. This configuration includes the selection of Snort vs Suricata, as well as several

other pertinent settings. The “Advanced Setup” mode was used to more finely control the

lab environment.

This instance was setup as a “standalone” server, so that it served as both the alert

sensor as well as the database and analysis server. For both Snort and Suricata, the IDS

rule set utilized the GPL Emerging Threats feed, in addition to the registered (free) VRT

rule set, which is available from snort.org.

Since the philosophies and features of Bro compared to the other two IDS solutions

are so different, the setup script always asks if Bro should be enabled, regardless of

which previous IDS engine was selected.

Along with network IDS functionality, Bro is capable of extracting executable files

found crossing the network, and also sending the HTTP query logs Bro generates to
!!
3 Snort and Suricata can be configured to ignore the checksums of replayed

traffic, but recalculation was preferred here to more closely simulate real-

world traffic.
4 The author is by no means a seasoned Python wrangler, so the script is truly

awful, but it was effective for the purposes of this test. !

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 8!
!

Jon Mark Allen, jm@allensonthe.net!

ELSA or Sguil. While these are excellent features and truly help Security Onion to shine

as a network analysis platform, they were not necessary for our testing and so were

disabled in this environment.

Argus, PRADS, full packet capture, and Salt were each disabled via the sosetup

script for all tests. In addition, Security Onion utilizes OSSEC, by default, as a host-based

IDS. While OSSEC is an excellent tool, it was also disabled after startup via the init

scripts5:
sudo /etc/init.d/ossec-hids-server stop

Before updating the IDS environment variables, the sensor processes were stopped:
SO-user@so-sensor:~$ sudo nsm_sensor_ps-stop

Then the /etc/nsm/[sensor_name_int]/snort.conf file was modified, as seen

below:
SO-user@so-sensor:/etc/nsm/so-sensor-eth1$ diff -u1 snort.conf
snort-updated.conf
--- snort.conf 2015-03-23 20:26:34.000000000 +0000
+++ snort-updated.conf 2015-05-01 01:27:57.011717468 +0000
@@ -44,3 +44,3 @@
 # Setup the network addresses you are protecting
-ipvar HOME_NET [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]
+ipvar HOME_NET [10.10.2.0/24,fc00::/7]

@@ -295,3 +295,3 @@
 min_response_seconds 5
-preprocessor stream5_tcp: policy windows, detect_anomalies,
require_3whs 180, \
+preprocessor stream5_tcp: policy linux, detect_anomalies,
require_3whs 180, \
 overlap_limit 10, small_segments 3 bytes 150, timeout 180, \

These changes updated the HOME_NET variable to include the specific internal

networks used in this lab and configured the stream5 pre-processor reassembly policy to

match the OS of the web server being defended.

The Suricata engine allows for different stream reassembly policies for different

networks, and by default was already configured for Linux hosts on the network segment

used in this lab. Therefore, only the HOME_NET variable required updating in the

suricata.yaml file (located in the same directory as the snort.conf file):

!
!!
5 Though this decision was revisited later in the evaluation.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 9!
!

Jon Mark Allen, jm@allensonthe.net!

SO-user@so-sensor:~$ diff -u1 suricata.yaml suricata-updated.yaml
--- suricata.yaml 2015-04-30 21:07:56.000000000 -0500
+++ suricata-updated.yaml 2015-04-30 21:06:59.000000000 -0500

@@ -943,3 +943,3 @@

- HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
+ HOME_NET: "[10.10.2.0/24,fc00::/7]"

When these changes had been completed, the IDS engine processes were restarted:
SO-user@so-sensor:~$ sudo nsm_sensor_ps-restart

At this point, the network captures were replayed across the eth1 interface of

Security Onion:
SO-user@so-sensor:~$ sudo tcpreplay -t -i eth1 \
ipv4_owasp_zap_fixed.pcap && \
sudo tcpreplay -t -i eth1 ipv4_ab_fixed.pcap

The –t option to tcpreplay stands for “top speed” and replays the packets back across

the interface as fast as possible. Once all alerts were logged and documented, the IPv6

traffic was replayed:
SO-user@so-sensor:~$ sudo tcpreplay -t -i eth1 \
ipv6_owasp_zap_fixed.pcap && \
sudo tcpreplay -t -i eth1 ipv6_ab_fixed.pcap

With the data from Snort generated and documented, the Security Onion

configuration files were modified to use the Suricata IDS and each of the packet captures

re-replayed across the IDS eth1 interface to generate the data for the Suricata evaluation.

The modification of the configuration files was as simple as the following commands6:
sudo nsm_sensor_ps-stop
sudo sed -i 's|ENGINE=snort|ENGINE=suricata|g' \
/etc/nsm/securityonion.conf
sudo rule-update
sudo nsm_sensor_ps-start

!!
6 https://github.com/Security-Onion-Solutions/security-onion/wiki/FAQ#im-

currently-running-snort--how-do-i-switch-to-suricata

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 10!
!

Jon Mark Allen, jm@allensonthe.net!

3 Snort IDS
3.1 Description of IPv6 Support in Snort

The earliest mention of IPv6 in the Snort change log shows IPv6 support beginning to

appear in February 2000, with the release of version 1.6 occurring the following month

(Snort, 2014).

Some quick grep commands reveal that, as of this writing, there were 64 IPv6 specific

rules in the VRT+ET rule set, with 29 actually enabled by default in Security Onion:
SO-user@so-sensor:/etc/nsm/rules$ grep -i ipv6 \
downloaded.rules | grep -c alert
64

SO-user@so-sensor:/etc/nsm/rules$ grep -i ipv6 \
downloaded.rules | grep -cv '#'
29

Table 2 shows the breakdown of the classes of IPv6-specific signatures currently

available.

Type of Signature Count

ICMP6 protocol alerts 24

IPv6 protocol decode messages 24

Metasploit meterpreter binding 8

Other 8
Table&2.&Types&of&IPv6&signatures&in&the&VRT+ET&rule&sets&

Signatures have historically been driven by attack discovery and disclosure, for

obvious reasons, so it is likely these counts will go up, and the variety of classes increase

as IPv6-specific attacks are discovered and become more prevalent.

Figure 2 shows the alerts generated against the IPv4 traffic. The IPv4 traffic triggered

a total of 91,994 alerts, of which 91,578 were from the Snort pre-processors, and the

remaining 366 were from the shared VRT+ET rule sets. Of the pre-processor generated

alerts, the vast majority (79,680) were generated by the http_inspect pre-processor,

with nearly all the rest coming from the stream5 pre-processor.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 11!
!

Jon Mark Allen, jm@allensonthe.net!

Figure&1.&Snort&alerts&against&IPv4&traffic,&as&shown&in&Sguil.&

Of the signature-based rules, the classes of alerts generated were what would be

expected: SQL injection, cross site scripting, CRLF injection, and data exfiltration (i.e.

retrieval of the /etc/password file).

The IPv6 traffic triggered a total of 83,467 alerts, shown in Figure 3 below, of which

83,241 were from the Snort pre-processors, and the remaining 226 were from the shared

VRT+ET rules. The ratio of pre-processor to signature-based alerts was roughly the same

as for the IPv4 traffic, as 71,632 of the alerts were from the same rule as above.

Additionally, the signature-based alerts were similar to what was seen in the IPv4 scan.

Figure&2.&Snort&alerts&against&IPv6&traffic,&as&shown&in&Sguil.&

But what stood out most was the fact that Sguil did not display the IPv6 addresses at

all. In fact, the ability to drill down into the packet, or show any other details of the alert,

did not work when viewing an alert from an IPv6 stack. While troubleshooting this issue,

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 12!
!

Jon Mark Allen, jm@allensonthe.net!

it was discovered that barnyard2, the dedicated log parser for the unified2 log format,

does not yet support IPv6 addresses ("Snort mailing list archives," 2013). Since all other

IDS management interfaces in Security Onion feed off this parser, none of them are able

to show this information.

4 Suricata IDS
4.1 Description of IPv6 Support in Suricata

Suricata uses the same rule set as Snort, so it had the same 64 IPv6 rules (29 enabled

by default) as Snort did. But it also has an additional decoder-events.rules file with

an additional 32 decoder rules, 31 of which were enabled by default in Security Onion,

for a total of 96 rules, with 60 enabled by default.

The IPv4 traffic triggered a total of 286 alerts, shown in Figure 4, of which 9 were

from the Suricata STREAM signatures, and the remaining 277 were from the shared

VRT+ET rule sets.

Figure&3.&Suricata&alerts&against&IPv4&traffic,&as&shown&in&Sguil.&

The classes of signature-based alerts generated were similar to that of Snort, with the

addition of local file inclusion, but lacked the data exfiltration detection.

As seen in Figure 5, the IPv6 traffic triggered a total of 668 alerts, of which 421 alerts

were from the Suricata STREAM signatures, and the remaining 247 were from the shared

VRT+ET rule sets.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 13!
!

Jon Mark Allen, jm@allensonthe.net!

Figure&4.&Suricata&alerts&against&IPv6&traffic,&as&show&in&Sguil.&

The Suricata STREAM processor alerts were significantly increased against the IPv6

traffic, but there was no change in the classes of alerts seen from the signature-based

rules. Again, since Suricata depends on barnyard2 for log parsing into the Sguil DB, the

IPv6 addresses and other related details were not available for this traffic.

5 Bro IDS
5.1 Description of IPv6 Support in Bro
!

The earliest mention of IPv6 in the Bro change log shows support beginning to appear

in April 2012, with version 0.17-8 ("Detailed Version History — Bro 2.3.2

documentation," n.d.). In testing for this paper, Bro had no problems decoding and

displaying IPv6 traffic and alerts. But while the author did not find any IPv6 specific

rules, it bears repeating that the philosophy of Bro is significantly different than either of

the other two IDS solutions under examination.

As stated previously, while Snort and Suricata are pattern-based engines, Bro focuses

more on traffic pattern analysis, and as such, the resulting logs and alerts are significantly

different. It should also be noted, that Sguil/Squert do not currently support ingesting logs

from Bro, but that also means that reviewing alerts was not impacted by the barnyard2

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 14!
!

Jon Mark Allen, jm@allensonthe.net!

deficiency. Analysis of the Bro alerts during this test was fully conducted from the

terminal.7

After executing the OWASP ZAP scans, Bro entered the following in the

notice.log file, as viewed with the bro-cut utility8:
SO-user@so-sensor:~$ bro-cut note msg src \
 < /nsm/bro/logs/current/notice.log
HTTP::SQL_Injection_Attacker An SQL injection attacker was
discovered! 10.10.2.22
HTTP::SQL_Injection_Victim An SQL injection victim was discovered!
 10.10.2.21
HTTP::SQL_Injection_Attacker An SQL injection attacker was
discovered! fc00::2
HTTP::SQL_Injection_Victim An SQL injection victim was discovered!
 fc00::1

Bro did not alert on each instance of a SQL injection attempt, but rather reported that

an attacker had been detected. This would make monitoring alerts significantly easier

than parsing through literally thousands of individual alerts. However, in this lab, Bro did

not alert on any other classes of attacks, such as cross-site scripting or command

injection.

Additionally, each web request seen is recorded in the http_INTERFACE.log file:
SO-user@so-sensor:~$ bro-cut id.orig_h id.resp_h method uri \
 < /nsm/bro/logs/current/http_eth1.log
fc00::2 fc00::1 POST
/mutillidae/index.php?page=login.php'+AND+'1'='1
fc00::2 fc00::1 POST
/mutillidae/index.php?page=login.php+AND+1=1
fc00::2 fc00::1 POST
/mutillidae/index.php?page=login.php+AND+1=1+--+
10.10.2.22 10.10.2.21 GET
/mutillidae/index.php?page=redirectandlog.php"+AND+"1"="1"+--+
10.10.2.22 10.10.2.21 GET
/mutillidae/index.php?page=redirectandlog.php+AND+1=1
10.10.2.22 10.10.2.21 POST
/mutillidae/index.php?page=login.php"+AND+"1"="1

Reviewing other Bro logs did not reveal significantly additional information

regarding this particular scan.

!!
7 ELSA could also have been used for analysis of each of these systems, though

that would not support the drill-down features even for IPv4 traffic.
8 https://www.bro.org/sphinx/components/bro-aux/README.html#bro-cut

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 15!
!

Jon Mark Allen, jm@allensonthe.net!

6 Overall Comparisons and Workarounds
Snort performed roughly the same for both IPv4 and IPv6 traffic, with some reduction

in signature-based alerts on IPv6 traffic. Snort also produced prolific alerts based

primarily on the stream5 pre-processor reassembly process, but an IDS administrator

should be able to tune those alerts down to more reasonable levels.

Compared to Snort, Suricata’s performance between IPv4 and IPv6 was more

consistent, at least in regard to the signature-based alerts. But the stream reassembly

process in Suricata did not handle the IPv6 traffic well, relative to IPv4 traffic.

Bro generated the exact same number of alerts on both IPv4 and IPv6, but in this

case, it only detected one class of web attack traffic, leaving the remainder of attacks for

detection by some other means.

Management of alerts from both Snort and Suricata are significantly hamstrung by the

lack of support in barnyard2 for logging of IPv6 addresses. As seen in the screenshots

included above, none of the graphical management interfaces installed by default support

the display or storage of IPv6 addresses, due to the lack of support in barnyard2. The

current version of barnyard2 is 2.1-13, and according to the barnyard2-users email list

archives, IPv6 support is planned for 2.2 ("Snort mailing list archives," 2013).

Unfortunately, the last stable version at the time of this writing was released on 14 May

2013 – nearly two full years ago.

6.1 Alternate Logging Options
One possible resolution to this problem would be to completely bypass barnyard2 for

log collection, and instead use fast or full format alert files to allow OSSEC or some

other external syslog server or event correlation utility to do alert correlation and

management. However, this approach is not without drawbacks, either.

To enable the full logging format for Snort, a small change must be made to the

snort.conf file, after first stopping the nsm_sensor_ps processes:
SO-user@so-sensor:/etc/nsm/so-sensor-eth1$ diff -u1 snort.conf
snort-updated.conf
--- snort.conf 2015-03-23 20:26:34.000000000 +0000
+++ snort-updated.conf 2015-05-01 01:27:57.011717468 +0000
@@ -533,5 +533,6 @@
 # output unified2: filename merged.log, limit 128, nostamp,
mpls_event_types, vlan_event_types

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 16!
!

Jon Mark Allen, jm@allensonthe.net!

-output unified2: filename snort.unified2, limit 128
+#output unified2: filename snort.unified2, limit 128

 # Additional configuration for specific types of installs
+output alert_full: snort-full.log
 # output alert_unified2: filename snort.alert, limit 128, nostamp

This simply disables all pre-existing output formats and adds the alert_full output

plugin9.

The process for Suricata is very similar, though it does not currently support the

alert_full format, and so is limited to alert_fast. Again, changes are made to the

suricata.yaml file, located in the same directory as the snort.conf file:
SO-user@so-sensor:~$ diff -u1 suricata.yaml suricata-updated.yaml
--- suricata.yaml 2015-04-30 21:07:56.000000000 -0500
+++ suricata-updated.yaml 2015-04-30 21:06:59.000000000 -0500
@@ -81,3 +81,3 @@
 - fast:
- enabled: no
+ enabled: yes
 filename: suricata-fast.log

@@ -114,3 +114,3 @@
 - unified2-alert:
- enabled: yes
+ enabled: no
 filename: snort.unified2

When these changes have been completed, restart the IDS engine processes:
sudo nsm_sensor_ps-restart --only-snort-alert

The log file is then located in the /nsm/sensor_data/[sensor_name_int]/

directory.

OSSEC can be modified to monitor these alert files by adding additional

<localfile> directive(s) to the /var/ossec/etc/ossec.conf file:
<localfile>
 <log_format>snort-full</log_format>
 <location>/nsm/sensor_data/[sensor_name_int]/snort-
full.log</location>
</localfile>

<localfile>
 <log_format>snort-fast</log_format>

!!
9 Snort could be configured to log in the alert_fast format instead, but that

option is omitted here to avoid redundancy.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 17!
!

Jon Mark Allen, jm@allensonthe.net!

 <location>/nsm/sensor_data/[sensor_name_int]/suricata-
fast.log</location>
</localfile>

Please note that root access is required for all OSSEC modifications. After restarting

OSSEC (sudo service ossec-hids-server restart), it will begin monitoring the

alert logs generated by Snort/Suricata. Without any additional configuration, IDS alerts in

OSSEC are recorded as follows (for alert_fast formatted logs) in the alerts.log

file:
** Alert 1430968061.51807: - securityonion,syslog,
2015 May 07 03:07:41 so-snort->/nsm/sensor_data/so-snort-
eth1/suricata-fast.log
Rule: 20101 (level 4) -> 'IDS event.'
05/07/2015-03:07:37.875905 [**] [1:2006446:11] ET WEB_SERVER
Possible SQL Injection Attempt UNION SELECT [**] [Classification:
Web Application Attack] [Priority: 1] {TCP}
fc00:0000:0000:0000:0000:0000:0000:0002:33725 ->
fc00:0000:0000:0000:0000:0000:0000:0001:80

Unfortunately, OSSEC parsing of the alert_full format seems to be less

consistent:
** Alert 1430969114.7017254: - securityonion,syslog,
2015 May 07 03:25:14 so-snort->/nsm/sensor_data/so-snort-
eth1/snort-1/snort-full.log
Rule: 20101 (level 4) -> 'IDS event.'
[**] [1:30041:2] SQL 1 = 1 - possible sql injection attempt [**]

** Alert 1430969114.7018006: mail - syslog,errors,
2015 May 07 03:25:14 so-snort->/nsm/sensor_data/so-snort-
eth1/snort-1/snort-full.log
Rule: 1002 (level 2) -> 'Unknown problem somewhere in the system.'
[Classification: Potentially Bad Traffic] [Priority: 2]

** Alert 1430969114.7018268: - securityonion,syslog,
2015 May 07 03:25:14 so-snort->/nsm/sensor_data/so-snort-
eth1/snort-1/snort-full.log
Rule: 20101 (level 4) -> 'IDS event.'
[**] [129:12:1] Consecutive TCP small segments exceeding threshold
[**]

Ideally, the OSSEC log parsers would be updated to parse and display - at a minimum

- the source and destination IP address information, and additional correlation rules

should be created for maximum benefit. While outside the scope of this paper, the

example modifications above give a general idea of the process that would need to be

followed.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 18!
!

Jon Mark Allen, jm@allensonthe.net!

One other possibility for exploration is the use of an ELK stack (Elasticsearch,

Logstash, and Kibana) for management of the alerts generated; however there was neither

time nor space in this report to fully explore that option.

7 Conclusion
IPv6 traffic adoption is rising, and while the IDS engines evaluated support the new

protocol, there is still much work to be done before they are ready to meet the demands of

everyday consumption. There are very few IPv6-specific signatures developed and

released to the public so far, but that is potentially due to the lack of IPv6-specific attacks

discovered and disclosed, to date. Bro IDS shows parity both in detection and alert

management of attacks over IPv6, but given the different detection strategy, it should be

layered with a more traditional IDS engine for a more complete picture of the classes of

attacks in progress. For both Snort and Suricata, the actual detection of attacks over IPv6

is comparable to similar attacks conducted over its predecessor, but the ability to manage

those alerts is woefully, and surprisingly, lacking. But this finding should certainly not be

taken as an indictment of Security Onion as a whole. One available option for alert

management within Security Onion could include the use of OSSEC, but even in that

case, additional work is needed to produce a useable solution.

A Performance Comparison of Intrusion Detection Systems with Regard to IPv6! 19!
!

Jon Mark Allen, jm@allensonthe.net!

References!
!
ABI Research. (2014, August 20). The Internet of Things will drive wireless connected

devices to 40.9 billion in 2020 | ABI Research. Retrieved April 5, 2015, from

https://www.abiresearch.com/press/the-internet-of-things-will-drive-wireless-

connect

Burks, D. (n.d.). Introduction to Security Onion � Security-Onion-solutions/security-

onion wiki � GitHub. Retrieved April 5, 2015, from https://github.com/Security-

Onion-Solutions/security-onion/wiki/IntroductionToSecurityOnion

Detailed Version History � Bro 2.3.2 documentation. (n.d.). Retrieved April 19, 2015,

from https://www.bro.org/sphinx/install/changes.html

Google Inc. (n.d.). IPv6 � Google. Retrieved February 3, 2015, from

http://www.google.com/intl/en/ipv6/statistics.html

Huston, G. (n.d.). IPv4 address report. Retrieved April 5, 2015, from

http://www.potaroo.net/tools/ipv4/

Internet Society. (n.d.). Infographic | World IPv6 Launch. Retrieved February 3, 2015,

from http://www.worldipv6launch.org/infographic/

Internet Society. (n.d.). Measurements | World IPv6 Launch. Retrieved February 3, 2015,

from http://www.worldipv6launch.org/measurements/

Kozierok, C. M. (2005, September 20). The TCP/IP Guide - IPv6 address size and

address space. Retrieved April 5, 2015, from

http://www.tcpipguide.com/free/t_IPv6AddressSizeandAddressSpace-2.htm

Scapy. (n.d.). Retrieved April 20, 2015, from http://www.secdev.org/projects/scapy/

Snort mailing list archives. (2013, April 27). Retrieved April 30, 2015, from

http://seclists.org/snort/2013/q2/416

Snort. (2014, December 24). changelog_2972.txt. Retrieved April 19, 2015, from

https://www.snort.org/downloads/snort/changelog_2.9.7.2.txt

Toponce, A. (2009, March 8). The sheer size of IPv6. Retrieved April 5, 2015, from

https://pthree.org/2009/03/08/the-sheer-size-of-ipv6/

U.S. Census Bureau. (n.d.). Population Clock. Retrieved April 5, 2015, from

http://www.census.gov/popclock/

