
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!!
"#$%&'()!*+,-!./0.1!

!
! !

What’s running on your network?

Analyzing pcap data with tshark

GIAC (GCIA) Gold Certification

2+34567!869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!
2HI;<567!J5G;,;B+<!2H6;K9,35!

2BB-L3-H7!J-B-GD-6!..,H@!./0.!!
!

2D<369B3!
)-3M56N!L9BN-3! B9L3+6-! A;F-<! 96-! -O36-G-FK! +<-A+F! 35! <-B+6;3K! 9,9FK<3<!M45! 36K! 35!
H-3-6G;,-! ;<<+-<! 9,H!L5<<;DF-! B5GL65G;<-! ;,! 9,!-,I;65,G-,3C!2! B5GLF-3-!L9BN-3!
B9L3+6-!B5,39;,<!9!M-9F34!5A!;,A56G93;5,!D+3!-O369B3;,?!<5G-34;,?!+<-A+F!A65G!3493!
H939! B9,! D-! D534! B49FF-,?;,?! 9,H! 3;G-PB5,<+G;,?C! Q4;<! L9L-6! <45MB9<-<! 34-!
B9L9D;F;3K!5A!!"#$%&'9,H!534-6!5L-,P<5+6B-!355F<!A56!-O369B3;,?!<+B4!;,A56G93;5,C!=K!
H-G5,<3693;,?! 45M! <;GLF-! 5+3L+3<! A65G! !"#$%&! B9,! D-! B566-F93-H! M;34! -O3-6,9F!
6-<5+6B-<@! 34;<! L9L-6! G9N-<! 9! <365,?! B9<-! 3493! <-B+6;3K! 9,9FK<3<! <45+FH! B5,<;H-6!
9HH;,?!!"#$%&! 35!34-;6!355FD5OC!$GL49<;<!;<!LF9B-H!,53!R+<3!5,!?-33;,?!A9G;F;96!M;34!
!"#$%&! D+3! 9F<5! 5,! B5,B6-3-! -O9GLF-<! <+B4! 9<! 'S! ?-5PF5B93;5,@! G9FM96-! 346-93!
B566-F93;5,<@!-G9;F!G-<<9?-!-O369B3;5,<@!-3BC!
!

!

What’s running on your network?! 2
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

1. Introduction
Now more than ever, IT infrastructures are targeted by malicious outsiders,

ranging from ideologically motivated groups such as Anonymous (Norton, 2012) to

corporations and governments utilizing highly sophisticated Advanced Persistent Threats

(Juels & Yen, 2012). As a result, data theft has become an area of concern (Websense,

2012). With attackers relying on a wide array of data exfiltration techniques (botnets,

email lures, web re-directs, etc.), protecting a network means looking at data coming in

and out of that network.

A decade ago, Kaufman, Perlman & Speciner wrote: “As long as information can

be passed one bit at a time, anything can be transmitted, given enough time” (2002). This

sentence illustrates well what security analysts are facing nowadays. Analyzing network

traffic is therefore an essential skill for security analysts as it can often provide evidence

of clues to system compromises. Even without raising the specter of security breaches,

knowing what is happening on a given network is critical to help establish a baseline.

This baseline is essential when trying to identify abnormal behavior. This paper therefore

intends to introduce some open-source tools to help analyze a network capture and

extract useful data from it.

While it is understood that there are many tools available to security analysts as

well as commercial products that can perform this analysis, this paper will focus mainly

on tshark, which is part of the Wireshark toolset (wireshark.org, 2012). This powerful

tool produces output that can easily be customized with command-line utilities such as

awk, sed, sort, cut, etc. This in turn facilitates the integration of these outputs with outside

databases containing rich data related to security threats. As such, this paper should be

viewed as another approach to data analysis, one that a security analyst can further

customize to his specific needs.

What’s running on your network?! 3
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

2. Preparation & tools
2.1. Setting up for the capture

Capturing packets, even in a small-to-mid-size network, can be complicated. Is a

network diagram available? Is it up to date? Does it capture all the relevant elements of

the environment? When investigating an incident, this diagram is literally your crime

scene map (Fishburne, 2012). Assuming one such diagram is available, and assuming that

internet services are hosted in that network, it is likely segmented as per figure 1:

!"#$%&'(')"*+,&'-&./0%1'/".2'"-.&%-&.'3&%4"5&3'
!

As seen above, even this simple network is made up of three distinct segments:

the DMZ, the internal network of desktop users and the segment for enterprise servers,

each of which are separated by routers and firewalls. The next question to take into

account is therefore: “From which segment should data be captured?” As many other

things in life, there is no one correct answer. It depends for instance on what is being

investigated (data exfiltration, malware activity, etc.) as well as the technique available to

perform the capture (inline, using mirrored ports, port aggregation, etc.).

Discussing the intricacies of setting up for the capture itself is outside the scope of

this paper but interested readers can refer to the Ethernet capture setup wiki of the

Wireshark project (wireshark.org, 2012) for more information.

What’s running on your network?! 4
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

For the remainder of this paper, the assumption is that a sniffing host is attached

to a mirrored port of the internal network switch. In other words, all desktop users’ traffic

(both inbound and outbound) will be captured and stored in pcap format.

2.2. Introducing the tools
The following command-line tools were selected to conduct the capture and

analysis:

tcpdump: the well-known command-line protocol analyzer

tshark: the command line counterpart to the Wireshark GUI program, also part of

the Wireshark suite. For the purpose of this paper, a version > 1.8 is required.

curl: a command-line tool for transferring data using common network protocols

such as HTTP.

gnuplot: A plotting program to create graphs

tcpflow: a tool to extract data streams

2.3. Packet capture performance considerations
The next step prior to the actual analysis is to select the tool to use to capture the

data. Initially, the decision was made to use dumpcap (also part of Wireshark). The

thinking behind this choice was simple: dumpcap being a raw packet dumper rather than

a protocol analyzer (such as the more well-known tcpdump), it was expected that it would

perform better. Another reason was that this would decrease the chance of the capture

tool being affected by vulnerabilities. For instance, the Common Vulnerabilities and

Exposures site (CVE, 2012) lists numerous vulnerabilities in tcpdump such as CVE-

2007-3798 but none for dumpcap.

As it turned out though, dumpcap’s performance lagged behind tcpdump’s and it

was the latter that was used for capturing pcap data. The interested reader can consult

Appendix A to see the tests that were done to reach this conclusion. The tests are far from

exhaustive and are only presented to highlight certain aspects to take into consideration

when capturing network traffic. A detailed analysis of packet capture performance is

outside the scope of this paper, as more complex tweaks should also be discussed such as

What’s running on your network?! 5
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

memory-mapping, multi-processors/cores/threads, customized drivers, the OS used for

the capture, etc. Ample literature on the subject is readily available, with Braun,

Didebulidze, Kammenhuber & Carle (2010) providing a good survey. Suffice it to say

that ideally the sniffing station should be able to handle the network load and capture full

packets without any drops.

Having established this, and having determined that tcpdump would provide

better performance in the target environment, the sniffing station was deployed as per

Figure 2:

!"#$%&'6'7&+,08*&-.'09':'3-"99"-#'3.:."0-'

The interface on which the capture is taking place was brought up without an

actual IP, making the sniffing box act as a passive listener in the network. A separate,

dedicated management interface from which an analyst would retrieve the packet capture

was also turned on, allowing for out-of-band communication to the sniffing server.

3. Analysis
3.1. Physical layer analysis

If the packet capture takes place on a layer 3 device such as an aggregation point

on a router, physical layer analysis is not going to yield many results. As part of the IP

routing algorithm (Comer, 2000), IP datagrams are encapsulated inside Ethernet frames

and the MAC addresses in the frame header will change as the frame hops from router to

router. Looking at the physical layer of such a capture file would only reveal the physical

addresses of the routers.

What’s running on your network?! 6
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

On the other hand, if the capture takes place on a layer 2 device, such as capturing

data on a segment serviced by a switch by using a mirrored port, the MAC addresses of

the actual devices chatting on the segment will be revealed. Although this information

will prove too ‘low-level’ to be useful in most circumstances, it will serve to introduce

the main tool this paper relies upon: tshark. As already mentioned, tshark is part of the

Wireshark project. It actually is the command line equivalent of wireshark. Like its GUI

counterpart, it can filter and extract protocol fields:

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e eth.addr | awk -F, '{print
$1"\n"$2}' | sort | uniq | tee mac_addresses

00:03:47:71:98:b2
00:04:4b:03:4e:0f
00:11:11:1e:8b:a0
[…]
The above tshark command reads a capture file (-r tap_capture_Sunday.pcap)

without attempting to resolve host/port names (-n), and extracts the Ethernet addresses

field (-T fields -e eth.addr). Both the source MAC address and the destination MAC

address are extracted by -e eth.addr and separated by a comma as such:

00:11:11:1e:8b:a0,00:26:88:03:67:08. Using awk, the two addresses are separated by a

line feed (awk –F, ‘{print $1”\n”$2}’), sorted (sort), and only unique MAC addresses are

kept (uniq). Finally, the tee command shows the result to the screen and saves a copy to a

file called mac_addresses.

This list can be used as a baseline of devices that live on a given segment. Having

a list of all MAC addresses visible in a given network segment can prove valuable when

trying to identify issues: maybe a device has died unexpectedly or a new device has been

introduced in the environment without proper notification. Many companies now rely on

management systems that cover assets, applications and services in the form of

Configuration Management Databases or Configuration Management Systems

(O’Donnell & Casanova, 2009). If you have such a system in place, the MAC address

might already be part of the primary key of your Configuration Items (Evergreensys.com,

2007) and this in turn can provide some further asset correlation. This list can also be

used when applying port security (Donahue, 2011).

What’s running on your network?! 7
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

If there is no formal asset management in the environment, a MAC address

vendor lookup site (MACVendorLookup.com, 2012) combined with the tool curl can

provide hardware vendor data on the extracted addresses. Note that an API key is

required to get this information (registration is required):

$ for MAC in `cat mac_addresses` ; do echo $MAC" : `curl -s
http://www.macvendorlookup.com/api/<API_KEY>/${MAC} | awk -F \| '{print $1}'`" ;
done

00:03:47:71:98:b2 : Intel Corporation
00:04:4b:03:4e:0f : Nvidia
01:00:5e:00:00:01 : none
[…]
The for-loop is just a generic Unix shell loop of the form for <data list>; do

<cmd>; done. In this particular case, the data list is made of MAC addresses contained in

file mac_addresses. For each of these addresses, the MACVendorLookup.com site is

accessed using curl via a simple HTTP GET:

$ curl http://www.macvendorlookup.com/api/<API_KEY>/00:03:47:71:98:b2
Intel Corporation|Ms: Lf3-420|2111 N.e. 25th Avenue|Hillsboro Or

97124|United States

The site replies with details about the hardware vendor. It should be pointed out

that tshark can also provide additional packet data by using the –V option. This option

prints packet details rather than the typical one-line summary:

$ tshark -V -r tap_capture_Sunday.pcap
Frame 1: 130 bytes on wire (1040 bits), 130 bytes captured (1040 bits)
 Arrival Time: Sep 9, 2012 10:47:26.796081000 MDT
 Epoch Time: 1347209246.796081000 seconds
 [Time delta from previous captured frame: 0.000000000 seconds]
 [Time delta from previous displayed frame: 0.000000000 seconds]
 [Time since reference or first frame: 0.000000000 seconds]
 Frame Number: 1
 Frame Length: 130 bytes (1040 bits)
 Capture Length: 130 bytes (1040 bits)
 [Frame is marked: False]

What’s running on your network?! 8
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

 [Frame is ignored: False]
 [Protocols in frame: eth:ip:tcp:ssh]
Ethernet II, Src: AsustekC_c3:a8:08 (20:cf:30:c3:a8:08), Dst: Giga-

Byt_c9:6a:50 (50:e5:49:c9:6a:50)
 […]
With –V, the hardware vendor is shown but the point here is to be able to extract

precise data and correlate that data with external data sources. This approach will be used

again in section 3.3.1 (DNS – Ad & Malware threats correlation).

A list of all protocols and fields available to tshark can be found by running

tshark –G but the output of this command is overwhelming. A better approach is to

consult the Wireshark Display Filter Reference (Wireshark, 2012). For instance,

following the link to ethernet on the main page reveals all the fields that tshark can

extract from an Ethernet frame such as eth.addr, eth.src, eth.dst, eth.padding, frame.len,

etc. as shown in figure 3

!"#$%&';'<.2&%-&.'+%0.050,'="3+,:8'9",.&%3'
!

$O369B3;,?!34-<-!A;-FH<!34-,!D-B5G-<!R+<3!9!G933-6!5A!9HH;,?!34-G!35!34-!

!"#$%&!B5GG9,H!9<!6-T+;6-H7!

!

What’s running on your network?! 9
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e eth.addr -e frame.len –c 3
50:e5:49:c9:6a:50,20:cf:30:c3:a8:08 130
20:cf:30:c3:a8:08,50:e5:49:c9:6a:50 66
50:e5:49:c9:6a:50,20:cf:30:c3:a8:08 130
The above tshark command displays the source and destination MAC addresses (-

e eth.addr) as well as the corresponding frame lengths (-e frame.len) for the first 3

packets in the capture (-c 3). This data in turn could be tallied to find the most ‘talkative’

hosts at the physical layer. At such a low level of the OSI model, this information lacks

interest but at the network layer, this will prove more interesting as the next section will

demonstrate.

!

3.2. Network layer analysis
3.2.1. IPv4 - Datagram sizes distribution

Although the demise of IPv4 has been predicted for years, this protocol remains

prevalent. IPv6 traffic does increase year after year but it still only amounts to a fraction

of all internet traffic and faces deployment challenges (Karpilovsky, Gerber, Pei,

Rexford, & Shaikh, 2009). This section therefore focuses on IPv4 traffic and a simple

exercise: to create a graph showing the distribution of the packet sizes in our packet

capture. Getting a list of IP datagram lengths as well as a tally of the number of packets

of each size is simple enough with tshark:

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e ip.len | sort –n | uniq -c | awk
'{print $2" "$1}' | sort –n | tee /tmp/ipLen.dat

32 391
40 90387
41 11
[…]
The above tshark command extracts the IP datagram length (-e ip.len) for each

packet. The following sort –n | uniq -c | awk '{print $2" "$1}' | sort -n command sorts

the output of tshark (sort –n), creates a tally of the number of packets for each packet size

(uniq -c) and lists the packet length followed by the number of packets of that length

(awk '{print $2" "$1}'). The final sort command lists the results in increasing order of

What’s running on your network?! 10
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

packet length. Referring back to the output, it can be seen that 391 packets were 32 bytes

long, 90,387 packets were 40 bytes long, etc. The results are displayed to the screen and

saved to a file called /tmp/ipLen.dat.

 Turning this into a histogram is not very complicated using a tool such as gnuplot

(gnuplot.info, 2012). Appendix C shows the content of a file called IPdistrib.gnuplot

which will take the data in file /tmp/IPlen.dat and turn it into a histogram. To create this

histogram, simply run

$ gnuplot < ./IPdistrib.gnuplot

The actual picture is saved to file ./reports/graphs/IPdistrib.png and is shown in

Figure 4. Note that the y scale is logarithmic for a better fit.

!"#$%&'>'7"3.%"?$."0-'09'.2&'3"@&'09'AB'=:.:#%:*3'
'

If the goal is to find the top 3 datagram sizes, the following command can be

used:

$ cat /tmp/ipLen.dat | sort -k2 -nr | head -3
1500 173838
40 90387

()''''''*++,!!
!

What’s running on your network?! 11
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

In the above example, the sort command orders the data on the second field (-k2)

in reverse numerical order (-nr) and the head command returns the top 3 results. One

might be interested to take a closer look at those 90,387 datagrams of size 40 bytes.

Tshark can shed some light on those packets. One useful piece of information currently

missing is what IP addresses are generating these packets.

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e ip.src -e ip.dst -e ip.proto -R
"ip.len eq 40" | sort | uniq -c | sort –rn

47691 192.168.1.121 80.190.148.74 6
18529 192.168.1.64 206.108.207.168 6
6297 192.168.1.121 206.108.207.138 6
3885 192.168.1.64 69.192.83.235 6
[…]
The above tshark command extracts the source (-e ip.src) and destination (-e

ip.dst) IP addresses as well as the underlying IP protocol (-e ip.protocol). A filter is

applied to limit the output to datagrams that are 40 bytes in size (-R “ip.len eq 40”). The

final sort | uniq –c | sort –rn command tallies the results and presents them in reverse

order, from most frequent to least frequent.

One pair of hosts stands out from this list with 47,691 packets: 192.168.1.121 and

80.190.148.74. This pair generated more than twice the number of packets than the next

highest pair. Protocol 6 translates to TCP. Let’s see what this particular conversation was

all about:

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e tcp.dstport -R "ip.len eq 40
&& ip.src eq 192.168.1.121 && ip.dst eq 80.190.148.74" | sort -n | uniq –c

47691 80
!

The above tshark command applies a tighter filter (-R "ip.len eq 40 && ip.src eq

192.168.1.121 && ip.dst eq 80.190.148.74") and extracts the destination port of the TCP

traffic (-e tcp.dstport). The sort –n | uniq –c command does the usual tally per TCP

destination port.

Interestingly, every datagram was sent to TCP destination port 80, so this is likely

HTTP traffic. At this point, an astute reader might have noticed the small size of the

What’s running on your network?! 12
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

datagrams. Do these datagrams contain anything? Actually, they do not contain any data.

The minimum length of an IP header is 20 bytes (without any options). The minimum

length of a TCP header is also 20 bytes (without any options). The sum of these headers

is 40, which is equal to the packet size that was found. In other words, a packet size of 40

for an IP packet containing a TCP segment has no room for anything but the IP & TCP

headers. What does this reveal? Perhaps looking at the TCP flags with –e tcp.flags will

help:

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e tcp.flags -R "ip.len eq 40 &&
ip.src eq 192.168.1.121 && ip.dst eq 80.190.148.74" | sort | uniq -c

47689 0x0010
2 0x0011

All packets but 2 have the flag combination 0x0010. This is a hex value

equivalent to 1610 or 000100002. The flag fields in a TCP header are [C E U A P R S F].

The first two bits are for ECN and the last 6 are for Urgent, Acknowledgement, Push,

Reset, Synchronize and Fin respectively. The fourth bit (the only one that is set) is used

to indicate an acknowledgement, which means that these packets are simply ACKs of a

TCP transmission. This result is somewhat anti-climactic but it did showcase how tshark

can be used to further study specific packets. More analysis can be done:

$ tshark -r tap_capture_Sunday.pcap -n -T fields -e frame.number -c 1 -R "ip.len
eq 40 && ip.src eq 192.168.1.121 && ip.dst eq 80.190.148.74"

74426
The tshark command above extracts the frame number (-e frame.number) of the

first frame (-c 1) that matches the filter. Tshark dutifully responds with 74,426. Since it

has already been determined that the destination port of this traffic was TCP/80, perhaps

some additional useful data can be found at a higher layer of the OSI model, namely at

the application layer:

$ tshark -r tap_capture_Sunday.pcap -n -R "frame.number>74416 &&
frame.number<74536 && ip.src eq 192.168.1.121 && ip.dst eq 80.190.148.74" -T fields
-e http.request.uri -e frame.number | grep ^\/

/package/wks_avira/win32/en/pecl/avira_free_antivirus_en.exe 74427
The filter applied above limits the frames returned by arbitrarily looking at a

range of 10 frames before and after the frame of interest (i.e. all frames in the 74,416 -

What’s running on your network?! 13
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

74,536). A new field is also extracted: the URI of requests made by the client (-e

http.request.uri). This should contain details of what was requested on TCP/80, provided

this was indeed HTTP traffic. As for the grep command, it simply filters out some noise

such as blanks or otherwise non-printable characters.

The output of the command is definitely more rewarding: file

avira_free_antivirus_en.exe was requested at frame number 74,427. This also explains all

the ACKs between these 2 hosts: a large file was transferred and the ACKs are simply the

acknowledgements taking place throughout the file transfer. In Wireshark, such a

conversation can be viewed as a stream and luckily, tshark also supports streams using –e

tcp.stream:

$ tshark -r tap_capture_Sunday.pcap -n -R "frame.number>74420 &&
frame.number<74430" -T fields -e tcp.stream -e frame.number

720 74420
 74421
 74422
744 74423
740 74424
744 74425
744 74426 ! this is where the first ACK was found
744 74427 ! this is where the URI was found
720 74428
744 74429
744 74430

In the above tshark command, the range of frames of interest is further limited

and the stream ID for this file transfer is revealed to be 744. The stream appears to start at

frame # 74,423. If that is truly the case, then 74,423 should be a SYN and 74,425 should

be a SYN-ACK. This would complete a 3-way handshake with the ACK we found at

frame 74,426. By extracting the TCP flags with tshark, this can be confirmed:

$ tshark -r tap_capture_Sunday.pcap -n -R "frame.number==74423 ||
frame.number==74425 || frame.number == 74426" -T fields -e tcp.flags

0x0002 Note 000000102 => [C E U A P R S F]

What’s running on your network?! 14
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

0x0012 Note 000100102 => [C E U A P R S F]

0x0010 Note 000100002 => [C E U A P R S F]

In the tshark command above, the logical connector OR (||) is used to look at the

3 packets that are of interest and TCP flags (-e tcp.flags) are extracted. This is indeed the

3-way handshake for this particular connection.

At this point, the reader may wonder: “Is there any point to this besides learning a

new tool? How is tshark more useful than Wireshark, which provides all this

functionality in a nice graphical user interface?” The answer to this lies in the latter

question: Wireshark is indeed an amazing GUI tool but tshark, by its command-line

nature, can generate raw data in a form (simple text) that is easily manipulated. This has

already been demonstrated by combining tshark with awk, sort, uniq, etc. These

command combinations can easily be wrapped in a simple shell script to perform a basic

packet capture analysis with no human intervention.

3.2.2. IPv4 – Do-it-yourself IP geolocation
It would be interesting to know where traffic is heading as it exits a network, and

this can be achieved using tshark. Numerous web sites offer IP geo-location and some

even offer a web API. This means that the for-loop technique with curl of section 3.1

could be used once more. There is a better way though, as Wireshark supports IP geo-

location (Stewart, 2010) and so does tshark. Appendix B shows how to compile and

configure tshark to make use of Maxmind’s IP geo-location database (Maxmind, 2012).

Once tshark is able to query that database, the following can provide a view of where the

traffic is going:

$ tshark –o "ip.use_geoip: TRUE" -r tap_capture_Sunday.pcap -n -T fields -e
ip.dst -e ip.geoip.dst_country -R "ip.dst != 192.168.1.0/24" | sort | uniq -c | sed 's/,//g' |
sort -rn | awk ' $2!="" ' | awk '{for (i=2; i<=NF; i++) printf "%s ",$i;printf ","$1 ;
printf "\n";}' | tee /tmp/externalIPs_With_Location.dat

Germany ,49079
Canada ,29513
United States ,21344
United Kingdom ,358
Russian Federation ,41

What’s running on your network?! 15
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

In the tshark command above, IP geolocation is turned on (-o "ip.use_geoip:

TRUE) and the destination IP (-e ip.dst) as well as the destination country (-e

ip.geoip.dst_country) are extracted. Packets bound for the internal network are excluded

(-R "ip.dst != 192.168.1.0/24"). The sort/uniq command that follows creates a tally. The

sed command is then used to remove extraneous commas. For example, ‘Korea, Republic

of’ becomes ‘Korea Republic of’. The following sort –rn command organizes the results

in reverse numeric order. The first awk command checks the second field and filters out

lines where it is blank. This filters out destination IP addresses whose countries are

unknown to the Maxmind database. Finally, the more complex-looking awk simply re-

orders the fields to present the country first and the packet count second. The result is in

comma-separated format and shows each country with the total number of packets that

were sent there. Gnuplot can then be run using the commands found in

GEOIPdistrib.gnuplot (see appendix C) to obtain a distribution graph, as shown in Figure

5.

$ gnuplot < GEOIPdistrib.gnuplot

!"#$%&'C'7"3.%"?$."0-'09'=&3."-:."0-'+:51&.3'?8'50$-.%8'

What’s running on your network?! 16
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

Note that the example given above simply shows the distribution of the number of

packets sent to particular countries. It does not illustrate the total number of bytes sent, or

the number of separate conversations taking place with hosts located in those countries.

Creating these types of reports would require a bit more processing yet the extraction

procedure and the tools used would not differ much from what was presented already.

Is this distribution graph really useful? The 2012 Websense Threat report

(Websense, 2012) shows the USA, Canada and Germany as the top countries for malware

re-directs, hosting malware and phishing attacks. Figure 5 simply appears to confirm

these findings. Furthermore a botnet controlled from Russia can use bots located

anywhere in the world, as demonstrated by the infamous Blackhole exploit kits (Howard,

2012). On the other hand, if network traffic consistently makes its way to a foreign

country that the network owner has no business relationship with, this may warrant

further analysis. This means that while the country where network traffic is heading may

not always be relevant, it can still prove useful.

3.3. Application layer analysis
3.3.1. DNS – Ad & malware threats correlation

!
DNS is a key protocol that security analysts rely on when investigating incidents.

DNS requests can indicate that a connection was made by a host to a malicious site.

Tracking DNS requests is also commonly used when doing dynamic malware analysis

(Sikorski & Honig, 2012). It is no wonder then that malicious hackers use DNS-related

techniques such as fast-flux to attempt to cover their tracks (Salusky & Danford, 2007).

Gathering statistics on DNS queries should therefore be a high priority. Luckily,

extracting DNS queries that were successfully made is relatively easy with tshark:

$ tshark -r ./tap_capture_Sunday.pcap –nn -T fields -e ip.src -e dns.qry.name -R
"dns.flags.response eq 0" | sort | uniq| tee dnsList

192.168.1.110 online-cahoot.com
192.168.1.120 accounts.youtube.com
192.168.1.120 asdsystempro.info

What’s running on your network?! 17
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

192.168.1.120 best11.co.kr
[…]
The tshark command above lists 2 fields: the IP of the host that made the request

(-e ip.src) and the actual dns query (-e dns.qry.name). A filter is applied to ensure that a

response was obtained from the queried DNS server (-R “dns.flags.response eq 0). The

sort/uniq command that follows ensures that a list of unique queries per querying host is

produced. Results are printed on the screen as well as saved to a file called dnsList.

Such a list can be overwhelming and establishing a baseline of acceptable sites by

poring through this list is likely unfeasible. Placing users and hosts behind a proxy server

would be a better solution, since a proxy server can easily enforce a strict policy through

whitelists and blacklists. With that said, more can be done with the list produced by

tshark. For instance, that list can be correlated to a database of domains known to be

potentially malicious (including sites that distribute malware, engage in phishing, etc.).

One such database is hpHosts (hpHosts, 2012). It provides a web API to determine if a

domain is listed as well as its classification. Correlating the domains extracted by tshark

with this API is as simple as a GET request:

$ curl "http://verify.hosts-file.net/?v=pcapAnalyst&s=online-
cahoot.com&class=true"

Listed,PSH
In the example above, hpHosts replies with Listed,PSH which means that this

particular domain is known to hpHosts and is flagged as a PhiSHing threat. If the site

was not known to hpHosts, the reply would be Not Listed. As was done in section 3.1,

setting up a for-loop with curl to iterate through all successful DNS requests is relatively

simple:

$ for DOMAIN in `cat dnsList | awk '{print $2}'`; do echo $DOMAIN" :::: `curl
\"http://verify.hosts-file.net/?v=pcapAnalyst&s=${DOMAIN}&class=true\" -o
hpHosts_reply -s ; cat hpHosts_reply ` " ; done | grep -v "Not Listed"

online-cahoot.com :::: Listed,PSH Note: PSH=Phishing
asdsystempro.info :::: Listed,EMD Note: EMD=Malware distribution
One great advantage of querying hpHosts (or other such web databases that offer

an API) is that neither a new DNS query to the domain nor a visit to an actual page is

required. The initial analysis is therefore done stealthily. Many other malware/phishing

What’s running on your network?! 18
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

online databases are available, notably Google’s own Safe Browsing API (Google, 2012)

which Google has integrated into its Chromium web browser.

3.3.2. IMAP - Extracting email messages
In the Leaking Vault 2011, Suzanne Widup states that: “Many [malware-related

security incidents] begin in the form of an email” (Widup, 2012). These emails will

typically contain a link to some malicious site, or an attachment that carries a malicious

payload. Being able to extract the contents of email messages is therefore something that

should matter to security analysts. Since IMAP is one of the main email protocols, this

section covers techniques on how to extract email messages from unencrypted IMAP

traffic.

The first thing to consider when looking at IMAP traffic is whether or not an

email message has been read. Since tshark supports the IMAP protocol, it can decode the

actual IMAP response, which includes client commands, server responses as well as the

content of the emails (header and body). Here are the keywords indicating that a response

contains a message:

FETCH (UID 5 BODY[] {17196}

The above response from an IMAP server simply means: Here is the body of

message with UID=5 which you requested me to fetch. It is 17,196 bytes in size.

Knowing this, a tshark command can be crafted to seek out all such emails:

$ tshark -r mail3.pcap -n -T fields -e tcp.stream -e tcp.ack -e ip.src -e ip.dst -e
imap.response -R '(imap.response contains "FETCH") && (imap.response contains
"BODY[]")' | sed 's/}.*$/}/g'

1 358 192.168.1.80 192.168.1.10 1 FETCH (UID 5 BODY[] {17196}
1 389 192.168.1.80 192.168.1.10 2 FETCH (UID 6 BODY[] {46120}
In the tshark command above, the TCP stream number (-e tcp.stream), the TCP

acknowledgement number (-e tcp.ack) as well as the source (-e ip.src) and destination (-e

ip.dst) IP addresses are extracted. The IMAP server response (-e imap.response) is also

extracted. A filter is applied so that only IMAP responses that contain strings FETCH and

BODY[] (-R '(imap.response contains "FETCH") && (imap.response contains

"BODY[]")') are considered. Note how single quotes are used to define the filter and

What’s running on your network?! 19
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

double-quotes are used to define the string to search for. Without double-quotes, tshark

would fail while searching for BODY[] since the square brackets are considered special

characters. The final sed command truncates the IMAP server response after the size in

bytes. Without this sed command, the beginning of the actual email (including headers)

would be displayed as shown here:

$ tshark -r mail3.pcap -n -T fields -e tcp.stream -e tcp.ack -e ip.src -e ip.dst -e
imap.response -R '(imap.response contains "FETCH") && (imap.response contains
"BODY[]")'

1 358 192.168.1.80 192.168.1.10 1 FETCH (UID 5 BODY[]
{17196},<fbegin1@franky.tech>,fbegin1@[…]

Obviously, an email message will not necessarily fit inside a single packet and the

goal is to be able to extract each message individually. In the above example, there

appear to be 2 such messages. How can they be told apart?

In section 3.2.1, tcp.stream was used to look at a specific communication between

two hosts. Unfortunately, the TCP stream number is the same (equal to 1) for both

emails. This is easily explained as both were retrieved inside the same IMAP session.

Fortunately, the TCP acknowledgement numbers are different (358 and 389). As it turns

out, this can be used to extract the messages.

When a client requests to see an email from an IMAP server, it sends the server a

special request to look at the body of the email message. Through some simple trial and

error, this was found at frame # 133:

$ tshark -r mail3.pcap -n -T fields -e frame.number -e tcp.ack -e tcp.seq -e tcp.len
-e ip.src -e ip.dst -e imap.request -R "frame.number==133"

133 1957 327 31 192.168.1.10 192.168.1.80 UID FETCH 5
BODY.PEEK[]

Note that the sequence number used by the client is 327 and that the size of the

request is 31 bytes. These add up to 327 + 31 = 358, the acknowledgement value found

previously for the first email message. From this point on, as the client keeps

acknowledging data received from the server, it will send ACKs that are of size 0 (just as

was seen in section 3.2.1). This in turn means that every response packet from the server

for the retrieval of that email message can be filtered with –R “tcp.ack=358”. This

allows for the extraction of the whole message:

What’s running on your network?! 20
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

$ tshark -r mail.pcap -n -T fields -e imap.response -R "tcp.ack==358"
 1 FETCH (UID 5 BODY[]

{17196},<fbegin1@franky.tech>,fbegin1@mail.franky.tech,fbegin1@mail.franky.tech,by
mail.franky.tech (Postfix, from userid 1000),8F8E94364A; Wed, 7 Nov 2012 21:27:02 -
0700 (MST),The docs you asked
for,<20121108042702.8F8E94364A@mail.franky.tech>,Wed, 7 Nov 2012 21:27:02 -
0700 (MST),fbegin1@franky.tech (me@here.com),CHARTER OF RIGHTS AND
FREEDOMS,Part I of of the Constitution Act, 1982
[…]
This Part may be cited as the Canadian Charter of Rights and Freedoms.,OK Fetch
completed.

The same can be done using filter -R “tcp.ack=389” to extract the second

message. The astute reader might wonder why the TCP acknowledgement numbers are so

small. After all, most modern operating systems should be configured to produce large,

random Initial Sequence Numbers (ISN) to prevent a malicious attacker from hijacking a

TCP session (Zalewski, 2001). These abnormally small numbers can easily be explained:

just like Wireshark, tshark uses relative sequence numbers by default. This setting can be

overridden using -o tcp.relative_sequence_numbers:FALSE: to reveal the actual

sequence numbers

$ tshark -r mail3.pcap -o tcp.relative_sequence_numbers:FALSE -n -T fields -e
frame.number -e tcp.ack -e tcp.seq -e tcp.len -e ip.src -e ip.dst -e imap.request -R
"frame.number==133"

133 1542488278 752795686 31 192.168.1.10 192.168.1.80 UID
FETCH 5 BODY.PEEK[]

3.3.3. DHCP - Passive host fingerprinting
 Early on, this paper made mention of the Wireshark Display Filter Reference as a

way to navigate the various protocols. It would be nice, though, if tshark could present

the analyst with a dissected view of all the protocols it understands for a given set of

packets. As it turns out, this view is available by using either the packet details view (-V)

seen in section 3.1 or by exporting packets using the Packet Details Markup Language.

$ tshark -n -r tap_capture_Sunday.pcap -T pdml -R

"bootp.option.value[0:1]==08" > dhcp_08

What’s running on your network?! 21
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

 In the above tshark command, a filter is applied to extract all packets where the

first byte of the BOOTP protocol options is set to 08 (-R

"bootp.option.value[0:1]==08"). This indicates a client making a DHCP request. Those

packets are then saved to a file called dhcp_08 using the Packet Details Markup

Language (-T pdml).

The resulting file contains all the details of the packets that were extracted. The

file is in XML format and is best viewed in a browser or a text editor that supports syntax

highlighting. In this particular case, some interesting details are revealed when looking at

the various fields, as shown in Figure 6:

!"#$%&'D'B:51&.'7&.:",3'E:%1$+'F:-#$:#&'GEF'&H+0%.''
!

In DHCP, a well-behaved client will identify itself to a DHCP server by providing

information such as a hostname and even its class of system (operating system). This in

turn can help craft a tshark command to extract this particular information:

$ tshark -n -r tap_capture_Sunday.pcap -T fields -e ip.src -e
bootp.option.hostname -e bootp.option.vendor_class_id -R
"bootp.option.value[0:1]==08" | sort | uniq

192.168.1.94 Hal2500K MSFT 5.0
192.168.1.64 beginkidspc MSFT 5.0

In the tshark command above, the source IP address (-e ip.src), the hostname

(bootp.option.hostname) and operating system (-e bootp.option.vendor_class_id) of the

hosts making DHCP requests are extracted. Two unique Microsoft Windows hosts are

identified. This form of passive fingerprinting can be very useful in determining the hosts

that are part of a given network (LaPorte & Kollman, 2007). Specialized OS

What’s running on your network?! 22
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

fingerprinting tools such as Satori (Kollman, 2012) and p0f (Zalewski, 2012) rely on such

techniques as well.

In the case of DHCP fingerprinting, there is even a fingerprint database available

(fingerbank.org, 2012). Let us take a closer look at one of the hosts identified as running

some version of Windows to determine if a more precise fingerprint can be obtained

using this database.

$ tshark -c 1 -n -r tap_capture_Sunday.pcap -T fields -e ip.ttl -e ip.src -e
bootp.option.hostname -e bootp.option.value -R 'bootp.option.vendor_class_id
=="MSFT 5.0" && bootp.option.hostname=="Hal2500K"'

128 0.0.0.0 Hal2500K
 01,01:50:e5:49:c9:6a:50,48:61:6c:32:35:30:30:4b,4d:53:46:54:20:35:2e:30,01:
0f:03:06:2c:2e:2f:1f:21:79:f9:2b

In the above tshark command, the first (-c 1) packet related to DHCP activity

from host Hal2500K is analyzed. As well as already familiar fields, the time to live of the

IP packet (-e ip.ttl) and the raw DHCP options (-e bootp.option.value) are extracted. In

his paper Chatter on the Wire (2007), Eric Kollman demonstrated that a TTL of 128

clearly identifies a DHCP client as a Windows host. In the same paper, he also showed

that DHCP options can be used to fingerprint the host more accurately. The value of the

options listed above is given in hexadecimal. Since the fingerprint database at

fingerbank.org uses base 10 values, a change of base is required. The database can then

be searched for a match on a subset of the base 10 values that were extracted (highlighted

in yellow below):

$ for HEX in `echo
"01:50:e5:49:c9:6a:50,48:61:6c:32:35:30:30:4b,4d:53:46:54:20:35:2e:30,01:0f:03:06:
2c:2e:2f:1f:21:79:f9:2b" | sed 's/,/ /g' | sed 's/:/ /g'`; do printf '%d,' "0x${HEX}"; done;
echo

1,80,229,73,201,106,80,72,97,108,50,53,48,48,75,77,83,70,84,32,53,46,48,1,15,3,
6,44,46,47,31,33,121,249,43

In this particular case, 3 potential matches were found: Windows 7, Windows

Server 2008 and Windows Vista. Figure 7 shows the first of these matches:

What’s running on your network?! 23
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

'
'
'
'
'
'
'
'
!"#$%&'I'7JKB'9"-#&%+%"-.3'9%0*'9"-#&%?:-1L0%#'

Tool p0f (v. 3) and satori were also used on the same packet capture file. P0f

identified the host as either Windows 7 or 8 while satori’s best guesses were in line with

our own findings using tshark.

!"#$%&'M'N)'"=&-."9"5:."0-'?8'+O9'
!

!
'
!"#$%&'P'N)'"=&-."9"5:."0-'?8'):.0%"'
!
!

3.3.4. HTTP – Google searches
Research has shown that internet users are influenced by search engines,

specifically the order in which results are presented (Hargittai, Fullerton, Menchen-

Trevino & Thomas, 2010) and (Pan et al., 2007). This in turn has encouraged malicious

attackers to use Search Engine Optimization (SEO) to piggyback onto hot trends to

deliver malware, perform phishing attacks, etc. (Flores, 2010). Searches that users

perform should therefore be of interest to security analysts. Since Google searches

What’s running on your network?! 24
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

dominate the US market with more than 65% of explicit core searches (comScore, 2012),

this section focuses on that particular search engine.

Extracting Google searches from a packet capture is actually an interesting

challenge. In 2008, Google introduced Google Autocomplete (Google, 2012), which

provides suggestions as one is typing for keywords, as shown in Figure 10.

!"#$%&'(O'Q00#,&'R$.050*+,&.&'

As will be shown shortly, the challenge with Autocomplete turned on is that

multiple GET queries take place as letters are typed. A search for “widget” for instance

would generate 6 separate GET queries, one for each letter of the word “widget”. First

though, these queries need to be clearly identified in a packet capture.

$ tshark -r google.pcap –nn -T fields -e ip.src -e http.request.full_uri -R
'http.request.method=="GET" && http.request.full_uri contains "&q=" &&
http.request.full_uri contains "google.ca" ' | head -1

192.168.1.94
 http://www.google.ca/s?hl=en&gs_nf=3&cp=1&gs_id=1j&xhr=t&q=l&pf=p&s
client=psy-
ab&oq=&gs_l=&pbx=1&bav=on.2,or.r_gc.r_pw.r_qf.&fp=8963f08acaaa2898&bpcl=3
5466521&biw=1408&bih=327&bs=1&tch=1&ech=11&psi=8vCNUIWII4jWigLFiYDI
CA.1351479538297.1

The above tshark command extracts the source IP address (-e ip.src) and the full

query URI (-e http.request.full_uri) of the packet. The filter has 3 conditions:

• The packet is a GET request (http.request.method=="GET")

• The full query URI contains &q= (http.request.full_uri contains "&q=").

This GET parameter defines what is being searched for

• The query is made to Google (http.request.full_uri contains "google.ca").

What’s running on your network?! 25
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

This particular query to Google shows a GET request for the letter ‘l’ (&q=l).

There are numerous other parameters in the GET request that simply introduce noise in

the output. A little sed magic can be used to provide a more focused output:

$ tshark -r google.pcap –nn -T fields -e ip.src -e http.request.full_uri -R
'http.request.method=="GET" && http.request.full_uri contains "&q=" &&
http.request.full_uri contains "google.ca" ' | sed 's/http.*\&q=/QUERY: /g' | sed
's/\&.*$//g'

192.168.1.94 QUERY: l
192.168.1.94 QUERY: la
192.168.1.94 QUERY: lac
192.168.1.94 QUERY: lac%20
192.168.1.94 QUERY: lac%20e
192.168.1.94 QUERY: lac%20et
The result is what was expected: the user typed letters l, a, c, a space (%20 in

Unicode), then e and t. This resulted in 6 separate GET queries made to Google.

3.3.5. HTTP - Extracting a file
In section 3.2.1, the analysis of packet sizes led to the discovery that a particular

binary (avira_free_antivirus_en.exe) had been downloaded, but what if this file contained

malware? There are of course challenges with current malware detection techniques, and

researchers continue to explore new methods of dealing with this issue (Kolbitsch, et al.,

2009).

That being said, retrieving binaries from packet-captures is important to security

analysts. Having access to the same binary that may be the source of a security breach

would allow the analyst to perform more thorough scans on it. For example, the binary

(or its checksum) could be submitted to the Virustotal database (virustotal.com, 2012) to

get an ‘opinion’ on that binary from more than 40 antivirus solutions. Having the binary

could also allow a security analyst to deploy it in a virtual sandbox for further analysis.

This section therefore focuses on extracting a binary file from a packet capture. In

this particular example, the file was transferred via HTTP. Relying on techniques similar

to what was covered in 3.2.1, the stream where the transfer took place can be identified.

That stream has a value of 4 and starts at frame 19:

What’s running on your network?! 26
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

$ tshark -r fileTransfer.pcap -n -T fields -e frame.number -e tcp.stream -e
http.request.uri | grep exe$

19 4 /download/keepnote-0.7.8.exe
From frame 20 and onwards, the client should be receiving file keepnote-

0.7.8.exe. Based on what was seen in section 3.3.2, the server will use the same ACK

repeatedly while the client replies with acknowledgements that increase in values as it

receives the data:

$ tshark -r fileTransfer.pcap -n -T fields -e frame.number -e ip.src -e ip.dst -e
tcp.ack -R "tcp.stream eq 4 && frame.number >=20" | head

20 97.74.144.172 192.168.1.10 682 ! Server’s initial ACK
21 97.74.144.172 192.168.1.10 682 ! Server’s ACK remains the same
22 192.168.1.10 97.74.144.172 1449 ! Client has received 1,449 bytes
23 97.74.144.172 192.168.1.10 682 ! Server’s ACK remains the same
24 192.168.1.10 97.74.144.172 2897 ! Client has received 2,897 bytes
25 97.74.144.172 192.168.1.10 682 ! Server’s ACK remains the same
[…]
Assuming that the communication flowed perfectly, the client ACKs should grow

without any repeats. This can easily be verified:

$ tshark -r fileTransfer.pcap -n -T fields -e tcp.ack -R "tcp.stream eq 4 &&
frame.number >=20 && ip.src==192.168.1.10" | sort | uniq -c | sort -rn | head

 761 5262033
 495 2345761
 43 3324609
 31 2997361
In the above tshark command, a filter is applied to get the right stream as well as

source IP address. As was done before, the sort/uniq/sort combination is used to create a

tally of unique entries with a count for each. At around the 5,262,033th byte of data

transferred, numerous duplicate ACKs (761 to be precise) were sent by the client, as it

was requesting a packet that likely got lost in transit. This happened a few more times

during this transfer.

This illustrates the difficulty one faces if trying to reconstruct a file from a stream

using only tshark: these duplicate ACKs would need to be taken into account. Rather

What’s running on your network?! 27
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

than force the issue, a better tool needs to be introduced: tcpflow (Garfinkel, 2012). This

tool can capture or replay data and store it in separate flows that are more suitable for

analysis.

$ tcpflow -d 0 -r fileTransfer.pcap
$ ls
067.228.181.218.00080-192.168.001.010.40797
192.168.001.010.41823-097.074.144.172.00080
097.074.144.172.00080-192.168.001.010.41823
fileTransfer.pcap

As shown above, tcpflow was able to extract 3 flows. The one in bold contains the

file that was transferred. Unfortunately, that flow file also contains HTTP headers, as can

be seen if that file is read into a hex editor:

!"#$%&'(('J&H'=$*+'09'9",&'&H.%:5.&='$3"-#'.5+9,0/'

To obtain the file as it was sent, all those headers need to be removed. This

involves finding the start/end of the file, then extracting between these two boundaries

In this particular case, this can be done using offset 0x12C (decimal 300), where

string MZ can be seen. This string is an indication we are dealing with an Intel MZ DOS

EXE file. From there, dd can be used to extract the file, skipping the first 300 bytes:

$ dd if=097.074.144.172.00080-192.168.001.010.41823 bs=1 skip=300
of=fileWithoutHeaders.exe

UQQS!
4-9H-6<!

J(&!-O-B+39DF-!
4-9H-6<!

What’s running on your network?! 28
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

8003458+0 records in
8003458+0 records out
8003458 bytes (8.0 MB) copied, 8.05721 s, 993 kB/s

$ md5sum fileWithoutHeaders.exe keepnote-0.7.8.exe
c7b70ef71eb35aec6aa00fee0168e152 fileWithoutHeaders.exe
c7b70ef71eb35aec6aa00fee0168e152 keepnote-0.7.8.exe

This last exercise proved to be a lot of work. In addition, the end of the file fell

cleanly at the end of the flow, which might not always be the case. One might be tempted

to consider an alternative to tshark/tcpflow for file extraction, but learning how to dissect

and analyze packets was one of the goals of this paper. Although the last example was

more complicated, it highlights both tools and skills that will serve a security analyst

well.

Furthermore, relying on more professional tools may not always yield the

expected results. The free edition of Network Miner (Netresec.com, 2012) for instance

was able to dissect the session but could not extract a file from it, as evidenced by Figure

12. NetWitness Investigator (Netwitness.com, 2012) for its part was able to extract the

file, but the MD5 checksum of the file it extracted differs from the original file, as shown

in Figure 13. Performing dynamic analysis on the retrieved file in a virtual sandbox

would therefore prove much more complicated. Since the file extracted is not the same as

the one received, submitting it to VirusTotal would likely end up misleading the analyst.

Sometimes, a tedious analysis using low-level tools such as tshark, tcpflow and a hex

editor may prove to be the best approach.

What’s running on your network?! 29
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
!"#$%&'(6'S&./0%1E"-&%'9%&&'&="."0-'
'
'

'
!"#$%&'(;'S&./0%1T".-&33'9",&'&H.%:5."0-'

'

)-3M56N!V;,-6!;H-,3;A;-H!34-!
AF5M!9<!M-FF!9<!34-!A;F-!,9G-!
D+3!M9<!,53!9DF-!35!-O369B3!
34-!A;F-!;3<-FA!

)-3M56NW;3,-<<!H;H!,53!
-O369B3!34-!A;F-!B566-B3FK!
A65G!34-!L9BN-3!B9L3+6-!

What’s running on your network?! 30
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

'

4. Conclusion
Tshark is a powerful tool for packet capture analysis. Its strength does not derive

from an attractive graphical user interface. That is the strength of its big brother

Wireshark. Where tshark does truly shine, though, is in the ability to provide data to an

analyst in a simple, text-based output. Such output can then be formatted and fed to

external data sources or applications in order to find useful correlations. Moreover, tshark

commands and their outputs can easily be scripted to obtain these results. This paper

showed examples using UNIX shell, allowing an analyst to easily build up a toolkit

adapted to their needs. Some examples covered by this paper included plotting geo-ip

location, correlating DNS queries to potentially malicious sites, fingerprinting hosts,

extracting emails/binaries from a packet capture and even a rudimentary form of

keylogging related to Google searches.

As was seen in the latter sections of this paper, more specialized tools that

perform the same tasks more efficiently can be found, but using tshark has another

important advantage: by being such a low-level tool, tshark keeps the analyst grounded

with key concepts (network streams, ACK numbers) that are sometimes hidden by GUI-

driven tools. Staying ‘close to the ground’ can prove useful. As was seen in the last

section, the more specialized tools may not always find the expected results. When these

tools fail, it is important to be able to perform the equivalent task with low-level tools.

Hopefully this paper has managed to convey these advantages to using tshark, and

security analysts will consider adding it to their toolkit.

What’s running on your network?! 31
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

5. References
Braun, L., Didebulidze, A., Kammenhuber, N., & Carle, G. (2010). Comparing and

Improving Current Packet Capturing Solutions based on Commodity Hardware.

Proceedings of the 10th ACM SIGCOMM conference on Internet measurement.

Retrieved from http://dl.acm.org/citation.cfm?id=1879168

Comer, D. (2000). Internetworking with TCP/IP Volume 1 (4th ed.). Upper Saddle River,

NJ. Prentice Hall

comScore (2012). comScore Releases September 2012 US Search Engine Rankings.

Retrieved from

http://www.comscore.com/Insights/Press_Releases/2012/10/comScore_Releases_

September_2012_U.S._Search_Engine_Rankings

Curl project (2012). Retrieved from http://curl.haxx.se/

CVE-2007-3798 (2007). Integer overflow in print-bgp.c. Common Vulnerabilities

Exposure. Retrieved http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-

3798

Donahue, G. A. (2011). Network Warrior. 2nd edition. Sebastopol. O’Reilly Media Inc.

Evergreensys.com (2007). Nine Steps to Implement a Successful CMDB Project.

Retrieved from http://www.evergreensys.com/Configuration-Management-

Database-How-to-Develop-CMDB/

Fingerbank.org (2012). DHCP fingerprints. Retrieved from http://www.fingerbank.org/

Fishburne, D. (2012). Network Operational Investigating 101: The Network Diagram.

Network World. August 2012. Retrieved from

http://www.networkworld.com/community/blog/network-operational-

investigating-101-noi-101-network-diagram

Flores, R. (2010). How Blackhat SEO Became Big. Trend Micro Research Paper.

November 2010. Retrieved from http://www.trendmicro.com/cloud-

content/us/pdfs/security-intelligence/white-papers/wp__blackhat-seo-became-

big.pdf

Garfinkel, S. (2012). Tcpflow. Retrieved from https://github.com/simsong/tcpflow

Gnuplot project (2012). Retrieved from http://www.gnuplot.info

What’s running on your network?! 32
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

Google (2012).

Google Autocomplete.

http://support.google.com/websearch/bin/answer.py?hl=en&answer=106230

Google Safe Browsing API.

https://developers.google.com/safe-browsing/

Hargittai, E, & Fullerton, L, & Menchen-Trevino, E., & Thomas, K. (2010). Trust

Online: Young Adults’ Evaluation of Web Content. International Journal of

Communication 4. Retrieved from

http://ijoc.org/ojs/index.php/ijoc/article/view/636

Howard, F. (2012). Exploring the Blackhole Exploit Kit. SophosLabs, UK. Retrieved

from

http://sophosnews.files.wordpress.com/2012/03/blackhole_paper_mar2012.pdf

hpHosts (2012). Community managed hosts file providing an additional layer of

protection against access to ad, tracking and malicious websites. http://hosts-

file.net/

Juels, A. & Yen, T.F. (2012). Sherlock Holmes and the Case of the Advanced Persistent

Threat. Usenix LEET ’12. Retrieved from

https://www.usenix.org/conference/leet12/sherlock-holmes-and-case-advanced-

persistent-threat

Karpilovsky, E, Gerber, A, Pei, D, Rexford, J, & Shaikh, A. (2009). Quantifying the

Extent of IPv6 Deployment. PAM ’09 Proceedings of the 10th International

Conference on Passive and Active Network Measurement. Springer-Verlag.

Berlin. Retrieved from http://www2.research.att.com/~ashaikh/papers/ipv6-study-

pam09.pdf

Kaufman, C., Perlman, R., & Speciner, M. (2002). Network security: Private

communication in a public world. (2nd ed.). Upper Saddle River: Prentice Hall.

Kolbitsch, C., Comparetti, P.M., Kruegel, C. Kirda, E., Zhou, X., Wang, X. (2009).

Effective and Efficient Malware Detection at the End Host. SSYM’09

Proceedings of the 18th conference on USENIX security symposium. Retrieved

from http://www.usenix.org/events/sec09/tech/full_papers/kolbitsch.pdf

What’s running on your network?! 33
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

Kollman, E. (2007). Chatter on the Wire: A look at DHCP traffic. Retrieved from

http://myweb.cableone.net/xnih/Papers.htm

Kollman, E. (2012). Satori. Retrieved from http://myweb.cableone.net/xnih/mortalx.htm

LaPorte, D., & Kollman, E. (2007). Using DHCP for Passive OS Identification, BlackHat

Japan. Retreived from http://myweb.cableone.net/xnih/download/bh-japan-

laporte-kollmann-v8.ppt

MACVendorLookup.com (2012). MAC Address Lookup API.

http://www.macvendorlookup.com/api

Maxmind (2012). GeoLite Country Free.

http://dev.maxmind.com/geoip/geolite

Netresec.com (2012). Network Miner. Retrieved from

http://www.netresec.com/?page=NetworkMiner

Netwitness.com (2012). Netwitness Investigator. Retrieved from

http://netwitness.com/products-services/investigator

Norton, Q. (2012). How Anonymous Picks Targets, Launches Attacks, and Takes

Powerful Organizations Down. Wired magazine, July 2012. Retrieved from

http://www.wired.com/threatlevel/2012/07/ff_anonymous

O’Donnell, G, & Casanova, C. (2009). The CMDB Imperative: How to Realize the

Dream and Avoid the Nightmares (1st ed.). Prentice Hall

Pan, B, & Hembrooke, H, & Joachims, T, & Lorigo, L., & Gay, G, & Granka, L. (2007).

In Google We Trust: Users’ Decisions on Rank, Position, and Relevance. Journal

of Computer-Mediated Communication, 12(3). Retrieved from

http://jcmc.indiana.edu/vol12/issue3/pan.html

Salusky, W., & Danford, R. (2007). Know Your Enemy: Fast-Flux Service Networks. An

Ever Changing Enemy. The Honeynet Project. Retrieved from

http://www.honeynet.org/papers/ff

Sikorski, M, & Honig, A. (2012). Practical Malware Analysis. No Starch Press

Stewart, P. (2010). Geolocation in Wireshark. Retrieved from

https://learningnetwork.cisco.com/blogs/vip-perspectives/2010/12/11/geolocation-

in-wireshark

Turner, A. (2012). Tcpreplay. Retrieved from http://tcpreplay.synfin.net/

What’s running on your network?! 34
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

Virustotal.com (2012). http://www.virustotal.com

Websense (2012). Websense Threat Report 2012. websense.com. Retrieved from

http://www.websense.com/content/websense-2012-threat-report-download.aspx

Widup, S. (2011). The Leaking Vault 2011. Six Years of Data Breaches. The Digital

Forensics Association. Retrieved from

http://www.digitalforensicsassociation.org/storage/The_Leaking_Vault_2011-

Six_Years_of_Data_Breaches.pdf

Wireshark Project (2012).

Wireshark. Retrieved from http://wireshark.org

Ethernet Capture Setup: http://wiki.wireshark.org/CaptureSetup/Ethernet.

Wireshark Display Filter Reference. http://www.wireshark.org/docs/dfref/.

Zalewski, M. (2001). Strange Attractors and TCP/IP Sequence Number Analysis.

Retrieved from http://lcamtuf.coredump.cx/oldtcp/tcpseq.html

Zalewski, M. (2012). P0f. Retrieved from http://lcamtuf.coredump.cx/p0f3/

What’s running on your network?! 35
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

6. Appendix A: Packet capture performance comparison
In the test environment set up for this paper, the Desktop user segment has a

bandwidth of 100 mbps. A test was conceived to ensure that the system capturing the data

would be able to capture all packets without drops. Prior to introducing the ‘sniffing

server’ into the network, it was attached to an isolated hub along with a high-performance

PC. The high performance PC replayed 270 MB of previously captured traffic using

tcpreplay (Turner, 2012), processing these packets at top-speed (-t) and looping through

the capture file 5 times (-l 5)

!"#$%&'(>'.5+%&+,:8'.0'.&3.'.2&':?",".8'09'3-"99"-#'3&%4&%'

As shown above, tcpreplay was able to generate 92.74 Mbps of traffic on the

wire. This is very close to the top theoretical speed of the link to be surveyed (100 Mbps)

although this is also something that one is unlikely to witness in real life. dumpcap was

configured on the sniffing station to capture 15,000 full packets and the test was repeated

3 times.

What’s running on your network?! 36
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

Surprisingly, dumpcap dropped a significant number of packets. The test was

repeated with tcpdump and that tool only dropped half the number of packets dumpcap

did. See figure 15 and 16 and Table 1:

!"#$%&'(C'=$*+5:+'+&%90%*:-5&'0-'.5+%&+,:8'.&3.'
!
!
'
'
'
'
'
'
'
'
'
'
'
'
!"#$%&'(D'.5+=$*+'+&%90%*:-5&'0-''.5+%&+,:8'.&3.'
!

Sniffing

tool

1st round

drops

2nd round

drops

3rd round

drops

Average

drops

Average %

dropped

tcpdump 516 529 495 513 3.4%

dumpcap 1061 1085 972 1039 6.9%

U:?,&'('B:51&.'=%0++&='?8'.5+=$*+'43L'=$*+5:+'0-'.5+%&+,:8'.&3.'

&;GLF-!3M-9N<!96-!9I9;F9DF-!5A!B5+6<-C!=K!H-A9+F3@!D534!-./01$0!9,H!!10-./0!

+<-!9!0!G-?!B9L3+6-!D+AA-6C!',B6-9<;,?!34;<!D+AA-6!35!0.!V-?9DK3-<!XP=!0.Y!6-<+F3-H!

;,!34-!B5,<;<3-,3!-F;G;,93;5,!5A!9FF!34-!H65L<!;,!-./01$0C!210-./0!A56!;3<!L963!5,FK!

6-T+;6-H!9,!Z!G-?<!D+AA-6!9FF5B93;5,!XP=!Z0[.Y!35!9B4;-I-!9!L-6A-B3!<B56-C!)53-!3493!

34-!D+AA-6!<;\-!5A!!10-./0!;<!9FF5B93-H!;,!];F5DK3-<!6934-6!349,!V-?9DK3-<C!!

What’s running on your network?! 37
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

7. Appendix B - Compiling tshark from source
!

Q4-! A5FF5M;,?! M9<! L-6A56G-H! 5,! ^D+,3+! &-6I-6! _Q&! X0.C/`YC! 8;6<3@!

V9OV;,Ha<!b-5'S!H939D9<-!XA56!B5+,36K!5,FKY!M9<!;,<39FF-H!9,H!3-<3-H7!

3'".-4'$0!567!'89"!$::'674805;89'

3'".-4'$0!567!'89"!$::':8;674805-7<'

3'67480:44&.0'==>),?>==>)@,'

A74BC'D4.9!%E'F-8!849G'HIJ'H98!7-'I!$!7"!

',!^D+,3+@!,53-!3493!DK!H-A9+F3@!34-!b-5'S!H939D9<-<!-,H<!+L!;,!

K."%K"#$%7KA74BC7'

3':"'5:'K."%K"#$%7KA74BCK'

!4!$:'=*(='

5%L5%55%55'M'%44!'%44!'M==,(MM'N$9'')'')@M)'A74BC>-$!'

5%L5%55%55'M'%44!'%44!'(O,?,,+'N$9'')'')@M)'A74BC<=>-$!!

2FF!L9BN9?-<!6-T+;6-H!35!D+;FH!L8%7"#$%&!M-6-!34-,!;,<39FF-H7'

3'".-4'$0!567!';.8:-5-70'L8%7"#$%&'

Q4-!<5+6B-!B5H-!A56!M;6-<496N!0CZCc!M9<!34-,!6-36;-I-H!A65G!M;6-<496NC56?@!

+,B5GL6-<<-H!9,H!+,3966-HC!2<!34;<!M9<!9!<-6I-6!9,H!34-!b^'!A65,3P-,H!XL8%7"#$%&Y!

M9<!,53!?5;,?!35!D-!+<-H@!34-!149P86.%7!<B6;L3!M9<!6+,!9<!A5FF5M<7!!

3'>K149P86.%7'55L8!#567480'5579$;:75L8%7"#$%&Q94'5579$;:75!"#$%&QE7"'

3'/$&7'

3'".-4'/$&7'89"!$::'

! Q5! -,<+6-! 3493! 3<496N! G9N-<! +<-! 5A! 34-! b-5'S! H939D9<-<@! 9! A;F-! B9FF-H!

67480R-;R0$!#"! M9<! B6-93-H! ;,! 34-! 9,9FK<3a<! 45G-! H;6-B356K! +,H-6! <+DPH;6-B356K!

>L8%7"#$%&C!Q4;<!A;F-!B5,39;,<!34-!L934!35!34-!H939D9<-<!

3':"'5:'K#4/7KP;7689MK>L8%7"#$%&K'

!4!$:','

5%L5%L5%55'M'P;7689M'P;7689M'M?'S4<'M,'))GO,'67480R-;R0$!#"'

3'1$!'K#4/7KP;7689MK>L8%7"#$%&K67480R-;R0$!#"''

TK."%K"#$%7KA74BCT'

'

What’s running on your network?! 38
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

8;,9FFK@!!"#$%&!M9<!3-<3-H!35!-,<+6-!B566-B3!5L-693;5,!M;34!'S!?-5F5B93;5,!

-,9DF-H7!

3'!"#$%&''!"#$%&'()*+,*"%&-#./01$#5%'!$0R1$0!.%7RI.9-$E>01$0''52'P87:-"'57'

80>-"!'!*#%&',*"%&'2"(3456''5U'TP%$/7>9./;7%'QQ'O+T'

)@*>,O>)(O>)M*' 03%4*7#8494*)'

What’s running on your network?! 39
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

8. Appendix C – gnuplot files
!

8.1. IPdistrib.gnuplot
gnuplot file to create an IP datagram size distribution graph.

Input: /tmp/IPlen.dat

Output: ./reports/graphs/IPdistrib.png

6-<-3!!
HOdeC!!
,d.!!
3539FfD5OfM;H34f6-F93;I-d/Cge!!
?9LfM;H34f6-F93;I-d/C0!!
HfM;H34dX?9LfM;H34f6-F93;I-h3539FfD5OfM;H34f6-F93;I-YiHOj.C!!
<-3!3-6G!L,?!36+-B5F56!!
<-3!5+3L+3!kLV%&+0%.3V#%:+23VAB="3.%"?L+-#k!!
<-3!F5?<B9F-!K!0/!!
<-3!OF9D-F!kJ939?69G!<;\-!;,!DK3-<k!!
<-3!KF9D-F!k)+GD-6!5A!H939?69G<k!!
<-3!?6;H!
<-3!D5OM;H34!3539FfD5OfM;H34f6-F93;I-j,!6-F93;I-!!
<-3!<3KF-!A;FF!369,<L96-,3!<5F;H!,5D56H-6!!
LF53!kV.*+VAB,&-L=:.k!+!07.!M!D5O-<!FB!6?Dk?6--,k!,53;3F-!

What’s running on your network?! 40
!

869,:5;<!=>?;,@!A69,B5;<CD-?;,E3-F+<CB5G!! !

8.2. GEOIPdistrib.gnuplot:
gnuplot file to create an IP country location distribution graph.

Input: /tmp/externalIPs_With_Location.dat

Output: ./reports/graphs/ GEOIPdistrib.png

6-<-3!!
HOdeC!!
,d.!!
3539FfD5OfM;H34f6-F93;I-d/Cge!!
?9LfM;H34f6-F93;I-d/C0!!
HfM;H34dX?9LfM;H34f6-F93;I-h3539FfD5OfM;H34f6-F93;I-YiHOj.C!!
6-<-3!!
<-3!3-6G!L,?!36+-B5F56!!
<-3!H939A;F-!<-L969356!k@k!!
<-3!5+3L+3!kLV%&+0%.3V#%:+23VQ<NAB="3.%"?L+-#k!!
<-3!F5?<B9F-!K!0/!!
<-3!<;\-!0@!/Ce/!!
<-3!K3;B<!A5,3!kB5+6;-6@0/k!!
<-3!O3;B<!D56H-6!;,!<B9F-!0@/Ce!G;6656!65393-!DK!P.g/!A5,3!kB5+6;-6@Zk!!
<-3!OF9D-F!kl5+,36K!5A!H-<3;,93;5,k!!
<-3!KF9D-F!k)+GD-6!5A!'S<!5D<-6I-Hk!!
<-3!?6;H!
<-3!D5OM;H34!3539FfD5OfM;H34f6-F93;I-j,!6-F93;I-!!
<-3!<3KF-!A;FF!369,<L96-,3!<5F;H!,5D56H-6!!
LF53!kV.*+V&H.&%-:,AB3WT".2WF05:."0-L=:.k!+!.7O3;BF9D-FX0Y!M!D5O-<!FB!
6?Dk?6--,k!,53;3F-!

