
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!

Passing the Sniff (Snort) Test

GIAC (GCIA) Gold Certification

Author: Matthew Hansen, matthew.j.hansen@hotmail.com
Advisor: Chris Walker

Accepted: September 30th 2015

Template Version September 2014

Abstract

They go by several names: Bloatware. Trialware. Pre-installation-ware. Some of them
are completely innocuous. Many are designed to automate harvesting of information
from the user. The line between these "unwantedware" and malware is thinning. Whether
they arrive in our networks from a less-than-perfect supply chain, or as a natural result
from Bring-Your-Own-Device (BYOD) policies, or even as an aggressive customer
support "service" from the manufacturer, unwantedware shall exist. On the best of days,
network defenders will identify, mitigate, and remove said software from their
organization in the hopes that it cannot come back. Unfortunately, these herculean
efforts are not enough. Users will ignore warnings from the security administrators.
Users will pay lip service to the security training their organization provides. Users will
rationalize intrusions into their devices through a myriad of worthless excuses: "I'm really
boring", or "Anyone who wants to spy on me will have a lot of nothing to do", or "I'm
really ugly, turning on my webcam would hurt THEM." Time and again users have
shown that they are incapable of understanding the risks involved, they must be trained to
dislike being spied on. In this paper we will examine unwanted data exfiltrations
initiated by software we are told to trust, be it prepackaged software, chatty smartphone
apps, or smart television applications. We will also present methods for detecting said
exfiltrations, determining what data is being sent, and alerting the user in a meaningful
way.

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 2

1. Introduction
It was a simple process, really. Open the Android App store. Get an app that

provides a local shell – bash, csh, even the draconian syntax rules from cmd.exe would be

acceptable at this point. Then get the job done. The first app needs quite a few access

rights that don’t seem to line up with what a shell does - Full Internet Access, the unique

keys associated with the phone, Start app on boot, Browser History, Device to Cloud

communication and more. The rest were not much better, but the glorious ls command as

written by Richard Stallman was required for the task at hand. Within a few minutes the

user was clicking through advertisements just so that he could view his own directory

structure on his own phone on a platform made possible only by the ideals of open source

and the GPL.

Viewing advertisements isn’t the problem, though. The problem is that

advertisements, like other undesired processes, may (although they certainly are not

required to) run external applications, observe and record user actions, generate web

traffic, and report data in real time so as to generate a more perfect advertisement – one

that is likely to result in a sale. (Kaspersky, n.d.) Sales are not necessarily the sole goal

of such tools, however, as recorded usage habits of a user are directly marketable by

themselves. Even large, established corporations are not morally above covertly spying

on their own customers. In late 2014, “…Lenovo installed a self-signing root certificate

authority (on Lenovo-branded devices) that has the capability to intercept and hijack

internet traffic flowing over SSL and TLS connections -- often used by online stores,

banks, and other apps and services to secure send data…” for the explicit purpose of

gaining advertisement revenue using the Superfish adware program. (Whittaker, 2015,

para. 7) Several months later, Lenovo began using malware techniques such as infecting

a system BIOS to maintain unwantedware presence on Lenovo-branded devices.

(Whittaker, 2015, para. 1,4) Even security vendors have been corrupted into the spying

market, as “…security firm AVG [has recently decided that it] can sell search and

browser history data to advertisers in order to make money from its free antivirus

software.” (Temperton, 2015, para. 1)

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 3
!

Most people don’t seem to get upset by this kind of treatment by information

technology vendors. The notion of non-identifiable information about us being listed as

yet another record or series of records in a veritable sea of the same is quite tolerable.

The thought of aggregation of non-identifiable information about us to the point where

identity is without question is another thing altogether. As consumers, we rarely see any

warnings about the reality of how much information is continually collected from us.

When faced with an overly intrusive license agreement, most users will either completely

ignore it or rationalize the collection of their data as something that simply will not

happen or is not important.

The primary barrier to solving these issues is the difficulty involved in

successfully communicating to a typical user the reality that most privately-owned

computers are anything but private. Some tools, like the Ghostery add-on for Mozilla

Firefox (available at https://addons.mozilla.org/en-US/firefox/addon/ghostery/) do this

beautifully, presenting a notification in the lower right corner of the screen detailing

precisely what was attempted and what succeeded.

Figure 1: Ghostery reporting attempts on user tracking to the user (purple

rectangle in the lower-right) (NYTimes 2015)

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 4
!

The methodology applied by Ghostery is instrumental in changing the mindset of

the user. When busy, the user can ignore the notification, yet still be aware that a

tracking event occurred. The notification does not impair any task that the user was

performing, and the actions allowed or blocked can oftentimes be ascertained in a

fraction of a second with a glance of the eye.

Implementing a similar warning scheme on a personal computer to detect nearly

any activity that might be disguised, encrypted, redirected, or just extremely rare is a non-

trivial task. Software methods exist that can seamlessly move a single process from one

point in system memory to another. (Offensive Security, n.d.) Operating System

Virtualization can obfuscate the actions of a process altogether, and usually completely

remove it from the reach of security tools on the host. An uncountable number of

malicious applications directly attack security software in order to further conceal their

activities. The numerous methods in use are simply impossible to track. Presently, one

thing is certain: Eventually every single one of these programs will attempt to phone

home.

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 5
!

2. Tattler
At its most basic level, Tattler is a system that links software use agreements,

specific Snort alerts, and user attention. The result is a somewhat unpleasant experience,

as Tattler presents to the user in real-time the reality that today’s personal computers are

typically little more than expensive spying devices. Consider the following screenshot

from Tattler:

Figure 2 – Tattler reminding the user about the rights of a specific McAfee

product.

Tattler’s zealousness is highly configurable, as the major element providing

information to Tattler is Snort. Tattler itself is a Powershell script that maintains

streaming access to Snort’s “alert.ids” file, ignoring all alerts (regardless of importance)

that are not defined in the “Tattler.rules” file. Alerts that are defined in Tattler.rules are

reported to the user via Windows balloon notifications after Snort logs them to alert.ids.

Minor modification of Tattler can allow it to report on all Snort alerts, if desired.

Configuring Snort not to generate an alert.ids file prevents Tattler from performing any

useful tasks. Instructions for installing Tattler can be found in Appendix C.

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 6
!

2.1. Security Considerations Associated with Running Tattler
It is important to understand that Tattler is a tool for changing user mindsets, and

should not be considered a tool that improves the overall security of the machine that it is

running on. For example, Tattler relies completely on the presence of a fully-functional

Snort IDS running locally. This configuration implies that at least one Internet-facing

network interface is running in promiscuous mode. This fact alone will cause most

traffic to/from the device to bypass the host-based firewall.

The process of installing and configuring Tattler requires that Powershell scripts

be allowed to run on the local machine. This is not as significant of a vulnerability as the

firewall issues noted above, but is an issue of concern nonetheless. It is important to

point out, however, that Powershell script execution restrictions do little to impair an

attacker anyways, as scripts can still be executed by pasting them into a Powershell

console, echoing them into Powershell from standard input, or simply telling Powershell

to execute them with “invoke-command”. (Sutherland, 2014)

Tattler has no awareness of whether the user at the system console is legitimate or

not, and may provide information on what software and services are installed to an

adversary with line-of-sight access to the screen.

2.2. Tattler Code
Unlike most Powershell applications that process data in files, Tattler is restricted

from using the more common Powershell methods of acquiring data due to the way Snort
uses its alert.ids file.

 # /*==*/

 # Start tapping data from Snort alerts...

 $Job = Start-Job -ScriptBlock { Get-Content -Tail 1 -wait C:\Snort\log\alert.ids }

 # /*==*/

• Get-Content: Possibly the most common data gathering tool in

Powershell, Get-Content acquires the entire file every time it reads any

part of it. This is acceptable on extremely small Snort alert files, but

degrades performance quickly when reviewing anything larger than a few

dozen megabytes.

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 7
!

• StreamReaders: StreamReaders are an excellent alternative to Get-

Content. StreamReaders go to the specified location and wait for more

data to arrive on the stream. They are lightweight, quick, reliable and

completely incompatible with Snort as they respect Snort’s own file use

lock.

• -Tail 1 -wait: This method was developed by Microsoft specifically for

the purpose of monitoring system log files and reporting new data as it

arrives. Unfortunately, the tail/wait method does not give up access to the

datastream while it is running, which increases the difficulty of using

output data in concurrent tasks.

• A backgrounded, external process using the tail/wait approach: By

backgrounding the process performing tail/wait (described above), and

grabbing data directly off its stream, we can read Snort’s alert.ids file in

real-time without interfering with Snort’s actions.

Powershell pattern matching is powerful, but oftentimes fails within streams for

non-intuitive reasons. For example, stream matching does not always consider the

hexadecimal sequence “0D0A” as a carriage-return-line-feed, and may dump several

lines into an array as if they were a single line. While this does not cause issues for

programs that directly output such data to the console, it does cause severe issues for

programs that expect to be able to parse individual lines. For this and other reasons,

several transformation methods help considerably when attempting to match on the

portions of a Snort alert that are meaningful to Tattler. In particular, the rule sid (unique

identifier associated with a particular Snort rule) and msg (human-readable message

associated with a Snort rule) values are absolutely vital. Reliably acquiring this

information knowing that at any time Tattler can be anywhere (including mid-sentence)

in a datastream requires that we perform significant modifications to the stream itself

before we can begin any kind of pattern matching.

 # /*==*/

 While (1){

 $data = Receive-Job $Job

 While ($data -ne $null){

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 8

if($data -ne $null -And $data -ne ""){

$strGrepAlerts = $data | select-string -pattern "$strAlertPattern"

if($strGrepAlerts -ne $null){

/*==*/

Parse useful info out of whatever Snort just kicked out...

$strJoinedGrepAlerts = [system.string]::join("`n", $strGrepAlerts)

Write-Host "---------------------------------"

Write-Host "$strJoinedGrepAlerts"

ForEach ($line in $strGrepAlerts){

$sid = $strJoinedGrepAlerts.Substring(8,7)

$rest = $strJoinedGrepAlerts.Substring(19)

$msg = $rest.Substring(0, $rest.IndexOf("`["))

Write-Host " ---------------------------------"

Write-Host " SID: $sid"

Write-Host " MSG: $msg"

/*==*/

Once the datastream of Snort’s output is in a predictable format, it is a simple
matter to perform rule lookup to determine whether Snort has alerted on something that is
meaningful to Tattler, and then wait for more data to arrive.

/*==*/

Compare what we just found to whatever is in

tattler.rules

ForEach ($strRule in $arrTattlerRules){

if($strRule.Contains($sid)){

NotifyUser $strTitle $msg 'Warning'

}

}

/*==*/

}

Write-Host " ---------------------------------"

}

}

$data = Receive-Job $Job

 }

 Start-Sleep -s $intPollingPeriod

 }

}

/*==*/

Notification of the user is the most exciting part of this entire process, and is made

extremely simple by Powershell’s excessive capabilities. Much of this code is a direct

copy from Microsoft’s own “Hey Scripting Guy” column (Microsoft Inc, 2015) regarding

this very feature.

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 9

/*==*/

function NotifyUser($strTitle, $strText, $strType){

 Add-Type -AssemblyName System.Windows.Forms

 if ($script:notification -eq $null){

 $script:notification = New-Object System.Windows.Forms.NotifyIcon

 }

 $path = Get-Process -id $pid | Select-Object -ExpandProperty Path

 $notification.Icon = [System.Drawing.Icon]::ExtractAssociatedIcon($path)

 $notification.BalloonTipIcon = $strType

 $notification.BalloonTipTitle = $strTitle

 $notification.BalloonTipText = $strText

 $notification.Visible = $true

 $notification.ShowBalloonTip(1000)

}

/*==*/

Minor portions of Tattler have been omitted from this section. The complete

script is available in Appendix A below.

2.3. Tattler Rules Generation
The tattler.rules file is generated through meticulous analysis of both software

licensing agreements and specific packet captures containing unwantedware activity.

Most of the network analysis can be performed within Wireshark using simple display

filters and searches for specific strings. Oftentimes, the traffic Tattler is intended to alert

on is encrypted, and as such, is difficult to reliably identify with a static Snort rule. In

such a case, however, the remote server’s public key must be transmitted as cleartext, and

Snort can be configured to watch for this public key. The following procedural example

details how to create a single Tattler rule for the Toshiba Service Station, an application

discussed later in section 3.

1. Study the applicable Toshiba’s Software Licensing Agreement.

Aggregate the portions that state what types of information are collected,

then reword it to use the present participle and condense the text to fit

within a 255 character block. This character limit is vital, as standard

Windows notifications only display the first 255 characters. The free

utility Notepad++ (available at https://notepad-plus-plus.org/) is extremely

helpful here (and is extremely useful when manually editing the

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 10
!

tattler.rules file), as it automatically performs character counts of selected

text. In this case, our output is: “Per licensing agreement: Toshiba is

collecting and sharing your computer's OS version, software status,

model/serial number, and possibly system usage information. This

information may be used for business analysis, tech support, or quality

assurance.”

2. Prepare a setup that allows for raw packet capture from the system under

test, ideally with an inline Ethernet tap: For purposes of this project, the

DualComm DCSW tap (available at http://www.amazon.com/Dualcomm-

DCSW-1005-Powered-Ethernet-Mirroring/dp/B002BSF112/) is

recommended. The DCSW-1005 is a compact, USB-powered, network

switch (ports 1-4), and Ethernet tap (Traffic across port 1 is tapped at port

5). It fits easily in an incident response “jump bag,” and is advertised as

supporting PoE (Power over Ethernet) pass-through as well. Running a

packet capture locally on the system under test is acceptable as well, as

this is the intended configuration of Tattler.

3. Select a packet capture tool and configure it to perform a full packet

capture without performing any hostname/domainname lookups:

NOTE: Wireshark is known for containing many serious vulnerabilities,

and the software configuration that allows for WinPCap to capture raw

packets runs at least one layer beneath the host-based firewall. As a result,

an otherwise hardened Windows host running a vulnerable version of

Wireshark will quickly fall to an attacker even if the host-based firewall

blocks all inbound traffic. Powerful exploits like the Rapid7 Wireshark

LWRES Dissector buffer overflow (available at

http://www.rapid7.com/db/modules/exploit/multi/misc/wireshark_lwres_g

etaddrbyname) should not be overlooked. For these reasons, it is

recommended that traffic be captured using another process:

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 11

• TCPDump: TCPDump specifics are listed at

http://www.tcpdump.org/tcpdump_man.html, but generally, the

command will look something like:

tcpdump -s 0 -nni <network interface> -w

“capture.pcap”

• netsh: The built-in Windows netsh utility can be configured to

perform packet captures as well. (Vandenbrink, 2015) Capture

filters are recommended, but not required, and the command will

look something like:

netsh trace start capture=yes

netsh trace stop

Netsh automatically assigns a filepath and filename, and stores the

capture in a proprietary Microsoft format that Snort and Wireshark

cannot read. The Microsoft Message Analyzer (available at

https://www.microsoft.com/en-

us/download/details.aspx?id=44226) can read this file and save it

in pcap format, however.

4. Review the packet capture for DNS query responses using the following

Wireshark display filter:
ip.dst == <local ip> && dns && udp contains toshiba

5. Review the resultant list, in our case:

a. devices.toshibaplaces.com (213.161.81.189)

b. csdsupport.toshiba.com (209.157.69.52)

c. redirect.toshiba.com (209.157.69.28)

d. onlineregistration.gedb.toshiba.com (209.157.69.8)

6. Determine based on later traffic from each IP address gained in step 5

above whether each conversation indicates the passage of any significant

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 12

data from the system under test: The following Wireshark display filters

are useful:

a. ip.addr == 213.161.81.189 – Web browsing traffic from

an application identifying itself through HTTP user-agent strings

as “Microsoft BITS/77”. No obvious exfiltrations of data were

noticed.

b. ip.addr == 209.157.69.52 – Web browsing traffic from

an application identifying itself through HTTP user-agent strings

as “TAIS FDB Pinger”. No obvious exfiltrations of data were

noticed.

c. ip.addr == 209.157.69.28 – Web browsing traffic from

an application identifying itself through HTTP user-agent strings

as “ToshibaFBDSend/1.0”. No obvious exfiltrations of data were

noticed.

d. ip.addr == 209.157.69.8 – Web browsing traffic from an

application that does not identify itself through HTTP user-agent

strings. It sets up a TLSv1.2 encrypted session and exfiltrates 304

encrypted bytes. 720 encrypted bytes are sent back in an apparent

response.

This is a likely candidate, and gives us several things to generate a

decent Snort rule from:

i. The content: “onlineregistration.gedb.toshiba.com”

ii. A certificate signed by GoDaddy.com, with a hex serial

number of “4b1e097f67d629”, as well as other useful

information, including the public key.

iii. Direction of traffic flow ($EXTERNAL_NET ->

$HOME_NET)

7. Attempt to replicate this traffic by manually executing select processes. A

common challenge encountered here is that many of these applications

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 13

maintain their own state regarding when to initiate communications. As

such, it is difficult to convince said application to phone home simply by

running it.

8. Create a Snort Rule based on the information analyzed:

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any

(content:"onlineregistration.gedb.toshiba.com"; content:"|

3082010a0282010100b8e9e13d84eb4d9866896c25348bc6cc206cb149d29

9af4b0acaff5bfab6c6e868d89007b35232aeaf9e0a51f8e6b3d49fe42f6ba1b

ba094276ebc08073e4a9bb283b11acfb59c464fd9adde1b8d8fbbacab68a52

840e09709236931d91494234e6d09ff2574558b7d5464917962205d60eb87

2ad8811e7209beb14510778e12cc864bf407e17267c908cb9b6f685cd0e83

daca183f735f9a3d6bf4d2be2f36c91847a8bb2e37e72f640ba822dc77126fe

e56e75f971c8f5ad3e693cd24157ade93eadeddf03a0bdec74d918ceaddd16

18db3c697b50a85962fecc64f360a448177fcd38ca6532983eaa3bbe0c7552

3bbfa7ca88363ef1a21503a9926fac4ba50203010001|"; msg:"Per licensing

agreement: Toshiba is collecting and sharing your computer's OS version,

software status, model/serial number, and possibly system usage

information. This information may be used for business analysis, tech

support, or quality assurance."; sid:7000001;)

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 14
!

3. Tattling on Toshiba
Laptops assembled by Toshiba tend to have the “Toshiba Service Station” (TSS)

application installed on them as of at least 2008. TSS “…periodically transmits to

[Toshiba’s] servers a limited amount of system information required to perform …

updates or alerts.” (TAIS, 2/2015) According to the license agreement, this information

may include “…the Model, Part number, Serial Number, OS Version, Software Status…

[and] …system, component and usage information…” (TAIS, 4/2015) It is important to

note that Toshiba worded the licensing agreement in such a way that it is not immediately

clear that TSS will also send “component and usage information,” as such information is

collected by a separate utility, Toshiba PC Health Monitor, and then submitted to Toshiba

using TSS.

Figure 3 – Toshiba packaging material that provides an incomplete warning

regarding Toshiba’s data collection practices.

TSS does not have a spotless history when it comes to exploitable vulnerabilities.

In early 2015, a privilege escalation vulnerability was discovered within TSS that can be

exploited by providing a specially-crafted filepath string to TSS’s search capability.

(MITRE, 2015)

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 15
!

4. Tattling on McAfee
The claim put forth by the notification in section 2 is fairly serious, but nothing

more than that put forth by the McAfee Privacy notice, which states that McAfee will

collect:

• Real Names

• Email Addresses

• Usernames

• Passwords

• Physical Address

• Telephone Number

• Lists of websites you visit

• Social Media Identifiers

• Credit Card Billing
Information

• Bank Account Information

• Photographs

• Images

• Biometric Information

• Network Usage Details

(McAfee 2014)

Using section 2.3 (Tattler Rules Generation) as a guide, we find appropriate items

to search on from McAfee as well, but also an example of McAfee forwarding our

information to a third party – Akamai Technologies.

• Mcloud.mcafee.com – approximately 10,000 encrypted bytes exfiltrated.

Most of this information is encrypted, so our rule is limited to:

o Content flow

o Remote port of 443

o The public key provided by mcloud.mcafee.com.

• Sadownload.mcafee.com – Attempting to resolve the domain name

“sadownload.mcafee.com” results in a chain of new canonical names until

finally an IP address belonging to Akamai is returned, corresponding to

the domain name e7479.g.akamaiedge.net. This link can be verified

easily, as indicated in the following figure:

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 16
!

Figure 4 – Demonstrating a link between McAfee and Akamai

Literally dozens of back-to-back encrypted communication sessions occurred with

significant amounts of data moving in both directions. An entirely different encryption

certificate was used.

5. Tattling on Amazon
Unlike the other organizations reviewed in this project, the system under test

never displayed a licensing agreement for Amazon.com. Nowhere in the build process

was anything agreed to in terms of what information Amazon can send to or take from

the system under test. Nevertheless, within the first few hours that the system under test

was connected to the Internet, it generated several sessions to Amazon.com, some

encrypted, some not encrypted. In one case Amazon.com initiated an encrypted session

to the system under test. No user warnings or notifications were presented, and the

activity was not obvious to the user. Although the communications were unexpected

(and discovered by simply stumbling across them while reviewing a pcap capture file),

they can be easily found within Wireshark simply by applying the filter “tcp contains

amazon”, or by searching for the public key used (refer to Appendix B for the complete

public key).

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 17
!

6. Other Software
Although the scope of software communications analyzed during this project is

necessarily brief, Tattler has been designed in such a way that its alerting capabilities can

be extended by anyone who possesses the initial distribution of tattler.ps1 and an

understanding of how to create Snort rules.

7. Conclusion
Without a significant change to the mindset and forensic talents of the typical

user, organizations similar to those depicted here will continue to harvest, use, and sell

information about the users of their products. It is unlikely that vague and misleading

statements in privacy statements within software licensing agreements will become more

honest or clear in the near future. Unfortunately, even if these changes were

implemented, users would be unlikely to notice the conditions they agree to at software

installation, and are even less likely to care.

A significant gap in user capabilities exists in terms of knowing who our systems

are communicating with and what they are saying about us. Tattler partially fills this gap

by leveraging existing capabilities in the intrusion detection and systems administration

fields. The union of these capabilities is indeed powerful, but requires administration

skills beyond the capabilities of most users, and likely further exposes the vulnerabilities

on their machines by running their network interfaces in promiscuous mode. These

issues may be lessened somewhat by running WinPCap without promiscuous mode, but

may of the same issues still apply.

Future advancements will find more success leveraging existing enterprise level

Data-Loss Prevention technologies bundled for home users. These tools will likely enjoy

greater success if deployed with on-host agents having the capability to precisely link a

specific application with a specific network communications session.

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 18
!

References

!
Kaspersky, (n.d.). What is Adware? Kaspersky Labs. Retrieved from

https://usa.kaspersky.com/internet-security-center/threats/adware

Whittaker, Z. (2/19/2015). Until Superfish fix, Lenovo devices can't be trusted for secure

work. ZDNet. Retrieved from http://www.zdnet.com/article/superfish-stop-

using-your-lenovo-laptop-now/

Whittaker, Z. (8/12/2015). Lenovo used shady 'rootkit' tactic to quietly reinstall unwanted

software. ZDNet. Retrieved from http://www.zdnet.com/article/lenovo-rootkit-

ensured-its-software-could-not-be-deleted/

Temperton, J. (9/18/2015). AVG can sell your browsing and search history to advertisers.

Wired.co.uk. Retrieved from http://www.wired.co.uk/news/archive/2015-

09/17/avg-privacy-policy-browser-search-data

The New York Times. (9/26/2015). The New York Times Home Page. The New York

Times. Retrieved from

http://www.nytimes.com/?action=click&contentCollection=Politics®ion=Top

Bar&module=HomePage-Title&pgtype=article

Offensive Security. (n.d.). Windows Post Manage Modules. Offensive Security.

Retrieved from https://www.offensive-security.com/metasploit-

unleashed/windows-post-manage-modules/

Sutherland, S. (9/9/2014). 15 Ways to Bypass the PowerShell Execution Policy. The

NetSPI Blog. Retrieved from

https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 19
!

Microsoft Inc. (2015). Displaying a Message in the Notification Area. Windows

PowerShell Tip of the Week. Retrieved from https://technet.microsoft.com/en-

us/library/ff730952.aspx

VandenBrink, R. (3/2015). No Wireshark? No TCPDump? No Problem! SANS Internet

Storm Center. Retrieved from

https://isc.sans.edu/forums/diary/No+Wireshark+No+TCPDump+No+Problem/19

409/

TAIS, Inc. (4/2015). Toshiba End User License Agreement. Retrieved from

https://support.toshiba.com/support/navShell?cf=su_eula&pf=true

TAIS, Inc. (2/24/2015). Toshiba Service Station (Vulnerability Update). Retrieved from

http://www.support.toshiba.com/sscontent?contentId=4007184

MITRE Corporation. (2/27/2015) CVEDetails – Toshiba Service Station 2.2.13 Security

Vulnerabilities. Retrieved from http://www.cvedetails.com/vulnerability-

list/vendor_id-2920/product_id-31194/version_id-180217/Toshiba-Service-

Station-2.2.13.html

McAfee, Inc (3/20/2014). McAfee Privacy Notice. McAfee.com. Retrieved from

http://www.mcafee.com/common/privacy/english/docs/mcafee-privacypolicy.pdf

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 20
!

Appendix(A(–(tattler.ps1(
!
/*==*/
function Main(){
 # /*==*/
 # Initial variable assignment...
 $strTitle = "Important Alert!"
 $strText = "Nothing to report."
 $strSnortAlertPath = "C:\Snort\log\alert.ids"
 $intPollingPeriod = 1
 $strAlertPattern = "\[[0-9]:"
 # /*==*/
 # Start tapping data from Snort alerts...
 $Job = Start-Job -ScriptBlock { Get-Content -Tail 1 -wait C:\Snort\log\alert.ids }
 # /*==*/
 # Figure out what we should be working on...
 $arrTattlerRules = GetTattlerRules "C:\Snort\rules\tattler.rules"
 NotifyUser 'Tattler' 'Tattler is resuming tattling...' 'Info'
 # /*==*/
 # Get to work...
 While (1){
 $data = Receive-Job $Job
 While ($data -ne $null){
 if($data -ne $null -And $data -ne ""){
 $strGrepAlerts = $data | select-string -pattern "$strAlertPattern"
 if($strGrepAlerts -ne $null){
 # /*==*/
 # Parse useful info out of whatever Snort just kicked out...
 $strJoinedGrepAlerts = [system.string]::join("`n", $strGrepAlerts)
 # Write-Host "---------------------------------"
 # Write-Host "$strJoinedGrepAlerts"
 ForEach ($line in $strGrepAlerts){
 $sid = $strJoinedGrepAlerts.Substring(8,7)
 $rest = $strJoinedGrepAlerts.Substring(19)
 $msg = $rest.Substring(0, $rest.IndexOf("`["))
 # Write-Host " ---------------------------------"
 # Write-Host " SID: $sid"
 # Write-Host " MSG: $msg"
 # /*==*/
 # Compare what we just found to whatever is in
 # tattler.rules
 ForEach ($strRule in $arrTattlerRules){
 # Write-Host "Comparing $sid ($msg) to $strRule..."
 if($strRule.Contains($sid)){
 # Write-Host "$sid is in $strRule, so lets notify with: $msg"
 NotifyUser $strTitle $msg 'Warning'
 }
 }
 # /*==*/
 }
 # Write-Host " ---------------------------------"
 }
 }
 $data = Receive-Job $Job
 }
 Start-Sleep -s $intPollingPeriod
 }
}
/*==*/
function NotifyUser($strTitle, $strText, $strType){
 Add-Type -AssemblyName System.Windows.Forms
 if ($script:notification -eq $null){
 $script:notification = New-Object System.Windows.Forms.NotifyIcon
 }
 $path = Get-Process -id $pid | Select-Object -ExpandProperty Path
 $notification.Icon = [System.Drawing.Icon]::ExtractAssociatedIcon($path)
 $notification.BalloonTipIcon = $strType
 $notification.BalloonTipTitle = $strTitle
 $notification.BalloonTipText = $strText
 $notification.Visible = $true

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 21
!
 $notification.ShowBalloonTip(1000)
}
/*==*/
function GetTattlerRules($strTattlerRulesPath){
 $arrTattlerRules = Get-Content "$strTattlerRulesPath"
 $arrTattlerRules
}
/*==*/
function Close-Script {
 Stop-Job $Job
 exit
}
/*==*/
Main("go")
/*==*/

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 22
!

Appendix(B(–(tattler.rules(
!
Toshiba Privacy Issues...
alert tcp $EXTERNAL_NET 443 -> $HOME_NET any
(content:"onlineregistration.gedb.toshiba.com"; content:"|
3082010a0282010100b8e9e13d84eb4d9866896c25348bc6cc206cb149d299af4b0acaff5bfab6c6e868d8900
7b35232aeaf9e0a51f8e6b3d49fe42f6ba1bba094276ebc08073e4a9bb283b11acfb59c464fd9adde1b8d8fbb
acab68a52840e09709236931d91494234e6d09ff2574558b7d5464917962205d60eb872ad8811e7209beb1451
0778e12cc864bf407e17267c908cb9b6f685cd0e83daca183f735f9a3d6bf4d2be2f36c91847a8bb2e37e72f6
40ba822dc77126fee56e75f971c8f5ad3e693cd24157ade93eadeddf03a0bdec74d918ceaddd1618db3c697b5
0a85962fecc64f360a448177fcd38ca6532983eaa3bbe0c75523bbfa7ca88363ef1a21503a9926fac4ba50203
010001|"; msg:"Per licensing agreement: Toshiba is collecting and sharing your computer's
OS version, software status, model/serial number, and possibly system usage information.
This information may be used for business analysis, tech support, or quality assurance.";
sid:7000001;)

alert tcp $HOME_NET any -> $EXTERNAL_NET 80
(content:"|486f73743a20786d6c2e746169732e757064617465732e746f73686962612e636f6d0d0a|";
msg:"Per licensing agreement: Toshiba is searching for software updates that are
applicable to your machine."; sid:7000002;)

alert tcp $HOME_NET any -> $EXTERNAL_NET 80
(content:"|474554202f5570646174657357532f557064617465732e61736878|";
content:"sNumPartMktg"; content:"sNumSer"; content:"sNumLang"; content:"sVerOS";
content:"VerMajorSP"; content:"sDateBootFirst"; content:"sDateBootFirstSource";
content:"sNumPart"; content:"sCultureInfo"; msg:"Per licensing agreement: Toshiba is
collecting and sharing your computer's OS version, software status, model/serial number,
and possibly system usage information. This information may be used for business
analysis, tech support, or quality assurance."; sid:7000003;)

McAfee Privacy Issues...
alert tcp $EXTERNAL_NET 443 -> $HOME_NET any
(content:"|3082010a0282010100c000d371939a8f739c22b2ab02601c83c6f68fbef6cec6fee8f48e712675
a93b562eff967e8fbeaaa8791bc07dbc2440cc19727c854895106bbcc8b92094be4f62ee833fa3dbc35a50cf7
56e2017b0787ff356b4501adcda71cb9603232a21845f234257ee0145359027aef19429eba3fa290df86d50cc
7313d7442733ca52db7b5a4840217f101fe2fb3c5089321087361dd99f0a1bd10753e5ec41af9687b8559442c
dc2d944df125dc28df7e526b765656dc739c6f373512f67c8bf5ecec1431bac1c0c5b91f88ac073724410ad08
ce869596216e8252a19abf004cf4c5745c111618e730024c9d52baeba62f8065fd59d5b963ff0807313913463
9adb1650203010001|"; msg:"Per licensing agreement: McAfee is collecting, retaining and
sharing specific identifiable data about you, your computer, and interactions with other
computers, as well as files stored on your computer. This may also include voice and
facial image data."; sid:7000010;)

Akamai on behalf of McAfee...
alert tcp $EXTERNAL_NET 443 -> $HOME_NET any
(content:"|3082010a02820101009a7d98681140c15f72ec55b3b163f332227291c61605bb088231b4f6eed4
1839112f2eda47fe51316e5bf2a90aeb2fbbf56159655702cd80ffc770325489fddbae9972d44f0c26b92e633
07dde145b6ad7527821f9bfbc50d5541259d8b536d92147b83f6a581d8c72e19795d3e145a8f15ae5befee353
7ca5f052e0cf39940c1971f2c02507487d1ce6f139252f987943e81872f46586985a000447da4b581e7c86b14
b35a620001ccd1b3b225dd193283312239408aac33af5d1c68c7e99d318a0ad9d18cf49ad1003f79933268646
9a2fa0ba6c6ec88802b76efa7a9e984aee9a317d1914600cec8f20233cda9726b6ea806c8a579e20ee6f17254
a32ad350203010001|"; msg:"Per licensing agreement: Akamai is collecting, retaining and
sharing specific identifiable data about you, your computer, and interactions with other
computers, as well as files stored on your computer. This may also include voice and
facial image data."; sid:7000011;)

Amazon Unrequested HTTPS
alert tcp $EXTERNAL_NET 443 -> $HOME_NET any
(content:"|3082010a028201010086878d7b30d65436e72f82aeca21f89e334bcb62cf09cc3bdcbf188d38b8
fa57b3f4a24f4860762af14663e34ff354b5bec417c898fac185692cb9a1729ab49d77670374e077959de1111
2809238a163882e374d07023635fc804c90bd6a055e37187e6b06ae122a2c22bd9e14c087e4bbc27d21f582d7
b14d28540735a21ce362631a922a0f902d273f4dd43bc39cd01c974aa2384a507d7248c7741e80318d6dfd311
711ab8aedf5afa4df0384b9c4a2f5a474e09ea66d37b7b09183ddf9e5708e4f4caf84eabdf69fdbedb26ce2dd
7ce46ad46cd85e6b4e1f8ebcc9a186da9de550ea6189c2ccf25c5a5d374e71a3c96db6dbdf819249e6f3375a9
3e60a530203010001|"; msg:"Amazon.com is establishing an encrypted data transfer session
with your machine."; sid:7000020;)

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 23
!

Appendix(C(–(Tattler(Installation(Instructions(
!

1. Install!Snort...!
a. Install!Snort!for!Windows!as!you!normally!would.!
b. Ensure!that!WinPCap!starts!at!boot.!

!
2. Import!Tattler!Rules...!

a. Copy!the!"tattler.rules"!file!to!C:\Snort\rules\tattler.rules.!
b. Open!the!snort.conf!file!(Usually!C:\Snort\etc\snort.conf)...!

i. Add! the! line! "include! $RULE_PATH/tattler.rules"! to! the! rules!
section.!

ii. Repair!references!to!Linux!filesystems:!
1. /usr/local/lib/snort_dynamicpreprocessor/! N>!

C:\Snort\lib\snort_dynamicpreprocessor!
2. /usr/local/lib/snort_dynamicengine/libsf_engine.so! N>!

C:\Snort\lib\snort_dynamicengine\sf_engine.dll!
3. /usr/local/lib/snort_dynamicrules!N>!C:\Snort\rules!

iii. Either! disable! the! reputation! preprocessor! or! ensure! that!
C:\Snort\rules\white_list.rules!exists!

iv. Either! disable! the! reputation! preprocessor! or! ensure! that!
C:\Snort\rules\black_list.rules!exists!

v. Remove!references!to!rules!files!that!do!not!exist.!
vi. Perform!any!other!tuning!on!snort!rules!as!desired!or!required.!
vii. Save!and!close!the!snort.conf!file.!

!
3. Verify!the!Snort!configuration!is!valid...!

a. Open!cmd.exe!as!an!administrator!(elevated!shell)!
i. cd!C:\snort\bin!
ii. ipconfig!/all!
iii. snort!NW!

(Determine! what! interface! you! want! Snort! to! listen! on! and!
substitute!it!for!"Ni!2"!below)!

iv. snort! Nl! C:\Snort\log! Nh! 192.168.0.0/24! Ni! 2! Nc!
C:\Snort\etc\snort.conf!

v. If! the!Snort!configuration! is!valid,!Snort!will!appear!to!"hang"!
after!echoing!"Commencing!packet!processing!(pid=####)"!!If!
Snort! errors! and!quits,! then! something! is!wrong!with! Snort’s!
configuration!–!troubleshoot!and!repair!as!necessary.!

vi. CTRL+C!to!end!the!Snort!process.!!Snort!should!exit.!
!

4. Make!Snort!run!as!a!service...!
a. From! the! same! command! shell! in! the! previous! step! (and! again!

replacing!“Ni!2”!with!the!network!interface!you!prefer)...!
i. snort!/SERVICE!/INSTALL!Nl!C:\Snort\log!Nh!192.168.0.0/24!Ni!
2! Nc!C:\Snort\etc\snort.conf! ! ! (NOTE:! ! Substitute!your! subnet!
as!appropriate.)!

Matthew Hansen, matthew.j.hansen@hotmail.com

Passing the Sniff (Snort) Test! 24
!

Verify!that!the!command!completed!successfully.!
ii. exit!

b. Open!the!services.msc!console...!
i. Start!the!"Snort"!service!and!verify!that!it!succeeds.!
ii. Set!the!"Snort"!service!to!start!automatically.!
iii. Close!the!services.msc!console.!

!
5. Install!Tattler...!

a. Copy!the!tattler.ps1!powershell!script!to!C:\Snort\bin\tattler.ps1!
6. Reconfigure!powershell!to!allow!the!execution!of!scripts...!

a. Open!Powershell!as!an!administrator!(elevated!shell)!
i. SetNExecutionPolicy!unrestricted!
ii. Enter!"y"!when!prompted.!
iii. Close!Powershell!

!
7. Configure!Tattler!to!run!as!a!scheduled!task...!

a. Open!cmd.exe!as!an!administrator!(elevated!shell)!
i. schtasks! /create! /TN! "Tattler"! /SC! ONLOGON! /TR!
"Powershell.exe! Nnoprofile! Nwindowstyle! hidden! NCommand!
C:\Snort\bin\tattler.ps1"!/IT!

ii. exit!
b. Open!the!taskschd.msc!console.!

i. Expand!"Task!Scheduler!(Local)"!
ii. Select!"Task!Scheduler!Library"!
iii. Open!the!"Tattler"!scheduled!task!
iv. Go!to!the!"Settings"!tab!
v. Ensure!"Stop!the!task!if!it!runs!longer!than:"!is!not!checked.!
vi. Click!OK!
vii. Close!the!taskschd.msc!console!

!
!

8. Reboot!the!machine.!
9. Logon!to!the!machine.!
10. A!powershell!window!will!briefly!appear,!ignore!it.!
11. A!notification!should!appear!stating!that!"Tattler!is!resuming!tattling..."!!

Matthew Hansen, matthew.j.hansen@hotmail.com

