
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures

GIAC (GCIA) Gold Certification

Author: Rebecca Deck, sdsecurityacct@hotmail.com
Advisor: Hamed Khiabani

Accepted: December 17th, 2015

Abstract
Extracting files from full packet captures can save security analysts a great deal of time.
Time-consuming procedures, such as performing a complete forensic analysis on suspect
machines, can often be avoided if analysts are able to extract files from the network
traffic. There are several tools to perform this function, but they all have shortcomings.
In order to make an informed assessment of packet captures, analysts must familiarize
themselves with these limitations. This paper compares the capabilities of currently
available tools which automate this task, explores the process of manually extracting
artifacts from packet captures, and offers a script to extend the functionality of TShark to
include file extraction. This will familiarize new security analysts with current tools as
well as establish a baseline knowledge of how these tools function.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 2
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

1. Introduction
Full content packet captures provide analysts with the ability to review exactly

what has transpired on a network. Analysts neither have to rely on questionable logs nor

perform guesswork when determining what data have been transferred. One of the

benefits to utilizing full packet captures is the ability to extract specific files that are

transferred between hosts on the network. These files can then be used for more in-depth

analysis to determine the true nature of malware (Bejtlich, 2012). Many tools can

remove raw files from network packet captures, but as with most forensic technologies,

these tools have their limitations. An understanding of packet capture structures and how

to access the packets’ raw data allows analysts to answer many questions without

resorting to time-consuming forensic analysis of systems.

Based on research from Simson Garfinkel, traditional computer forensics suffers

from several issues. Traditional computer forensic methods require that a system be

imaged before analysis can begin. Due to the large amount of data storage on current

computer systems, this process often requires several hours. Moreover, some modern

malware is capable of existing solely in the memory of a system; writing nothing to disk

(Garfinkel, 2010). Log messages on compromised systems certainly help investigations,

but can potentially be altered by an attacker (Allen, 2001, p. 238).

In contrast to host-based forensics, analysis of network packet captures can begin

to provide answers within minutes, does not impact hosts, and is unlikely to be

manipulated by an attacker. Properly placed network packet capture systems capture the

exact data that traverses the network. This provides a record of the files used to initially

infect a system, command and control traffic, and files that may have been exfiltrated by

an attacker. An analyst can often reconstruct specific exploits and malware payloads;

allowing the investigator to determine what software versions were targeted by an

attacker and the purpose of the persistent malware delivered to the victim computer.

Capturing packets on modern computer networks is not without its own

challenges. Chief among these are the increasing speed of networks and the massive

amount of data that traverses them. This is especially significant in enterprise networks.

Fortunately, not only have the purveyors of packet capture systems invested significant

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 3
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

time and effort to address these issues, but approaches for open source network captures

have also been developed (Banks, 2013). Therefore, this paper does not address these

concerns.

2. File Extraction Basics
An understanding of the format in which packets are stored is necessary in order

to understand file extraction techniques. The most common and well-supported format is

the packet capture, or PCAP format. These files have a very simple structure containing

a single global header followed by multiple groups, which consist of a packet header and

packet data. This generic structure is easily seen in Figure 1 (Harris, 2015).

Figure 1. PCAP file format header and data layout (Harris, 2015).

These headers identify the generic PCAP format through the “Magic Number,” ensure

that accurate time information is stored for each capture, and permit length checks to

accommodate snaplen limits (Harris, 2015). Within most network communication,

several layers of additional information are present within the raw network data. Specific

protocol decoders are required to interpret this information and reconstruct files that are

embedded within a packet capture. Figure 2 illustrates how this protocol data is layered

using a screenshot from Wireshark.

Figure 2. Wireshark displaying the various protocol layers on an HTTP request.

Standard file carving tools function by searching for various file format identifiers

within a larger file. As is discussed in Davidoff and Ham’s book on network forensics,

bytes that are identified as part of a file are then extracted. In packet captures, the

additional bytes associated with the packet capture file format and protocols used during

the capture are intermingled with the bytes that need to be extracted. Using normal file

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 4
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

carving tools results in the various headers being embedded in the resulting files.

Analysts can use hex editors to manually remove any extraneous protocol information

from extracted files or from a packet capture themselves, but this is a painstaking process

(Davidoff & Ham, 2012).

 To compound the problem, network traffic does not always arrive in a predictable

manner. Packets can potentially arrive out of order or be lost entirely and are subject to

retransmission (Dharmapurikar & Paxson, 2005). Moreover, packet header lengths can

vary due to TCP options, so simply assuming constant header lengths is impractical.

Therefore, any tool to extract files from a packet capture must have the ability to not only

remove packet capture headers from the raw file data, but also interpret networking

protocols and reassemble data streams. This makes creation of a new file extraction tool

a daunting task.

3. File Transfer Protocols
Since files may be transferred over myriad protocols, any application that extracts

files from network traffic must support at least the most common of these protocols.

Four common unencrypted file transfer protocols are Hypertext Transfer Protocol

(HTTP), Server Message Block (SMB), File Transfer Protocol (FTP), and Trivial File

Transfer Protocol (TFTP). Encrypted protocols, such as Secure Sockets Layer (SSL),

Transport Layer Security (TLS), and Secure Shell (SSH), must first be decrypted before

any files can be extracted. Decrypting these protocols is a significant task and is beyond

the scope of this paper. Therefore, this paper covers only the ability to extract files

transferred using the HTTP, SMB, FTP, and TFTP protocols that are contained within

packet captures.

The HTTP protocol is of particular interest during analysis. Research shows that

90 percent of initial malware infections take place over the HTTP protocol (Palo Alto,

2013). As of June 2015, all of the major exploit kits served their exploits over an

unencrypted protocol (Duncan, 2015). When analyzing HTTP communication, one

factor to consider is the use of gzip compression for transferring content. If tools are not

able to cope with this compression, analysts must manually perform this procedure.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 5
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

SMB is frequently used in internal corporate networks for transferring files and

system management. Most modern networks block the SMB protocol between internal

systems and the internet (Brenton, 2006). Therefore, SMB will rarely be the initial

source of malware. However, SMB packets frequently contain evidence of system

misuse, pivoting to adjacent systems, or data exfiltration.

Although it represents a security risk, FTP is still used to transfer files today

(Allman & Ostermann, 1999). Recently, more secure protocols have supplanted it for the

transfer of sensitive files. Many systems that are deemed to be internal and have little

chance of having their network traffic intercepted by an attacker still rely on this

protocol. Several operating systems also include FTP clients by default. These reasons

make FTP a viable method of removing data from compromised systems.

The TFTP protocol is used in much the same way as the FTP protocol. It is often

installed by default on systems and is capable of data exfiltration. The feature set of

TFTP is much smaller than that of FTP; it allows only downloading or uploading of files.

TFTP has neither the ability to list folder contents nor to manage directory structures.

Another advantage of the TFTP protocol is that it uses the UDP protocol for

communication. This is useful because firewall configurations that implement egress

filtering may be configured to limit TCP traffic, but leave UDP traffic unregulated.

4. File Extraction Tools
Several tools exist that support extraction of files from packet captures. These

tools focus heavily on the HTTP protocol and often favor bulk extraction. To provide a

comparison of these tools, each one was used to process packet captures containing

HTTP, SMB, FTP or TFTP file transfers. The packet captures were either taken between

test machines or downloaded from a data set of example recordings of malware infections

(Parkour, 2015). After extraction, the file hashes and sizes of the output files were

compared. Standard Linux tools and the Bless hex editor were then used to examine any

differences between files.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 6
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

4.1. ChaosReader
ChaosReader is a tool designed to produce easily readable metadata and extract

files from packet data. This tool produces HTML output detailing the connection

information between all hosts contained within a packet capture. ChaosReader is also

designed to extract files that have been transferred over HTTP and FTP (Gregg, 2004).

Although simple to use, ChaosReader results in a large number of output files. This often

makes it difficult to find pertinent data. In order to extract files, ChaosReader must be

run with the -raw switch to extract raw files. This produces .raw files that should contain

the exact files transferred during the packet capture being analyzed.

During testing, this tool sometimes resulted in the extraction of incomplete files.

Following extraction, output files were compared using the Linux cmp command-line

tool. This was further confirmed through the use of a hex editor and a check of the file

size for the extracted .dll file compared to the one that was actually transferred. This is

detailed in Figure 3.

Figure 3. Comparison of files extracted with ChaosReader to the actual files transferred.

This failure was confirmed with several other file transfers using both HTTP and FTP

protocols. Therefore, ChaosReader is ill-suited for file extraction and should not be used

for this purpose.

 ChaosReader is effective at generating connection information for packet capture

files, but delivers unreliable results when extracting files. The application reports that it

successfully extracts files, but testing shows that this is not the case. Since these files

may not be usable for further analysis, other tools should be used by analysts when

attempting to extract files.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 7
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

4.2. Foremost and Tcpflow
Several sources suggest a combination of using Tcpflow and Foremost to extract

files from network packet captures (Soderberg, 2010). Foremost is a file carving tool

originally designed to extract files from disk images. Ordinarily, this would make it

unsuitable for processing network packet captures for all the reasons described earlier in

this paper. However, Tcpflow is able to parse a network packet capture, handling

protocol headers, fragments, and out of order packet delivery. Once the data streams are

reassembled, then standard data carving tools – such as Foremost – can retrieve the raw

files. Since Foremost is a carving utility, its ability to extract files is limited to formats

for which it has been programmed. While this list does contain 18 common file formats,

several are missing (Kendall & Kornblum, n.d.). This includes file formats that are often

included in exploit kits such as Java archives and Flash files.

The proposed use of Tcpflow is to export data streams into individual files

(Soderberg, 2010). The individual files are concatenated into a single file, and then

parsed with Foremost. This process is detailed in Figure 4.

Figure 4. Illustration of combining Tcpflow and Foremost to process a packet capture.

In practice, Tcpflow was found to not properly process several protocols above

layer four of the OSI model. The extracted files were found to be different than expected.

The reason becomes obvious upon closer inspection with a hex editor. In this example

the SMB protocol was used to copy files from a computer to a network share. As is

shown in Figure 5 the SMB protocol data is embedded in the executable file as extracted

by Foremost.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 8
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Figure 5. Residual SMB (Server Message Block) protocol data embedded in a file

extracted with Tcpflow and Foremost.

However, some protocols are unaffected by this lack of interpretation. One example of

this is the FTP protocol. When files are transferred over FTP, the protocol does not insert

any additional data into the stream. In these cases, Tcpflow itself is sufficient to

reconstruct the file. This can be seen in Figure 6.

Figure 6. Comparison of the MD5 (message digest) hash of a file extracted from an FTP

(file transfer protocol) data stream using Tcpflow and the actual file.

A second exception to the rule of higher level protocol parsing with Tcpflow is the HTTP

protocol. When Tcpflow is invoked with the -a switch to enable all post-processing, it is

capable of stripping HTTP protocol headers from reassembled streams and unzipping

server responses that are compressed with gzip (Elson, n.d.). Tcpflow is able to properly

process this content, so Foremost provides no additional benefit.

A second shortcoming to the approach of using Tcpflow is that it only is capable

of processing TCP packets. While this may be obvious from the name of the software, it

can still be an important point when analyzing UDP-based communication. For these

situations, Tcpflow has the -w switch. Using this option causes any packets that cannot

be properly processed by Tcpflow to be exported to a separate packet capture. This

behavior can be seen in Figure 7 where files transferred using TFTP, which is a UDP-

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 9
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

based protocol, are entered into the failure capture. The failure packet capture contains

nearly all packets from the initial capture.

Figure 7. Tcpflow placing unprocessed UDP (User Datagram Protocol) packets into a

failure capture file.

Tcpflow is an effective method for extracting files from both the HTTP and FTP

protocols. Unfortunately, it is incapable of working with either UDP-based protocols or

the SMB protocol. The use of Foremost on the streams extracted by Tcpflow does not

resolve any shortcomings of Tcpflow. While Foremost may be useful when extracting

files during many forensics investigations, it does not add any value when parsing packet

captures.

4.3. Tcpxtract
Tcpxtract is designed to be a file carving tool for packet captures. This is in

contrast to several other tools tested, which focus on exporting streams. Tcpxtract

instead reassembles streams and looks for markers that denote the beginning and end of

files. In this way, it is very similar to the Foremost tool, except Tcpxtract functions on

packet captures. Tcpxtract supports 26 file formats and is designed to be extensible, so as

long as a file format’s markers can be found, Tcpxtract can support it (Padres & Harbour,

2005).

Unfortunately, not all file formats contain clear start and end markers. A notable

exception is the frequently malicious portable executable format. This format is difficult

to carve, because it lacks an end of file marker. The zip file compression format is also

used for a variety of other file types including Java JAR files and Android APK archives.

Tcpxtract classifies all these file types are extracted as zip compressed files. These

compressed files do not properly decompress and are sometimes completely missed by

Tcpxtract. In these cases, other tools that extract entire streams were found to be far

more reliable.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 10
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Tcpxtract only offers support for TCP packets with no support for UDP

datagrams. Therefore, during testing of the TFTP protocol it was found that no files were

extracted even for supported file formats. If Tcpxtract is selected for performing file

extraction, then analysts should ensure that packet captures do not contain any UDP data

that could be material to an investigation.

Due to the lack of consistent behavior, analysts should be wary of using Tcpxtract

during investigations. Some files are correctly extracted, but this is not always the case.

Extensions for file formats that have multiple purposes, such as compressed archives, are

frequently misidentified by Tcpxtract. Even with these shortcomings, Tcpxtract can be of

use. Since this tool functions by reassembling streams and then looking for markers to

identify file boundaries, it produces different results than tools that simply extract

streams. In cases where other tools fail to provide adequate results, Tcpxtract can be

used to search for additional files. In these instances, analysts should anticipate that the

files extracted may be flawed.

4.4. Tcpextract
Tcpextract is another file extraction solution similar to Tcpflow. Although

similarly named, this is not the same tool as Tcpxtract. This is a command line tool that

extracts all files that it can from either a packet capture or listening interface. One

advantage to using Tcpextract is that it extracts files with their original names. Most

other tools use an index to name extracted files, but this does little to help an analyst who

may be attempting to identify files that were served from a specific site. However, this

becomes one of the greatest failings of the Tcpextract tool. Long file names often cause

the application to crash, even if the protocols are fully supported. One instance of this is

depicted in Figure 8.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 11
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Figure 8. Tcpextract failing to extract a file from an HTTP (HyperText Transport

Protocol) stream due to file name length.

Tcpextract has no way to override this behavior without modifying the application; so if a

capture has even one long file name, no files can be extracted. Even more troubling than

the overt extraction failures due to filename length are silent failures resulting in

extraction of only a subset of the files contained in a packet capture. As can be seen

when analyzing an infection from the Angler exploit kit, several files are indeed

extracted. When the ngrep tool is used to view HTTP requests contained within the

packet capture, it is clear that data from several requests is never extracted. This is

shown in Figure 9.

Figure 9. Comparison of the number of files found by ngrep and Tcpextract.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 12
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Another shortcoming of the Tcpextract tool is that it supports only the HTTP

protocol. It silently discards packets from any other protocols. Moreover, content

compressed using gzip as part of HTTP communication is not automatically

decompressed. Analysts must manually complete this step after processing is complete.

 Tcpextract, while simple to use, is a dangerous tool for analysts. It can

successfully extract files from packet captures, but not in a reliable and predictable

fashion. It supports only the HTTP protocol, overtly fails on some file names, and

silently fails to extract others. Given these limitations, it is not recommended to rely on

Tcpextract when analyzing packet captures.

4.5. Network Miner
Network Miner is a graphical packet capture analysis tool that is written for the

.NET framework. Although .NET applications traditionally run only in Windows,

applications such as Wine and Mono allow Network Miner to function on Linux as well.

Network Miner is extremely simple to use, requiring only that an analyst open a packet

capture file. Support for twenty protocols is provided including HTTP, TFTP, and FTP.

As soon as a packet capture is opened in Network Miner, several tabs are

populated with various pieces of extracted information and Network Miner extracts all

the files it can. Files contained within the packet capture are placed in the

“AssembledFiles” folder, which is automatically created in the folder containing the

Network Miner executable file. A list of the extracted files is also available on the

“Files” tab (Davidoff & Ham, 2012).

Network Miner is an exceptionally easy tool to use and it is quite effective at

extracting files from its supported protocols. Unfortunately, Network Miner is not easily

extended to support additional protocols if it does not already support them. During

testing, it was confirmed that the SMB protocol is unsupported and files transferred with

this protocol are silently ignored. Additionally, the time required to load Network Miner

is substantially more than other extraction tools. During testing of a moderately-sized

packet capture of 42 megabytes, Network Miner took more than four times as long to

extract files as comparable command-line tools.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 13
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

The ease of Network Miner makes it very attractive for new analysts. It supports

file extraction from several protocols, provides large amounts of data for further analysis,

and has a graphical interface. However, the abundance of information generated often

adds to the amount of time required for analysis. Since every file is extracted, the analyst

must then determine whether or not each file is material to the investigation. Network

Miner also takes the longest time to run of any tool considered during this experiment.

This makes it unsuitable for longer packet captures. Provided that packet captures are of

a limited size, this is a very effective tool for extracting files.

4.6. Wireshark
Wireshark is an incredibly versatile packet analysis tool. It interprets an

extremely large number of protocols and easily extracts files from the HTTP, DICOM,

and SMB protocols. With some manual processing, Wireshark can also be used to

extract files from other protocols.

Extraction from the HTTP, DICOM, and SMB protocols is trivial. Unlike all

other applications discussed previously, Wireshark allows for files to be selectively

extracted. The protocol is selected from Wireshark’s pull-down menus as depicted in

Figure 10.

Figure 10. Location of Wireshark’s “Export Objects” function.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 14
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Wireshark then presents a list of files it has identified for extraction. An analyst can

choose specific files of interest or save all files to a folder. The procedure is virtually the

same for HTTP, DICOM, and SMB objects.

 Although simple to use, the “Export Objects” interface of Wireshark leaves much

to be desired. Wireshark’s incredibly useful display filters do not apply to this

functionality. While this is immaterial in smaller packet captures, if a capture contains

thousands of files it becomes extremely difficult to locate the desired objects. Another

shortcoming of this interface is the inability to sort the list of objects by any field other

than packet number. For HTTP requests this is the number of the packet containing the

HTTP response code, as depicted in Figure 11.

Figure 11. Wireshark’s “Export Objects” interface, showing how to locate a specific

object based on packet number.

 Wireshark can still be used to extract files through protocols that are not

supported by the “Export Objects” function. The analyst must first determine which

packets hold the desired file. Using “Follow TCP Stream” from the right-click menu as

shown in Figure 12, an ASCII interpretation of the raw file is presented.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 15
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Figure 12. Extracting files from a stream in Wireshark without using “Export Objects.”

The raw file can then be saved to disk without the “Export Objects” functionality. This

works well for protocols that transfer files without intermingling protocol data with the

file’s raw data. Protocols such as FTP and TFTP are good candidates for this method. If

protocols do insert their own data then this information must be manually removed after

extraction. This is a painstaking task involving the use of a hex editor.

 Wireshark is an extremely reliable and versatile tool. However, its file extraction

abilities are unwieldy to use. Sorting through the extraction interface is time consuming

and decisions often must be made with limited information. For protocols other than

HTTP, DICOM, and SMB, analysts must manually write the data streams to disk. Even

though these limitations exist, analysts can consistently and accurately extract files from

packet captures using Wireshark.

5. TShark Extractor
TShark is a companion tool to Wireshark that works from the command line

rather than a graphical interface. By using TShark it is possible to leverage Wireshark’s

considerable protocol analysis capabilities in a fashion that is easily scripted.

Unfortunately for those attempting to extract files from packet captures, TShark does not

possess Wireshark’s file extraction capabilities. Since TShark allows access to the raw

1 23

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 16
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

bytes from a packet capture, it is possible to not only replicate, but also extend

Wireshark’s extraction functionality.

The process is the same that is set forth earlier in this paper: gain access to the

raw bytes, strip the protocol information from them, and write the remaining data to a

file. TShark’s protocol decoding ability provides the ability to retrieve the raw bytes

transferred without having to contend with multiple layers of protocol data. Each of the

four protocols examined in this experiment has a separate field in which the raw bytes are

stored. The process of discovering an appropriate field is largely trial and error. First, a

packet capture containing the protocol with the embedded files must be selected. Then a

TShark command is run on each field available within Wireshark. When a command is

found that returns the desired data, usually in a hex-encoded format, then this is selected

as the appropriate field for extraction. An example of the TShark command used to

select the correct field for the HTTP protocol is shown in Figure 13.

Figure 13. TShark displaying colon-separated, hex-encoded, raw bytes extracted from a

packet capture.

The second task is to find fields that can be used to create a unique name for each

file to be extracted from a packet capture. Each of the fields necessary to support both

the file name and data are added to a list of fields. TShark is invoked to select each field

in this list from a packet capture, filtering for protocols that might result in file extraction.

In order to support extraction of HTTP, SMB, FTP, and TFTP the fields in Figure 14 are

used.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 17
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Figure 14. Listing of TShark fields used by the TShark Extractor script to generate

unique file names and retrieve raw bytes.

This results in an unwieldy TShark command as depicted in Figure 15.

Figure 15. The TShark command used by the TShark Extractor script.

In reality, this command has only three parts: a filter, a set of extraction fields, and

formatting for extracted information. The filter has a user-provided section, which can be

any display filter supported by Wireshark, and a group of filters designed to ensure that

only valid files are extracted. A separate filter is used for each file transfer protocol to

ensure that blank and invalid files are not processed. The fields specified in the next

segment are those denoted in Figure 14. The formatting segment ensures that each

returned value is enclosed in double quotes and separated by the “|” symbol. This

ensures that TShark’s output can be easily parsed.

 Following the execution of TShark, data is parsed into a Python list. Based on the

contents of the “_ws.col.Protocol” field a specific protocol parser is selected. Each parser

has the responsibility of converting TShark’s output to a file name and raw bytes. There

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 18
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

are two requirements for the file name selected. The first is that it is unique to the

extraction so as not to overwrite other files that have already been extracted or mistakenly

merge two separate files into one. The second requirement is that the file name should

not contain the character used to separate columns in the TShark query. The file bytes

are presented as colon-separated hexadecimal values enclosed in double quotes. To

convert this into raw bytes using Python is a trivial process. If there is any post-

processing to be done on these bytes, then this can also be handled by the parsing

function. This is illustrated by the HTTP protocol parser. This parser contains HTTP

protocol information and potentially has content compressed using gzip.

 The FTP protocol does not have a simple method of accessing the bytes of

transferred files. Instead, TShark must be rerun to extract each FTP data stream. This

must be performed once per stream. This can be accomplished using TShark’s “-z”

argument with the “follow, tcp, raw” arguments, once per stream containing FTP data.

This method is considerably slower using a specific protocol field to extract the data, as is

done with the HTTP, SMB, and TFTP protocols. With these three protocols a single

TShark query can extract all the files in the packet capture as opposed to having a

separate pass for each stream to be extracted.

This format allows simple extension to other protocols and the addition of post-

processing rules. TShark should theoretically be able to extract files from any protocol as

long as TShark can decode the protocol and access the raw bytes. Leveraging TShark

also has the advantage of allowing an analyst to use Wireshark display filters to select

which files to extract. Use of command line tools allows a scripted approach to file

extraction and aids in the development of repeatable processes. To demonstrate this

process and provide another tool to augment the analyst’s arsenal, the TShark Extractor

script is available at https://github.com/rangercha/tshark_extractor.

6. Comparison of Tools
None of the tools tested during this experiment will successfully extract files in all

situations. Analysts must be cognizant of each tool’s abilities and limitations to ensure

that accurate information is used during investigations. Therefore, consideration must be

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 19
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

taken for the protocols contained within packet captures and each tool’s support for these

protocols.

Protocol	support	must	also	be	considered	when	selecting	a	tool	for	extracting	

files.		Analysts	should	first	conduct	a	quick	assessment	of	which	protocols	are	

contained	within	a	packet	capture	to	ensure	the	appropriate	tool	is	used.		Even	if	all	

protocols	are	not	supported	by	a	tool,	the	analyst	will	at	least	be	aware	of	what	a	

tool	may	miss.		Testing	of	each	tool	with	the	HTTP,	SMB,	FTP,	and	TFTP	protocols	

revealed	support	according	to	Table	1.	

Table 1

File extraction support of tested tools by protocol

Tool HTTP SMB FTP TFTP

ChaosReader Partial

Tcpflow Full Full

Tcpxtract Partial Partial Partial

Tcpextract Partial Full

NetworkMiner Full Full Full

Wireshark Full Full Manual Manual

TShark Extractor Full Full Full Full

Table 1. File extraction support of tested tools by protocol.

“Partial”	support	indicates	that	a	tool	sometimes	either	missed	files	or	extracted	

files	with	incorrect	contents.		“Manual”	support	means	that	while	the	tool	does	not	

have	an	automated	method	of	extracting	files	from	this	protocol,	files	still	can	be	

extracted	with	a	few	manual	steps.		Tools	that	always	correctly	extracted	files	from	a	

protocol	are	listed	as	providing	“Full”	support.	

The most dangerous behavior exhibited by tools is providing incorrect results.

This can manifest as either expected files not being extracted or extracted files with

incorrect contents. Tcpxtract,	Tcpextract,	and	ChaosReader	all	exhibit	these	

symptoms.		Use	of	these	tools	is	only	advised	if	the	expected	results	cannot	be	

obtained	with	other	more	reliable	tools.		In	this	case,	protocol	bytes	may	have	to	be	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 20
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

manually	removed	from	the	extracted	files.		Analysts	should	not	expect	sandboxing	

tool	results	or	hashes	of	these	files	to	be	accurate.	

 If an appropriate tool is selected, analysts can avoid wasting time on failed

extractions or analyzing malformed files. Not included in this experiment is the analysis

of protocols other than HTTP, SMB, FTP, and TFTP. Network Miner claims support for

several additional protocols and is a good choice when there are no other clear options.

Whenever protocols are encountered for which there is no support in any tool, analysts

should be prepared to follow the steps outlined in this paper’s introduction to manually

retrieve the original files.

7. Conclusion
Network packet captures are a valuable tool when analyzing incidents. These

captures are often the only means to obtain precise records of what has gone into and out

of a system. For many common exploit kits the specific exploits used during attacks can

be discovered by analyzing files that are pulled from network packet captures. A suitably

positioned sensor can also give an analyst insight into the exact data that has been

exfiltrated from a network during a compromise.

Standard forensics tools that are designed for use on file system images cannot be

used to analyze network traffic. The structure of packet capture files adds raw packet

header information and other metadata into the raw data of the files contained within a

capture. Tools that are not designed for analyzing packet captures are unable to separate

this protocol data from the files that were actually transmitted over the network.

Fortunately, there are many tools that can extract files from network packet

captures. Unfortunately, no tool performs perfectly in all situations. Some of these

applications occasionally do not accurately reconstruct all files from packet captures,

even if the files are contained in a supported protocol. This makes these tools extremely

risky to use, because they can cause analysts to incorrectly discard malicious files or not

even have the opportunity to examine them.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 21
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Protocol support is another area of difficulty for each tool. Of the four common

file transfer protocols tested, none of the previous tools were able to process all of them

in an automated fashion. Protocol coverage by tool varied according to Table 1.

Most tools do not have the ability to perform selective extraction of files. Only

Wireshark possesses the ability to extract only specific files. All other tools are only

capable of extracting every file in a packet capture. Analysts must then perform post-

processing to determine which extracted files are material to the investigation. Wireshark

is able to select specific files for extraction, albeit with a limited interface. This allows an

analyst to narrow the scope of the files they must process without using several other

command-line tools.

TShark Extractor allows the extraction of specific content in a file capture

utilizing Wireshark display filters. With other tools an analyst must apply a filter, extract

the applicable traffic to a new capture file, and then use a file extraction tool.

Automating extraction from various protocols minimizes the number of different tools

that must be used during analysis. Additionally, the script is short enough to demonstrate

the concept of file extraction to allow analysts to easily examine the process.

The specific capabilities of a tool are secondary to an analyst’s ability to

understand the process used by the tool. Knowing when a tool will return accurate data

saves analysts from wasting time and avoids incorrect conclusions. Even when new

protocols are encountered, a skilled analyst can extend existing tools or manually

reproduce the process.

	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 22
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

8. References
Allen,	J.	(2001).	The	CERT	Guide	to	System	and	Network	Security	Practices.	Upper	

Saddle	River,	NJ:	Addison-Wesley.	

Allman, M. & Ostermann, S. (1999). FTP Security Considerations. RFC 2577. Retrieved

4 November, 2015, from https://tools.ietf.org/html/rfc2577

Banks,	D.	(2013).	Custom	Full	Packet	Capture	System.	Retrieved	21	October,	2015,	

from	https://www.sans.org/reading-room/whitepapers/logging/custom-

full-packet-capture-system-34177	

Brenton, C. (2006). Egress Filtering FAQ. Retrieved 3 November, 2015, from

https://www.sans.org/reading-room/whitepapers/firewalls/egress-filtering-faq-

1059

Bejtlich,	R.	(2012).	The	Practice	of	Network	Security	Monitoring	[Kindle	Fire	HD	

version].	Retrieved	from	Amazon.com	

Davidoff,	S.,	Ham,	J.	(2012).	Network	Forensics:	Tracking	Hackers	through	

Cyberspace.	Upper	Saddle	River,	NJ:	Prentice	Hall.	

Dharmapurikar, S. & Paxson, V. (2005). Robust TCP Stream Reassembly In the Presence

of Adversaries. 14th USENIX Security Symposium. Retrieved 3 November, 2015,

from

https://www.usenix.org/legacy/event/sec05/tech/full_papers/dharmapurikar/dharm

apurikar.pdf

Duncan, B. (2015). Exploit Kit Roundup – early June 2015. Retrieved 21 October, 2015,

from https://isc.sans.edu/diary/Exploit+kit+roundup+-+early+June+2015/19763

Elson, J. & Garfinkel, S. (n.d.). Tcpflow. Retrieved 21 October, 2015, from

https://www.mankier.com/1/tcpflow#

Garfinkel, S. (2010). Digital Forensics Research: The Next 10 Years. Digital

Investigation, 7. S64-S73. doi:10.1016/j.diin.2010.05.009

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Extracting Files from Network Packet Captures 23
	

Rebecca	Deck,	sdsecurityacct@hotmail.com		
	 	

Garfinkel,	S.	&	Shick,	M.	(2013).	Passive	TCP	Reconstruction	and	Forensic	Analysis	

with	tcpflow.	Retrieved	21	October,	2015,	from	http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA585499	

Gregg, B. (2004). Chaosreader. Retrieved 21 October, 2015, from

http://www.brendangregg.com/chaosreader.html

Harris, G. (2015). Libpcap File Format. Retrieved 21 October, 2015, from

https://wiki.wireshark.org/Development/LibpcapFileFormat

Kendall, K. & Kornblum, J. (2006). Foremost Man Page. Retrieved 21 October, 2015,

from http://foremost.sourceforge.net/foremost.html

Padres, B. & Harbour, N. (2005). Tcpxtract Home Page. Retrieved 31 October, 2015,

from http://tcpxtract.sourceforge.net/

Palo Alto. (2013). The Modern Malware Review. Retrieved 21 October, 2015, from

http://media.paloaltonetworks.com/documents/The-Modern-Malware-Review-

March-2013.pdf

Parkour, M. (2015). Collection of Pcap files from malware analysis. Retrieved 31

October, 2015, from http://contagiodump.blogspot.com/2013/04/collection-of-

pcap-files-from-malware.html

Soderberg, W. (2010). Extracting Files from a Capture aka Intercepting Files. Retrieved

21 October, 2015, from

https://wh1sk3yj4ck.wordpress.com/2010/08/12/extracting-files-from-a-capture-

file-aka-intercepting-files/

