
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!! [v1.0!November!2013]! !
! !

HTTP header heuristics for malware detection

GIAC (GCIA) Gold Certification

Author:!Tobias!Lewis,!tobaslouis@gmail.com!
Advisor:!Antonios!Atlasis!

Accepted:!24th!December!2013!!
!

Abstract!
Sophisticated!malware,!such!as!those!used!by!Advanced!Persistent!Threat!(APT)!
groups,!will!attempt!to!avoid!detection!wherever!and!whenever!it!can.!However,!
even!the!stealthiest!malware!will!have!to!communicate!at!some!point,!and!when!it!
does!so,!it!provides!an!opportunity!for!detection.!This!paper!looks!at!a!number!of!
techniques!to!identify!the!presence!of!malware!which!attempts!to!masquerade!as!
legitimate!web!browsing!activity,!exploiting!some!of!the!occasionally!inaccurate!
attempts!to!mimic!the!HTTP!protocol.!This!should!provide!network!defenders!with!
greater!opportunity!to!detect!malicious!activity,!without!the!need!for!maintaining!a!
corpus!of!virus!specific!signatures!that!are!vulnerable!to!change.!
!
!

HTTP header heuristics for malware detection! 2
!

Author!Name,!email@address! ! !

1. Introduction
Signature based detection is one of the most fundamental techniques for

identifying malicious activity on your network. However, these only really account for

the so called “known, knowns” (Rumsfeld, 2002), and with numerous commercial

offerings of threat indicators, it can be costly to maintain an up to date corpus of network

signatures.

Behavioural, or heuristic based detection, provides a broader capability by

attempting to identify malware from behaviour that is deemed to be, or at least associated

with, nefarious activity – including that which has potentially never been observed before

(“Heuristics”, Virus Bulletin Glossary, n.d.). This paper discusses the use of heuristics in

malware detection, focussing on the network traffic generated and specifically the

attempts to masquerade as legitimate web browsing traffic using the Hypertext Transfer

Protocol (HTTP).

HTTP is an application layer protocol that allows the transfer of data using the

client-server model. Typically used for web browsing, clients issue a request to a server

(such as a web server), which responds, either with the appropriate resource if available

or some form of information or error message. The latest operational version (version

1.1) is defined in RFC2616 (Fielding et al., 1999).

Like most network protocols, HTTP makes use of headers to transfer metadata

that provides the receiving entity with information on how best to treat the event. It may,

for example, provide information on the browser being used to view a webpage, that tells

the web server the best format to send back; or, which file types the client is expecting to

receive as part of the request. Some of the more common header options, and those which

I’ll refer to in this paper, are as follows:

• User-Agent; used to describe the specifics of the software application

making the HTTP request, for the purposes of ensuring compatibility and

usability statistics

HTTP header heuristics for malware detection! 3
!

Author!Name,!email@address! ! !

• Host; specifies the domain or IP address, where the requested resource is

located, although for externally bound network traffic it is unlikely to see

an IP address.

• Referer; a field used to indicate when a webpage visit is as a result of a

hyperlink being followed, and will specifically contain the source of that

link

A range of predefined headers (including those above) are listed in RFC2616

(Fielding et al., 1999), with most giving some indication of the expected format of the

entry. For example, the User-Agent option requires the following format:

"User-Agent" ":" 1*(product | comment)

Which may look something like:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

RFC2616 (Fielding et al., 1999) only explicitly requires that the Host field is

present in a request; albeit with some edge cases, everything else is optional, including

the ordering. It is also worth noting that the RFC does not define or describe the specific

content of the header value, only the format or syntax it expects the individual options to

be in. As a result there can be significant variation between implementations - although

you would expect some consistency between products based upon the elements of the

same source code, for example between different versions of Internet Explorer.

At a basic level, HTTP offers the good majority of the functionality required by

malware, specifically referring to the ability to upload and retrieve data. Furthermore, due

to its fundamental use in web browsing, HTTP is one of the more common protocols

observed in networks both big and small. As a result, not only are source code libraries

and modules for HTTP widely available, HTTP traffic is often enabled by default on

security devices and network gateways.

Researching cyber crime botnets in 2009, it was identified that “...the majority

of...bots use HTTP to communicate with their C&C [command and control] server...”

(John, Moshchuk, Gribble & Krishnamurthy, 2009) and within the recent “APT1” report

(Mandiant, 2013) which discusses the use of malware by a specific, sophisticated

HTTP header heuristics for malware detection! 4
!

Author!Name,!email@address! ! !

“Advanced Persistent Threat” (APT) group, over 30 out of nearly 50 tools appear to

communicate using HTTP-like protocols.

2. Analysis of HTTP heuristics

2.1. General heuristics

2.1.1. User-Agents

In enterprise environments, it is common for IT infrastructure to be centrally

coordinated and managed. As a result, you could expect a fairly static IT build across the

estate and thus minimal variation in the operating system and browser versions reported

in the User-Agent. It could therefore be possible to rely on this relative predictability to

help identify alien network traffic.

Figure 1 mimics what this could look like in a web proxy log. Whilst there is

some slight variation amongst the other User-Agents, the anomalous entry is clear to see.

Appreciating that in the specific example, the difference in line length makes it stand out;

an observant network administrator should also be able to note the different operating

system and browser version.

Figure'1')'Sample'web'log'showing'an'infected'host'

However, when we look at the network traffic generated by just a single host, it is

possible for a large number of User-Agents to be present. From Windows Services to

browsers built into applications such as iTunes, they all act to raise the noise floor. It

could also be argued that this would not be an unexpected result given the propensity for

legacy systems to remain on enterprise networks for support, contractual or backward

HTTP header heuristics for malware detection! 5
!

Author!Name,!email@address! ! !

compatibility reasons. The increasing popularity of “Bring Your Own Device” (BYOD)

and also guest users, could increase the likelihood of apparently anomalous User-Agents

even further.

Despite this, it may still be possible to detect suspicious activity. Whilst we can

look to defeat or white list User-Agents associated to Windows services such as

Microsoft Update, these applications are subject to change and could lead to false

positives. What may be more practical is looking for User-Agents that simply contain

incorrect or false information and regardless of the browser or HTTP client being used;

the Operating System for a specific platform should remain constant. This is a reminder

that heuristics work best when fine-tuned to their environment.

Whilst the data in figure 1 is presented in a log format, network administrators

could deploy SNORT based signatures to identify this behaviour. Taking into account

some of the additional requirements to reduce the amount of False Positives, two sample

SNORT rules are provided below. The first will hit on activity that doesn't present the

User-Agent of a possible standard build (in this case, Internet Explorer version 9.0 on

Windows 7), the second will hit on HTTP activity that doesn’t contain the correct

Operating System (Windows 7):

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "HTTP activity
using non-standard User-Agent"; flow:to_server,established;
content:"User-Agent: Mozilla”; http_header; content:!"User-Agent:
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)";
http_header; classtype:bad-unknown; sid:1000000; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "HTTP activity
using User-Agent with non-standard Operating System";
flow:to_server,established; content:"User-Agent: Mozilla”;
http_header; content:"Windows"; http_header; content:!"Windows NT
6.1;"; http_header; classtype:bad-unknown; sid:1000001; rev:1;)

2.1.2. Typographic Errors

Much of the malware examined for this paper appears to use explicitly hardcoded

header options and these could be prone to simple typographic or syntactical errors which

can be used to identify malicious activity.

HTTP header heuristics for malware detection! 6
!

Author!Name,!email@address! ! !

In the MEDIANA sample below (Parkour, 2013), there is surplus white space

(ASCII character 0x20) at the end of a number of options before the carriage return and

line feed:

This doesn’t contravene RFC2616 (Fielding et al., 1999), which indicates that the

presence of trailing “Linear White Space” in a header value can be removed without

altering the meaning. However, for network efficiency, it would be unlikely for surplus

“Linear White Space” to be included. This assumption is supported when looking at

legitimate network traffic.

The following snort rule could be used to detect HTTP headers with similar

superfluous white space:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "Extra white
space in HTTP Header"; flow:to_server,established; content:"|20
0d 0a|"; http_header; classtype:bad-unknown; sid:1000002; rev:1;)

 The PROTUX (Parkour, 2013) sample also has surplus white space, in this case

between the URL and the URL arguments shown and highlighted below:

This is counter to the URL syntax prescribed by RFC2396 (Berners-Lee, Fielding,

Irvine & Masinter, 1998), which treats white space in URLs as an “excluded character”

and is thus disallowed.

A sample as discussed by the Kaspersky Global Research & Analysis Team

(branded as “GReAT”) further demonstrates typographic errors in HTTP headers.

HTTP header heuristics for malware detection! 7
!

Author!Name,!email@address! ! !

QUARIAN (GReAT, 2012) is identifiable by incorrect1 use of an underscore (“_”)

instead of a hyphen (“-“) in the Content-Length header option, and further more by a

misspelling of “Connection” in the Proxy-Connection option (although it’s worth noting

that this is not a header field predefined by RFC2616 (Fielding et al., 1999)):

The PROTUX and QUARIAN samples both demonstrate errors with specific

respect to the formal RFC. As a result, we can assume that this would not be present in

HTTP traffic generated by a commercial browser, and that the risk of false positives

would be low.

2.1.3. URL Complexity

When a user wishes to visit a specific website, they type the URL into the address

bar of their browser and hit enter. It would be considered unlikely that a real user would

be willing to type in a long or complex URL directly, although you might expect a more

complex or long URL if it was being reached by the following of a link such as in the

results of a search engine. In this case there should be a sensible referer field indicating

this. RFC2616 (Fielding et al., 1999) doesn’t formally limit URL length, although it does

recommend that genuine web servers shouldn’t rely on lengths greater than 255

characters, to allow backward compatibility with older clients.

There are a number samples, which by their inclusion of complex URL arguments

and an absent referer field, would be deemed unlikely to have been manually typed in by

a user:

IXESHE (Parkour, 2013):

!!
1!Incorrect!in!terms!of!RFC2616!(Fielding!et!al.,!1999),!which!specifically!states!that!the!field!name!
should!be!of!the!format:!“Content-Length”!

HTTP header heuristics for malware detection! 8
!

Author!Name,!email@address! ! !

TAIDOOR (Parkour, 2013):

However, there are some even more extreme examples, such as the MONGALL sample

(Parkour, 2013):

Or worse, NETTRAVELER (Parkour, 2013):

However, we can identify examples of long and complex URLs in legitimate

traffic. For example, events generated by the Microsoft-CryptoAPI service, are often

significantly longer than you would expect a legitimate user to be willing to enter – often

over 100 characters in length with no Referer entry. Equally as prevalent are events

associated to in page banner advertisements that your browser will send separate direct

(non-referred) requests for.

Without any form of fine-tuning, in many cases this heuristic would only be

sufficiently reliable when looking for URLs that exceed the recommended 255

HTTP header heuristics for malware detection! 9
!

Author!Name,!email@address! ! !

characters. However, given knowledge of the environment, the ability to defeat events

associated with certain User-Agents and/or domains, it may be possible to reduce the

threshold.

Snort rules could be written for this characteristic, making use of the “urilen”

keyword, with the following example using a threshold of 255 characters in the URL:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg: "URL length
exceeds 255 characters"; flow:to_server,established; urilen:>255;
classtype:bad-unknown; sid:1000003; rev:1;)

2.2. Using p0f for generic malware detection

2.2.1. Introduction to p0f for malware detection

Assuming that network traffic generated by malware effectively calls on the TCP

library of the host operating system, we can use the structure of the OSI model to identify

malicious software.

Using a passive fingerprinting tool such as p0f (Zalewski, 2012) we can look to

characterise the host operating system by transport layer artefacts such as Time to Live

(TTL) values, Window Size and Sequence numbers and referencing it to a known

fingerprint library. We can then compare this result with the Operating System value as

reported in the malware controlled application layer, such as the User-Agent field within

a HTTP header.

The latest version of p0f goes further in attempting to identify the client used to

generate the HTTP request, based upon the inclusion, exclusion and ordering of certain

HTTP header options. This can be used to additionally identify fake User-Agent

information, when, for example, an application purporting to be Microsoft Internet

Explorer version 6.0 doesn't present the expected header options of a real IE6.0 browser.

2.2.2. Demonstration of p0f for malware detection

To demonstrate the effect of this, traffic was generated using two methods:

1. A Windows version of the popular Unix tool wget.

2. Mozilla Firefox v24.0 with a plug-in allowing custom User-Agents

HTTP header heuristics for malware detection! 10
!

Author!Name,!email@address! ! !

In both cases, this was conducted from a Windows 7 host operating system, using

a fixed User-Agent that claimed to be Microsoft Internet Explorer 6.0 running on

Windows XP:

Data was captured using Fakenet (Honig & Sikorski, 2012) to avoid unnecessary

interaction with external web servers. As you can see below, p0f was able to correctly

identify both the real host operating system and the application used to generate the

application layer content.

Figure'2')'Results'using'WGET''
(sanitized'and'snipped'to'show'pertinent'results)'

!

HTTP header heuristics for malware detection! 11
!

Author!Name,!email@address! ! !

!
Figure'3')'Results'using'Firefox'with'a'User)Agent'changing'plug)in'

(sanitized'and'snipped'to'show'pertinent'results)'

When we look at the full HTTP headers presented by samples from the Parkour

(2013) dataset, p0f is unable to match the vast majority to the browser fingerprint they

should have fired on. In fact we find that of the 11 samples that use a legitimate2 looking

User-Agent, 10 of them do not use or present the options as expected by p0f. In most

cases, this is because the samples have an overly simplistic HTTP header, omitting a

significant number of header options that would have otherwise have been included in a

legitimate request.

Figure 4 shows the output of p0f when ran against the NETTRAVELER sample

(Parkour, 2013). Whilst it is unable to identify the host operating system (instead only

assessing that is using a Windows NT based Kernel), under the “app” field we can see

!!
2!Legitimate!in!that!it!appears!to!mimic!a!genuine!operating!system,!starting!with!the!Mozilla!version!
token!and!then!Operating!System!and!Browser!tokens!followed!in!parentheses!

HTTP header heuristics for malware detection! 12
!

Author!Name,!email@address! ! !

that the HTTP Headers do not fire on any of existing browser fingerprints, and certainly

not Microsoft Internet Explorer version 6.0.

Figure'4')'Sample'p0f'response'for'NETTRAVELER'(Parkour,'2013)'
(Sanitized'and'snipped'to'show'pertinent'results)'

!

HTTP header heuristics for malware detection! 13
!

Author!Name,!email@address! ! !

!
Figure'5')'Samples'of'legitimate'HTTP'activity'

(Sanitized'and'snipped'to'show'pertinent'results)'

In Figure 5, we see the results of p0f when compared to samples of legitimate

traffic. Most notably is that p0f is not able to identify the application in all cases. This is

ultimately because the p0f fingerprint library does not contain a fingerprint for every

possible HTTP client (the Microsoft-CryptoAPI service in this example) – and nor should

we expect it to. The way in which we can use p0f for malware detection is crucial to

avoid unnecessary false positives.

Only where the User-Agent indicates a client or browser, for which p0f has an

existing fingerprint for, we can rely on the results of the app field to identify cases where

the User-Agent contains false or incorrect information and the event itself is likely to be

malicious.

HTTP header heuristics for malware detection! 14
!

Author!Name,!email@address! ! !

Furthermore, there is nothing to stop network administrators from developing

their own fingerprints for p0f, which adds an additional detection mechanism beyond

SNORT based intrusion detection rules.

2.2.3. Deployment options

There are a number of deployment options for p0f, and although I have used it in

a purely offline mode, network administrators could deploy p0f to gateway devices

passively sniffing live network traffic or could even incorporate it into a larger suite of

network monitoring tools using a built in API.

2.2.4. Considerations to note when using p0f

Based upon expected behaviour and the inaccurate attempts to spoof it, we can

use p0f to identify malicious behaviour based upon discrepancies in two areas - the

application layer and the transport layer. However, they do not present equal

opportunities for detection.

In the first case, we are reliant on the host operating system differing from that

referenced in the User-Agent field; if the two were the same, it would clearly not be

possible to identify malicious behaviour using this technique. We can attempt to quantify

this, albeit simplistically, by looking at the frequency of certain operating systems in

spoofed User-Agents, with the market share of that operating system. 9 of the 11 Parkour

(2013) samples are for operating systems that account for over 30% of the current market

share (NetMarketShare, 2013) - the other two refer to "Win32" which is not possible to

categorise at this time.

Furthermore, in the samples presented, p0f struggled to reliably detect the host

operating system beyond the core kernel (Windows NT in this case). This could be due to

lack of sufficient network traffic for p0f to make a thorough assessment, but equally it

could be due to the dynamic nature of an operating systems kernel over its lifetime, as

patches and hot-fixes from the manufacturer are installed.

In the second method (the use of HTTP header options), this is entirely dependent

on the malware itself, and more specifically how well the malware author is able to spoof

genuine browser activity. As a result, this method has a broader application and would

HTTP header heuristics for malware detection! 15
!

Author!Name,!email@address! ! !

have a higher chance of detecting malicious activity (around a 90% success rate, albeit

based on the limited number of samples discussed in this paper).

3. Recommendations
This paper has focussed on the content of the HTTP header, but techniques

involving the timing of human generated versus automated events could provide further

opportunity for detection. Likewise with flow profiles, such as upload/download ratios,

top talkers, variance of domains and URLs could give some statistical methods for

malware detection. These will require a better understanding of the “norms” of your

network, and so is something for individual network administrators and security teams to

explore the merits of in their own enterprise.

Behavioural detection takes time to fine tune and some of the techniques shown

will not work on all networks. Policies allowing Bring Your Own Device or Local

Administration rights, not to mention networks with a significant number of application

developers could reduce the signal to noise ratio and increase the amount of False

Positives. This paper only discusses techniques in a relatively vanilla environment, and

anyone wishing to implement them, should do so with the understanding of these risks.

Based on the techniques discussed in this paper and the experiences in

implementing similar methods, the following steps are recommended to help detect

malicious activity on a network:

1. Baseline your network – understand what is unusual and what stands out.

2. A clear, delineated and compartmentalised network, helps to simplify network

activity.

3. Look to lower the “noise” floor wherever possible – if something doesn’t need

to be installed or connected to the internet, then make sure it isn’t.

4. Heuristics work best when fine-tuned to the environment.

5. Above all, don’t be reliant on a single method for detection – each has its

weaknesses.

HTTP header heuristics for malware detection! 16
!

Author!Name,!email@address! ! !

4. Conclusion
This paper has demonstrated how seemingly minor spelling, typographic and

syntactical errors provide network administrators opportunities for the detection of

malware. It has also illustrated how the lack of variance in a network can aid detection by

making alien traffic stand out more and how consideration for real world user behaviour

could be exploited as well.

One of the most successful techniques was the use of passive fingerprinting tools

and the comparison with real world browser software, which the malware is ultimately

trying to mimic. Presenting error free headers is one thing. Presenting them in the right

order, with the correct inclusion and omission of specific options is another thing

altogether, and one that seems to be a fairly common trait across the samples tested.

No one technique was able to detect all samples, even in the limited collection.

This should serve as a reminder that heuristics is only one tool in the armoury and should

be used as a complimentary addition to other detection methods, such as signature based

Intrusion Detection Systems or host based techniques. In combination, these will only

increase the likelihood of being able to detect malicious activity so security teams can

respond appropriately, but obviously, prevention is better than the cure!

HTTP header heuristics for malware detection! 17
!

Author!Name,!email@address! ! !

5. References
Berners-Lee, T., Fielding, R., Irvine, U. C., & Masinter, L. (1998). Uniform Resource

Identifiers (URI): General Syntax (otherwise known as RFC2396)

Fielding, R., Irvine, U.C., Gettys, J., Mogul, J., Frystyk, J., Masinter, L., Leach, P., &

Berners-Lee, T. (1999). Hypertext Transfer Protocol (otherwise known as

RFC2616).

GReAT (2012). A Targeted Attack Against The Syrian Ministry of Foreign Affairs.

Available from

https://www.securelist.com/en/blog/774/A_Targeted_Attack_Against_The_Syrian

_Ministry_of_Foreign_Affairs

Heuristics (n.d.). Virus Bulletin Glossary. Available from

http://www.virusbtn.com/resources/glossary/heuristics.xml

Honig, A. & Sikorski, M. (2012). FakeNet version 1.0c [computer software]. Available

from http://sourceforge.net/projects/fakenet/files/latest/download

John, J. P., Moshchuk, A., Gribble, S. D., Krishnamurthy, A. (2009). Studying Spamming

Botnets Using Botlab. Available from

https://www.usenix.org/legacy/event/nsdi09/tech/full_papers/john/john.pdf

Mandiant (2013). APT1: Exposing One of China’s Cyber Espionage Units. Available

from http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

NetMarketShare (2013). Desktop Operating System Market Share [live data as of 20th

October 2013]. Obtained from http://www.netmarketshare.com/operating-system-

market-share.aspx?qprid=10&qpcustomd=0

Parkour, M. (2013). Collection of Pcap files from malware analysis. Available from

http://contagiodump.blogspot.co.uk/2013/04/collection-of-pcap-files-from-

malware.html

HTTP header heuristics for malware detection! 18
!

Author!Name,!email@address! ! !

Rumsfeld, D. (2002). US Department of Defense News Briefing, originally presented 12th

Feburary 2002. Transcript available from

http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636

Zalewski, M. (2012). p0f version 3.0beta [computer software]. Available from

http://lcamtuf.coredump.cx/p0f3/

