
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

A Hands-on XML External Entity Vulnerability Training
Module

GIAC GCIA Gold Certification

Author: Carrie Roberts, clr2of8@gmail.com

Advisor: Rich Graves

Accepted: November 1, 2013

Abstract

Many web applications that accept and respond to XML requests are vulnerable to XML
External Entity (XXE) attacks due to default XML parser settings. This vulnerability can be
exploited to read arbitrary files from the server, including sensitive files such as the application
configuration files. This paper provides detailed instructions for building a vulnerable web
application using the standard XML parser that comes with the Java development kit. A virtual
machine image of the complete system is also provided, allowing experimentation and
visualization of the vulnerability. The virtual machine image can be used to provide engaging,
hands-on XXE training for developers and intrusion analysts. Exploitation tools and techniques
for reading the applications sensitive configuration file are demonstrated. A simple method for
removing the vulnerability is reviewed. Finally network intrusion analysis is performed to
discover how the vulnerability was exploited and what sensitive information was exposed.

A Hands-on XML External Entity Vulnerability Training Module | 2

Carrie Roberts, clr2of8@gmail.com

1. Introduction
Web based attacks are on the rise, and the most exploited vulnerabilities are often not the newest

(Symantec Corporation, 2013). One such vulnerability that has been around for many years is

XML external entity injection or XXE. This vulnerability can affect web applications that

exchange information using XML messages. The intriguing thing about this vulnerability is that

many popular XML parsers are vulnerable by default (XML External Entity (XXE) Processing,

2013). This means that unless a developer takes deliberate steps to remove the vulnerability, the

web application may be vulnerable.

The XXE vulnerability can be exploited to expose sensitive information and perform denial of

service (DOS) attacks against the web application server (HPSR Threat Intelligence Briefing

Companion Report to Episode 6, 2013). For example this vulnerability can be used to read

arbitrary files from the server, including sensitive files such as the application configuration files.

Port scanning of the web application and other systems on the same intranet is also possible

(Vorontsov, 2012).

This vulnerability is an important one to understand because it exists by default for many popular

XML parsers (XML External Entity (XXE) Processing, 2013). This report explains what XML

external entities are and how they are used to attack systems. It provides instructions on how to

create a sample vulnerable web application. This helps to understand how easily such an

application can be developed. Instructions for downloading a virtual image of the sample web

application are also included. Tools and techniques for exploitation of the vulnerability are

given. Lastly, methods for detecting an analyzing this attack on a system is discussed and

demonstrated. This provides a hands-on environment for developers and analysts to fully

understand this vulnerability and its affects.

With this comprehensive understanding of XML external entity injection, developers, analysts

and administrators will be prepared to detect and defend against this important web application

vulnerability.

A Hands-on XML External Entity Vulnerability Training Module | 3

Carrie Roberts, clr2of8@gmail.com

2. XML External Entities – The Feature
Extensible Markup Language (XML) is a feature rich and widely used information exchange

format and standard. The standard allows for defining the structure of the XML using a

Document Type Declaration, or DTD. The DTD provides a mechanism for defining entities

whose values can be substituted into the XML document contents. This is helpful when the

entity value is used multiple times.

The XML in Figure 1 contains a DTD with an entity called “orientation” defined. The value of

the “orientation” entity is set to “some orientation.” Following the DTD are the XML elements

which contain a “url” tag and an “orientation” tag. The value of the “orientation” element is

“&orientation;;” which is the name of the entity with an ampersand (&) symbol before and a

semi-colon (;) after. This instructs the XML parser to replace “&orientation;” with the entity

value defined in the DTD, namely “some orientation.”

<!DOCTYPE convert[

<!ENTITY orientation “some orientation”>

]>

<convert>

<url>www.something.com</url>

<orientation>&orientation;</orientation>

</convert>

Figure 1. General Parsed Internal Entity

The full description of this example is a “General Parsed Internal Entity”. General Entity means

that the entities are for use within the document content (Extensible Markup Language (XML)

1.0, 2008). The term “Parsed” means that the XML parser will evaluate it according to the XML

standard instead of just passing it through to the application as with an unparsed entity. An

internal entity means that the value of the entity can be determined by the XML parser without

accessing an external resource.

The XML parser will deliver the XML shown in Figure 2 after parsing of the general parsed

internal entity. Notice that the DTD has been removed and that the orientation element has a

value of “some orientation” as was defined in the DTD.

DTD

Document Content

A Hands-on XML External Entity Vulnerability Training Module | 4

Carrie Roberts, clr2of8@gmail.com

<convert>

<url>www.something.com</url>

<orientation>some orientation</orientation>

</convert>

Figure 2. Document Content after Parsing of General Parsed Internal Entity

In addition to internal entities, there are external entities. External entities reference something

outside of the parser itself in order to determine the value of the entity. One type of external

entity is declared by using the “SYSTEM” keyword and passing a URI from which to fetch the

value.

<!DOCTYPE convert[

<!ENTITY orientation SYSTEM “file:///etc/converter/converter.conf”>

]>

<convert>

<url>www.something.com</url>

<orientation>&orientation;</orientation>

</convert>

Figure 3. General Parsed External Entity

An example using a general parsed external entity is shown in Figure 3. The use of the

“SYSTEM” keyword designates that the entity value should be read from the URI that follows.

In this case the URI is a file located at “/etc/converter/converter.conf” but other URI’s such as a

web page URL can be specified as well. The resulting XML after being parsed would contain

the contents of the converter.conf file in the “orientation” element.

For brevity in this paper, the terms “internal entity” and “external entity” will be used when

referring to a general parsed internal entity and general parsed external entity, respectively. The

use of entities is powerful and many XML parsers allow them by default, including most Java

XML parsers (XML External Entity (XXE) Processing, 2013). Unfortunately this introduces

multiple security issues including disclosure of sensitive information and denial of service.

DTD

Document
 Content

A Hands-on XML External Entity Vulnerability Training Module | 5

Carrie Roberts, clr2of8@gmail.com

3. XML External Entities – The Vulnerability
The DOCTYPE declaration with the SYSTEM keyword causes an XML parser to read data from

a URI and permits it to be substituted into the document content. This document content can

then be viewed by users of the application in various ways, including through error messages.

The example user input shown in Figure 3 includes a file URI pointing to the converter.conf file

in the /etc directory. The contents of that file will be substituted into the XML document as the

orientation parameter. Configuration files typically contain sensitive information such as

database passwords. Consider a scenario in which the application will only accept a value of

portrait or landscape for the orientation parameter. In this case, the application may return an

error message stating that the orientation parameter is invalid and reflect the value submitted

back to the user as a helpful error message. The contents of the converter.conf file are returned

because the parser has fetched the file contents and substituted it for the value of the orientation

parameter. Even without an error message, if the application lets users read data that has been

submitted, the sensitive data will be exposed. For example, if the application allows submission

of contact information and then lets user read that contact information.

Any file that is readable by the user under which the application is running can be read this way,

including the sensitive user information found in /etc/passwd. Note that since the password

hashes are stored in a file that is typically not world readable that retrieving the contents of this

file (/etc/shadow) is likely not possible. The exceptions are if the application is running as the

root user or if the shadow file or backups of the shadow file are readable by the user under which

the application is running.

Another way that an XXE vulnerability can be used to reveal sensitive information is by pivoting

to other systems in the same intranet where the application is running. An example scenario

consists of another internal server hosting a site such as “internal.mycompany.com” that contains

non-public information that should only be accessible by someone on the internal network. If the

XXE vulnerable server is hosted inside this same intranet, the contents of

“internal.mycompany.com” can be successfully fetch by the XML parser and returned to an

outside user.

A Hands-on XML External Entity Vulnerability Training Module | 6

Carrie Roberts, clr2of8@gmail.com

It is also common that developers provide functionality that is only accessible via a call to

“localhost” such that no public access is given. A URI of “http://localhost/my_app/configs” may

be implemented to let a developer read application configuration settings when ssh’ed into the

server itself. If this URI is passes in a DOCTYPE declaration it can be successfully retrieved by

the XML parser which runs on localhost and the contents of that site can be erroneously and

unexpectedly returned to a user of a public API.

A denial of service (DOS) attack is also possible with an XXE vulnerability. This can be

exploited by causing the parser to reading content from a continuous (non-ending) stream such as

local devices like /dev/zero and /dev/random. The stream at /dev/zero will return as many nulls

as are read from it and /dev/random will do likewise, returning random numbers. The parser will

attempt to read this file until it reaches the end of the stream, which it never will. A few such

requests will tie up all available threads for processing and result in a successful denial of service

attack on the server. Although several references make note of the use of /dev/zero (Herzog,

2010) and /dev/random (XML External Entity (XXE) Processing, 2013), this particular DOS

attack does not work against the openjdk parser included in the sample application described in

this paper. When these DOS attacks are attempted on this parser an exception is thrown due to

invalid bytes being read from the stream, thus circumventing the DOS attack.

Taking a look at a real world scenario using a sample vulnerable web application helps to clarify

these vulnerabilities. The sample application will be described below. The steps taken to create

the application are also included, showing how easily such an application can be developed.

4. A Sample Vulnerable Web Application
A web application that parses user supplied XML is susceptible to an XXE attack if it allows

external general entities. To demonstrate this, a sample application that provides a public

interface from converting HTML to PDF is used. Instructions for creating the application are

provided as well as a download of a virtual machine image that contains the vulnerable web

application. The virtual machine image also includes a variety of tools that can be used to

perform the exploit.

A Hands-on XML External Entity Vulnerability Training Module | 7

Carrie Roberts, clr2of8@gmail.com

Figure 4 shows the home page for the sample web application. It explains that this application is

used to convert HTML documents to PDF documents and it provides an application

programming interface (API) for doing so.

Figure 4. Home Page for the HTML to PDF Sample Web Application

Clicking on the “our conversion API” link describes how this application accepts and responds to

HTML POST requests with XML payload. Figure 5, Figure 6 and Figure 7 show the

information provided on the API page.

A Hands-on XML External Entity Vulnerability Training Module | 8

Carrie Roberts, clr2of8@gmail.com

Figure 5. XML Payload for the POST Request

Figure 5 explains the XML format that should be sent to the application to request a conversion.

The request should us an HTTP method of POST. The “url” element specifies the HTML page

to be converted and the” orientation” element specifies whether the page orientation of the PDF

should be landscape or portrait.

Figure 6. XML Response to API Request

If the request was properly formatted, an XML response similar to the one shown in Figure 6 is

returned. It contains a status code and the URL where the converted PDF can be downloaded.

Note that for this sample application this is not a functional URL and is only returned as an

example.

Figure 7. XML Error Response

In the event that an error results, an XML message is returned. Figure 7 gives a description of

the XML message that is returned upon error. It includes an error code and a description of the

error. For example, if the request specified an orientation of “panorama”, then an error with a

description of “Invalid orientation parameter: panorama” is returned.

The requirement for an XXE vulnerability is that the application parses XML and external

general entities. In addition, it must in some way reflect part of the XML data back to a user. In

the case of the sample application this is done through a descriptive error message when an

A Hands-on XML External Entity Vulnerability Training Module | 9

Carrie Roberts, clr2of8@gmail.com

invalid orientation is specified. There are others way that applications may reflect the

information back to a user as well. For example, user comments may be submitted to an online

forum through an API that defines the comment in an XML payload. When any user views the

forum, they will see what was submitted as the “comment” portion of the XML payload.

The sample application also reads a configuration file located at “/etc/converter/converter.conf”

at startup which contains sensitive database information. This file will be the focus of the exploit

described in a later section.

Instructions are included in the following section for creating the pieces of this web application

that are critical for demonstrating the vulnerability. It does not include the code for displaying

the nicely formatted pages shown in Figure 4 and beyond because these are only informational

and are not actually part of the underlying vulnerability. However, these pages are functional on

the virtual machine image containing the sample application which is available for download.

5. Create an XXE Vulnerable Web Application
Instructions for creating the sample vulnerable web application are included here. It shows how

easily it is to develop a vulnerable web application simply by using default settings.

Alternatively, a virtual machine image of the sample web application can be downloaded instead

of creating it manually. The manually created version described here only contains the bare

application needed to demonstrate the vulnerability, whereas the virtual machine image contains

other helpful information and exploitation tools. Follow the instructions below to manually

create the sample web application.

5.1. Pre-requisites
The vulnerable web application is built on a virtual machine image of Ubuntu 13.04 Desktop.

VMware Player is the virtualization software used and must be installed first. Use VMware

Player to create a new virtual machine and install Ubuntu 13.04 Desktop on it. VMware Player

can be downloaded from www.vmware.com and Ubuntu can be downloaded from

www.ubuntu.com. Steps for completing these pre-requisites are readily available on the internet

and are not included here.

A Hands-on XML External Entity Vulnerability Training Module | 10

Carrie Roberts, clr2of8@gmail.com

5.2. Install the Tools Needed for Development
To build the vulnerable web application, Groovy and Grails will be used. Groovy is a

dynamically typed language which runs on the Java platform. Grails is a web application

framework that uses Groovy to enable quick and easy web application development. An easy

way to install both Groovy and Grails is to use the Groovy Environment Manager, or GVM. The

first step will be to install the Java Development Kit (JDK) since Groovy utilizes it and it

includes the XML parser. A helper application, cURL, will be used to download the GVM.

After executing the following commands in a terminal window on the Ubuntu virtual machine

the system will be prepared with the needed tools to develop the vulnerable web application.

sudo apt-get install openjdk-6-jdk

sudo apt-get install curl

curl -s get.gvmtool.net | bash

note: open a new terminal as directed

gvm install grails 2.3.0

5.3. Develop the Web Application
With Grails installed, the system is prepared for writing the code for the web application. The

following commands will created an application called “converter” and run it.

grails create-app converter
cd converter
grails run-app

The “run-app” command will cause the source code to be compiled, after the compilation is

complete the output will indicate that the server is running and can be viewed by visiting

http://localhost:8080/converter. Opening this link in a web browser will display the default

index page containing information about Grails.

To demonstrate the XXE vulnerability the web application will be coded to provide a public API

that accepts and responds to XML messages. A controller called “convert” will be used as the

access point for the API. The create-controller command will create the controller, called

“Convert” in this case. Open a new terminal in order to leave the Grails app running in the

previous one and enter the following command to create the “Convert” controller.

A Hands-on XML External Entity Vulnerability Training Module | 11

Carrie Roberts, clr2of8@gmail.com

grails create-controller Convert

The application is now prepared to accept and respond to http requests at

http://localhost:8080/converter/convert. Accessing this URL in the browser will yield a “404”

not found error until additional code is in place. The XML parsing code can now be put in place

by editing the default “index” action inside of the ConvertController to look like the following.

def index() {
 if (request.method == "POST") {
 def parser = new XmlSlurper()
 def orientation = parser.parseText(request.reader.text).orientation.text()
 if (orientation.equalsIgnoreCase("portrait") | orientation.equalsIgnoreCase("landscape")){
 response.status = 200
 render "<result>\n <code>200</code>\n " +
 "<url>http://html2pdf.com/conversions/13457232.pdf</url>\n</result>"
 }
 else{
 response.status = 400
 render "<result>\n <code>400</code>\n <description>Invalid orientation parameter: " +
 orientation + "</description>\n</result>"
 }
 }
 else { //it’s not a POST request
 render "Default Page"
 }
}

Also add “import groovy.util.XmlSlurper” to the top of the ConvertController.groovy file

immediately after the first line that says “package converter.”

It may be necessary to stop and restart the application after adding this code. This can be done

by pressing ctrl+C in the terminal window where the “grails run-app” command was entered, and

then reentering “grails run-app” to start it again.

With this code in place, if the request comes in as an http POST request the server processes the

XML, otherwise the text “Default Page” is returned and displayed in the browser. If it is a POST

request, a parser is instantiated from the XmlSlurper class. The XmlSlurper provides access to

the underlying XML parser that comes bundled with the Java Development Kit. This is the key

element related to the XXE vulnerability that is explored in this paper. Next, the “orientation”

element is parsed from the XML. If it has a value of “portrait” or “landscape” (case insensitive),

then a result indicating success is returned. Otherwise, an error code and descriptive message is

returned stating that the “orientation” value is invalid. This is all the code that is needed to

A Hands-on XML External Entity Vulnerability Training Module | 12

Carrie Roberts, clr2of8@gmail.com

demonstrate the XXE vulnerability. Notice that nothing special was done to create the

vulnerability and that a parser with default settings is used.

Lastly, create the application configuration file that will be the target of the exploit. Name the

configuration file “converter.conf” and place it in a directory also named “converter” inside of

the “/etc” directory. Edit the resulting “/etc/converter/converter.conf” file to contain the

sensitive database information shown in Figure 8.

Database configuration
export DATABASE_HOST=apiconverter.czs893zdu2v5.us-east-1.rds.amazonaws.com
export DATABASE_USER=html2pdfroot
export DATABASE_PASSWORD=ThisIzTheePwd4Rdb

Figure 8. Contents of Sample Web Application Configuration File

This completes the steps for manually creating the basic vulnerable web application. In addition

you can download a virtual machine image containing the application including exploitation

tools as described in the following section.

6. Download an XXE Vulnerable Web Application
A virtual machine image of the vulnerable web application can be downloaded from sourceforge

at: https://sourceforge.net/projects/xmlexternalentitytraining. The vulnerable web application

described in the previous section is included as well as the tools used in the next section to

perform the exploit. Unzip the downloaded file after download is complete.

The virtual machine image contains the basic code that was manually created in the last section.

It also contains the enhanced user interface shown in Figure 4. The three tools for exploitation as

described in the next section are also included.

VMware player is required for running the virtual machine image. It is freely downloadable

from www.wmware.com for many different operating systems. Once VMware player is

installed, select “Open a Virtual Machine” from the menu. Browse to the unzipped download

and select the file called “XML_Vulnerability.vmx” and choose “Open.” With the

“XML_Vulnerability” virtual machine selected, choose “Play virtual machine” to start the virtual

A Hands-on XML External Entity Vulnerability Training Module | 13

Carrie Roberts, clr2of8@gmail.com

machine. Select “I copied it” if a warning dialog appears inquiring as to whether the virtual

machine was moved or copied.

The username and password for the virtual machine is listed in Figure 9. Log in to the virtual

machine by entering “xmlvulnpwd” as the password for the “XML Vuln” user. If the desktop of

the virtual machine is not completely filling up the VMware player window, simply resize the

window and then maximize it again.

Figure 9. Username and Password for Virtual Machine Image

With the sample application in place either through manual creation or download, the actual

XXE vulnerability can be exploited. Tools and techniques for doing this are included in the

following section.

7. Exploit the Vulnerable Web Application
Many different tools can be used to exploit the sample web application. The web application

itself must be running before the exploits are attempted. Open a terminal window and enter the

following commands to start the web application.

cd converter
grails run-app

Figure 10 shows the launcher menu of the virtual machine that can be used to easily access the

tools needed for exploitation.

A Hands-on XML External Entity Vulnerability Training Module | 14

Carrie Roberts, clr2of8@gmail.com

Figure 10. Ubuntu Desktop Launcher Inside Downloaded Virtual Machine

Three different tools for exploiting the vulnerability are reviewed. The first is the Chrome web

browser with the Advanced Rest Client extension. The second is the Firefox web browser with

the RESTclient Add-on. The third tool is the cURL program which is run on the command line.

The exploitation payload shown in Figure 3 can be sent to the vulnerable web application using

any of these. The use of the Chrome web browser will be the first exploitation tool discussed.

7.1. Exploit with Google Chrome Advanced Rest Client
Start the Chrome web browser by clicking on the icon in the launcher menu as shown in Figure

10. Two tabs will be started. The first is the home page for the vulnerable web application and

the second is the advanced rest client extension which has already been installed.

From the “Advanced Rest Client Application” tab enter the target url of the vulnerable web

application (http://localhost:8080/converter/convert). Select the radio button next to “POST” to

send the payload as an HTTP POST request as is typical for this kind of request. On the

“Payload” tab enter the XML payload shown in Figure 3. Set the “Content-Type” to

“application/xml” and then click “send” to send the crafted HTTP request to the vulnerable web

application.

The response from the web application will be displayed. Figure 11 shows the response which

includes the sensitive database configuration information found in the

/etc/converter/converter.conf file. This information could be used to further compromise the

application by directly logging into the database.

A Hands-on XML External Entity Vulnerability Training Module | 15

Carrie Roberts, clr2of8@gmail.com

Figure 11. XML Server Response Containing Sensitive Configuration File Data (Chrome)

Another method of exploiting the application uses the Firefox browser.

7.2. Exploit with Firefox RESTClient Add-on
The Firefox with the RESTClient Add-on can also be used to perform the same exploit. Start

Firefox by clicking on the link in the launcher as shown in Figure 10. Two tabs are already

open. One shows the home page of the vulnerable web application and the other shows the

RESTClient Add-on.

From the RESTClient tab, set the method to “POST” and enter the target URL of

http://localhost:8080/converter/convert. Place the XML payload shown in Figure 3 in the

“Body” window and click the red “SEND” button. The web application response will be

returned. Click on the “Response Body (Highlight)” tab to see the results of the exploitation as

shown in Figure 12.

A Hands-on XML External Entity Vulnerability Training Module | 16

Carrie Roberts, clr2of8@gmail.com

Figure 12. XML Server Response Containing Sensitive Configuration File Data (Firefox)

The results show that the sensitive database information has been accessed in a way that was not

intended.

Alternatively, a command line tool called cURL can be used to exploit the web application.

7.3. Exploit with cURL on the Command-line
cURL is a command line tool that can be used to craft and send specific HTTP requests. It can

be run on both Linux and Windows systems. It has already been installed for use on the virtual

machine download of the sample vulnerable web application. Exploiting the vulnerable web

application using cURL is as simple as entering the XML payload into a file and executing the

following command in a Terminal window.

 curl -H "Content-Type: text/xml" --data-binary @xml http://localhost:8080/converter/convert

The Terminal window can be started by clicking on the icon as shown in Figure 10. The curl

command sets the HTTP header content type, reads the XML payload from a file called “xml”

and sends the request to the vulnerable web application running on localhost port 8080. In this

example the file named “xml” contains the exploitation payload and must be in the same

directory where the curl command is run.

The response shown in Figure 13 shows the content of the sensitive database configuration file.

Figure 13. XML Server Response Containing Sensitive Configuration File Data (cURL)

A Hands-on XML External Entity Vulnerability Training Module | 17

Carrie Roberts, clr2of8@gmail.com

With this exploit, an unauthorized user can read arbitrary files on the web application server

which is clearly a security concern. Fortunately, removing this vulnerability is very easy, as

explained in the next section.

8. Removing the XXE Vulnerability
Many XML parsing libraries, including the one that comes with the Java Development Kit, allow

external entities by default. Removing the vulnerability is as simple as configuring the parser to

not allow external entities to be defined.

The exact methods for configuring the parsers vary. Methods for several parsers are included on

the XML external processing OWASP site (XML External Entity (XXE) Processing, 2013).

Instructions are included here for the parser that comes with the Java Development Kit (openjdk

version 6) which was used in the sample application.

The most robust method to protect against XXE is to configure the applications XML parser to

not allow DOCTYPE declarations. This is done by setting the parsers “disallow-doctype-decl”

parameter to true as shown in Figure 14. With this set, an exception occurs if the input contains

a DOCTYPE declaration and parsing stops, preventing the vulnerability from exposing sensitive

information.

parser.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true)

Figure 14. Parser Setting to Disallow DOCTYPE Declaration

Alternatively, if DOCTYPE declarations are needed for other purposes, the setting shown in

Figure 15 will allow DOCTYPE declarations but not external general entities to be placed into

the document content. Remember that the SYSTEM keyword, as shown in Figure 3, defines an

entity to be external. If such a reference is made to an external general entity the parser will not

substitute the URI content into the XML document. For example, with the external-general-

entities parameter set to false in the sample application, the orientation parameter would remain

blank even though it contains a reference to the contents of the converter.conf file.

parser.setFeature("http://xml.org/sax/features/external-general-entities", false)

A Hands-on XML External Entity Vulnerability Training Module | 18

Carrie Roberts, clr2of8@gmail.com

Figure 15. Parser Setting to Stop Parser from Including External General Entities

Experimentation can be done with both of these settings by modifying the

ConvertController.groovy application file to contain one of these settings. The setting should

appear directly after the “def parser = new XmlSlurper()” line.

The “disallow-doctype-decl” is the preferred setting because it also protects against XML entity

expansion (XEE). XEE is when one entity refers to another entity such that the number of

entities is greatly expanded.

<!DOCTYPE convert[
<!ENTITY localfile SYSTEM 'file:///etc/converter/converter.conf'>
<!ENTITY localfile2

"&localfile;&localfile;&localfile;&localfile;&localfile;&localfile;&localfile;&localfile;
&localfile;&localfile;">

<!ENTITY localfile3
"&localfile2;&localfile2;&localfile2;&localfile2;&localfile2;&localfile2;&localfile2;&
localfile2;&localfile2;&localfile2;">

<!ENTITY localfile4
"&localfile3;&localfile3;&localfile3;&localfile3;&localfile3;&localfile3;&localfile3;&
localfile3;&localfile3;&localfile3;">

<!ENTITY localfile5
"&localfile4;&localfile4;&localfile4;&localfile4;&localfile4;&localfile4;&localfile4;&
localfile4;&localfile4;&localfile4;">

<!ENTITY localfile6
"&localfile5;&localfile5;&localfile5;&localfile5;&localfile5;&localfile5;&localfile5;&
localfile5;&localfile5;&localfile5;">

<!ENTITY localfile7
"&localfile6;&localfile6;&localfile6;&localfile6;&localfile6;&localfile6;&localfile6;&
localfile6;&localfile6;&localfile6;">

<!ENTITY localfile8
"&localfile7;&localfile7;&localfile7;&localfile7;&localfile7;&localfile7;&localfile7;&
localfile7;&localfile7;&localfile7;">

]>
<convert>
<url>www.something.com</url >
<orientation>&localfile8;</orientation >
</convert>

Figure 16. Payload for an External Entity Expansion (XEE) Attack

Figure 16 shows an example payload of an XEE attack where one entity refers to another which

refers to another. When the parser attempts to expand this simple document it becomes very

A Hands-on XML External Entity Vulnerability Training Module | 19

Carrie Roberts, clr2of8@gmail.com

large. Submitting this payload to the sample application gives a parser error stating that more

than 64,000 entity expansions were encountered. This is the default XML parser limit put in

place to protect against XEE abuse. Now if the setting in Figure 14 is applied to not allow

DOCTYPE declarations, the expansion does not occur. On the other hand, if the setting shown

in Figure 17 is used, a stack overflow error occurs when receiving the XEE payload. For this

reason, the first setting shown in Figure 14 is preferred.

9. Network Analysis of an XXE Attack
The seriousness of this vulnerability becomes evident after experimenting with the sample

vulnerable web application. The vulnerability is prevalent because many parsers are vulnerable

by default. It takes deliberate action by the developer to remove this vulnerability. In larger

organizations it is not likely that the person maintaining and operating servers is also the

developer of the application. So what can an operational person do to detect and alert on an

XXE attempt or to determine how a compromise happened?

An intrusion detection system (IDS) can be used to detect the critical pieces of this attack. For

example, the string “<!DOCTYPE” can be entered as an alerting rule on the IDS. Alternatively,

an intrusion prevention system can be used to actively block such traffic. Note that for the

sample application, the use of typical filter evasion techniques like case change, spacing

variations, alternate character encoding and insertion of special characters will not result in a

successful attack so searching for this exact string is acceptable.

If the application or the web server logs the XML body of incoming requests then log analysis

tools can be used as well. Splunk is a good tool for analyzing, visualizing and alerting on events

found in logs. The installation and use of Splunk for such purposes is thoroughly discussed in

the paper “Discovering Security Events of Interest Using Splunk” (Roberts, 2013).

Analysis of this attack can also be done after the compromise has occurred if network traffic has

been captured. Tcpdump will be used on the sample web application to capture network traffic

for analysis. From a terminal window, enter the following command to capture traffic on the

loopback interface and write it to a file called cap1.pcap:

.

A Hands-on XML External Entity Vulnerability Training Module | 20

Carrie Roberts, clr2of8@gmail.com

Enter the password of “xmlvulnpwd” when prompted. Now use one the exploit techniques such

as the Chrome advanced rest client to send the XXE payload to the vulnerable web application.

After the web application response is received press ctrl+C to quit the tcpdump capture.

Tcpdump has created a pcap file called cap1.pcap in the current directory containing the network

traffic associated with the attack.

Wireshark can be used to analyze this traffic. If Wireshark is not installed, install it by entering

“sudo apt-get install wireshark” on the command line of the terminal window. Read the captured

network traffic file by entering the following command on the command line:

wireshark cap1.pcap

Figure 18 shows the Wireshark packet list view of the network traffic. The http POST of the

XXE payload is shown highlighted in green. The response containing the sensitive data from

converter.conf is shown in orange. Clicking on either of these will display the request and

response body in the packet details pane. This makes it clear what XML payload was used,

including the DOCTYPE declaration and what data was returned.

Figure 18. Wireshark Packet List View of XXE Network Traffic

Another useful view of the exchange is found by right clicking on any of these packets and

selecting “Follow TCP Stream” from the context menu. Figure 19 shows the “Follow TCP

Stream” dialog.

A Hands-on XML External Entity Vulnerability Training Module | 21

Carrie Roberts, clr2of8@gmail.com

Figure 19. Wireshark “Follow TCP Stream” View of XXE Network Traffic

The incoming request is shown in red and the response is shown in blue. By inspecting the

output in this way it is easy to see what payload the attacker used and what sensitive data was

retrieved.

10. Conclusion
Default settings for many popular XML parsers leave web applications vulnerable to XXE

attacks (XML External Entity (XXE) Processing, 2013). This vulnerability can be used to

A Hands-on XML External Entity Vulnerability Training Module | 22

Carrie Roberts, clr2of8@gmail.com

expose sensitive data including reading arbitrary files. It can also be used to perform denial of

service attacks, rendering the web application unusable. The sample web application provided

offers a hand on training experience for understanding the vulnerability, including how to detect

and defend against it. Performing network analysis can reveal attempts to exploit the XXE

vulnerability. An understanding of this vulnerability from creation to detection and analysis will

help developers, administrators and analysts to protect systems against XXE attacks.

11. References

Extensible Markup Language (XML) 1.0. (2008). Retrieved October 10, 2013, from w3.org:

http://www.w3.org/TR/REC-xml/#sec-external-ent

HPSR Threat Intelligence Briefing Companion Report to Episode 6. (2013). Retrieved October 1, 2013,

from hp.com: http://h30499.www3.hp.com/hpeb/attachments/hpeb/off-by-on-software-

security-
blog/78/1/Companion%20Report%20to%20HPSR%20Threat%20Intelligence%20Podcast%20Epis

ode%206_v1.6.pdf

XML External Entity (XXE) Processing. (2013). Retrieved October 15, 2013, from owasp.org:

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing

Herzog, S. (2010). XML External Entity Attacks (XXE). Retrieved October 13, 2013, from

https://www.owasp.org/images/5/5d/XML_Exteral_Entity_Attack.pdf

Roberts, C. (2013). Discovering Security Events of Interest Using Splunk. Retrieved October 8, 2013, from
sans.org: https://www.sans.org/reading-room/whitepapers/logging/discovering-security-

events-interest-splunk-34272

Steuck, G. (2002). XXE (Xml eXternal Entity) Attack. Retrieved October 16, 2013, from securiteam.com:

http://www.securiteam.com/securitynews/6D0100A5PU.html

Symantec Corporation. (2013). Internet Security Threat Report 2013.

