
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Fundamental Honeypotting

GIAC Gold Certification

Author: Justin Mitchell

Advisor: John Ives

December, 2006

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 2 -

Table of Contents

1. INTRODUCTION -- - 3 -

2. ABSTRACT-- - 4 -

3. DEFINITIONS -- - 5 -

4. SOFTWARE-- - 7 -

5. DATA MANAGEMENT --- - 12 -

6. THE SETUP -- - 15 -

7. CONSIDERATIONS --- - 18 -

8. THE ANALYSIS -- - 22 -

9. LEGALITIES -- - 43 -

10. CONCLUSION -- - 44 -

11. REFERENCES -- - 46 -

Appendix A – The Setup
Appendix B – Considerations
Appendix C – The Analysis

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 3 -

1. Introduction

“I spend almost as much time figuring out what's wrong with my

computer as I do actually using it.” (Stoll, 1995)

Over 20 years ago, a programmer from LBNL (Lawrence Berkeley

National Laboratory) by the name of Clifford Stoll started

investigating an apparent software glitch that began generating

inconsistent debts between computer use charges. After realizing

someone was on the other end, he soon used his pioneering

surveillance savviness which included several dummy terminals and a

“secret” network to fuse this activity to Markus Hess, a German

hacker, whom sold ARPANET and MILNET secrets to the KGB. This

(possibly the first newage) iconic event solidified the roadmap,

importance, and justification as to how honeypots came about and why

they exist today (and why they should continue to serve as a valuable

tool for tomorrow).

Generally, honeypots accomplish the detection and collection of

nefarious activity via emulating a given service or vulnerability

then log the corresponding action or download the malicious code

accordingly. Among other places, honeypots may reside within the LAN,

DMZ, or external network (Internet).

Most cyber-security mechanisms and technologies in use today

take a defensive stand (rightfully so) – much like a firewall,

router, proxy, or an IPS. However, at times this tends to promote a

“blurred” perspective as to what may have taken place if malicious

code or an attack was allowed to fulfill its objective. For this

reason, honeypots may be one of the more predominate mechanisms to

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 4 -

assess new threats, detect targeted attack vectors, and capture

anomalous behavior. These threats, whether it be malware or specific

attack channels, both can be analyzed to construct signatures or

tighten up security policy and posture of the industry or company

(best practices) - benefiting the community as a whole.

2. Abstract

This document is intended to guide an individual through a basic

honeypot software install, identify traffic analysis and management

techniques, and illustrate how data from a honeypot can be utilized

to formulate valuable information.

In section three I will provide a few pertinent definitions to

familiarize the reader with any new honeypot terminology. Section

four elaborates as to how I came to the conclusion on what software

to deploy and some of the more common accompanying features. In

regards to Section five, I will discuss the importance and the

underlying data management framework needed within all thriving

honeypots. Section six describes a few pre-installation steps and

walks the user through a basic honeypot and proxypot install. For

section seven, I illustrate to the reader a few significant

considerations and the backing methodologies when deploying a

honeypot or honeynet and how to apply accordingly to the environment.

In section eight, analysis results are revealed via graphs, screen

shots, network traffic dumps, and there alike. And last but certainly

not least, section nine sums up the legal conditions that honeypot

users need to aware of. Unless otherwise noted, all commands are

preceded by “~#” and comments are preceded with a “#”.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 5 -

3. Definitions

The reader should be familiar with security terminology, basic

networking knowledge, and software consistent within the industry.

There are few distinct definitions and technologies that you need to

be familiar with before proceeding.

Unarguably the best definition for a honeypot I came across was

by Lance Spitzner (security guru whom specifically founded the

Honeynet Project - http://www.honeynet.org). A Honeypot is “a

security resource who’s value lies in being probed, attacked or

compromised” (Spitzner, 2002). In its simplest form, it’s no more

than a sponge (single box) in which its sole purpose is to absorb

traffic and, if applicable, subsequently respond or react as

inconspicuous as possible. In the grand scheme of things, consider

them intel boxes (not to be confused with intelligent or the Intel

Corporation). As with most terminology in the computer industry,

defining a honeypot can be daunting and vague at times in that it

encompasses many of the following concepts.

Open-relay/proxy honeypots (also known as Proxypots) are just

what the name implies. A middleman system dedicated to monitoring

activity between two endpoints of a client/server network connection.

Typically, they listen on 8080, 1080, or 3128 for client requests and

mimic the client and/or servers response. These attempted connections

may include but are not limited to; brute-force attacks, anonymity,

spam, worm/bot propagation, and reconnaissance.

Note: If you so desire to use an unorthodox port with your proxypot, you

should ponder the idea of submitting your IP to a proxy list, possibly

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 6 -

enticing more activity. This may be good or bad depending on your

configuration and logic. Personally, I wouldn't, due to legal reasons -

some may view this as entrapment.

If you’re a do-it-yourself kind of individual, you may find

Homemade honeypots quite appealing. Simplistic ones that contain no

more than a couple lines of code can be readily crafted via the use

of a perl/shell script or even a one-liner via netcat. These are

particularly effective if you're seeing temporary anomalous activity,

say a high volume of probes on an irregular port.

Tarpits are defined as systems that allocate resources to

inhibit the proliferation of or hinder network connections. Its main

objective is to mitigate the spread of worms or various scanning

activity. Despite the potential the community could gain from

tarpits, they generally (and usually do) consume vast amounts of

resources. Most entities are unable to justify the ROI and simply

don't have the bandwidth, time, IP addresses, or hardware to dedicate

to this type of honeypot.

Sandnets are used when an individual wishes to analyze malware

in a secure environment while mitigating the fear and risk of a

production or non-affiliated device becoming affected. A typical

environment consists of a physical, logical, or virtually segmented

network that is conducive to malware propagation and secure analysis.

This makes for a very comfortable locale to create, tune, or test

signatures and reverse engineer various code or exploits.

Honeynets may combine all the aforementioned technologies into

one network. By far this is the most complex setup which requires the

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 7 -

most knowledge and overhead to effectively maintain. After its

conception, the Honeynet Project has made the process readily

available and trivial to implement. By nature they (honeynets) have

the capability to emulate almost any device, service, or technology

which may combine two or more of the following; routers, web servers,

email servers, proxy servers, database servers, refrigerators - the

possibilities are nearly endless. It boils down to ingenuity and a

willingness to explore.

4. Software

I wanted my honeypotting experience and setup to be both

realistic and rewarding as possible. Mind you this was my first

official attempt at honeypotting so I was undoubtedly divided between

a fictitious and an all natural environment. Why not take a base

system of Red Hat 7.2 or Windows 2000 and slap it in the DMZ with a

default deny ALL outbound and vamoose? This free for all method is

more or less how it all started out, yet I also wanted to interlace a

few open-source emulation projects within a “real” OS.

Note: The majority of techniques and software discussed within this

document are native and/or specific to the Linux environment; however, most

are applicable and portable to the Windows environment as well.

Soon into my hunt for honeypot software, I came across honeyd.

“It can virtually mimic any device/OS and has been successfully

tested emulating 65535 hosts.” (Provos, 2006). Honeyd favors a high

interaction environment in that you are able to emulate more than one

network and provides many robust configuration options for arbitrary

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 8 -

services and its accompanying OS. Sounded very promising, but it

lacked the one main feature I highly sought after - in response to a

worm or shellcode it was unable to natively interpret instructions to

download a given file (worm, bot, virus, website, etc).

According to the Nepenthes website, “Nepenthes is a versatile

tool to collect malware. It acts passively by emulating known

vulnerabilities and downloading malware trying to exploit these

vulnerabilities.” (nepenthesdev, 2006) In early 2006, two prominent

honeypot projects, nepenthes and mwcollect, joined forces in a

collective effort to alleviate overlapping and redundant tasks

between differentiating (yet very similar) frameworks. Essentially,

mwcollect now serves as an information repository for the community

whom are interested or involved in collecting malware and nepenthes

was named the official software used in collecting the malware

itself.

To name a few tools and features for Nepenthes:

 custom modules – core functionality, which entail file upload

and download capabilities (particularly useful for efficient

analysis by submitting malware to Normans sandbox), shellcode,

vulnerability emulation, geo2ip, etc.

 IRC channel/communication logging

 chroot – jailshell simulating a root (/) file system

 bdiffm - a light weight and handy little tool that compares two

or more binary files and displays the differences via a

percentage matrix.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 9 -

I also dabbled around with Bubblegum proxypot. A proxy that

emulates an open proxy by tangling standard proxy ports and the

corresponding spammers’ requests, allowing for the interception of

(mainly) spam. Without modification, its main objective is to provide

evidence against spammers which can be used to notify appropriate

authorities if so inclined. Bubblegum is written in Perl, meaning it

can easily be manipulated to adapt to almost any related honeynet

schema or modified for similar purposes.

Note: While editing this document, the proxypot.org domain has become

inaccessible. Please use archive.org if you would like to review or

download the software.

(http://web.archive.org/web/20050829230717/www.proxypot.org)

Some bells-n-whistles for Bubblegum include:

 spamstat – a reporting tool which generates an executive summary

of emails formatted via html

 parse friendly log file

 SOCKS 4/5, dynamic proxy ports, HTTP CONNECT, etc.

 rate-limit – obviously, this is very useful for keeping

connection/traffic flow and system resources to a minimum

 supports mbox or maildir format for message delivery

 emulates everything – faking the SMTP DATA command further

solidifying the trust relationship we have with the originating

spammer(s)

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 10 -

Should I use VMWare?

With the debut and utter explosion of Virtual Machines (VMs)

over the last few years, it’s hard to ignore the possibility of

having N honeypots or honeynets on one physical system.

After stumbling over Kurt Seifrieds “Honeypotting with VMware –

basics”

• ... under windows this will show up in "Add/Remove programs",

the Program Files directory and so forth. For UNIX there are

Xfree86 patches to improve performance, as well as a complete

Xfree86 server optimized for VMware guest operating systems,

both of which can be identified by attackers. Much more obvious

traces are also left, such as /etc/rc.d/init.d/dualconf,

"Copyright (C) 1998-99, VMware Inc." and the /etc/vmware-tools/

directory.

• ... inability to hide the CPU type effectively, an astute

attacker is likely to wonder why a server with 32 megabytes of

ram has a 1 gigahertz AMD CPU.

• ... considering that the BIOS VMware uses is relatively unique

it becomes quite easy to check a signature of the BIOS file to

see if it is a VMware BIOS. (Seifried, 2002)

On a Windows system, the preceding information can easily be

extracted by malware or an attacker throughout the registry and on a

Linux base system, files within the /proc and /etc directories or

using a dmesg like command all contain this sensitive information.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 11 -

and upon reading Joe Stewarts “Behavioral Malware Analysis Using

Sandnets” presentation from CodeCon2006 ...

• ... Virtual NIC MAC address

• ... VMWare I/O “backdoor”

• ... Location of CPU descriptor tables

• ... Timing of structured exception handler (Stewart, 2006)

MAC addresses are unique identifiers containing alpha numeric

characters separated by a colon hard coded into all network

interfaces. Here’s a MAC address of a box within my network:

08:00:20:D1:65:37. You can visit the following URL for further

information on the algorithm used by VMware to generate this virtual

address and how to manually modify -

http://www.vmware.com/support/esx21/doc/esx21admin_MACaddress.html

The VMware I/O backdoor is merely a method in which specific

VMware commands and operations can access the host machine to

retrieve various information and if need be, perform a given task.

See http://chitchat.at.infoseek.co.jp/vmware/backdoor.html for more

information.

CPU descriptor tables are used to segment the memory used by

accompanying software running on the system. Generally, only the OS

itself has write access but all non-privileged processes can query

this information. The process in return can discern at a higher

degree of accuracy on what needs to take place given the OS state and

residing software (ex. killing the AV software or exploiting VMware).

Several binaries that employ this method are publicly available for

your testing, such as “Scooby Doo” -

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 12 -

http://www.trapkit.de/research/vmm/scoopydoo/index.html and “The

Redpill” - http://invisiblethings.org/papers/redpill.html.

In the end, I emphatically decided to steer away from VMware,

opting for solo honeypot deployment using Nepenthes via Debian and a

Windows XP box for any malware release. Later on in the The Setup

section, I discuss more in depth on how this software is utilized and

deployed throughout the network.

5. Data Management

Now that we’ve established the underlying framework that I’ll be

utilizing, lets move on to the good stuff. You’re only as strong as

your weakest link and there are four basic “links” within the chain

of a successful honeypot. With the exception of Data Analysis, The

Honeypot Alliance provides a more definitive and thorough list of

requirements which can be reviewed at the following URL -

http://www.honeynet.org/alliance/requirements.html

1. Data Control. There’s a good reason why it’s listed first, it’s

important. Containment is an absolute must in order to mitigate

risk to the internal and external environments, particularly in

regards to new threats and savvy attackers. Your firewall is

going to be the first breaking point. The policy or ACL in use

will differ depending on your objective and the honeypots

configuration but two questions will always remain the same.

What needs to come in and what needs to go out? Ex. If you’re

running a Proxypot via port 8081 and 3128 and only want the XYZ

Corporation to connect and not allow your proxy to initiate any

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 13 -

 outbound connections, then only allow those IPs/ports from those

sources and nothing else. Other factors such as NAT, DMZ, VPNs,

bandwidth or connection throttling, and auto denying unruly

sources are also good to keep in mind.

2. Data Capture. Next on our agenda discusses the software and

tactics used to obtain all relevant traffic to/from the honeypot

and any affiliated devices unbeknownst to the attacker or some

other formidable breach. This should include firewall logs, IDS

events, packet captures, fingerprints, memory dumps, or local

system logs. Initially, I would suggest logging anything and

everything (even firewall accepts) and from there forward build

a baseline after the first couple days during the initial phase

to get a feel for normalcy. Not only that but then you're almost

guaranteed to (especially if you're dumping) not miss a beat.

3. Data Collection. Again, like the preceding components,

aggregating the data in a secure fashion is imperative if we

want to keep our system attractive to intruders and make it to

the next process, which is analyzing the data itself. One method

I particularly find quite trivial yet very effective is to setup

a reverse SSH tunnel or use Stunnel for MySQL and Syslog

traffic. This may be a sizable concern when collecting data from

multiple sources, honeynet(s), but this will further strengthen

covertness and help you sleep better at night. Additionally,

mistakes happen and for redundancy, replicate your logs if at

all possible. Although intruders are pretty snappy/adept in

destroying logs and its accompanying daemon, at least you tried.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 14 -

4. Data Analysis. And last but certainly not least, we get to

attempt to scrutinize what or who we caught (if anything or

anyone) and if they or it did anything interesting. Whether

you're running MySQL queries, carving out powerful one-liners,

reverse engineering a worm, or hashing out a Perl script to

graph out the last six months of activity, it doesn't get any

better than this. The whole reason why honeypots exists is to

aid in sharpening our security posture. Here’s where you get to

turn the raw data into useful information and if need be adjust

network peripherals and technologies accordingly. Just remember,

correlation and timestamps are vital.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 15 -

6. The Setup

Figure 1

For brevity and to protect the innocent, Figure 1 only depicts the

relevant devices that are being used. Due to the lack of realistic

corporate LAN activity and curiosity, I’ve chose to place my honeypot

on the Internet (NAT’d). Externally speaking, my firewall policy

essentially says “If you're not from here, there, or over yonder, go

to the honeypot.”

The following steps provide a basic layout on how to go about

installing and configuring the software. Both Nepenthes and Bubblegum

proxypot are fairly simple installs (taking no more than an hour to

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 16 -

get them up and operational), assuming both basic compile libraries

and software generally already reside on most modern Linux OS's.

Adjusting the settings, and code if necessary, are the most time

consuming factors in setting up these programs. Given the limits of

your OS knowledge and intention(s) the will vary from pot to pot but,

but for the most part it starts with configuring the OS itself.

1. First things first, ensure ALL systems have the date and time

synchronized via crontab and ntpdate! From the get go this makes

it much easier to correlate the who, what, when, and where’s.

See Table 1 for further instructions and output.

2. Next, a default install and thorough service audit on the

honeypot should be sufficient (disabling/uninstalling the

irrelevant or conflicting services). If you choose to do so,

configure iptables or Firestarter at the host level for

additional protection (aka. defense-in-depth). Debian uses a

program by the name of update-rc.d to enable/disable services

(simply removing the init and rc*.d scripts should also

suffice). Likewise, if you would like to completely remove the

software, apt-get should do the trick for most packages. See

Table 2 for the commands on how to do both for Apache.

3. Create two or three “dummy” accounts without shells (honey,

c4tchm31fuc4n, proxy). This will allow us to run various

services via test accounts for recreational and standard

security purposes. If the system does happen to be compromised

this will deny the users ability to login. If utilized in a

production environment and you’re intentions are fixed upon

catching an attacker in the act, use something less conspicuous,

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 17 -

such as “tsawyer” or there alike. Reference Table 3 for command.

4. Install

A. Install Nepenthes. By far the quickest method is through apt-

get. See the online documentation for additional methods,

such as installing from source or dpkg -

http://nepenthes.mwcollect.org/download. Table 4 illustrates a

nepenthes install by using the apt-get command.

B. Install Bubblegum proxypot. Download the source from

proxypot.org - http://www.proxypot.org/Proxypot-0.7.tar.gz

Extract -> perl Makefile.pl -> make -> make install -> done.

5. Configuration. Take a couple minutes to evaluate, make backups,

and then modify settings until adequately equipped/content.

A. Configure Nepenthes. Once installed, by default, all

configuration files reside within /etc/nepenthes/ (unless

prefixed otherwise). Specifically, nepenthes.conf is the main

location for environmental settings and for what its worth,

all files are quite trivial to hash-out.

 B. Configure Bubblegum proxypot. Before configuring bubblegum,

we'll need to create the configuration files using “proxypot

-c” from the command line which appropriately places the

files in /etc/proxypot/. Tweak away with the editor of your

choice - vi /etc/proxypot/*.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 18 -

6. Trial and Error. If something shouldn’t happen to work as

hypothesized, first review the README, located at

http://nepenthes.mwcollect.org/documentation:readme, then

proceed in taking the logical steps as to why you’re not

experiencing the expected. For instance, if you haven’t seen

anything or very little for 2-3 days in your logs, probe your

honeypot with a scanner from another device and run a tcpdump on

the system and/or check the logs to ensure traffic is actually

making it to the honeypot.

7. Considerations

 One option I particularly enjoyed using with Nepenthes (among

others software and Linux in general) is the ability to place the

daemon in a “chrooted” environment. This is accomplished with

Nepenthes by using the -r option (a directory structure resembling a

Linux file system, mount points, and symbolic links need to be

created in order work properly prior to using this feature). See

http://en.wikipedia.org/wiki/Chroot or Table 5 for additional

information and links.

 1. Logging

 In order to get the most out of this step, it’s absolutely

imperative to capture as much data as possible. Correlating data from

each logging point (IDS, firewall, honeypot, etc), is critical when

making the best decision – one is bound to leak some info that the

other didn’t. It’s also very important for the data to be held

accountable in regards to quality, accuracy, and uncontaminated when

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 19 -

processing and presenting the output, especially if it's going to be

used for legal purposes or influence company policy. If need be, as

shown in Table 6, use gpg and md5 (or sha512 for that matter) to secure

things up a bit.

A. Firewall

• Include ALL available logging options at the firewall

level. This will make it much easier when the analysis

phase comes around for a variety of situations. One

example is deducing whether the associated activity is

related to return traffic, established, or an initial

connection. You'll also find creating prefixes very

effective for parsing purposes, respectively demonstrated

from the DMZ to the LAN shown in Table 7.

 B. Honeypot

• Correctly logging the data on/to/from the honeypot is also

a necessity if it's going to be transformed into useful

information. This may include, setting up an SSH/SSL

tunnel or Cryptcat to transfer the data in a secure

fashion, installing a kernel-based keystroke logger such

as TCLEO, deploying Tripwire to monitor system integrity,

and/or creating a filter via Syslog-ng to suppress

nonessential events. There is nothing wrong with using the

standard Syslog, I just personally prefer Syslog-ng. It's

straightforward to configure, yet has some quite advanced

options that allow for the most flexibility. Reference the

following URLs or Table 8,

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 20 -

•

•

Appendix B – cont.

• Table 9, and Table 10 for additional assistance -
http://www.campin.net/syslog-ng/faq.html,

http://farm9.org/Cryptcat, http://www.stunnel.org/faq.

NOTE: Take great caution in logging too much data as this can

inadvertently, sometimes very quickly; create a DoS against your system(s).

Primarily, this is directed towards an abundance of firewall logs.

Redundancy is good to a certain extent, however too much tends to fog

things up a bit. Remember, if the traffic is directed towards localhost

(lo) and the box does happen to become “owned”, an intruder can easily

still sniff unencrypted UDP/TCP traffic on the local interface. This is

true for Cryptcat, SSH tunnels, and Stunnel. Also, prior to utilizing any

encrypted data transfers, it’s highly advisable to validate with tcpdump

the traffic is indeed being encrypted. A software bug (CVE-2002-1653)

and/or misconfiguration could easily come back to haunt you if ignored.

 2. Persistent Activity

• Inherently, in some honeypot environments, deploying a

liberal firewall policy may induce unforeseen

consequences. As you might imagine, they're sometimes so

forgiving that it begins to unleash havoc on the more

prominent resources, which in return, may cause these

resources to suffer CIA (confidentiality, integrity, and

availability) issues. Luckily, iptables alone has the

limited ability to limit or contain unruly activity.

Practical options fused together can yield some good

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 21 -

results, such as hosts.deny, denyhosts, Syslog-ng, and

Swatch. Table 11 shows how a combination of two iptables

rules will limit incoming connections to port 8080 to no

more than 5 attempts in 1 minute. The “—dport” and “-p”

options can be replaced to meet just about any known

protocol. This is very useful for brute force attempts.

• Another common method to shape traffic flow via the

honeypot or firewall is to use iptables in conjunction

with tc (Traffic Control). You can specify a multitude of

restrictions ranging from burst control, protocol and

network/host priorities, and/or bandwidth limitations. tc

is by far the most advanced open-source traffic shaping

Linux software. Manipulating network traffic takes a

somewhat patient and experienced Linux user and is

generally not used in solo honeypot deployment. However,

Joe Roback has been kind enough to provide a pretty simple

“Bandwidth Limiting with IP Masquerade – Howto” which can

be read at the following URL -

http://roback.cc/howtos/bandwidth.php

• Portscans occur everyday on the external side of

production environments and while they pose little threat

if certain precautions are taken, I wanted, at very least,

to gather any relevant information such as frequency,

source IP, and destination ports, etc. In the past, Snort

has notoriously had its shortcomings in this area, but

recently it has taken great strides in mitigating the

false positives via configuration settings (see Snort

manual and/or Google for tuning sfportscan). Despite the

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 22 -

improvements, I’ve found results to be much healthier with

scanlogd. See http://www.openwall.com/scanlogd for

additional resources.

 3. Alerting

• Prioritizing and filtering known suspicious or

questionable activity is desired if you plan on staying

abreast and responding quickly to any new developments

within the honeypot environment. I recommend using a log

monitoring software or script that continuously parses or

queries the data (from a log file or database) for

specific criteria and takes some course of action, say an

email or a page to on-call staff. Table 12 shows how to send

an email to honey_admin@server if user/group or account

information had been modified on the honeypot.

8. The Analysis

 From an analysis perspective, essentially my main concern was

any traffic traversing the firewall from the external side to the DMZ

and vice versa. I speculate with plausible confidence that my results

would greatly differ if I had placed elsewhere - such as, LAN1 ->

LAN2, EXT -> DMZ, on commercial as oppose to residential ISP, etc.

With that said, prior to exposing your results to your audience, you

should probably take into account or at least mention, that your

network isn’t saturated with an array of malware, an AUP (acceptable

use policy) would suppress and mitigate personnel curiosity,

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 23 -

unpredictable or anomalous activity, NAT and Dynamic IP addressing,

and various other security related ACLs (physical and logical) would

all undoubtedly have some residual impact on the results.

 Nevertheless, the following information depicts relevant

honeypot activity over the course of roughly 3 months.

p0f is a lightweight yet powerful utility that uses libpcap and

a known signature database (TCP/IP options) to passively fingerprint

network entities (PIX, PalmOS, Windows, Sega Dreamcast, Linux, etc).

It acts much like a lie detector test in that humans are to

polygraphs as network devices are top p0f. Predefined characteristics

are emitted by both allowing us make rational (and fairly accurate)

decisions/assumptions. Unique source IPs from Nepenthes logs were

directly correlated with p0f logs as shown in Figure 2. Additional

information is available at http://lcamtuf.coredump.cx/p0f.shtml.

Command line syntax and example output is shown in Table 13.

Figure 2

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 24 -

While a “hit” does mean a unique IP did attempt to communicate

with the honeypot, some were originating from very similar locations

in terms of network vicinity (ex. a.b.c.d and a.b.c.z). Most likely

this is the result of either, A. the ISP netblock is rampant with

malware or B. the DHCP release time is fairly short at the ISP. Whois

data revealed that a little over 75% of these sources originated from

high speed residential providers. Often times, as shown later in The

Analysis setion, once malware detects a live connection, it further

probes for specific information, such as throughput, DNS servers,

external netblock. Obviously the malware/exploit will spread much

faster if scans its own netblock as opposed to scanning destinations

half-way around the world while on a dialup connection.

 Another signature based tool that the security field is

accustomed to using is Snort. Snort is open source software using

predefined signatures to detect network traffic behavior, and alert

if applicable. Initially, portscans and scattered ICMP false

positives were quite numerous but by tuning the configuration and

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 25 -

ruleset, I was able to selectively toss the majority of junk and any

other insignificant alerts. Also, when I say toss, that doesn’t

necessarily imply I’ve disabled a signature, instead I chose negation

through MySQL select queries. While these high volume alerts were at

the top of the list, I honestly didn’t mind the incoming traffic as

it’s quite standard to see this noise given my “accept ALL incoming”

firewall policy. Needless to say, they were negated and Table 14

represents any compelling alerts during the data capture phase.

I’m a stickler for wanting to “see it all” but I personally like

the thresholding approach in regards to noisy alerts rather than

completely suppressing or removing a rule from the ruleset.

Note: Depending on your network configuration and applications being used,

some signatures are very broad and can get quite noisy. If this is the

case, look into either modifying the signature itself or removing it from

the ruleset as this can fill up a database with garbage rather quickly. If

you haven’t read it already, I highly advised you to read the Snort

documentation at http://www.snort.org/docs/#docs or sign-up on the Snort-

sigs list at https://lists.sourceforge.net/lists/listinfo/snort-sigs for

additional assistance when tuning your rules and/or configuration.

After reviewing my sheared data, the Slammer worm was at the top

with a total of 413 occurrences (71.5 percent of the worms

originating from China). Slammer was (and still is) the fastest

spreading worm ever released. Most experts conclude this was due to

the single 376 byte packet size, UDP, and poor patch management.

(CAIDA, 2003) If you've reviewed your IDS alerts since the last US

presidential election, this should come as no surprise. Conversely,

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 26 -

if you're startled by this information and haven’t updated your

system in over three years, the time is now, because as you can tell,

some individuals/organizations haven’t. Slammer payload can be seen

in

Appendix C – cont.

Table 15

A somewhat more recent exploit, released in 2004, still scouring

the net lies within various MS Windows authentication services such

as Kerberos and NTLMv2. The exploit weighed in at 62.67 percent of

the alerts sourcing from the US. I opted to omit the payload given

its size and collateral value to my topic. Table 16 provides the

signature that caught the attempts.

Snort alerts were pretty consistent with what other Honeypot

users have discovered scouring the net. The Philippine Honeynet

Project (Honeypot Alliance member) has hashed out some rather

intuitive graphs depicting, among other things, top Snort alerts

destined for their honeypots. For instance, in some graphs they’ve

broken down signatures that are affiliated with only certain ports

(ex. TCP/80). They’re accessible by visiting the following URL -

http://www.philippinehoneynet.org/data.php

Towards the end of my research it became increasingly noticeable

that I needed a better method to parse network traffic in order to

tweak and create signatures based upon raw dump analysis rather than

relying on the preexisting Snort dumps or alerts.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 27 -

Appendix C – cont.

Table 17 illustrates a script that was placed in /etc/cron.daily
to aid my parsing efficiency and keep hard drive space somewhat more

manageable. Then, if any activity of concern should surface via the

Nepenthes, proxypot, messages log files, or there alike, I could

further probe the full network dumps for additional information –

such as, new shell code destined for the honeypot or a suspicious

file download.

Over the course of a few months, the honeypot collected a total

of 15 pieces of malware. Most were derivatives or had very similar AV

signatures and characteristics of the Agobot family. Embedded

throughout the mix were a few IRC bots and Dabber variants as well.

Figure 3 is from a ClamAV (v0.88.4) scan illustrating the corresponding

results (with fresh definitions). Another four pieces of malware were

caught after the fact.

Figure
3

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 28 -

While ClamAV is/was a very useful Linux tool for discovering

viruses, it does lack premier support for the most recent

definitions. But generally speaking, you have to be mindful of this

issue with all vendors. It's a good idea to get a second opinion on

anything. That's why I opted to rerun the suspect binaries through a

free service known as Virustotal - http://www.virustotal.com, which

scans suspicious files with several up-to-date antivirus engines.

They provide two submittal options for the community to use, via

email or web site, I chose the latter. Like expected, the results

were pretty consistent and a few vendors were hit or miss. This

solidifies the reasoning that if you're an administrator and you need

the purest environment possible (who doesn't), it's ideal (as

redundant as it may seem) to have AT LEAST three removal tools at

your disposal, at all times. In addition, educating users more often

AND deploying a thorough patch management system will also help

thwart off those “cleanup weekends”.

Note: Interestingly enough, most engines from Virustotal coined many of the

infected files with a different name as their counterpart. Although, many

viruses have coding similarities, perform standard system

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 29 -

analysis/modifications, and/or exhibit similar alike network behavior, this

still brought up a intriguing question - “Just how accurate are these

definitions anyhow and does it matter?”. To me, it does matter because if

you can't find the issue, you can't find a solution. I'm not scrutinizing

the anti-virus companies’ competence or software value, but merely stating

that there are just way too many variables and dynamic components

(variants/coders) that fall into play when it comes to generalizing

malware. It seems the end result is, “They found something, you get to re-

image the system.” Hopefully these naming mishaps will slowly come to a

conclusion with the emerging Common Malware Enumeration project gaining

recognition. You can read the FAQ at http://cme.mitre.org/about/faqs.html

Bdiffm output as illustrated in Figure 4 shows all captured malware
compared to one another. While the resulting binary differences

between each piece of malware was somewhat contradicting (I expected

a closer relation given the AV results), I thought it was still

sufficient enough to post the outcome. Source code and further

information is located at

http://nepenthes.mwcollect.org/snippets:bdiffm.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 30 -

Figure 4

Halvar Flake from the SABRE team compiled a blog titled “More on

automated malware classification and naming“ including some fairly

detailed graphs which depict the binary and coding

proximity/differences. Article and images can be reviewed by visiting

the following URL - http://addxorrol.blogspot.com/2006/04/more-on-

automated-malware.html

I reluctantly choose not to venture to far off path into the

reverse engineering realm. That subject alone entails many aspects

that are beyond the scope of this paper. This field of IT allows you

to see the true contrast of what each variants intended functions are

by using an overwhelming amount of tools. Some of the more common

ones are IDA, OllyDbg, biew, Winalysis, tcpdump, regmon, and tcpview.

Additionally, the vast majority of the tools available have an

enormous community backing the cause, leading to some pretty robust

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 31 -

techniques and homegrown scripts.

With all this malware in my hands and no manual intrusions (that

I know of), curiosity was getting the best of me, so I decided to let

one or two loose from the Windows XP system. I arbitrarily picked,

76fb3b04617f5df38402cbb7dd5119f9 and 7d6204b53cfec14fbf68e60d5a260e6.

ClamAV respectively deemed the former “Trojan.IRCBot-16” and the

latter “Trojan.Mybot-6050”. For the remainder of the paper I'll refer

to these Trojans as IRCBot and MyBot.

Upon executing IRCBot

 it began flooding the net with port 135 and 139 SYNs

 less then a second later, attempted connections were being made

for port 3127 (how Nepenthes initially picked up the trojan)

 two seconds later after genesis, the bot initiates a DNS lookup

for ******.servebeer.com (TLD belongs to a dynamic DNS

service). DNS query returned 10.10.10.10. IRCBot attempts to

connect to 10.10.10.10 via TCP port 6667 – probable DNS

misconfig/mishap given the passive DNS cache results were also

pointing to the same IP

 commences outbound port 445 scanning to random hosts

 5 minutes into the release, me visiting an external website

triggered additional port 135 probes on my local ISP network

 with the exception of a few embedded random external NBStat

requests, network forensic wise, at this point the bot had

exhausted all methods of propagation and the whole process

sequentially cycled back to its initial probing routine until

the trojan was manually killed

 upon reboot, as shown in Figure 5, the malware starts back up as

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 32 -

the random/hidden file name created after the original binary

was executed

Figure 5

In all, seven destination ports were involved. Figure 6 shows the

corresponding occurrences in the left column and associated port

number in the right column. I used tcpdump to capture the network

activity while releasing the bot and re-read the capture file back

through tcpdump to parse out the destination ports.

Figure 6

The next bot member I chose to toy around with, Mybot,(more

commonly known as Sbot or Rbot) in contrast to the previous IRCBot,

was relatively quiet in terms of persistence and propagation. Upon

execution, the bot started initiating outbound connections via port

6667 to 67.15.78.x every 30 seconds. This activity is quite evident

in Figure 7.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 33 -

Figure 7

After 15 minutes of firewall drops, I decided to add a single

firewall rule to allow for further analysis.

Note: Beware, some C&C (command and control) servers only accept specific

commands that aren’t readily self-evident. Embedded cryptography engines

and algorithms have been used with zombies and malware variants for quite

sometime. This amplifies the level of difficulty of an analysis and

anonymity. Also, if noticed, probing a C&C server is asking for trouble.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 34 -

As shown in Figure 8 the bot started out with your standard TCP three-
way handshake.

Figure 8

Used a randomized nick, USA|86737969, as seen in Figure 9. I was unable

to determine the numeric string algorithm due to lack of similar

variants but further research does suggest that a country code lookup

is likely.

Figure 9

Enabling the invisible (+i) and removes the anonymous attributes (-

x), after which, logs into msdn2 channel with c4r0nt3 as the channel

key (JOIN ##msdn2## c4r0nt3) as shown in Figure 10.

Figure 8

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 35 -

Presumably, the next symbolic event would be an executive task

or information retrieval command on behalf of the C&C server destined

for the compromised host (possibly both or something completely

different).

The significance in unraveling traffic patterns of malware is

considerably obvious. We can now formulate signatures, based upon

these “bad” C&C servers, via our IDS to alert us on systems

attempting to contact these boxes and investigate accordingly (with

relative confidence and more context prior to “touching” the host).

Although most associated botnet ports and domains are pretty murky in

nature and the servers may someday (hopefully soon) host legitimate

services, dealing with false alarms is a meager hurdle to tackle when

considering the potential dividends.

Fortunately for us open source enthusiasts, Snort is a very

extensible IDS allowing us to create, share, and push out signatures

literally within minutes of a new exploit. After a few minutes of

research and constructing my own signatures for these two pieces of

malware, I soon stumbled upon semi-newly released signatures made

possible by the Shadowserver team (a community dedicated to tracking,

infiltrating, disabling, and analyzing botnets). From there, I then

appended a few of my extracted botnet IPs into the mix. As you can

imagine the list of relevant IP's is quite lengthy. You can download

the signatures from the following link -

http://www.bleedingsnort.com/bleeding-botcc.rules

While these signatures only observe and track the destination IP

addresses, they can be easily chopped up and/or modified to encompass

other specifics and mitigation techniques. Examples include; snort

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 36 -

inline drops, DNS queries, automated throttling, or detecting

anomalous activity. One definitive upside to these detection methods

(specifically, DNS queries and tracking destination IP’s) is that an

established connection never has to be made from an infected host to

the C&C server – which should be the case in a default deny firewall

policy. Also, It may be a good idea to tweak the thresholding, by

default, the preceding “BLEEDING-EDGE DROP Known Bot C&C Server

Traffic” signatures will alert once every hour as shown in Figure .

I've modified this setting to alert once every five minutes.

Figure 11

The signature in Table 18 will detect a DNS lookup to the malicious C&C

server at xxxx.dnip.net. Although the payload content option was

used, a more viable solution might be to use the pcre for scalability

purposes.

With stream4 enabled on snort we can create a signature, shown in

Table 19, which requires the infected host to have an established TCP
connection with the C&C server and detect communication across

multiple packets.

Due to these ever changing bot standardizations (if any),

possibly the greatest obstacle (particularly for larger more liberal

networks, such as a college allowing legitimate IRC) is constructing

signatures that produce true positives – as opposed to false

positives.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 37 -

Although, not always feasible, one notable correlation technique

is to install Snare (or another system monitoring software) on the

host and Syslog this traffic along with firewall logs to a

centralized server. In this way, we can directly correlate and

compare processes/executable names, firewall drops, system

dumps/crashes, and anomalous activity with corresponding IDS data and

malicious events. Using swatch, the Windows event seen in Table 20 can

easily being flagged via a regular expression to alert us through

email, as illustrated in Figure , if the process msnmsdnup.exe starts
up on any given box. I’ve removed the incriminating specifics.

Figure 12

Here we have the most prevalent file names Nepenthes downloaded and

associated protocols used to retrieve these files - listed from top

to bottom.

~# cat /var/log/nepenthes/logged_downloads | egrep -o '[a-zA-Z]+\.[a-z]+$' | sort -
n | uniq -c | sort -rn
 130 wulogin.exe
 91 UpMsnGraond.exe
 46 msnmsdnup.exe
 43 f.exe
 30 a.txt
 24 cmd.gif
 18 msngrs.exe
 13 hello.all
 7 sched.exe
 3 a.exe

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 38 -

 2 svhosl.exe
 2 servic.exe
 2 grun.exe
 2 bootwiz.exe
 1 sendmail.html
 1 bot.exe

~# cat /var/log/nepenthes/logged_downloads | egrep -o '\].*:/' | sed -e 's/\]/ /g'
-e 's/\:\// /g' | sort -n | uniq -c | sort -rn
 156 ftp
 92 http
 59 tftp
 7 link
 1 csend

Generally speaking, today’s internet is saturated with malware

and countless other bot related scripts. In order for the community

to interfere with this trendy phenomenon, it’s imperative that a

default deny firewall policy is enforced throughout the internal

network, user education, and, I can’t stress this enough, patch

management. One method particularly effective to illustrate your

point is through graphs.

Not surprisingly, port 80 was relatively noisy. The vast

majority of activity was centered around standard PHP based and MS04-

007 ASN.1 exploits with a few embedded GET/HEAD/POST requests, but

there appears to be nothing out of the ordinary. Some quick research

can validate a working (obviously in the wild) exploit for nearly all

of the ports in Figure 13.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 39 -

Figure 13

The proceeding graphs were created from Bubblegum proxypot logs.

In Figure 9, we have the top 25 destination domains extracted from the

“To:” email header. For what’s worth, this doesn’t necessarily mean

that Yahoo email accounts are spammed more often than others but

rather the spammers that were targeting my proxypot just so happen to

chose to target the Yahoo domain more than any other.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 40 -

Figure 94

In Figure 15 we have the countries from which all activity originated

from. Source IPs were feed into a simple shell script that parsed the

country code information via http://www.hostip.info.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 41 -

Figure 10

Apparently, when a persistent spammer latches onto an open

proxy, they really know how to dish it out. In roughly two weeks I

received over 500K emails. It took Mutt nearly 2 hours for the

mailbox to come up on an AMD 1 GHz processor with 256 MB of RAM.

Figure is a console screen shot of Mutt struggling to preview the mail

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 42 -

box. I’ve blown the current vs. old message display up for

exhibition.

Figure 16

Other interesting tidbits from the honeypot;

A Perl defacing bot was picked up by Nepenthes via HTTP.

You can reference the source code at -

http://atashi.net/inu/ja/notes/defacing_b0t.pl.html

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 43 -

A simple shell script was used to extract the most common SSH

brute-force (dictionary) users from the /var/log/messages file. As

you can see in Figure , the attacks were quite numerous. While security

through obscurity doesn’t work in the traditional sense, it

definitely cuts down on the amount of useless data we have to

maintain/sift through if we change the default SSH port.

Figure 17

Scanlogd revealed a possible Agobot/Gaobot/Phatbot variant (pretty

common) originating from an external host. The table below depicts

the accompanying data logged by scanlogd.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 44 -

Aug 17 13:10:46 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 80, 3128, 3777,
3802, 6588, 8080, 14441, ..., fSrpauxy, TOS 00, TTL 49 @13:10:46
Aug 22 16:09:49 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 80, 3128, 3777,
3802, 6588, 8080, 14441, ..., fSrpauxy, TOS 00, TTL 49 @16:09:49
Aug 25 09:15:34 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 80, 3128, 3777,
3802, 6588, 8080, 14441, ..., fSrpauxy, TOS 00, TTL 49 @09:15:34
Sep 11 10:37:17 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 3128, 3777,
3802, 6588, 8080, 14441, 65506, ..., fSrpauxy, TOS 00, TTL 49 @10:37:17
Sep 11 13:10:53 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 3128, 3777,
3802, 6588, 8080, 14441, 65506, ..., fSrpauxy, TOS 00, TTL 49 @13:10:53
Sep 12 10:41:04 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 3128, 3777,
3802, 6588, 8080, 14441, 65506, ..., fSrpauxy, TOS 00, TTL 49 @10:41:04
Sep 13 17:57:59 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 3777, 3128,
3802, 6588, 8080, 14441, 65506, ..., fSrpauxy, TOS 00, TTL 49 @17:57:59
Sep 14 10:23:41 honeypot scanlogd: 82.96.x.x to 192.168.1.111 ports 3128, 3777,
3802, 6588, 8080, 14441, 65506, ..., fSrpauxy, TOS 00, TTL 49 @10:23:41

9. Legalities

Yes, honeypots are dangerous – for a variety of reasons.

Computer Security in its self is still in its infancy. That being

said, the fundamental boundaries are being drawn and laws are being

made as to what is politically, ethically, and morally correct.

The last thing anyone needs is an attack launched from any

system directed towards a legitimate or “valued” target (internal or

external), much less a box that was intended to be compromised. Not

only is credibility swooped out from under you and/or the company but

this also could leave the organization in a major bind, a hefty

lawyer fee, or worse, land you in jail.

Some may argue that honeypots are a form of entrapment that

entices an entity to break the “CIA” triage. With that in mind, I

would proceed with great caution if you decide to post ANY

information about specifically running a honeypot and your location

to the general public (forums, proxy lists, mailing lists, and there

alike). Probably the most profound situation to be aware of is when

the honeypot has been comprised then an ensuing attack or other

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 45 -

spurious activity is launched from the system. This may be in the

form of an attacker, worm, or spam but whatever the case may be; an

abundant amount of research, consulting, and planning is needed prior

to deploying the preceding tools/technologies.

Legal Analyst, Richard P. Salgado from Standford Law, favors

configurations where a hacker is invisibly rerouted to a honeypot

after beginning an attack on a production machine. "The closer the

honeypot is to the production server, the less likely that it's going

to have some of the legal issues that we're talking about," he said,

because the monitoring becomes part of the normal process of

protecting the production machine. (Poulsen, 2003)

10. Conclusion

With all these methods (and more) combined, you have a very

valuable tool. Whether you’re reviewing logs and alerts, embracing

topology changes, patch management, or crafting/updating your

signatures, all feasible aspects need to be addressed ASAP. Your

results may have enough influence to affect all tiers within an

organization and there just isn't any room for error when it comes to

this industry, the business, or your job.

Honeypots are fun and a great learning tool which not only

allows you to orchestrate a wide array of security mechanisms into

your policy but as well as brush up on new standards and threats that

we are faced with on a day-to-day basis. I imagine individuals that

enjoying finding answers and those with a keen sense of curiosity

excel in this area as there really isn’t a right or wrong way to

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 46 -

deploy such a tool.

All things come with a cost and these pros can often overshadow

the double edge sword honeypots bring forth. Attackers as well

malicious coders often use this technology to construct evasion

techniques by reverse engineering, spawn similar variants, or gain

additional devious knowledge about how the code or attack methodology

itself operates.

The future of honeypots will most likely entail the versatile

and dynamic ability to be plugged right into a port or aimlessly

listen via WiFi (hostap) and do its job right from the get go (UPnP

if you will) detecting nefarious patterns with minimal user

interaction.

Like most computer related topics, unless you stay abreast of

the latest and greatest, the value of a honeypot is greatly

depreciated each day left untouched or pushed aside and no matter how

advanced the software, configuration, and/or devices you may have

deployed, don’t forget the basics – common sense and simplicity.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 47 -

11. References

CAIDA, (2003). The spread of the sapphire/slammer worm. Retrieved

Oct, 2006, Web site:

http://www.caida.org/publications/papers/2003/sapphire/sapphire.

html

nepenthesdev, (2006, June 25). Nepenthes readme. Retrieved May, 2006,

Web site: http://nepenthes.mwcollect.org/documentation:readme

nepenthesdev, (2006, July 7). Nepenthes - finest collection.

Retrieved July 23, 2006, Web site: http://nepenthes.mwcollect.org/

Poulsen, K (2003. April 16). Use a honeypot, go to prison?. Retrieved

October 22, 2006, Web site: http://www.securityfocus.com/news/4004

Provos, N (2006, April 16). Honeyd development. Retrieved July 20,

2006, Web site: http://www.honeyd.org

Seifried, K (2002, Febuary 15). Honeypotting with wmware – basics.

Retrieved June 10, 2006, Web site:

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 48 -

http://www.seifried.org/security/ids/20020107-honeypot-vmware-

basics.html

Spitzner, L (2002, May 17). Honeypots (definitions and value of

honeypots). Retrieved July 17, 2006, Web site:

http://www.governmentsecurity.org/articles/HoneypotsDefinitionsandValu

eofHoneypots.php

Stwewart, J (2006). Behavioral malware analysis using sandnets.

Retrieved August, 2006, from http://www.sv-issa.org/sandnets.pdf

Stoll, C (1995). The quotations page. Retrieved October 19, 2006, Web

site: http://www.quotationspage.com/quotes/Clifford_Stoll/

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 49 -

Appendix A – The Setup

Table 1

~# crontab –e

#crontab contents
34 * * * * /usr/sbin/ntpdate time.nist.gov

#log file
Aug 9 00:34:01 server crond[14216]: (root) CMD (/usr/sbin/ntpdate time.nist.gov)
Aug 9 00:34:01 src@honeypot /USR/SBIN/CRON[26532]: (root) CMD (/usr/sbin/ntpdate
time.nist.gov

Table 2

~# update-rc.d –f apache
update-rc.d: /etc/init.d/apache exists during rc.d purge (continuing)
 Removing any system startup links for /etc/init.d/apache ...
 /etc/rc0.d/K20apache
 /etc/rc1.d/K20apache
 /etc/rc2.d/S20apache
 /etc/rc3.d/S20apache
 /etc/rc4.d/S20apache
 /etc/rc5.d/S20apache
 /etc/rc6.d/K20apache

~# apt-get remove apache
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be REMOVED:
 apache
0 upgraded, 0 newly installed, 1 to remove and 5 not upgraded.
Need to get 0B of archives.
After unpacking 81.9kB disk space will be freed.
Do you want to continue? [Y/n]

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 50 -

Table 3

~# useradd username -g users -s /bin/false

Table 4

~# apt-install nepenthes

Appendix B – Considerations

Table 5

~# nepenthes -r /opt/nepenthes

Table 6

~# gpg –c /var/log/messages; md5sum /var/log/messages.gpg

Table 7

#default deny policy on the firewall for DMZ -> LAN. (It’s much for feasible to
managed your iptables policy through a script as oppose to individual commands)
~# iptables -N eth2_Out_RULE_1
~# iptables -A OUTPUT -o eth2 -s 192.168.1.0/24 -d 172.16.1.0/24 -j
eth2_Out_RULE_1
~# iptables -A FORWARD -o eth2 -s 192.168.1.0/24 -d 172.16.1.0/24 -j
eth2_Out_RULE_1
~# iptables -A eth2_Out_RULE_1 -j LOG --log-level info --log-prefix "RULE 1 – DENY
DMZ_LAN " --log-tcp-sequence --log-tcp-options --log-ip-options
~# iptables -A eth2_Out_RULE_1 -j DROP

#corresponding firewall log entry if traffic matches
Jul 26 09:32:27 src@firewall kernel: [4427415.750000] RULE 1 -- DENY DMZ_LAN
IN=eth2 OUT=eth3 SRC=192.168.1.111 DST=172.16.1.110 LEN=60 TOS=0x10 PREC=0x00
TTL=63 ID=12210 DF PROTO=TCP SPT=35863 DPT=22 SEQ=1573038414 ACK=0 WINDOW=5840
RES=0x00 SYN URGP=0 OPT (020405B40402080A00CA86FC0000000001030300)

Table 8

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 51 -

#honeypot syslog-ng.conf
options { sync (0); log_fifo_size (2048); create_dirs (yes); dir_group (logs); perm
(0640); dir_perm (0750);
};
source src { internal(); unix-stream("/dev/log");file("/proc/kmsg"
log_prefix("kernel: "));
};
#syslog reverse tunnel
destination tunnel {tcp ("localhost" port (65514));
};
destination messages { file("/var/log/messages");
};
log { source(src); destination(tunnel);
};
log { source(src); destination(messages);
};

Appendix B – cont.

Table 9

#honeypot using cryptcat to transfer data
~# nc -l -u -p 65514 | cryptcat 172.16.1.110 9999 &

#syslog server accepting data
~# cryptcat -l -p 9999 | nc -u localhost 65514 &

Table 10

#syslog reverse tunnel from server residing in /etc/inittab
log1:5:respawn:/usr/bin/ssh -nNTx -R 65514:localhost:65514 user@192.168.1.111
>/dev/null 2>&1

#mysql reverse tunnel for IDS residing in /etc/inittab
log2:5:respawn:/usr/bin/ssh -nNTx -R 63306:localhost:63306 user@192.168.1.111
>/dev/null 2>&1

Table 11

~# iptables -I INPUT -p tcp --dport 8080 -i eth0 -m state --state NEW -m recent \
--set
~# iptables -I INPUT -p tcp --dport 8080 -i eth0 -m state --state NEW -m recent \
--update --seconds 60 --hitcount 6 -j DROP

Table 12

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 52 -

#/etc/swatch.conf “account management”
watchfor /groupadd|useradd|adduser|chfn/
 echo
 continue
 mail=honey_admin@server,subject=Account Management

#honeypot messages.log
Aug 11 06:18:47 src@honeypot useradd[9275]: new user: name=new_user, uid=1004,
gid=100, home=/home/new_user, shell=/bin/bash

#server email
Date: Mon, 11 Aug 2006 06:18:48 -0400
From: swatch <swatch@honeypot.mydomain>
Message-Id: <200608141018.k7EAImDA009276@honey.mydomain>
To: user@server.mydomain
Subject: Account Management

Aug 11 06:18:47 src@honeypot useradd[9275]: new user: name=new_user, uid=1004,
gid=100, home=/home/new_user, shell=/bin/bash

Appendix C – The Analysis

Table 13
#command-line syntax used with p0f
~# p0f -u honey -t -C -iany -o /var/log/p0f.log -d

#p0f.log
<Mon Jul 3 03:22:54 2006> 24.211.x.x:4658 - Windows XP Pro SP1, 2000 SP3 ->
192.168.1.111:1433 (distance 17, link: ethernet/modem)

Table 14

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 53 -

mysql> select sig_name, count(sig_name) as cnt from acid_event group by
sig_name order by cnt desc;
+---+-----+
| sig_name | cnt |
+---+-----+
MS-SQL Worm propagation attempt	413
asn1http MS04-007 exploit shellcode	152
WEB-MISC Phorecast remote code execution attempt	26
WEB-PHP remote include path	20
PHP remote file include exploit attempt	18
MYSQL 4.0 root login attempt	13
SNMP request udp	10
EXPLOIT WINS overflow attempt	8
ATTACK-RESPONSES Microsoft cmd.exe banner	8
WEB-CGI calendar access	7
Sasser FTP exploit attempt	6
SNMP public access udp	5
MS-SQL xp_cmdshell - program execution	4
EXPLOIT WebDav ntdll.dll (rs_iis)	3
WEB-MISC WebDAV search access	3
WEB-FRONTPAGE Chunked Transfer-Encoding Post (MS03-051)	3
WEB-FRONTPAGE rad fp30reg.dll access	3
WEB-MISC Chunked-Encoding transfer attempt	3
WEB-MISC http directory traversal	2
MS-SQL Worm propagation attempt OUTBOUND	2
RPC STATD UDP stat mon_name format string exploit attempt	2
TFTP Get	2
WEB-IIS cmd.exe access	2
Bagle.B-J FTP Download URL	1
WEB-PHP calendar.php access	1
MS-SQL version overflow attempt	1
RPC portmap status request UDP	1
BACKDOOR DoomJuice file upload attempt	1
WEB-MISC bad HTTP/1.1 request, Potentially worm attack	1
BACKDOOR mydoom.a backdoor upload/execute attempt	1
Bagle.B-J Backdoor Command	1
+---+----

Appendix C – cont.

Table 15

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 54 -

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm propagation attempt";
content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 01|"; content:"sock";
content:"send"; reference:bugtraq,5310; reference:bugtraq,5311; reference:cve,2002-0649;
reference:nessus,11214; reference:url,vil.nai.com/vil/content/v_99992.htm; classtype:misc-
attack; sid:2003; rev:8;)

11:59:41.280888 IP 220.x.x.x.1607 > 192.168.1.111.1434: UDP, length: 376
 0x0000: 0009 5b0a 1851 0050 bfb6 e68a 0800 4500 ..[..Q.P......E.
 0x0010: 0194 8771 0000 6711 677c dcbd c496 c0a8 ...q..g.g|......
 0x0020: 016f 0647 059a 0180 cb98 0401 0101 0101 .o.G............
 0x0030: 0101 0101 0101 0101 0101 0101 0101 0101
 0x0040: 0101 0101 0101 0101 0101 0101 0101 0101
 0x0050: 0101 0101 0101 0101 0101 0101 0101 0101
 0x0060: 0101 0101 0101 0101 0101 0101 0101 0101
 0x0070: 0101 0101 0101 0101 0101 0101 0101 0101
 0x0080: 0101 0101 0101 0101 0101 01dc c9b0 42eb B.
 0x0090: 0e01 0101 0101 0101 70ae 4201 70ae 4290 p.B.p.B.
 0x00a0: 9090 9090 9090 9068 dcc9 b042 b801 0101 h...B....
 0x00b0: 0131 c9b1 1850 e2fd 3501 0101 0550 89e5 .1...P..5....P..
 0x00c0: 5168 2e64 6c6c 6865 6c33 3268 6b65 726e Qh.dllhel32hkern
 0x00d0: 5168 6f75 6e74 6869 636b 4368 4765 7454 QhounthickChGetT
 0x00e0: 66b9 6c6c 5168 3332 2e64 6877 7332 5f66 f.llQh32.dhws2_f
 0x00f0: b965 7451 6873 6f63 6b66 b974 6f51 6873 .etQhsockf.toQhs
 0x0100: 656e 64be 1810 ae42 8d45 d450 ff16 508d end....B.E.P..P.
 0x0110: 45e0 508d 45f0 50ff 1650 be10 10ae 428b E.P.E.P..P....B.
 0x0120: 1e8b 033d 558b ec51 7405 be1c 10ae 42ff ...=U..Qt.....B.
 0x0130: 16ff d031 c951 5150 81f1 0301 049b 81f1 ...1.QQP........
 0x0140: 0101 0101 518d 45cc 508b 45c0 50ff 166a Q.E.P.E.P..j
 0x0150: 116a 026a 02ff d050 8d45 c450 8b45 c050 .j.j...P.E.P.E.P
 0x0160: ff16 89c6 09db 81f3 3c61 d9ff 8b45 b48d <a...E..
 0x0170: 0c40 8d14 88c1 e204 01c2 c1e2 0829 c28d .@...........)..
 0x0180: 0490 01d8 8945 b46a 108d 45b0 5031 c951 E.j..E.P1.Q
 0x0190: 6681 f178 0151 8d45 0350 8b45 ac50 ffd6 f..x.Q.E.P.E.P..
 0x01a0: ebca

Table 16

alert tcp any any -> any $HTTP_PORTS (msg:"asn1http MS04-07 exploit shellcode";
content:"QUFBQUFBQQMAI"; flowbits:isset,asn1http; classtype:attempted-admin;
reference:url,isc.sans.org/diary.php?date=2005-06-05; sid:1000291; rev:1;)

Appendix C – cont.

Table 17

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Honeypots 101

Justin Mitchell - 55 -

#script used to roll up and restart daily capture files
#!/bin/bash
#rotate and compress daily honeypot dump file
logdir=/var/log
now=$(date --utc +%F.%R.%S)
#stop currently running dump
kill -9 `cat /var/run/honeydump.pid`
#compress by date
tar -cvzf $logdir/honey.dump.tar.gz $logdir/honey.dump
mv $logdir/honey.dump.tar.gz $logdir/honey_$now.tar.gz
#start the dump back up and record the process ID (PID)
tcpdump -w $logdir/honey.dump –ieth0 -nnXx -s0 &
echo $! > /var/run/honeydump.pid

Table 18
alert udp $HOME_NET any -> any 53 (msg:"Possible Rbot/Sdbot DNS Lookup";
content:"|xx xxxx xx04 646e 6970 036e 6574|"; threshold: type limit, track by_src,
count 1, seconds 60; classtype:trojan-activity; sid: 3000011; rev:1;)

Table 19
alert tcp $HOME_NET any -> any any (msg: "Possible Rbot/Sdbot Infection"; flow:
established; content:"NICK|20|USA"; content:"USER"; content:"JOIN|2023 23|”;
content:”|2323|"; sid:3000014;)

Table 20
Oct 8 10:12:39 mal MSWinEventLog 1 Security 91 Sun Oct 08
10:12:34 2006 592 Security mal1 User Success AuditMAL
Detailed Tracking A new process has been created: New Process ID:
212 Image File Name: C:\WINDOWS\system32\msnmsdnup.exe Creator Process ID:
1380 User Name: mal1 Domain: MAL Logon ID: (0x0,0xD63A) 90

