
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia


© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis 

GIAC GCIA Gold Certification 

Author: Patrick Neise, patrick.neise@gmail.com 

Advisor: Angel Alonso Parrizas 

Accepted: 22 October 2016 

Abstract 

With the average time to detection of a network intrusion in enterprise networks assessed 
to be 6-8 months, network defenders require additional tools and techniques to shorten 
detection time. Perimeter, endpoint, and network traffic detection methods today are 
mainly focused on detecting individual incidents while security incident and event 
management (SIEM) products are then used to correlate the isolated events. Although 
proven to be able to detect network intrusions, these methods can be resource intensive in 
both time and personnel. Through the use of network flows and graph database 
technologies, analysts can rapidly gain insight into which hosts are communicating with 
each other and identify abnormal behavior such as a single client machine 
communicating with other clients via Server Message Block (SMB). Combining the 
power of tools such as Bro, a network analysis framework, and neo4j, a native graph 
database that is built to examine data and its relationships, rapid detection of anomalous 
behavior within the network becomes possible. This paper will identify the tools and 
techniques necessary to extract relevant network information, create the data model 
within a graph database, and query the resulting data to identify potential malicious 
activity. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 2 

 

Patrick Neise, patrick.neise@gmail.com 

1. Introduction 

Based on the most recent Verizon Data Breach Investigations Report (DBIR) the 

number of incidents and confirmed breaches continues to rise year over year.  

Additionally, attacks occur across the globe and throughout all industry verticals with “no 

locale, industry or organization is bulletproof when it comes to the compromise of data.” 

(Verizon, 2016).  Examination of the breach report from the DBIR consists of data from 

over 100,000 incidents and 3,141 confirmed breaches. 

The DBIR identifies that the overwhelming majority of breaches are the result of 

external threat actors, with internal threats occurring at about one-quarter of the time in 

comparison.  Additionally, the top two reasons for attacks year over year are financial 

motivations and espionage, with the former occurring nearly four times as often.  At a 

minimum, these figures should demonstrate that current network defensive measures and 

techniques are inadequate for today’s threat environment. 

An interesting trend highlighted in DBIR demonstrates the continued growth in user 

devices and people being the target of attacks while the occurrence of threats targeting 

servers has declined.  The increased targeting of endpoints and users coupled with the 

overall decline in time to compromise to the order of minutes required defenders to be in 

the position to quickly respond to attacks.  Additionally, the overall time to exfiltrate 

compromised information is on the order of days, resulting in an extremely complex 

defensive posture for medium to large enterprises.  Coupling the time to compromise and 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 3 

 

Patrick Neise, patrick.neise@gmail.com 

exfiltrate data with the projected time to detection of comprise being around six to eight 

months demonstrates the severe disadvantage defenders currently face. 

It should be apparent that current methods of detection are woefully inadequate in the 

face of today’s threats.  The pattern of reliance on signature-based detection mechanisms 

coupled with data aggregators and SIEMs does not appear to allow rapid detection of 

attacker activity.  Additionally, typical flat network installations make detection of lateral 

movement challenging at best. 

To improve on detection and response times, new techniques and tools are required to 

assist defenders in locating potentially malicious behavior.  Rather than relying on 

signatures for intrusion detection systems (IDS) or antivirus to signify that an attack has 

occurred, defenders can add the analysis of relationships determined from network traffic 

to identify possible malicious activity. 

Through the combination of tools currently being used by most network defenders 

and emerging technology and techniques, defenders will be able to identify potential 

malicious behavior.  As a powerful IDS, Bro will be leveraged to provide session level 

data to neo4j, a graph database that treats relationships as a first-class entities.  By 

transforming session data into nodes and relationships in a graph database, potentially 

malicious activity such as a client machine attempting to communicate via Server 

Message Block (SMB) to all other clients in the network, will be identifiable with a 

single query.  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 4 

 

Patrick Neise, patrick.neise@gmail.com 

2. The Tools 

To support rapid concept development, integration with existing tools, and minimal 

cost of concept implementation the tools used are completely free and open source or 

offer open source alternatives to their for-pay offerings.  Additionally, the individual 

tools are recognized as being extremely flexible and useful for their specific goals and 

functionality.  The implementation of creating relationships for analysis from network 

traffic will be accomplished with the Bro Network Security Monitor, the graph database 

neo4j, the containerization platform Docker, and the Python programming language.  

Finally, development and implementation are conducted using Ubuntu as a base 

operating system. 

Versions of each tool used in the project include Bro 2.4.1, neo4j 3.0.4, Python 3.5.2, 

Docker 1.12.1, and Ubuntu 16.04.  While the included source code will be compatible 

with some earlier versions of the tools, reproduction of the results may require 

modification to the code or techniques demonstrated. 

2.1. Bro 

As an open-source network security framework, the Bro Network Security Monitor is 

an extremely flexible and powerful framework for network traffic analysis and network 

security monitoring.  As a passive traffic analyzer, Bro provides the ability to monitor 

traffic in real-time as well as evaluate recorded network traffic captures. 

While Bro supports real-time monitoring and large-scale deployment, the 

implementation discussed focuses on the offline analysis of captured network traffic.  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 5 

 

Patrick Neise, patrick.neise@gmail.com 

Specifically, the comprehensive logging of processed network traffic is used to develop 

the nodes and relationships entered into the graph database for analysis.  Bro’s built-in 

support for the most popular application-layer protocols and analysis of the file content 

exchanged over those protocols provides a significant amount of information to populate 

the graph database. 

2.2. neo4j 

To provide new insight into the robust logs generated by Bro, the graph database 

neo4j allows the analyst to evaluate the data produced.  Additionally, neo4j allows the 

analyst to create and analyze the relationships generated by the connections between the 

data. 

As a graph database, neo4j is built to provide a rapid and intuitive development of the 

underlying data model.  The ability to change the data model without the need to 

completely re-architect the application allows for shorter development cycles and an agile 

response to new information and concepts as they are discovered. 

Fundamental to the goals of analyzing relationships amongst the data generated by 

Bro logs is the ability to query the graph database to extract new and relevant 

information.  Neo4j provides Cyber as a native graph query language which allows for a 

simple and expressive manner to describe relationship queries. 

Additionally, neo4j provides a built-in web browser that allows for querying, 

visualizing, and interacting with the data contained in the database.  The neo4j browser 

will be primarily used in the application as a data visualization tool.  Python will be used 

to interact with the database for data creation and modification. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 6 

 

Patrick Neise, patrick.neise@gmail.com 

2.3. Python 

As an interpreted and object-oriented programming language, Python provides an 

ideal platform from which to build the processing and integration needed to bring the 

individual tools and techniques together. 

In addition to the standard library included with Python, a third party library is used 

to interact with the neo4j database.  The pandas library provides an interface to easily 

manipulate and interact with structured data such as the log files produced by Bro and the 

comma separated value (CSV) files imported by neo4j. 

Python will also provide for the relative seamless integration of the processes needed 

to parse the original PCAP and the created Bro logs, importing the required information 

into neo4j, and orchestration of the necessary Docker containers. 

2.4. Docker 

Although not a requirement to implement the functionality discussed within this 

technique, Docker allows for rapid development and deployment of the previously 

discussed tools. 

Docker images for Bro and neo4j are used in order to remove the requirement to 

install either of those tools on the analysis platform.  Specifically, the neo4j image 

provided by the official neo4j repository is located on Docker Hub, and the Bro image is 

provided by the user blacktop on Docker Hub.  Although the Bro Docker image used in 

this procedure is provided by a third party, the Dockerfile is available for review on 

github and the Docker Hub.  The Python code will execute from within a third container, 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 7 

 

Patrick Neise, patrick.neise@gmail.com 

specifically a container running the lightweight Alpine Linux distribution and Python 

3.5.2. 

The use of Docker containers greatly reduces the technical overhead required to 

implement this analysis technique while also providing a means to rapidly modify and 

redeploy the necessary tools.  Additionally, the use of containers provides an added layer 

of secure when executing and evaluating packet captures or network traffic that may 

contain malicious packets or executables. 

3. The Technique 

From a technical standpoint, the implementation of the analysis technique is not 

overly complicated from the viewpoint of a practiced network security monitoring 

analyst.  As discussed earlier, although Bro allows for the analysis of real-time traffic the 

techniques discussed will center on previously gathered packet captures. 

With an existing packet capture available, the Bro Docker container from blacktop 

will be used to process the PCAP file to generate the necessary Bro log files.  While Bro 

also allows for the creation of custom scripts to extract additional information and create 

custom log files, the efforts contained herein will focus on the included core Bro 

functionality. 

The next step in the process is the extraction and transformation of the Bro log data 

for loading into neo4j.  The standard Python libraries in concert with pandas will be used 

to read the generated Bro logs, extrapolate required information, and create files needed 

for the batch import of nodes and relationships within the graph database. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 8 

 

Patrick Neise, patrick.neise@gmail.com 

With all of the necessary information from the PCAP now transformed and 

represented as CSV files containing nodes and relationships, the information can be 

imported in neo4j for analysis.  Due to the potential for a large number of nodes, on the 

order of millions, that may result from analyzing a large capture file, the neo4j-import 

tool will be run from within the Docker container in order to expedite import.  With the 

database populated, the analyst can now query the database for interesting and relevant 

information.  A few queries will be highlighted to demonstrate the syntax and capability 

of neo4j to assist the analyst, but a full listing of the possible outcomes is beyond the 

scope of this research and left to future analysis. 

3.1. PCAP to Bro logs 

The first step in the process in to run the selected PCAP through Bro in order to 

obtain the logs output by Bro.  The example PCAP used throughout this process was 

obtained from the NETRESEC website in order to provide a relatively large file with 

expected malicious traffic.  Specifically, the PCAP used throughout the example is the 

maccdc2012_00000.pcap from the 2012 Mid-Atlantic Collegiate Cyber Defense 

Competition (MACCDC).  Once extracted, the maccdc2012_00000.pcap is slightly over 

1GB in size. 

The reading of the PCAP into Bro and creation of the needed logs is a relatively 

straightforward process.  From the documentation for the blacktop/bro Docker container, 

the following command will read the PCAP into Bro for processing: 

$ docker run –rm -v /path/to/pcap:/pcap:rw blacktop/bro -r 

my.pcap local 

Breaking down each component of the above ‘docker run’ statement: 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 9 

 

Patrick Neise, patrick.neise@gmail.com 

‘—rm’ – Remove the specified container after running.  The above statement will process 

the PCAP and exit, then Docker will remove the container. 

‘-v /path/to/pcap:/pcap:rw’ – Map the local folder ‘/path/to/pcap’ to the ‘/pcap’ folder in 

the Docker container as read/write.  The Bro instance running in the container can now 

read the PCAP and write the logs to the local folder for further processing, even after 

removing the container. 

‘blacktop/bro’ – A Docker image created by blacktop that contains the necessary files 

and dependencies to run Bro 2.4 within the container. 

‘-r my.pcap local’ – Read the PCAP file specified by ‘my.pcap’ into Bro and run a 

common set of loaded scripts. 

After the processing the PCAP through Bro, the logs associated with the analysis will 

be located in the same local directory as specified when running the container.  There are 

logs for each observed connection, DNS traffic, HTTP traffic, DHCP, etc.  The analysis 

included below will focus on the connections (conn.log), DNS traffic (dns.log), and 

HTTP traffic (http.log). 

Using the default Bro settings, the logs will be written in a tab separated file.  The log 

file includes multiple lines of descriptive information in the header and a single line 

footer.  Using Python to process the log files of concern, the excess lines in the header 

and footer will be removed, leaving only the single line header that contains the column 

headers. 

The Python source code for reading the pcap and cleaning the logs of concern is 

included as Appendix A below.  Of note, to start and interact with the Docker containers, 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 10 

 

Patrick Neise, patrick.neise@gmail.com 

the subprocess module from the Python Standard Library is used to open a new process 

(Bordage, 2016). 

3.2. Bro Logs to neo4j 

In order import the converted Bro logs into neo4j, a consistent data model must be 

applied across the logs to create the desired nodes and relationships.  The creation of an 

effective data model provides for repeatable and consistent ingest of logged information 

while creating a structure that supports extraction of desired information via specific, 

targeted queries of the database. 

3.2.1. The Data Model 

Through evaluation of the information contained within the conn.log, dns.log, and 

http.log files created by Bro and the potential types of questions to be answered by 

database queries, the types of nodes and relationships in the data model can be 

determined.  In a general sense, the nodes can be thought of as the entities, the ‘things’ in 

the database, and the relationships describe how those entities depend on and interact 

with each other.  Additionally, the nodes and relationships can each have specific 

properties that further define information about the specific entries. 

As illustrated in Figure 1 below, the nodes created from the Bro logs consist of a 

Connection node, DNS_Record node, HTTP_Record node, and an IP node.  Each of the 

nodes is labeled according to the names identified.  By labeling the nodes, the speed of 

queries is improved by limiting the search to only nodes of the desired label type. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 11 

 

Patrick Neise, patrick.neise@gmail.com 

 

Figure 1: neo4j Data Model 

The Connection node represents each connection entry within the conn.log created from 

the PCAP.  The properties associated with each Connection node include all of the 

information contained within the individual log entry associated with the node, placing 

the Connection node at the center of the information located within the model. 

The IP node is representative of every individual IP address located within the conn.log 

file.  At the node level, there is no differentiation of the host being represented by the 

node as either the originator or responder for the individual connection entries.  The goal 

is to provide a node for each IP address to identify how each address is related to the 

other through the connections, DNS entries, and HTTP entries located within the Bro 

logs. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 12 

 

Patrick Neise, patrick.neise@gmail.com 

The DNS_Record and HTTP_Record node types are similar in that they represent 

individual entries from their associated log files.  The goal for these node types is to 

represent and capture the information associated with both sides of a DNS transaction or 

HTTP request.  All of the data captured in the dns.log and http.log is identified as 

properties within the associated node for the given log entry. 

The nodes by themselves are essentially just representations of individual log entries 

and therefore provide only as much utility as the log files themselves.  The real power in 

this process comes from the identification and creation of the relationships between the 

different nodes. 

The dns.log and http.log files contain amplifying information associated with their 

related entries within the conn.log file.  To capture the relationship between the 

Connections and the individual record entries, The Connection node is represented as 

having PRODUCED the record node.  The PRODUCED relationship allows numerous 

records associated with a single collection to be associated with each other for rapid 

identification and grouping of information for analytical queries.  Additionally, the 

Connections nodes are related to the two IP nodes associated with the log entry through 

either an ORIGINATED or RESPONDED relationship to identify both ends of the 

connection. 

The remaining relationships identify how the DNS_Record and HTTP_Record nodes 

are related to their associated Connection and IP nodes.  Similar to the 

ORIGINATED/RESPONDED relationships the QUERIED/ANSWERED and 

REQUESTED/RETURNED relationship types connect the two IP nodes involved in the 

transmission of DNS or HTTP data respectively. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 13 

 

Patrick Neise, patrick.neise@gmail.com 

With the components of the data model identified, namely the nodes and 

relationships, the individual log files can be manipulated into the required layout to 

support import into neo4j.  Due to the potentially large volume of imported information, 

the neo4j-import tool will be used to create the nodes and relationships from the Bro logs.  

In the case of the example MACCDC pcap used throughout this process, the pcap file 

itself is just over 1GB in size and contains over 4 million connections.  This built-in tool 

requires the imported files to be in a specific format with requirements for how to label 

nodes as well as how to connect those nodes via the identified relationships. 

3.2.2. Parsing the Logs 

With the elements of the data model determined the Bro logs can be parsed and 

placed in the necessary format for import into the neo4j database (B.3. Use the Import 

tool, 2016).  The import tool requires nodes and relationships to be placed into separate 

files for import.  The nodes can be written into a single file or split into multiple files, 

passing each file into the import tool as a command line argument.  The relationships can 

be treated in a similar manner. 

Since Bro logs are output in a tab separated data structure, the pandas module for 

Python is used to manipulate the data structure to produce the CSV files.  Pandas easily 

supports operations across columns and rows of large datasets, the conn.log in the 

example PCAP results in nearly 4 million rows of data.  The process of cleaning and 

formatting the log files requires insertion and deletion of columns, removal of rows with 

missing data, indexing of rows, and removal of duplicate data.   

For this process, files for each of the node types present in the data model and 

individual files are created for the relationship pairs, i.e. ORIGINATED/RESPONDED.  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 14 

 

Patrick Neise, patrick.neise@gmail.com 

The resulting files are simply CSV files with a header line that identifies the column 

contents.  For the node files, each column is added to the node as a property unless the 

column header contains a special string recognized by the import tool.  For example, the 

‘:LABEL’ column heading specifies that the contents of that column are the Labels to 

apply to that particular node (i.e. Connection, DNS_Record, HTTP_Record, etc.)  An 

additional column identifier used throughout this process is the ‘:ID’ identifier.  The ‘:ID’ 

column is used by the import tool in the creation of the relationships between nodes as 

the lookup mechanism used to match two nodes to a relationship. 

The relationship files are created in a similar manner as CSV files. However, they use 

a few different special column headers.  The ‘:START_ID’ and ‘:END_ID’ column 

headers are used to signify which nodes are being connected by the relationship, and 

reference the previously discussed ‘:ID’ column in the node CSV files.  The ‘:TYPE’ 

column is similar to the node label in that it signifies what type of relationship (i.e. 

PRODUCED, RESPONDED, QUERIED, etc.) connects the two nodes.  Finally, just like 

the node CSV files, any remaining columns are created as properties of the relationship. 

Cleaning the Bro logs, extracting the needed information, and creating the CSV files 

for import is completed using Python modules from the standard library.  Source code for 

review is included as Appendix B – logs_to_csv.py. 

3.2.3. Database Import 

With the CSV files created, the next step in the process is to import the nodes and 

relationships into a neo4j Docker container to support queries and analysis.  Operations 

with the neo4j container are handled in the same manner as the Bro container. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 15 

 

Patrick Neise, patrick.neise@gmail.com 

The Python script detailed in Appendix C performs the three major functions 

necessary to establish the database running with the imported data: 

1) starting the neo4j container with a shared host volume and ports 

2) deleting existing database and importing the new data via shell script, and 

3) restarting the neo4j container 

3.3. Putting It All Together 

Figure 2 below provides a graphical representation of the overall process of taking a 

PCAP through Bro, cleaning and processing the logs into CSV files, and importing the 

data into neo4j using Docker containers for each phase of the process. 

To pull the individual Python modules, a single Python script imports the 

functionality of the previously described portions of the process.  The bro_to_neo.py 

script as shown in Appendix D – bro_to_neo.py, provides the framework to execute the 

individual components. 

The overall script takes the identified PCAP file through the entire process to end 

with a running neo4j instance containing the nodes and relationships as extracted from 

the PCAP.  The analyst is now able to use Cypher, the query language of neo4j, to extract 

relevant data from the network traffic. 

For exploratory purposes, neo4j provides a built-in browser that allows for database 

interaction with the database and running Cypher queries.  To access the browser after 

the neo4j Docker container has been started, access http://localhost:7474 with a browser.  

Upon initial access, the default password of ‘neo4j’ will have to be changed. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 16 

 

Patrick Neise, patrick.neise@gmail.com 

 

Figure 2: Overall Process Flow 

4. Getting Results 

With the database now populated with all of the nodes and relationships that were 

created from the input PCAP file, an analyst can now begin to extract information 

regarding the nature of the traffic.  Neo4j includes a SQL-like query language, Cypher 

(Neo4j: The World's Leading Graph Database, 2016).  Although this discussion is not 

intended to be a full Cypher tutorial, the language and concepts should not prove difficult 

for an intrusion analyst or network security professional. 

Based on the example PCAP file, the database has 4,062,012 nodes and 16,420,388 

relationships.  Finding the node and relationship counts are relatively simple queries.  To 

find the number of nodes in the database, the following query locates nodes of all types 

and returns the count. 

MATCH(n) RETURN COUNT(n); 

And to find the number of relationships: 

MATCH()-[r]-() RETURN COUNT(r); 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 17 

 

Patrick Neise, patrick.neise@gmail.com 

The queries above queries demonstrate two of the most basic query patterns, looking for 

a node and looking for nodes connected by a relationship.  The query format 

approximates a graphical representation of two nodes, represented by the parenthesis () 

and the relationship between the nodes represented by the brackets []. 

4.1. Noisy Hosts 

As an introduction to the ease of use and power of the Cypher query language, the 

first example seeks to identify the host making the highest number of outbound 

connections.  The query below demonstrates the general flow of a Cypher query, find a 

match on nodes and relationships and return the results in the desired format. 

MATCH (ip.ip:IP)-[rel:ORIGINATED]-(c:Connection) 

RETURN ip, COUNT(rel) AS connections 

ORDER BY connections DESC; 

The first line of the query finds all nodes with the label ':IP' that have an ':ORIGINATED' 

relationship to nodes with a ':Connection' label.  The second line counts up the 

relationships, represented by the variable 'rel' and assigns that value to the variable 

connections and then returns those results group by IP address.  The final line sorts the 

results by the relationships counts in descending order. 

The results for the above query completed in just under 2.5 seconds and returned the 

following results (truncated to the top five results for brevity). 

Table 1: Connections count by IP address 

ip.ip connections 

192.168.202.110 1315638 

192.168.202.83 1260866 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 18 

 

Patrick Neise, patrick.neise@gmail.com 

192.168.204.45 631382 

192.168.202.79 539051 

192.168.202.101 78626 

While the above query only returns the number of outbound connections, with a slight 

modification as demonstrated below the query can return the number of bytes 

downloaded by each host. 

MATCH (ip:IP)-[rel:ORIGINATED]-(c:Connection) 

RETURN ip.ip, SUM(toInt(c.resp_ip_bytes)) AS 

downloaded_bytes 

ORDER BY downloaded_bytes DESC; 

The following results were returned in just over 35 seconds, again limited to the top five 

results for brevity. 

Table 2: Total downloaded bytes by IP address 

ip.ip downloaded_bytes 

192.168.202.110 176243022 

192.168.202.83 50912804 

192.168.202.76 41323570 

192.168.202.79 28226086 

192.168.204.45 26309412 

A brief analysis of the results of the two queries demonstrates that the number of 

outbound connections does not necessarily correlate with the largest amount of content 

downloaded. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 19 

 

Patrick Neise, patrick.neise@gmail.com 

4.2. DNS 

Analysis of DNS logs can prove to be very informative to the intrusion analyst in 

identifying potentially malicious network traffic.  Similar to the previously discussed 

query for outbound connections, the query below will return the count of DNS queried 

name sorted in descending order. 

MATCH (dns:DNS_Record) 

WHERE dns['id.resp_p'] = '53' 

RETURN dns.query, COUNT(dns.query) AS total 

ORDER BY total DESC; 

This query introduces the 'WHERE' clause, which limits the results returned to those that 

are queries to port 53 in order to ensure results are for queries to DNS servers.  The 

below results were returned in only 59 msec. 

Table 3: Total queries by domain name 

dns.query total 

44.206.168.192.in-addr.arpa 1257 

www.apple.com 913 

version.bind 522 

creativecommons.org 367 

www.dokuwiki.org 349 

 

4.3. HTTP 

Transitioning to the analysis of web traffic from the http.log file create by Bro, the 

below query returns the sorted counts of User Agent strings seen in HTTP requests.  The 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 20 

 

Patrick Neise, patrick.neise@gmail.com 

query continues with general structure and content of the previous queries with a focus on 

web traffic analysis. 

MATCH (web:HTTP_Record) 

RETURN web.user_agent, COUNT(web.user_agent) AS total 

ORDER BY total DESC; 

The User Agent query returned the following results in 212 msec.  Of note to an 

analyst may be the appearance of the NMAP User Agent string 6204 times in the 

example PCAP, indications of high volumes of scanning within the network. 

Table 4: User Agent count 

web.user_agent total 

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0) 60035 

Mozilla/5.0 (compatible; Nmap Scripting Engine; 

http://nmap.org/book/nse.html) 

6204 

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0) 6140 

- 3194 

Mozilla/5.0 (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1 640 

5. Conclusion 

Rapid and effective analysis of large amounts of captured network traffic can greatly 

increase the likelihood of detection of malicious activity by an intrusion analyst.  The 

combination of existing analyst techniques with emerging tools can provide new 

processes and opportunities for the analyst to identify issues faster while potentially 

detecting indicators unidentified by previous techniques. 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 21 

 

Patrick Neise, patrick.neise@gmail.com 

The use of Docker containers to process a PCAP through the Bro Network Security 

Monitor, process the Bro logs using Python and pandas, ingest the logs into neo4j, and 

conduct queries on the data provides the analyst with new viewpoints on the data.  The 

queries discussed throughout the process only seek to highlight the capabilities and 

potential of using a graph database to analyze network traffic. 

6. Future Work 

Future research areas to build on this process could be used to conduct near real-time 

analysis of network traffic as it is passed through Bro, add additional analytics for 

identifications of malicious traffic, and automation of graph queries and reporting.  

Through leveraging Bro’s ability to analyze network traffic at ‘wire speed’ this process 

could be further developed to provide near real time results of queries.  Additionally, the 

queries described above only scratch the surface of the possible information that could be 

extracted by analyzing the relationships associated with network traffic. 

  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 22 

 

Patrick Neise, patrick.neise@gmail.com 

7. References 

Bejtlich, R. (2013). The Practice of Network Security Monitoring. San Francisco: No 

Starch Press, Inc. 

blacktop/bro. (2016, 8 24). Retrieved from Docker Hub: 

https://hub.docker.com/r/blacktop/bro/ 

Docker - Build, Ship, and Run Any App Anywhere. (2016, 8 25). Retrieved from docker: 

https://www.docker.com 

Gallagher, S. (2016). What you need to know about Docker. Birmingham: Pack 

Publishing Ltd. 

neo4j. (2016, 8 24). Retrieved from Docker Hub: https://hub.docker.com/_/neo4j/ 

Neo4j: The World's Leading Graph Database. (2016, 8 25). Retrieved from Neo4j: 

https://neo4j.com 

Robinson, I., Webber, J., & Eirfrem, E. (2015). Graph Databases - New Opportunities 

for Connected Data. Sebastpol: O'Reilly Media, Inc. 

Sanders, C., & Smith, J. (2014). Applied Network Security Monitoring. Waltham: 

Syngress. 

Schilling, M. A. (2016). Strategic Management of Technological Innovation. New York: 

McGraw-Hill Education. 

The Bro Network Security Monitor. (2016, 08 26). Retrieved from The Bro Network 

Security Monitor: https://www.bro.org 

The py2neo v3 Handbook. (2016, 8 24). Retrieved from The py2neo v3 Handbook: 

py2neo.org/v3/ 

Van Bruggen, R. (2014). Learning Neo4j. Birminham: Packt Publishing Ltd. 

Verizon. (2016). 2016 Data Breach Investigations Report. Verizon. 

Welcome to Python.org. (2016, 8 25). Retrieved from python: https://www.python.org 

 



© 2016 The SANS Institute Author retains full rights. 

 	
	

	

Appendix A 

pcap_to_log.py 

from subprocess import Popen, PIPE 
import os 
import re 
 
 
def generate_logs(pcap_dir, pcap): 
    """ 
    Process PCAP through a Bro container 
    :param pcap_dir: Full directory path to location of PCAP 
    :param pcap: PCAP filename 
    :return: 0 
    """ 
    volume = os.path.join(pcap_dir, ':/pcap:rw') 
    container_name = 'bro' 
 
    print("Starting bro container to process {}".format(pcap)) 
 
    p = Popen(['docker', 'run', '--rm', '--name', container_name, 
               '-v', volume, 'blacktop/bro', '-r', pcap, 
               'local'], 
              stdout=PIPE) 
    out = p.stdout.read() 
 
    print("\n") 
    print("{} processed.".format(pcap)) 
    print("\n") 
 
    return 0 
 
 
def clean_log(log_dir, filename): 
    """ 
    Removes excess header and footer information from Bro 
    logs to support import as CSV 
    :param log_dir: Path to log files 
    :param filename: Filename of log file 
    :return: 0 
    """ 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 24 

 

Patrick Neise, patrick.neise@gmail.com 

    print("Cleaning {}".format(filename)) 
    log_file = os.path.join(log_dir, filename) 
    clean_file = os.path.join(log_dir, filename + '.clean') 
 
    with open(log_file) as original: 
        lines = original.readlines() 
 
    with open(clean_file, 'w') as cleaned: 
        cleaned.writelines(lines[6][8:]) 
        cleaned.writelines(lines[9:-1]) 
 
 
    # this is to fix errors in http log due to random " 
    in some of the User Agent strings 
    if filename == "http.log": 
        with open(clean_file, "r") as sources: 
            lines = sources.readlines() 
        with open(clean_file, "w") as sources: 
            for line in lines: 
                sources.write(re.sub(r'\t"', '\t', line)) 
 
    return 0 
 
def main(): 
    base_dir = os.getcwd() 
    data_dir = os.path.join(base_dir, "data") 
    pcap = 'maccdc2012_00000.pcap' 
    logs = ['conn.log', 'dns.log', 'http.log'] 
 
    # convert pcap into bro logs 
    pcap_to_log(data_dir, pcap) 
 
    # remove excess header and footer from each bro log 
    for log in logs: 
        clean_log(data_dir, log) 
 
if __name__ == '__main__': 
    main() 
  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 25 

 

Patrick Neise, patrick.neise@gmail.com 

Appendix B 

logs_to_csv.py 

from subprocess import Popen, PIPE 
import os 
import re 
 
 
def generate_logs(pcap_dir, pcap): 
    """ 
    Process PCAP through a Bro container 
    :param pcap_dir: Full directory path to location of PCAP 
    :param pcap: PCAP filename 
    :return: 0 
    """ 
    volume = os.path.join(pcap_dir, ':/pcap:rw') 
    container_name = 'bro' 
 
    print("Starting bro container to process {}".format(pcap)) 
    print("NOTE: This can take some time depending on size of 
pcap") 
    print("NOTE: bro will display Errors in screen") 
    print("\n") 
 
 
    p = Popen(['docker', 'run', '--rm', '--name', 
container_name, 
               '-v', volume, 'blacktop/bro', '-r', pcap, 
               'local'], 
              stdout=PIPE) 
    out = p.stdout.read() 
 
    print("\n") 
    print("{} processed.".format(pcap)) 
    print("\n") 
 
    return 0 
 
 
def clean_log(log_dir, filename): 
    """ 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 26 

 

Patrick Neise, patrick.neise@gmail.com 

    Removes excess header and footer information from Bro logs 
to support import as CSV 
    :param log_dir: Path to log files 
    :param filename: Filename of log file 
    :return: 0 
    """ 
    print("Cleaning {}".format(filename)) 
    log_file = os.path.join(log_dir, filename) 
    clean_file = os.path.join(log_dir, filename + '.clean') 
 
    with open(log_file) as original: 
        lines = original.readlines() 
 
    with open(clean_file, 'w') as cleaned: 
        cleaned.writelines(lines[6][8:]) 
        cleaned.writelines(lines[9:-1]) 
 
 
    # this is to fix errors in http log due to random " in some 
of the User Agent strings 
    if filename == "http.log": 
        with open(clean_file, "r") as sources: 
            lines = sources.readlines() 
        with open(clean_file, "w") as sources: 
            for line in lines: 
                sources.write(re.sub(r'\t"', '\t', line)) 
 
    return 0 
 
def main(): 
    base_dir = os.getcwd() 
    data_dir = os.path.join(base_dir, "data") 
    pcap = 'maccdc2012_00000.pcap' 
    logs = ['conn.log', 'dns.log', 'http.log'] 
 
    # convert pcap into bro logs 
    pcap_to_log(data_dir, pcap) 
 
    # remove excess header and footer from each bro log 
    for log in logs: 
        clean_log(data_dir, log) 
 
if __name__ == '__main__': 
    main() 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 27 

 

Patrick Neise, patrick.neise@gmail.com 

 
  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 28 

 

Patrick Neise, patrick.neise@gmail.com 

Appendix C 

csv_to_neo.py 

from subprocess import Popen, PIPE 
import os 
import time 
 
 
def start_neo4j(data_dir): 
    print("Starting neo4j container...") 
    volume = os.path.join(data_dir, ':/var/lib/neo4j/import') 
 
    p = Popen(['docker', 'run', '--publish=7474:7474', '--
publish=7687:7687', 
               '-v', volume, '--name', 'neo4bro', '-d', 
'neo4j'], stdout=PIPE) 
    out = p.stdout.read() 
    print("neo4j container running") 
    time.sleep(5) 
 
    return 0 
 
 
def run_import(): 
    print("Importing nodes and relationships into neo4j...") 
    p = Popen(['docker', 'exec', 'neo4bro', '/bin/bash', 
'/var/lib/neo4j/import/import_connection.sh'], 
              stdout=PIPE) 
    out = p.stdout.read() 
    print("Import complete") 
 
    return 0 
 
def restart_neo4j(): 
    print("Restarting neo4j container...") 
    p = Popen(['docker', 'restart', 'neo4bro'], stdout=PIPE) 
    out = p.stdout.read() 
    print("neo4j container restarted") 
 
 
def main(): 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 29 

 

Patrick Neise, patrick.neise@gmail.com 

    base_dir = os.getcwd() 
    data_dir = os.path.join(base_dir, "data") 
 
    start_neo4j(data_dir) 
    run_import() 
    restart_neo4j() 
 
 
if __name__ == "__main__": 
    main() 
 
  



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 30 

 

Patrick Neise, patrick.neise@gmail.com 

Appendix D 

bro_to_neo.py 

import pcap_to_log 
import logs_to_csv 
import csv_to_neo4j 
import os 
 
 
def pcap_to_clean_logs(data_dir, pcap): 
    """ 
    Read in pcap that is located in data_dir and process 
through Bro container to crete Bro logs. 
    Process Bro logs into clean csv files for import in noe4j. 
    :param data_dir: Directory where pacp is located, relative 
to location of script. 
    :param pcap: Filename of the pcap to run through Bro. 
    :return: 0 
    """ 
    # convert pcap into bro logs 
    pcap_to_log.generate_logs(data_dir, pcap) 
 
    # remove excess header and footer from each bro log 
    logs = ["conn.log", "dns.log", "http.log"] 
    for log in logs: 
        pcap_to_log.clean_log(data_dir, log) 
 
    return 0 
 
 
def import_and_run_neo4j(data_dir): 
    """ 
    Start the neo4j container, execute shell script on the 
container to import nodes and relationships created from 
    Bro logs and then restart the neo4j container. 
    :param data_dir: Directory that contains node and 
relationship csv's for import in neo4j 
    :return: 0 
    """ 
    csv_to_neo4j.start_neo4j(data_dir) 
    csv_to_neo4j.run_import() 



© 2016 The SANS Institute Author retains full rights. 

Intrusion Detection Through Relationship Analysis	 31 

 

Patrick Neise, patrick.neise@gmail.com 

    csv_to_neo4j.restart_neo4j() 
 
    return 0 
 
def main(): 
    base_dir = os.getcwd() 
    data_dir = os.path.join(base_dir, "data") 
    pcap = "maccdc2012_00000.pcap" 
 
    pcap_to_clean_logs(data_dir, pcap) 
 
    logs_to_csv.create_nodes_relationships(data_dir) 
 
    import_and_run_neo4j(data_dir) 
 
 
if __name__ == '__main__': 
    main() 


