
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

COVERT CHANNELS OVER SOCIAL NETWORKS

GIAC (GCIH) Gold Certification

Author:	 Jose	 Selvi,	 jselvi@pentester.es	
Advisor:	 Rob	 VandenBrink	

Accepted:	 March	 20th	 2012	

Abstract	
There	 are	 many	 ways	 to	 embed	 data	 into	 unused	 fields	 of	 some	 network	 protocols	
like	 IP,	 TCP,	 etc	 in	 order	 to	 send	 and	 receive	 data	 in	 a	 hidden	 way.	 Nowadays,	
malware	 coders	 are	 hiding	 their	 communications	 using	 https,	 but	 techniques	 such	
as	 DNS	 sinkhole	 can	 help	 network	 administrators	 to	 stop	 some	 of	 them.	 The	
following	 step	 in	 Covert	 Channels	 is	 to	 embed	 data	 into	 known	 applications	 such	 as,	
for	 instance,	 social	 networks.	 Since	 it	 uses	 known	 domain	 names,	 it	 is	 difficult	 to	
detect	 the	 difference	 between	 real	 communications	 and	 evil	 ones.	 In	 this	 paper,	 we	
review	 some	 ways	 to	 embed	 data	 into	 these	 social	 networks,	 and	 how	 this	 can	 affect	
to	 corporate	 and	 personal	 security.	 As	 a	 proof	 of	 concept,	 we	 have	 released	 a	 tool	
called	 "facecat"	 (FaceBook	 Cat).	 With	 this	 tool	 we	 can	 relay	 ports	 using	 a	 FaceBook	
Wall	 as	 a	 Pipe,	 so	 it	 can	 be	 used	 through	 proxies	 and	 other	 network	 protections.	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2	
	

Author	 Name,	 email@address	 	

Introduction
Today we live in a malware age, with the malware industry growing

exponentially (AV-Test, 2012). Anti-malware software companies are working hard in

order to stop this growing trend, but malware detection is a really complex problem, since

it can be a very high number of different codes that result in the same evil actions.

While anti-malware software companies often concentrate on host based

detection, network administrators work trying to detect and block unwanted or suspicious

network communications. These network communications are needed by many malware

applications in order to communicate with a coder or botmaster, since most of the

malware needs to connect to a command and control console to report back stolen

information. There are only a few known fully independent malwares, for instance

Stuxnet (Falliere, O'Murchu & Chien, 2011), which is designed to work without Internet

connection and without human control. However, this is not a common architecture in the

malware industry today.

One of the most extreme countermeasures against malware is blocking outgoing

traffic. However, since computers need to share information and communicate between

each other, most of the time it is not possible to block all outgoing traffic.

When any connection is allowed, attackers and malware can take advantage of it

to hide an evil communication inside a permitted one. This is the root idea of Covert

Channels (Lampson, 1973).

Covert Channels Techniques have been evolving from the 1970’s until today

(Thyer, 2008), trying to avoid protections used by network administrators. As happens in

most security fields, the battle between attackers and security engineers is on.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 3	
	

Author	 Name,	 email@address	 	

The Covert Channels’ Past
Steganography & Covert Channels

Steganography is the art of hiding information inside any kind of message, so

Covert Channels can be thought of as Network Steganography.

Steganography uses unused or less significant fields in file formats, network

header or any other field in order to store a hidden message, with the main goal of having

the same appearance as with no hidden message.

Once information has been hidden, it can be difficult to detect, since sometimes it

is impossible to set a baseline of allowed values for a field, and a deep knowledge of each

protocol and some highly complex statistical techniques are needed (Geetha, Sivatha,

Siva & Kamaraj, 2009) (Geetha, Ishwarya & Kamaraj, 2010) in order to detect an

abnormal field use. This field of study isb called steganalysis, and it applies to file

formats, and also to network connections.

TCP/IP Covert Channels
Almost all modern networks are TCP/IP-based. As we know, TCP/IP model is a

suite of protocols, specified by RFCs (Request For Comments).

RFCs specifies headers, fields, type of data, sizes and much more, but it is easy to

find reserved or unused fields, or any other way of hiding data.

Each TCP/IP Layer, and each protocol field, can be potentially exploited in order

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 4	
	

Author	 Name,	 email@address	 	

to establish a Covert Channel. Some used fields are (Thyer, 2008):

- Network Layer: Not commonly used, since LAN access to the target is

needed.

- Internet Layer: IP and ICMP Header fields like “IP Identification Field”

(IPID) in non-fragmented datagrams, “IP Source Address”, “ICMP

Identification Number” (ICMP ID) and different ICMP Control Messages.

- Transport Layer: TCP and UDP Header fields like “TCP Initial Sequence

Number” (ISN), “TCP Acknowledge Number” (ACK), “TCP Options”, etc.

- Application Layer: DNS, HTTP, etc, like “DNS Identification Number” (DNS

ID).

In addition to exploiting specific fields, relationship between layers in the TCP/IP

stack can also be abused. For instance, specially crafted packets can be utilized to create

gaps between IP and TCP headers which can be leveraged as a Covert Channel (Caudle,

2007).

Some of these techniques can be used in almost all kinds of environment and

some of them only in specific ones, since environments can be very different from each

other.

Traditional Network Protections
Covert Channels are not a new threat. Network Administrators have been aware

of Covert Channels for near 40 years (Lampson, 1972) and they have been working hard

with the purpose of detecting, stopping, or at least mitigating their impact.

“Traditional” protections include:

- Block connections: Any kind of communication can be used to hide

information as a Covert Channel. The best security protection against Covert

Channels is just not to allow a connection. Of course, this is not feasible

because computers need to communicate with each other, but blocking

unneeded traffic can help to avoid some risks. Currently, common protections

are to block all incoming connections except the only ones really needed, and

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 5	
	

Author	 Name,	 email@address	 	

block all outgoing connections except established ones.

- Proxies: Normal or Reverse Proxies are used as a second layer of protection.

Since incoming and outgoing connections finish at the proxy, all the hidden

information stored in the lower layers is going to be lost. Most of them also

work in application layer (mostly HTTP), and check for an abnormal use of

the protocol.

These kinds of protection are widely known and implemented in almost any big

company, but as always happen, it’s not a silver bullet.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 6	
	

Author	 Name,	 email@address	 	

New trends in Covert Channels
Protocol Encapsulation

As we have just seen, common network protections limit the possibility of hiding

data in all TCP/IP stack layers.

If we focus on the most common application protocol (HTTP), while a proxy can

block abnormal uses, it is completely unable to handle the protocol content on account

that it can be very different from one website to any other.

Because of this, it is perfectly possible to hide information as an HTML body, or

any other application content. The Hackers Choice (THC) published a tool called

RWWWShell (Hauser, 1998), as a proof of concept of a reverse HTTPS shell written in

Perl, hiding all the shell traffic as HTTP Requests and Responses.

Some years later, Sensepost researchers published Setiri (SensePost, 2002), as a

proof of concept of a Trojan developed using HTTPS Covert Channels.

At the moment, most trojans and botnets use HTTP Covert Channel

communications. One of the most notorious ones is Zeus (Falliere & Chien, 2009) which

uses HTTP Connections in order to communicate with its command and control.

Encrypted Protocols
Other widely used countermeasures against Covert Channel communications are

network intrusion detection systems (NIDS) or content filtering proxies. These work by

looking for known patterns inside communication content, like a CMD banner, a

/etc/passwd line, or other keywords.

The atackers response to this countermeasure is encryption. Content information

can be encoded and encrypted in such a way that only the attacker can decode the

information. However, despite content encoding and encryption, it is possible for

intrusion detection systems to look for non-content patterns, for example the URI of a

known Trojan (like Zeus), tag where encoded content is, or any other means.

The common way to encrypt full HTTP communications is just to use HTTPS. As

we know, SSL communications are a big problem for proxies and intrusion detection

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 7	
	

Author	 Name,	 email@address	 	

systems, since it’s not possible for them to check the communication content. When we

want to protect our own SSL services, it is possible to configure an external SSL-

Decrypter Appliance (as SSL Accelerators do) since we know both public and private

encryption keys, but when checking outgoing communications it becomes difficult,

because of course we don’t know every site's private keys. Some companies set an

internal CA and configure their proxies as an SSL-MitM to be able to decrypt SSL

communications. This countermeasure can really help in Covert Channel detection, but

user’s privacy is totally exposed.

Application Encapsulation
The next step in HTTP Covert Channels is Application Encapsulation. Since it

uses a known application in order to hide data, it can be difficult to split from real

communications.

Some Trojans are using this new scenario, like “Naz” (Kartaltepe, Morales, Xu &

Sandhu, 2010), which used a Twitter account (@upd4t3) as a command channel. The

tweets were base64 short-url encoded links, which pointed to payloads to execute.

This new trend in Covert Channels is not widely used, since nowadays protocol

encapsulation and encryption are more than enough most of the time, but it has some

advantages because of using known applications as a communication channel.

One of these advantages is that, when encryption is used, the only researchable

data is domain name, since it has to be known by proxies or hosts in order to connect, and

domain name using known applications encapsulation can be as usual as Twitter.com,

FaceBook.Com, Google.Com or any other similar.

New Countermeasures
We have just seen that DNS name is the only information we can get when an evil

application uses encapsulation and encryption. In order to limit this issue security

analysts are working on different kinds of DNS-blacklist.

Some of them work at browser level, like the “Google SafeBrowsing API”

(http://code.google.com/apis/safebrowsing/), used by Firefox while many others work at

network level, like NIDS reputation lists or other similar techniques. Security in the

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 8	
	

Author	 Name,	 email@address	 	

browser can be less effective than security in the network, since malware can use direct

HTTPS connections. Security in the browser’s main goal is to prevent user infection

through browsers vulnerabilities, and not to block users which are already infected.

DNS Sinkhole techniques (Bruneau, 2010) are used in corporate environments as

a way to block connections to well known names used by botnets. These techniques work

by hijacking DNS Queries to hostnames or domains presented in the blacklist, and then

making a fake response to a non existing or local IP address. The advantage of this

technique is that it prevents any kind of connection to domain names used by malware

and botnets, but is not effective when common domain names are used, for instance if

malware is hosted on Google.com.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 9	
	

Author	 Name,	 email@address	 	

Known Applications Protections
PasteBin

PasteBin (http://pastebin.com) is a website that allows users to upload any kind of

simple text. It can be used within a user account, or in a public way. As a consecuence,

it's often used by hackers to publish information leakages.

Despite its anonymity, PasteBin has a Captcha protection in order to avoid

automatic publications, so it would be difficult to use it as a pipe for hidden

communications.

DropBox
DropBox (http://www.dropbox.com) is a website that allows users to upload files

and share them in an easy way. Hiding a TCP communication inside files could be

possible, but a user account is needed in order to upload information.

Regarding a few tests we did, DropBox is not blocking massive file uploads. As a

consecuence, it would be easy to hide a TCP communication over file uploads, using

each file as a container for packet payloads.

Google Sites
One of the Google Services is Google Sites (http://sites.google.com). This web

application provides users with the capability of creating new websites with some

standard functions like texts, images, attachments or comments. Google Sites is very

useful in order to create a new and simple website in just a couple of clicks.

In the same way, it can also be used in order to hide communications within its

content (comment, boddy, etc). Only authorized users can add information to a site but,

as almost everyone has a Google account, it would be easy to find a Google cookie in

almost any computer. Since a session variable is usually stored in a cookie, It can be used

to access into a user’s session, without any knowledge of his login credentials. We can

consider a cookie as a container for a temporal password (session variable).

Regarding a few tests we did, Google is not blocking massive comment postings

when a user is authenticated, so it would be easy to hide a TCP communication within

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
0	 	

Author	 Name,	 email@address	 	

Google Sites comments, using them as containter for packet payloads.

Twitter
Twitter (http://twitter.com) has already been used by “Naz” backdoor in order to

hide its commands, so it is obvious that TCP communications can be hidden within

Twitter tweets.

With Twitter, you can’t use a user account to post evil tweets, since every tweet is

automatically seen by all the user followers, so it would be too noisy. This is the reason

why “Naz” uses its own and independent Twitter account.

FaceBook
FaceBook (http://www.facebook.com) is probably the best known social network.

Almost everyone has a FaceBook account and many seldom logout since they’re using it

constantly. This is a great advantage for hiding communications, because we can use a

different FaceBook account for each communication, and it would be more difficult for

FaceBook to detect.

FaceBook has some protections against massive posting, but it is a big and

complex application with lots of features, so it is possible to find the non-protected ones.

Summary
After reviewing some well-known web applications, we can make a summary in

order to choose one of them for a proof of concept:

 Non-Auth Captcha Widely-Used Covert Ranking

PasteBin Yes Yes No Low

DropBox No No No Medium

Google Sites No Sometimes Yes (Google) High

Twitter No No Sometimes Medium

FaceBook No Sometimes Yes High

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
1	 	

Author	 Name,	 email@address	 	

Regarding all the analysis, we chose FaceBook because it is probably the most

widely-used in user environments and its massive posting protections can be easily

bypassed. FaceBook is also a threat in corporate environments, since lot of people use it

at work.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
2	 	

Author	 Name,	 email@address	 	

Proof of Concept: FaceCat
Introduction

FaceBook is one of the most widely used social networks. Almost everybody has

a FaceBook profile used daily in order to communicate and to share information with

friends and acquaintances. This is why FaceBook becomes a perfect sample of widely

used social networks where we can hide communication channels. FaceBook offers some

communication channels: private messages, profile information, the wall, pictures,

comments or just chat. Security countermeasures are used in some of these channels in

order to stop automatic access like crawling for profile information or some other threats.

Despite the efford of FaceBook’s Security Team, there are still some ways to

create Covert Channels through the FaceBook walls and maybe some other alternative

ways.

The following is an example of Covert Channles within FaceBook, called

FaceCat.

Stealing user cookies
A browser can handle cookies in two different ways. A cookie that is used for a

long duration is stored on disk, and a cookie that is valid only for a short period of time

(for instance, a session) is stored in the memory, and it is removed later when the browser

closes.

Authentication cookies are an example of short time storage, but social network

users prefer not to login every time they want to use FaceBook. For this reason, an option

“Keep me logged in” exists on the FaceBook login page. When a user checks this

checkbox prior to login, the browser stores the authentication cookie on disk, so every

time the user goes onto FaceBook, they are already authenticated.

With regard to this fact, most of the time we can find a FaceBook cookie stored

on disk that we can use in order to authenticate its account. Then we can access it as

different and real user accounts, not only with accounts specificly created for the purpose,

such as Naz does.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
3	 	

Author	 Name,	 email@address	 	

As a first action, FaceCat fingerprints the host operating system, and looks for

FaceBook cookies in the most frequently used browsers like Internet Explorer, Mozilla

Firefox, Google Chrome or Apple Safari. If found, FaceCat steals this cookie and starts

working as the last user logged in FaceBook.

A FaceBook Wall as a Pipe
The Wall is a FaceBook object where users publish whatever they want mainly

their thoughts. One of the communication advantages of the Wall is that people can write

on a friend’s wall or comment on any wall’s publication, if privacy settings allow it.

As a result of this capability of receiving information from different users, it can

be a perfect Covert Channel. Both sides of FaceCat binaries can read from and write

messages to the wall, in order to establish a TCP connection through a FaceBook Wall,

just as NetCat does with sockets. This is the main idea behind FaceCat, using a FaceBook

Wall as a Pipe.

FaceBook HTML content can be very difficult to parse so we use the mobile

version (http://m.facebook.com) since it has a simpler code, simpler interfaces and fewer

changes than the main site.

On a FaceBook’s earlier version, a user could allow anyone to write on his wall,

despite not being friends with him. On a recent FaceBook update, the wall’s privacy

options have been updated in such a way that you can’t allow everyone to write on your

wall, only your friends. This forced a change in FaceCat design, since the stolen cookie

can’t be used for writing on walls anymore.

Pass-the-Cookie
One of the possible solutions for the last FaceBook updates would be to force the

hijacked user to be a “pipe’s friend”, but that would be easy to detect by users or their

other friends, since they would have a new unusual friend, without any other friends,

photos, etc.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
4	 	

Author	 Name,	 email@address	 	

In the end, the chosen option was to do a “Pass-the-Cookie”. We call it “Pass-

the-Cookie” because of its similarities with “Pass-the-Hash” technique (Ewaida, 2010),

since both use a “second step” authentication object (hash or cookie) instead of “first

step” one (user and password).

In FaceCat’s architecture, we have two different roles. On the one hand, we have

The Master (M), who is the wall’s owner or a friend capable of writing on it (the

attacker). On the other hand we have The Slave (S), who is a non-related FaceBook user

(the victim).

In the first step of FaceCat’s operation, Slave FaceCat looks at the wall, waiting

for a cookie. When Master FaceCat starts running, it writes its own cookie on the wall,

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
5	 	

Author	 Name,	 email@address	 	

between brackets and base64 encoded. Then Slave FaceCat reads it and uses this cookie

as an authentication factor in the following steps, so from this point it has the ability of

writing on the wall.

Message Encoding
Not each hexadecimal number has a printable ASCII equivalent, so some kind of

encoding is needed in order to be able to write it in a channel thought for human

language.

Base64 was designed to represent binary data as an ASCII string, so it fits

perfectly in this situation. Base64 is used in FaceCat’s encoding schema, but some other

encoding or cryptography could also be used.

Certainly, a very long base64 string doesn’t look like human language so it could

be detected as a binary channel through a wall. However, it could be split into

randomized sized words (2 to 7 characters, for instance) and used “;”, “,” and “.” instead

of “/”, “+” and “=”. Since FaceBook supports lots of languages, it should be more

difficult to detect that this message isn’t a human language.

In practice, FaceBook doesn’t check the comments content, so it’s not necessary

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
6	 	

Author	 Name,	 email@address	 	

to use a more complex technique than the base64 encoding.

Sequence numbers and acknowledgment
When requesting a comments page, we have no simple way of detecting what

comments have already been read or not. This is the reason why we need some kind of

labeling in order to detect which comment was read last.

The simplest way we found was to use a sequence number for comments, in the

same way that TCP sequence numbers work. FaceCat stores a sequence number for

writing, and an acknowledge number for reading, so at any time it knows which sequence

number it has to use and which new comments there are. This sequence number is written

into brackets, at the comment’s beginning, after the master-slave tag.

	
	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
7	 	

Author	 Name,	 email@address	 	

FaceCat Algorithm Diagram
As a result, the FaceCat’s full algorithm is following:

	
	

	
	

	
	
	
Read	 and	 Write	 Relays	 are	 following:	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
8	 	

Author	 Name,	 email@address	 	

	

	
	

	
	
	
	

FaceCat Options
In a more practical view, let’s see FaceCat‘s command line options:

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 1
9	 	

Author	 Name,	 email@address	 	

$./facecat.py

Usage: facecat.py [options]

Options:

 -h, --help show this help message and exit

 -w WALL, --wall=WALL wall pipe account

 -c HOST, --host=HOST connection host

 -p PORT, --port=PORT listening or connection port

 -v, --verbose verbose output

 In a closer view of each option:

• Help: Just show the help

• Wall: Email of the master’s wall. It has to be previously configured in order to

allow writing on it.

• Host: FaceCat can work by listening or connecting, as NetCat does. If you chose a

host, connection mode is used. If not, listening mode is.

• Port: Port where FaceCat is listening for new connections, or port to connect to

(Host:Port connection).

• Verbose: Shows each step of the process. Useful for educational purposes.

FaceCat in Action
As a Proof of Concept, we used FaceCat in order to hide a known Backdoor

communication, for instance Poison Ivy (http://www.poisonivy-rat.com/).

Poison Ivy, as some other Remote Administration Tools (RAT), is a piece of

software that allows an operator to control a system as if he had physical access to it. This

kind of software is widely used in corporate environments, in order to give remote

technical support. It is also used as a backdoor, when the system is controlled in a hidden

way, without the knowledge of the user or administrator.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
0	 	

Author	 Name,	 email@address	 	

In this Proof of Concept, we have chosen Poison Ivy as a RAT tool, but any other

Tool or Protocol could also be used. The next steps are followed:

1. Create a Poison Ivy server that will try to connect to 127.0.0.1 at port 3460.

We also start a Poison Ivy client listening at the same port

2. Create and configure a FaceBook account in order to write on its wall, for

instance wall1@gmail.com.

3. Run Internet Explorer and login in our newly created account.

4. Run FaceCat in order to read wall1@gmail.com’s wall and to relay to our

local poison ivy’s client:

facecat.py –v –m wall1@gmail.com –c 127.0.0.1 –p 3460

5. Copy (or infect) FaceCat and Poison Ivy’s server to the victim’s machine.

6. Run FaceCat in order to listen to port 3460 in the victim’s machine and to

relay to wall1@gmail.com’s wall:

facecat.py –v –m wall1@gmail.com –p 3460

7. Run Poison Ivy’s client in the victim’s machine.

8. Use Poison Ivy normally, but through a FaceBook’s Covert Channel.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
1	 	

Author	 Name,	 email@address	 	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
2	 	

Author	 Name,	 email@address	 	

Covert Channels Detection and Prevention
Network Layer Protections

In the corporate environment, we can take two different approaches: detection or

prevention, or perhaps both of them.

Covert Channel detection can be a very difficult task, since they are specifically

designed in order to avoid detection. Despite this, they can sometimes be detected using

an anomaly detection approach. If you have previously deployed some sensor and you

have made a baseline profile of your network communications, perhaps you could be able

to detect abnormal circumstances such as too much traffic in non-office time and other

similar situations.

Covert Channel prevention can be a bit more simple in some circumstances. You

can block outgoing connections to social networks if it is not needed, with techniques

such as DNS Sinkhole or just blocking by IP address. In a more sophisticated approach,

we could use our own captcha protection in our proxy in order to avoid massive

automatic connections to external web sites.

Application Layer Protections
Of course, the best approach is that all applications should have protections

against massive automatic messages. If social networks such as FaceBook or Twitter had

a captcha or similar protection like PasteBin does, it would be much harder to use them

as a Covert Channel.

The problem is that a captcha (or similar) protection makes users feel

uncomfortable with the application handling, since it becomes more difficult and slower.

It can make it really hard to be deployed in intensively used applications like Twitter or

Facebook.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
3	 	

Author	 Name,	 email@address	 	

Conclusions
Protections against application layer Covert Channels are very difficult to design

and deploy, since it can be totally different from one application to another. The best

protection should always be deployed in each application, but it isn’t always possible.

In these circumstances, the least-privilege rule is a must. We can try to avoid

Covert Channels by blocking all unnecessary websites or, in a more complex approach,

deploying network protections against massive automatic connections.

In user environments, where all network protections are entirely within a home-

grade firewall router, we must focus on prevention, since usually all outgoing

connections are allowed.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
4	 	

Author	 Name,	 email@address	 	

References

Av-Test. (2012, march 05). Malware statistics . Retrieved from http://www.av-
test.org/en/statistics/malware/

Bruneau, G. (2010). DNS sinkhole. Retrieved from
http://www.sans.org/reading_room/whitepapers/dns/dns-sinkhole_33523

Caudl, R. (2007). Assumptions in intrusion analyst – Gap analysis. Retrieved from
http://www.sans.org/reading_room/whitepapers/honors/assumptions-intrusion-
detection-blind-spots-analysis_1751

Ewaida, B. (2010). Pass-the-hash attacks: Tools and mitigations. Retrieved from
http://www.sans.org/reading_room/whitepapers/testing/pass-the-hash-attacks-
tools-mitigation_33283

Falliere, N., & Chien, E. (2009). Zeus: King of the bots. In Symantec Corporation.
Retrieved from
http://www.symantec.com/content/en/us/enterprise/media/security_response/whit
epapers/zeus_king_of_bots.pdf

Falliere, N., O'Murchu, L., & Chien, E. (2011, February). W32 Stuxnet Dossier.
Retrieved from
http://www.symantec.com/content/en/us/enterprise/media/security_response/whit
epapers/w32_stuxnet_dossier.pdf

Geetha, S., Ishwarya, N., & Kamaraj, N. (2010). Evolving decision tree rule based system
for audio stego anomalies detection based on hausdorff distance statistics.
Information Sciences, 180(13), 2540-2559.

Geetha, S., Sivatha, S., Siva, S., & Kamaraj, N. (2009). Blind image steganalysis based
on content independent statistic al measures maximizing the specificity and
sensitivity of the system. Computers and Security, 28(27), 683-697.

Hauser, V. (1998). Placing backdoors through firewalls. Retrieved from
http://www.thc.org/papers/fw-backd.htm

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
5	 	

Author	 Name,	 email@address	 	

Kartaltepe, E. J., Morales, J. A., Xu, S., & Sandhu, R. (2010). Social network-based
botnet command-and-control: Emerging threat and countermeasures. Springer-
Verlag Berlin Heidelberg, 511-528.

Lampson, B. W. (1973). A note on the confinement problem. Communications of the
ACM, 16(10), 613-615.

SensePost. (2002). Seiri: Advances in trojan technologies. Paper presented at Black hat
asia. Retrieved from http://www.blackhat.com/presentations/bh-asia-
02/Sensepost/bh-asia-02-sensepost.pdf

Thyer, J. S. (2008, January 30). Covert data storage channel using ip packet headers.
Retrieved from http://www.sans.org/reading_room/whitepapers/covert/covert-
data-storage-channel-ip-packet-headers_2093

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Covert Channels over Social Networks 2
6	 	

Author	 Name,	 email@address	 	

Appendix
FaceCat YouTube Demos

FaceCat TCP chat: http://www.youtube.com/watch?v=flZUuRK2R-k

FaceCat and Poison Ivy: http://www.youtube.com/watch?v=C_c8KNvVSVg

FaceCat SourceCode
Download from: http://tools.pentester.es/facecat/

