
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC LevelTwo Advanced Incident
Handling and Hacker Exploits

Practical Assignment Version 1.5b

Option 2 – Document a Malicious Program

Reverse Engineering Srvcp.exe
by Lenny Zeltser

May 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 1

Table of Contents

1. Introduction... 2

2. Trojan Details.. 2

3. Research Methodology... 4

4. Protocol Description... 9

5. How the Trojan Works .. 16

6. How to Use the Trojan ... 24

7. Description of Variants .. 25

8. Operation Diagrams... 27

9. Signature of the Attack .. 28

10. Protecting Against It .. 30

11. Program Code ... 31

12. Additional Information.. 31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 2

1. Introduction

For this practical assignment we were asked to locate and fully document an example of
malicious code. We elected to analyze a relatively obscure trojan primarily because we believe
the reader will benefit from walking through the steps we took to reverse engineer its
functionality. Whenever possible, in addition to covering areas required by the assignment, we
tried to emphasize the process of understanding inner workings of malicious software, and
explained which tools we found most useful during our investigation. We hope that by presenting
repeatable forensics steps, we encourage members of the defense community to work on
developing a structured approach to malware reverse engineering.

W would like to thank Joe Abrams for his insights regarding the trojan’s assembly code, as well
as for explaining the context of its existence in the wild. Many thanks to Slava Frid, who helped
us in stepping through particularly cryptic areas of the trojan’s code, and for making his mind
available for our picking. Also, we thank Doug Kahler for sharing with us a copy of the trojan
along with his observations. Finally, thanks to Jeremy Gaddis for bringing this trojan to the
attention of the defense community.

2. Trojan Details

This document focuses on analyzing the trojan that we refer to as srvcp.exe for the lack of an
agreed-upon name. Anti-virus vendors do not provide much information about this trojan, and
seem to assign different names to its variants. These are provided in Figure 2-1 below; however,
note that since anti-virus vendors do not have a common nomenclature for naming malicious
software, different names across vendors do not necessarily represent a different trojan variant.
We will discuss variants of the srvcp.exe trojan later in this document.

Names of srvcp.exe Variants

Anti-Virus Vendor Assigned Names

Symantec IRC.SRVCP.Trojan

Trend Micro TROJ_SRVCP

TROJ_TASMER.B

Computer Associates Tasmer.A, Win32.Tasmer.B

Tasmer.B, Win32.Tasmer.B,
Backdoor.Tasmer, Troj/Narnar

Sophos Troj/Narnar

Network Associates IRC/Randy

Figure 2-1

A variant of the srvcp.exe trojan, was brought to the attention of the defense community by
Jeremy L. Gaddis on 8 June 2000. In his posting to the Incidents mailing list, Jeremy reported
noticing inbound connection attempts to port 113 from an unknown host on the Internet, as well

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 3

as unauthorized outbound connection attempts to a remote server on destination port 6667.[JLG]

Investigating the incident, Jeremy quickly discovered the trojan’s ties to an Internet Relay Chat
(IRC) network, as described in his message:

Knowing that 6667 is an often used port for IRC servers, I started up an IRC client and
connected to that host. It was indeed an IRC server. A quick check showed 4 users
online with the “Real Name” field set to “Im trojaned”, one of which was my IP address.

For those not familiar with IRC, let us mention that IRC can be viewed as a network of
interlinked servers that allows users to hold real-time online conversations. Participants of a
conversation typically join a channel devoted to a particular topic or interest. This is
accomplished by having the user’s IRC client connect to a server that participates in the desired
IRC peering network. When a user types a message meant to be seen by channel participants, it is
relayed to the IRC server, and the server resends the message to relevant clients, as specified in a
Request for Comments (RFC) document 1459.[RFC1459]

A few days later after Jeremy’s initial message, Brandon Kittler also relayed his experience
regarding this trojan in his posting to the mailing list on 10 June 2000.[BK] Brandon supplied
details regarding the location of the program’s executable and the associated registry entry. Based
on his observations and examination of strings present in the executable, he also concluded that
the trojan was able to receive commands potentially dangerous commands via IRC:

0054C7 PRIVMSG %s :successfully spawned ftp.exe
0054F1 PRIVMSG %s :couldn't spawn ftp.exe
005515 PRIVMSG %s :no more...
00552D PRIVMSG %s :ready and willing...

Brandon also pointed out that the program listened on port 113 for Ident requests, and crashed
when it received requests that did not follow the Ident protocol. The Ident service, whose protocol
is defined in RFC 1413, allows a remote server to determine the login name of the user who
initiated a TCP connection to the server.[RFC1413] In an attempt to control system abuse, many IRC
servers will not accept IRC connections unless the connecting user’s identity can be reconfirmed
through the use of the Ident protocol.

Additional information regarding the program’s behavior was reported by Doug Kahler a couple
of days later on 12 June 2001.[DK] Doug mentioned that he ran into a similar trojan a few months
earlier, and pointed out that at the time the program attempted to connect to an IRC server in the
EFnet network to join channel named “#mikag” with the key “soup”. Doug also pointed out:

Just joined the channel today, and there are 55 people in there with nicks of random
letters and numbers. I assume they are all infected.

Doug would later be kind enough to search through his archives and share with us a copy of the
trojan that he based his analysis on. This was critically helpful for our research, since the
executable posted to the mailing list in the beginning of the thread turned out to be a benign copy
of what seemed to be a Windows screen saver.

As Nick FitzGerald pointed out in a message to the Incidents mailing list on 13 June 2001, the
program seemed to be a variant of the relatively unknown Tasmer trojan.[NF] Nick confirmed that
in his experience the trojan joined an IRC channel, and could be “remotely controlled via private
messaging over IRC.” According to Nick, some Tasmer variants were suspected of having
distributed password cracking capabilities, and possible Denial of Service (DoS) attack agents.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 4

After the discussion on the Incidents mailing list in June 2001, the trojan did not seem to catch
the public’s eye, and has remained relatively unexplored. However, our interest in this program
was rekindled after a recent posting to the mailing list by Pete Schmitt on 10 March 2001.[PS] His
brief description of the trojan that has infected his computer seemed to match much of the
functionality discussed on the mailing list eight moths earlier. Pete also observed that the trojan
attempted to connect to an IRC server using the name of “Joe Blow.”

Based on the information posted to the Incidents mailing list, we were able to learn that the
srvcp.exe trojan infected Windows computers – in our experiments it infected Windows 98 and
Windows NT. The trojan provided its operator with a backdoor into the system through the use of
an IRC-based control channel. Later analysis, as we will describe further in this document,
revealed that some aspects of the trojan’s behavior could be modified through the use of an
encrypted initialization file. Additionally, we later learned that the trojan expects its commands to
be encrypted in a proper fashion before it honors the operator’s requests.

3. Research Methodology

To facilitate efficient, inexpensive, and reliable research process, reverse engineers of malicious
software should have access to controlled laboratory environment that is flexible and unobtrusive.
In our research, we have come to rely on virtual workstation software available from VMware,
Inc. VMware works by providing hardware emulation and virtual networking services, and allows
engineers to set up completely independent installations of operating systems on a single
machine. With VMware, each virtual machine “is equivalent to a PC, since it has a complete,
unmodified operating system, a unique network address, and a full complement of hardware
devices.”[VM1]

When setting up our lab environment, we installed VMware on a 500MHz laptop computer
running Windows 2000 Professional with 20GB disk space and 256MB RAM. We decided to use
a laptop, even though similarly priced desktop machines would offer much more computing
house power, to keep our lab truly lightweight and portable. Wishing to have a range of operating
systems available for research, we created three virtual machines running within VMware: Red
Hat Linux 7.0, Windows 98 Second Edition, and Windows NT 4.0 Workstation Service Pack 6a.
Each guest operating system was allocated 1.6GB disk space and 64MB RAM, which was
sufficient for our purposes. Because VMware functions by emulating hardware, each guest
operating system had to be installed in a way consistent with typical installation procedures.
Figure 3-1 below illustrates our setup running two virtual machines simultaneously with the host
operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 5

Figure 3-1

While each guest operating system was able to operate independently of each other, VMware
allowed us interconnect virtual machines using a virtual network that was completely enclosed in
the hosting machine and did not have the ability to communicate with the outside world. To
enable this functionality when using Windows 2000 as the host operating systems, we had to
manually create a virtual “host-only” adapter by following directions from the VMware support
site.[VM2] The adapter was assigned an IP address in a private RFC 1918 range, to ensure that it
would not conflict with any of our existing connections.[RFC1918]

As part of host-only adapter installation, VMware also installed DHCP server service, dedicated
to giving out IP addresses to hosts on the virtual network. To ensure that the virtual network is
indeed isolated from physical interfaces of the laptop, we installed ZoneAlarm Pro on the hosting
machine, which offered a comforting layer of protection, and warned us of any packets trying to
leave the laboratory environment. Figure 3-2 below illustrates virtual network infrastructure that
resided within our laptop.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 6

Virtual Laboratory Network

Laboratory Network - 172.16.198.0/24

Windows 2000
172.16.198.1

Linux
172.16.198.129

Windows NT
172.16.198.131

Windows 98
172.16.198.130

Figure 3-2

One of the advantages of using VMware instead of physically separate systems is the ability to
backup and restore full systems in a matter of minutes. Each virtual machine is implemented
using a several self-contained files located in the program’s VMs subdirectory. Backing up the
system can be accomplished by making a copy of the files used by VMware to represent the
virtual machine. This is particularly useful when analyzing unknown malware, where unless the
system is brought to a known state, repeated interactions with the virus or trojan might taint the
environment. Additionally, the ease of making copies of virtual machines allows engineers to
maintain a number of instances of an operating system with different patch levels.

Despite the high degree of isolation provided by VMware, there is some interaction between
guest operating systems and the hosting machine. In particular, VMware provides VMware Tools
drivers, which, when installed on a virtual machine will allow the user to move the mouse pointer
between guest operating systems and the hosting machine. Additionally, the drivers allow virtual
machines to share access to the hosting machine’s clipboard. These features are enabled from
within virtual machines, and the hosting system does not seem to be able to disallow them. This
means that it is possible to craft a targeted attack against a user of a VMware-based laboratory
that will achieve some level of access to the hosting system from with a virtual machine.

One of the ways to understand the threat associated with a malicious agent is to begin by
examining its behavior in a controlled environment. This typically involves running the agent in a
laboratory and studying its actions as it interacts with computer resources and responds to the
engineer’s stimulus. Our VMware-based laboratory environment allowed us to use a single screen
to monitor the trojan from perspectives of different systems.

We used a combination of process, disk, registry, and network monitoring tools to study the
trojan’s activity on a specific machine, as well as its attempts to connect to other systems. We
were able to direct the trojan to laboratory machines when it attempted to communicate with
systems on the Internet, so that we could replicate native environment for the trojan while
maintaining full control over its interactions with the world.

We found freeware tools offered by Systernals to be very useful when monitoring the trojan’s
behavior. Specifically, we used Filemon for Windows NT/9x to observe which files the trojan
attempted to access on the local system.[SI1] Similarly, Regmon for Windows NT/9x provided us

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 7

with the ability to monitor registry-related read and write activity.[SI2] Additionally, the TCPView
Pro utility allowed us to obtain detailed listings of all TCP and UDP connections on the system,
and tied network endpoints to processes that established them. [WI] TCPView Pro is distributed by
Winternals for $69.

We used Winalysis, a program produced by SFullerton.com to detect changes made to the system
by the trojan.[SF] Winalysis allowed us to create a baseline of the pristine system, and compare it
to the system’s state after the trojan ran. Using Winalysis in conjunction with monitoring tools
from Systernals allowed us to be relatively certain that we would detect the trojan’s affect on the
file system. Winalysis costs $25 per copy for Windows 98/ME, and $35 per copy for Windows
NT/2000, and is able to detect changes to the system’s registry and file system. While Winalysis
does not offer the level of detail and robustness associated with a more popular forensics tool
Tripwire,[TR] its low price and ease of use made it a useful addition to our toolkit.

Malware may create temporary files as it executes, and delete them before the program exists. In
this scenario Winalysis is unlikely to report evanescent existence of the transient file, while
Filemon will report that it was created and deleted, but will not be able to recover the file’s
contents. To compensate for this possibility we used the Undelete utility, available from
Executive Software for around $45.[ES] Undelete replaces the native Windows Recycle Bin with a
Recovery Bin, which is able to capture all deleted files, even those deleted by non-GUI processes.
Unfortunately, at the time of this writing Undelete is only available for Windows NT/2000.

We relied on Snort, a freely distributed lightweight intrusion detection system, to monitor traffic
on the laboratory network.[SN] Even though Snort is typically used to automatically detect
network-based attacks, we only utilized its built-in sniffing capabilities to obtain details about
network communications by invoking the program as “snort -v -d”, which told it to enter the
verbose mode and to capture data payload of packets. We preferred a Snort-based sniffer to other
network capture utilities because of Snort’s availability for Windows as well as UNIX operating
systems, its large deployment base, as well as text-based logs and controls.

VMware comes with a tool called vnetsniffer, which can run on the hosting operating system and
display network traffic between virtual machines as well as between the hosting machine and its
guests. However, the extent of information supplied by the program would not be sufficient for
detailed forensics analysis. Even when executed with the “/e” switch, vmnetsniffer only logs
packet size, source IP and MAC addresses, transport protocol type, as well as ARP and ICMP
message types, when appropriate. This is considerably less exhaustive than information provided
by Snort, and most importantly lacks packet data payload.

For network monitoring purposes, the virtual laboratory network can be considered to be hub-
based, where every machine on the network is able to see all network traffic when its network
interface is in promiscuous mode. However, the exception to this rule is the hosting operating
system itself, which is only able to see traffic originating or targeting itself. To see all virtual
network traffic from the hosting machine, one has no choice but to use the vmnetsniffer tool. To
obtain the desired level of packet details, we monitored the network using Snort running on our
Linux-based laboratory machine, which allowed us to see all laboratory network traffic.

Behavioral analysis described in the previous section concentrates on external aspects of malware
as it interacts with its environment, but does not provide sufficient insight in the inner workings
of the program. We utilized a debugger in conjunction with a disassembler to attempt reverse
engineering the trojan’s executable, since we did not have the luxury of looking at its source
code. The general approach to this process relied on a disassembler to understand the basic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 8

structure of the program, and proceeded by stepping through it with a debugger to study the
trojan’s workflow and to peak at its runtime memory contents.

We used DataRescue IDA Pro disassembler to decompose the trojan into assembly instructions.
IDA Pro Standard can be purchased for $299 from the company’s Web site.[DR1] Before
purchasing the program, one might take advantage of its limited evaluation version, which is
available for free and might prove to be sufficiently useful during early stages of the analysis.[DR2]

DataRescue also provides IDA Pro Freeware, which is actually version 3.85B of the software,
and lacks a Windows-based GUI that we found to be very useful in the newer versions of the
program.[DR3] During our analysis we also relied on the Intel Architecture Software Developer’s
Manual for explanations of assembly instructions that we were not familiar with.[IN]

Because assembly is a low-level language, we found it difficult to understand the flow of the
trojan’s code without stepping through it with SoftICE, a powerful debugger that can be
purchased as part of NuMega SoftICE Driver Suite for Windows 9x/NT/2000 for $999.[NM] We
had the debugger running on the background on the lab system where we launched the trojan.
Knowing the general structure of the trojan from its disassembled code as well as from system
and registry calls intercepted by Systernals tools, we were able to set SoftICE breakpoints on
trojan sections that seemed particularly interesting. Breakpoints allowed us to automatically
invoke the debugger at specific workflow branches, and freed up from having to step through
every single instruction in the trojan’s program.

Once installed, SoftICE runs in the background until invoked through the “Ctrl-D” key
combination or until the running program triggers a previously set breakpoint.[C4N] We usually set
a breakpoint by executing the “bpx” command on the SoftICE command line by supplying an
API function name or an instruction address as a parameter. We used the F10 key when in
SoftICE to step through the program one step at a time while executing function calls as a single
instruction, and the F8 key to execute a single instruction per step.[MT] Finally, completing the list
of our most frequently used SoftICE directives, is the “d” command, which displayed memory
contents at a specific address or at a location stored in a particular register.

We installed SoftICE on Windows NT 4.0 and Windows 98 laboratory machines. Initially we had
concerns over the stability of the program when run in VMware environment. In particular,
machines would sometimes freeze and fail to start when SoftICE was activated. However, most
of the problems went away once we removed VMware video drivers from these virtual machines
and installed standard Windows VGA video drivers in 640x480 mode with 16 colors. Under
Windows NT we started SoftICE manually using the “net start ntice” command. Under
Windows 98 we ran into problems trying to start the program manually, and had the system
automatically launch it upon boot-up, which took away some of the flexibility that running
SoftICE manually had offered.

Another useful tool in our arsenal was the “strings” program, available in most UNIX
distributions. This utility can extract text strings from executables, which is often helpful for
estimating the program’s purpose and mechanics. A strings snapshot of malware is considerably
shorter than a complete listing of its disassembled code, but, of course, is not as thorough. Similar
functionality is available for Windows from the BinText program, which is freely distributed by
Foundstone.[FS] BinText is a bit more flexible than most of its UNIX alternatives, and supports a
range of advanced filtering options.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 9

4. Protocol Description

Before launching the srvcp.exe trojan on our Windows NT 4.0 laboratory machine, we had
enabled all monitoring tools that we had in our possession. We placed the srvcp.exe file in the
arbitrarily chosen location on the local file system, which happened to be C:\Download, and ran
the program. It went quietly into the background, and besides adding the “srvcp.exe” process to
the process list, did not register any behavior that could be observed with a naked eye. We could
see activity associated with the executable being logged by our monitoring utilities, and killed the
srvcp.exe process after it lived for approximately 10 seconds. Examination of activity logs
revealed behavior consistent with the discussion in the “unknown trojan” thread on the Incidents
mailing list, which we discussed earlier in our document.

After the trojan was killed, we used Winalysis to scan the system for file system and registry
changes. The program flagged several modifications related to normal Windows activity, and
pointed out that the following registry key was created with the value of “srvcp.exe” –
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Service Profiler”.
This configured the system to attempt launching the trojan every time Windows started up. Note
that the full path to the trojan’s executable was not specified, which indicates that the author
assumed that srvcp.exe would be in the path. This suggests that we did not possess the trojan’s
distribution mechanism, which would have either modified the system’s path, or copied its
executable into a directory that is in the path by default, such as C:\WINNT. In our case, the
executable file remained in C:\Download, and no new files were created, which means that the
trojan would not start upon system boot-up. Looking at Filemon and Regmon logs confirmed
Winalysis findings.

Figure 4-1 below illustrates creation of the trojan’s registry key as witnessed by Regmon. (We
manually highlighted relevant lines on the screen snapshot for emphasis.) Later experiments
established that this key is set every time the trojan is executed, even if it has been created earlier.
Note that Regmon does not display the value of the registry key – to obtain that information we
had to either look at the registry using the regedit.exe utility, or compare system state using
Winalysis. According to Regmon, the trojan also queried \Services\WinSock2 and Services\Tcp
registry keys, which is typical for an executable utilizing TCP/IP for network communications.

Figure 4-1

As demonstrated in Figure 4-2 below, Filemon reported that the trojan attempted to access the
C:\WINNT\System32\gus.ini file, which was not found on this system. (We manually highlighted
relevant lines in the screen capture for emphasis.) Under Windows NT the request uses the
“IRP_MJ_CREATE” call with the option “Open”, while in later experiments under Windows 98

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 10

Filemon simply labeled the request as “Read”. In both cases, the trojan continued to function
even though the file was not found. Further in the document we will discuss the role of the gus.ini
file. Furthermore, Filemon, captured access attempts to C:\WINNT\System32\crtdll.dll, which
provides function calls such as fopen, fclose, and fscanf. Additionally, the trojan read msafd.dll,
wshtcpip.dll, and rnr20.dll. Finally, the trojan read the hosts file, probably as part of the domain
name resolution process that we have witnessed using Snort, as discuss in the next section.

Figure 4-2

As we launched the trojan on a Windows NT laboratory machine, we configured our Linux
laboratory machine to monitor network communications using Snort running in verbose mode.
Because the VMware virtual network has hub-like properties, this system was able to capture all
network communications traveling across the network. Figure 4-3 below illustrates a Domain
Name Service (DNS) request issued by the Windows NT machine running the trojan. We
configured the Windows NT machine to use the host system 172.16.1.98.1 as the DNS server,
even though the host system was not running DNS software. An attempt to resolve irc.mcs.net is
consistent with the behavior reported with Filemon, which registered the trojan’s request to read
the local hosts file.

Domain Name Resolution Request

03/16-06:19:46.414790 172.16.198.131:1046 -> 172.16.198.1:53
UDP TTL:128 TOS:0x0 ID:4354 IpLen:20 DgmLen:57
Len: 37
00 01 01 00 00 01 00 00 00 00 00 00 03 69 72 63 irc
03 6D 63 73 03 6E 65 74 00 00 01 00 01 .mcs.net.....

Figure 4-3

Rather than bringing up a DNS server on the laboratory network, we added an entry to the
infected machine’s hosts file that resolved irc.mcs.net to 172.16.198.129. The purpose for this
configuration step was to redirect the trojan to a server under our control so that we can observe
the nature of the connection that the program would make to the system whose name it was trying
to resolve. Manipulating DNS records in laboratory environment was trivial; had the trojan’s
author hard-coded an IP address into the program, we would have to configure local routing
tables and network parameters to redirect traffic to our system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 11

As demonstrated in Figure 4-4 below, the trojan attempted to connect to port 6667 on the system
it thought was irc.mcs.net. This was not surprising, since port 6667 is commonly used for IRC
communications, and is consistent with the host name and nature of irc.mcs.net, which is a
popular EFnet IRC server. Note that our server responded with a RST packet to the trojan’s SYN
packet requesting the connection, because the server was not listening on port 6667.

Failed IRC Connection Attempt

03/16-06:44:10.522728 172.16.198.131:1060 -> 172.16.198.129:6667
TCP TTL:128 TOS:0x0 ID:47106 IpLen:20 DgmLen:44 DF
******S* Seq: 0x2D492 Ack: 0x0 Win: 0x2000 TcpLen: 24
TCP Options (1) => MSS: 1460

03/16-6:44:10.536857 172.16.198.129:6667 -> 172.16.198.131:1060
TCP TTL:255 TOS:0x0 ID:3 IpLen:20 DgmLen:40
***A*R** Seq: 0x0 Ack: 0x2D493 Win: 0x0 TcpLen: 20

Figure 4-4

In response to our observations, we installed and configured ircd-hybrid software[IS] on the Linux
machine 172.16.198.129 to provide IRC services to the trojan. After starting the trojan again, we
were able to monitor its conversation with our IRC server. As shown in Figure 4-5 below, the
trojan attempted to log in to the IRC channel “#daFuck” using the nickname of “mikey”. In this
case the period in front of the “JOIN” command matches its “0A” hexadecimal counterpart,
which represents the new line character.

Successful IRC Connection

03/16-07:59:47.630767 172.16.198.131:1030 -> 172.16.198.129:6667
TCP TTL:128 TOS:0x0 ID:18433 IpLen:20 DgmLen:102 DF
AP Seq: 0x11B0D Ack: 0xB1B0E8B2 Win: 0x2238 TcpLen: 20
4E 49 43 4B 20 3A 6D 69 6B 65 79 0A 55 53 45 52 NICK :mikey.USER
20 55 79 58 63 20 55 79 58 63 20 55 79 58 63 20 UyXc UyXc UyXc.
3A 66 69 67 68 74 20 6D 65 2C 20 70 75 73 73 79 :fight me, pussy
0A 4A 4F 49 4E 20 23 64 61 46 75 63 6B 0A .JOIN #daFuck.

Figure 4-5

The way in which the trojan connected to IRC is slightly different from the reports discussed
earlier in our document. In particular, Jeremy reported that the trojan’s real name on the channel
was “Im trojaned”, while in our case the real name was set to “fight me, pussy”. In both instances
the names were suggestive of abuse, and it is possible that we were looking at a mutated version
of the program. Additionally, Doug observed the trojan joining the channel “#mikag”. In our
case, we see a possible tie between Doug’s channel name “#mikag” and our nickname “mikey”,
even though our specimen joined a different channel. Later analysis, discussed further in our
document, established a connection between the channel name and contents of the gus.ini file.

Several packets after the trojan connected to the IRC server, we observed an Ident request from
the server to the workstation running the trojan. The Ident mechanism is typically used by UNIX

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 12

systems to obtain the name of the user who initiated a TCP connection. TCPView running on the
infected machine reported that the trojan was listening on TCP port 113, and Figure 4-6 below
shows the program’s Ident response. IRC connection discussed in this section resulted in the
following response to the “/who #daFuck” command executed on our IRC server:

“#daFuck mikey H@ CaTiRk@172.16.198.131 (fight me, pussy)”

Trojan’s Ident Response

03/16-07:59:47.701560 172.16.198.131:113 -> 172.16.198.129:1078
TCP TTL:128 TOS:0x0 ID:18945 IpLen:20 DgmLen:78 DF
AP Seq: 0x11B21 Ack: 0xB1EAA1B9 Win: 0x222B TcpLen: 20
31 30 33 30 20 2C 20 36 36 36 37 20 3A 20 55 53 1030 , 6667 : US
45 52 49 44 20 3A 20 55 4E 49 58 20 3A 20 43 61 ERID : UNIX : Ca
54 69 52 6B 0D 0A TiRk..

Figure 4-6

Ident functionality is built into the trojan most likely to increase the likelihood of successfully
connecting to an IRC server, since many IRC servers will not accept a connection whose identity
is not confirmed through the Ident mechanism. As soon as the trojan answered the Ident request,
it stopped listening on port 113, probably to avoid remote detection with a port scanner, as well as
to simplify the flow of the program’s code. Repeated launches of the trojan indicated that it
generated the username reported via Ident in a pseudo-random manner. For instance, some of the
other generated names were “MdSxJy”, “HsSdLhG”, “IyKw”, “FgX” and “Ce”. After joining the
desired channel, the channel continuously issued the “NICK mikey” command approximately
every three seconds. This is demonstrated in Figure 4-7 below. (For clarity purposes we did not
include corresponding ACK packets from the IRC server.)

Trojan’s Nickname Requests

03/16-09:01:30.651137 172.16.198.131:1030 -> 172.16.198.129:6667
TCP TTL:128 TOS:0x0 ID:21761 IpLen:20 DgmLen:51 DF
AP Seq: 0x11B79 Ack: 0xB1B0EE89 Win: 0x2238 TcpLen: 20
4E 49 43 4B 20 6D 69 6B 65 79 0A NICK mikey.

03/16-09:01:33.818259 172.16.198.131:1030 -> 172.16.198.129:6667
TCP TTL:128 TOS:0x0 ID:22017 IpLen:20 DgmLen:51 DF
AP Seq: 0x11B84 Ack: 0xB1B0EE89 Win: 0x2238 TcpLen: 20
4E 49 43 4B 20 6D 69 6B 65 79 0A NICK mikey.

Figure 4-7

Once the trojan joined the IRC channel, it remained connected, supposedly waiting for commands
from its operator via the chat session. The nature of these communications is discussed further in
our document. The program also participated in periodic “PING” - “PONG” message exchanges
as defined in the IRC protocol to ensure that the IRC client is alive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 13

In one of our experiments, we launched two instances of the trojan simultaneously, one running
on the Windows NT laboratory machine, and the other on the Windows 98 system. The first
instance to connect to the IRC server acquired the nickname of “mikey”. When the second
instance connected, however, it was not allowed to use the same name, since the IRC protocol
requires that nicknames be unique on the same IRC network. As illustrated in Figure 4-8 below,
this forced the trojan to generate a different nickname for itself in a pseudo-random manner. (In
the network trace, the name “irc.ticklabs.com” is the hostname we assigned to our Linux
laboratory machine. In this scenario both instances of the trojan continued to attempt to acquire
the same nickname by issuing the “NICK mikey” command every three seconds.

Nickname Conflict Resolution

03/16-09:19:48.633843 172.16.198.129:6667 -> 172.16.198.130:1025
TCP TTL:64 TOS:0x0 ID:233 IpLen:20 DgmLen:147 DF
AP Seq: 0x3FCD1E87 Ack: 0x301A2 Win: 0x7D78 TcpLen: 20
3A 69 72 63 2E 74 69 63 6B 6C 61 62 73 2E 63 6F :irc.ticklabs.co
6D 20 34 33 33 20 2A 20 6D 69 6B 65 79 20 3A 4E m 433 * mikey :N
69 63 6B 6E 61 6D 65 20 69 73 20 61 6C 72 65 61 ickname is alrea
64 79 20 69 6E 20 75 73 65 2E 0D 0A 3A 69 72 63 dy in use...:irc
2E 74 69 63 6B 6C 61 62 73 2E 63 6F 6D 20 34 35 .ticklabs.com 45
31 20 2A 20 4A 4F 49 4E 20 3A 52 65 67 69 73 74 1 * JOIN :Regist
65 72 20 66 69 72 73 74 2E 0D 0A er first...

03/16-09:19:48.651467 172.16.198.130:1025 -> 172.16.198.129:6667
TCP TTL:128 TOS:0x0 ID:7936 IpLen:20 DgmLen:61 DF
AP Seq: 0x301A2 Ack: 0x3FCD1EF2 Win: 0x2128 TcpLen: 20
4E 49 43 4B 20 59 76 0A 4A 4F 49 4E 20 23 64 61 NICK Yv.JOIN #da
46 75 63 6B 0A Fuck.

Figure 4-8

In a way, multiple instances of the trojan worked together to ensure that at least one of them
possessed the name “mikey”. For instance, if the trojan instance that held that name were to
disconnect from the IRC server, another instance of the program would pick up the name within
three seconds at the longest. The more instances of the trojan were connected, the greater the
likelihood that one of them would be called “mikey”. As suggested by Doug Kahler in his e-mail
correspondence with us, one of the purposes of this trojan might be to reserve the nickname for its
operator, or to prevent someone from obtaining it. Possibly the program’s author is able to
communicate with it via IRC messages to command the trojan to release the name so that the
person can obtain it.

One of our experiments was aimed at examining the nature of communications between a
potential attacker and multiple instances of the trojan. IRC is a wonderful channel for centrally
controlling an army of distributed attack agents, which is one of the reasons that trojans such as
srvcp.exe are often hypothesized to have distributed denial of service capabilities. The attacker
who is able to control multiple instances of the trojan can communicate with them by issuing a
single command on the IRC channel, leaving it up to the server to relay the message to connected
trojans. This is a very powerful communication mechanism that makes it difficult to trace such an
attack back to its origin. Additionally, it offers the attacker the ability to communicate with each
instance of the trojan individually via private IRC messages.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 14

Both one-to-many, as well as one-to-one IRC messages are implemented using the “PRIVMSG”
command from the underlying IRC protocol, as demonstrated in Figure 4-9 below. (We removed
irrelevant packets from the trace for clarity purposes.) The first two packets are carrying a
message meant to be seen by all channel participants; this message was submitted by simply
typing “hi all” at the IRC client’s prompt. Our nickname was set to “attacker”, our real name
was “lzeltser”, and we were connected from “127.0.0.1”. The server can be seen sending the
message individually to each instance of the trojan, identified by different destination IP
addresses. The third packet is carrying a message meant to be seen only by the instance of the
trojan that possesses the nickname “mikey”; this message was sent by issuing the “/msg mikey
just for you” command. In either case, we were unable to elicit any response from the trojan
by sending it IRC messages; analysis of the program’s code discussed later in the document
revealed the need to encrypt commands in a proper manner in order for trojan to understand them.

Relaying Messages to IRC Clients

03/16-09:43:15.650781 172.16.198.129:6667 -> 172.16.198.130:1025
TCP TTL:64 TOS:0x0 ID:962 IpLen:20 DgmLen:94 DF
AP Seq: 0x46C1D0D2 Ack: 0x404F7 Win: 0x7D78 TcpLen: 20
3A 61 74 74 61 63 6B 65 72 21 6C 7A 65 6C 74 73 :attacker!lzelts
65 72 40 31 32 37 2E 30 2E 30 2E 31 20 50 52 49 er@127.0.0.1 PRI
56 4D 53 47 20 23 64 61 46 75 63 6B 20 3A 68 69 VMSG #daFuck :hi
20 61 6C 6C 0D 0A all..

03/16-09:43:15.651144 172.16.198.129:6667 -> 172.16.198.131:1030
TCP TTL:64 TOS:0x0 ID:963 IpLen:20 DgmLen:94 DF
AP Seq: 0x3498DF73 Ack: 0xFF37 Win: 0x7D78 TcpLen: 20
3A 61 74 74 61 63 6B 65 72 21 6C 7A 65 6C 74 73 :attacker!lzelts
65 72 40 31 32 37 2E 30 2E 30 2E 31 20 50 52 49 er@127.0.0.1 PRI
56 4D 53 47 20 23 64 61 46 75 63 6B 20 3A 68 69 VMSG #daFuck :hi
20 61 6C 6C 0D 0A all..

03/16-09:43:49.946018 172.16.198.129:6667 -> 172.16.198.131:1030
TCP TTL:64 TOS:0x0 ID:989 IpLen:20 DgmLen:98 DF
AP Seq: 0x3498DFE1 Ack: 0xFFB0 Win: 0x7D78 TcpLen: 20
3A 61 74 74 61 63 6B 65 72 21 6C 7A 65 6C 74 73 :attacker!lzelts
65 72 40 31 32 37 2E 30 2E 30 2E 31 20 50 52 49 er@127.0.0.1 PRI
56 4D 53 47 20 6D 69 6B 65 79 20 3A 6A 75 73 74 VMSG mikey :just
20 66 6F 72 20 79 6F 75 0D 0A for you..

Figure 4-9

As discussed earlier in the document, the trojan attempted to read the gus.ini file from the system
directory upon starts-up. When we placed the gus.ini file into the system directory, Filemon
showed that the trojan successfully opened and read the file. Using Snort that was running on the
Linux laboratory machine we were able to observe that the trojan attempted to connect to TCP
port 6666 on the IRC server, instead of TCP port 6667 used earlier. This connection attempted
failed because our server was not listening on this port. As shown in Figure 4-10 below, we
observed that the trojan then attempted to resolve host names of several IRC servers. (We
removed TCP retry packets from the trace for clarity.) The trojan continued to attempt resolving a
number of other hostnames that seemed to be associated with IRC until we killed the process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 15

Resolving IRC Server Names

03/16-10:29:11.319877 172.16.198.131:1040 -> 172.16.198.1:53
UDP TTL:128 TOS:0x0 ID:63756 IpLen:20 DgmLen:61
Len: 41
00 01 01 00 00 01 00 00 00 00 00 00 05 65 66 6E efn
65 74 02 63 73 03 68 75 74 02 66 69 00 00 01 00 et.cs.hut.fi....
01 .

03/16-10:29:44.423230 172.16.198.131:1042 -> 172.16.198.1:53
UDP TTL:128 TOS:0x0 ID:1037 IpLen:20 DgmLen:63
Len: 43
00 03 01 00 00 01 00 00 00 00 00 00 05 65 66 6E efn
65 74 05 64 65 6D 6F 6E 02 63 6F 02 75 6B 00 00 et.demon.co.uk..
01 00 01 ...

03/16-10:30:15.667072 172.16.198.131:1044 -> 172.16.198.1:53
UDP TTL:128 TOS:0x0 ID:3341 IpLen:20 DgmLen:64
Len: 44
00 05 01 00 00 01 00 00 00 00 00 00 03 69 72 63 irc
0A 63 6F 6E 63 65 6E 74 72 69 63 03 6E 65 74 00 .concentric.net.
00 01 00 01

Figure 4-10

In response to our observations, we configured the IRC daemon on our server to listen on TCP
port 6666. Once the trojan was restarted, Snort logs showed that the program connected to the
IRC server on TCP port 6666. However, as illustrated in Figure 4-11 below, the trojan now joined
the channel “#mikag” with the key “soup”. Before we made the gus.ini file available to the trojan,
it used a different channel name, and did not supply a channel key. (A key is sometimes used on
IRC to restrict access to a channel.) In fact, the trojan’s behavior now matched observations
reported by Doug and described earlier in our document.

Connecting to a Different IRC Channel

03/16-11:07:12.816149 172.16.198.131:1032 -> 172.16.198.129:6666
TCP TTL:128 TOS:0x0 ID:34304 IpLen:20 DgmLen:112 DF
AP Seq: 0xF46A Ack: 0x28E76CC2 Win: 0x2238 TcpLen: 20
4E 49 43 4B 20 3A 6D 69 6B 65 79 0A 55 53 45 52 NICK :mikey.USER
20 49 66 4A 64 43 6E 20 49 66 4A 64 43 6E 20 49 IfJdCn IfJdCn I
66 4A 64 43 6E 20 3A 66 69 67 68 74 20 6D 65 2C fJdCn :fight me,
20 70 75 73 73 79 0A 4A 4F 49 4E 20 23 6D 69 6B pussy.JOIN #mik
61 67 20 73 6F 75 70 0A ag soup.

Figure 4-11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 16

5. How the Trojan Works

As described in earlier sections of this document, when the trojan infects the machine, it attempts
reading the encoded or encrypted “gus.ini” initialization file. If it does not find the file, it
continues to function using values presumably embedded into the trojan’s executable. If the
gus.ini file exists, its values seem to override the trojan’s default behavior, defining alternative
IRC connection parameters and possibly modifying other aspects of its behavior. Once launched,
the trojan connects to an IRC server, joins the desired channel, and awaits commands from its
operator. This section of our document concentrates on unraveling driving factors behind the
trojan’s built-in and modifiable behavior. We pursue this by analyzing the trojan’s assembly code
in a disassembler and a debugger.

When searching the Web for information relating to the srvcp.exe trojan we came across a paper
by Joe Abrams, in which he analyzed several sections of one of the variants of this trojan. Joe
pointed out a number of strings embedded in the trojan’s executable that were encrypted with an
XOR-based algorithm, and described a way to decrypt them.[JA1] Even though most of the strings
mentioned in the paper were not located in our copy of the executable, Joe decrypted one of the
strings to have a clear text value of “gus.ini”. Additionally, one of the deciphered values was
“joeblow”, which suggested that Joe’s version of the trojan was similar to the one reported by
Pete Schmitt in the posting discussed in the beginning of our document.

To understand the decryption algorithm so that we could decipher strings embedded in our copy
of srvcp.exe, we loaded the executable into the IDA Pro disassembler. Following Joe’s analysis,
we searched for the string “nhl*pwf”, which according to him was the encrypted value of
“gus.ini”. This brought us to a section of code presented in Figure 5-1 below. In this section the
program repeatedly pushes to the stack a string that looks encrypted and calls the same routine,
which suggests that “sub_4012C6” might be a decryption routine. Joe mentions this process as
well, although his data offsets were match ours, probably because of subtle differences in
versions of the srvcp.exe executable.

Probable Calls to String Decryption Routine

.text:0040141D push offset aNhlPwf ; "nhl*pwf"

.text:00401422 call sub_4012C6

.text:00401427 push offset aAhkl ; "|ahkli"

.text:0040142C call sub_4012C6

.text:00401431 push offset aWtwgr ; "wtwgr"

.text:00401436 call sub_4012C6

.text:0040143B push offset aCdkk ; "|cdkk"

.text:00401440 call sub_4012C6

.text:00401445 push offset aMfqece ; "mfqEce"

.text:0040144A call sub_4012C6

Figure 5-1

By following Joe’s analysis of the decryption process, and by looking through its assembly code
in IDA Pro, we were able to create a Perl-based routine that mimicked its counterpart in the
trojan’s code. The assembly routine was labeled in IDA Pro as “sub_4012C6” and started at the
“text:004012C6” offset. Our Perl routine to decrypt embedded strings is presented in Figure 5-2
below. The routine obtains the length of the encrypted string, and then iterates through it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 17

backwards by XOR’ing the ordinal value of each character with its position from the right of the
encrypted string. One of the ways to ensure that our implementation of the routine works properly
was to decrypt the “nhl*pwf” string present in our as well as Joe’s versions of the executable, and
make sure that the resulted value is “gus.ini”. Our Perl routine was invoked using the format of
“&decryptEmbeddedString($encryptedString)” and returned the deciphered string.

Decrypting Embedded Strings

sub decryptEmbeddedString {
 my($encrypted) = @_;
 my(@encrypted) = split(//, $encrypted);
 my($length) = $#encrypted;
 my($plain) = "";
 my($counter);
 for ($counter=0; $counter<=$length; $counter++) {
 $plain .= chr(ord($encrypted[$length-$counter]) ^ ($counter+1));
 }
 return($plain);
}

Figure 5-2

One of the ways to obtain plain-text versions of embedded strings was to call our Perl routine on
each string that the program passed through its “sub_4012C6” routine. Additionally, to ensure
that we have not missed any encrypted strings, we parsed srvcp.exe using the UNIX-based strings
program, and used a Perl script to automatically attempt deciphering each string. We then looked
through the resulted list of strings to manually single out those that seemed to be English-based.
The combination of both approaches resulted in decrypted strings presented in Figure 5-3 below.

Embedded Strings Decrypted

Encrypted Value Decrypted Value

nhl*pwf gus.ini

|ahkl mikey

wtwgr setpr

|cdkk jiggy

mfqEce daFuck

~h`PmfqEce daFuckWhat

v}~y{*%mj&qldkg fight me, pussy

og&teh*`ph irc.mcs.ne

O_ATU@VDE@ AGGRESSIVE

5|3u1v/k-h+i)j'g%JLQH ISON a b c d e f g h

Figure 5-3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 18

Some of the embedded strings that we decrypted were already seen in our analysis, as discussed
in earlier sections of this document. In particular, “gus.ini” was the name of the file that the trojan
attempted to locate upon start-up to change several aspects of its behavior. The “mikey” string
matched the nickname that was used when connecting to an IRC server. The “daFuck” string,
prefixed with a pound sign, was the name of the IRC channel that the trojan joined. The “fight
me, pussy” string matched the real name property of the trojan’s IRC user as seen by the IRC
server. Finally, “irc.mcs.ne”, with the “t” character tagged on, was the host name of the IRC
server that the trojan attempted to connect to; the final character is missing from the embedded
string probably because the strings program was unable to extract it properly. The purpose of
other strings became a bit clearer after we analyzed contents of the gus.ini file.

A copy of the gus.ini file that we obtained seemed to be encrypted with an algorithm different
from the one used to encode strings embedded into srvcp.exe. Based on our observations, we
surmised that the trojan decrypted the file during runtime, and attempted to understand the
decryption process in order to decipher the file. Looking through trojan’s assembly code in IDA
Pro, we found a number of calls to the fopen function, which is typically used to access a file on
disk. Only one of those calls specified the “r” attribute, which opens the file in read-only mode, as
shown in Figure 5-4 below. This is the first fopen call that is made when the program starts up,
which, combined with Filemon logs discussed earlier, suggests that this is an attempt to read in
the gus.ini file. The “arg_0” parameter pushed onto the stack before calling fopen represents the
name of the file to open, which in this case should be “gus.ini”.

Opening gus.ini File

.text:00403662 push offset aR ; "r"

.text:00403667 push [ebp+arg_0]

.text:0040366A call fopen

Figure 5-4

To ensure that we are correct in our understanding of how the gus.ini file is opened, we used
SoftICE to examine program runtime when fopen is called. This was accomplished by starting
SoftICE, then pressing “Ctrl-D” to access the SoftICE command shell. On the command prompt
we entered the “bpx CRTDLL!fopen” command to set a breakpoint when the fopen function is
invoked. We then entered the “x” command on the shell to put SoftICE in the background, and
launched the srvcp.exe executable. In a matter of seconds SoftICE intercepted a call to fopen and
interrupted the program’s execution by bringing us back into the SoftICE command shell. We
then used the “F10” key to step through several assembly instructions to return from the fopen
function. Figure 5-5 below presents a section of the SoftICE screen as soon the trojan executed its
first fopen call. We used the “d *(ESP+08)” command to display memory contents of the first
parameter to fopen, which was “C:\WINNT\System32\gus.ini”, as we expected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 19

Figure 5-5

Looking at the trojan’s assembly code in IDA Pro, we see a single call to the fscanf function with
parameter of “%[^\n]\n”, as shown in Figure 5-6 below. This is one of the ways to read in a
whole line from the file, which is how the trojan reads in the gus.ini file line-by-line. Further in
the program, we see the executable jumping to another section of the code using the “jnz
loc_4036B2” instruction, after which memory is cleaned up and the file handle closed. This
suggests file contents are processed using code located at the offset of 4036B2.

Reading Lines from gus.ini File

.text:00403738 push eax

.text:00403739 push offset asc_4083D1 ; "%[^\n]\n"

.text:0040373E push ebx

.text:0040373F call fscanf

.text:00403744 add esp, 0Ch

.text:00403747 cmp eax, 0FFFFFFFFh

.text:0040374A jnz loc_4036B2

Figure 5-6

Several lines after the offset of 4036B2 the program invokes the sscanf function, commonly used
to parse strings, with the “%[^=]=%[^” parameter. This string pattern often represents format of
typical .ini files that follow the convention of “PARAMNAME=value”. Since the encrypted gus.ini
file did not follow the standard .ini file format for separating parameter names and values with
equal signs, the program must be decrypting each line from the file before invoking sscanf. As
demonstrated in Figure 5-7 below, the only routine called after reading in the line with fscanf and
parsing it with sscanf is sub_405366, which is the probably decryption routine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 20

Parsing gus.ini Lines

.text:004036B2 lea eax, [ebp+var_414]

.text:004036B8 push eax

.text:004036B9 push esi

.text:004036BA call sub_405366

.text:004036BF mov edi, eax

.text:004036C1 lea eax, [ebp+var_9F0]

.text:004036C7 push eax

.text:004036C8 lea eax, [ebp+var_14]

.text:004036CB push eax

.text:004036CC push offset asc_4083C5 ; "%[^=]=%[^"

.text:004036D1 push edi

.text:004036D2 call sscanf

Figure 5-7

In order to examine the trojan’s runtime environment when the decryption routine is called, we
restarted the srvcp.exe process, leaving the SoftICE CRTDLL!fopen breakpoint mentioned
earlier. Once SoftICE intercepted the call, we added a breakpoint at offset 4036BA, which is
where sub_405366 is called, by entering “bpx 4036BA” at the SoftICE command line. We then
put SoftICE in the background using the “x” command, and waited until the debugger interrupted
the trojan at our breakpoint. The reason for waiting for the first fopen call before setting the
second breakpoint is to let SoftICE calculate the absolute offset for the sub_405366 call’s relative
offset with respect to the trojan’s runtime stack.

The state of the program before it invoked the decryption routine is presented in Figure 5-8
below. In this section of the SoftICE screen we see that the executable pushes two values onto the
stack before calling sub_405366, as seen earlier in IDA Pro. The value stored in the memory
location pointed to by the EAX register is “JexO215WuK60H7HgI.j11vh1”, which is actually
the first line of the encrypted gus.ini file. We were able to view these memory contents by
executing the “d EAX” command in SoftICE. We viewed the value associated with the ESI
register in a similar manner, and determined that it was set to “EcbJer8\0dx.CJVJsAlmIZ”
(note the null character in the middle, presented here as “\0”). The nature of this second string
and its role in the decryption process became clearer later in our analysis process.

Figure 5-8

We used the “F10” key in SoftICE to let the trojan execute the sub_405366 call, after which we
looked at memory contents associated with the EAX register again. As shown in Figure 5-9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 21

below, the memory location contained “NICK=mikey”, which seemed to be a decrypted version
of the gus.ini line that was being processed by the trojan.

Figure 5-9

Going through this process for other lines of gus.ini allowed us to confirm that decryption of the
file occurs in the sub_405366 routine. We were also able to obtain the deciphered version of the
gus.ini file by monitoring memory contents pointed to by the EAX register after the call to the
decryption routine without knowing the actual decryption algorithm. Decrypted contents of the
gus.ini file are presented in Figure 5-10 below. We abridged the file’s contents for added clarity.

Decrypted gus.ini File

NICK=mikey
MODE=AGGRESSIVE
SETCOMMAND=setpr
COMMAND=fuckedup
CHANNEL=mikag soup
SOUPCHANNEL=alphasoup ah
SERVER0=irc.mcs.net:6666
SERVER1=efnet.cs.hut.fi:6666
SERVER2=efnet.demon.co.uk:6666
SERVER3=irc.concentric.net:6666
SERVER4=irc.etsmtl.ca:6666
SERVER5=irc.fasti.net:6666
 ... cut for brevity ...

Figure 5-10

Contents of gus.ini seem to overwrite default values embedded into srvcp.exe during compile
time. The decrypted version of the file provides parameter names in addition to parameter values,
which offers clues as to the purpose of the strings seen before. We already know that the “NICK”
parameter defines the nickname used when connecting to an IRC server. While in this case the
name is set to “mikey”, the trojan’s operator seems to be able to set it to an arbitrary value by
manipulating contents of the gus.ini file. The “CHANNEL” parameter defines the name of the
channel that the trojan joins. We see that this version of the file overwrites the program’s built-in
value, and is consistent with behavior that we observed earlier. The file also provides the trojan
with the list of servers and associated port number that the program will use when joining an IRC
network overwriting the default value of TCP port 6667 on irc.mcs.net. Our copy of the gus.ini

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 22

file, which can be downloaded from http://www.zeltser.com/sans/gcih-practical/gus.decrypted.txt,
defined thirty-four such servers. These host names are consistent with observed DNS resolution
requests discussed earlier in our document.

Note that judging by parameter names, the trojan is able to join an alternate channel, defined in
gus.ini by the “SOUPCHANNEL” parameter. This parameter’s value is related to the value defined
by the “CHANNEL” parameter through a common substring of “soup”. The built-in channel name
“daFuck” and the unknown built-in parameter with the value of “daFuckWhat” are also related
in a similar manner, which suggests that “daFuckWhat” is the built-in alternate channel name.
Details regarding the use of the alternate channel are unclear to us at the time of this writing.

The value defined by the “SETCOMMAND” parameter in gus.ini matches the “setpr” string
embedded into the executable. This seems to be a keyword used as the basis for authenticating to
the trojan over IRC. This hypothesis is reinforced by Joe Abrams’s analysis, even though the
value embedded into his version of the trojan was different from ours.[JA2] Joe suggests that there
are several access levels to the trojan, which indicates that the our trojan’s second password is set
in gus.ini by the “COMMAND” parameter, which is set to “fuckedup”. Note that this is different
from what we believe to be the embedded counterpart of this parameter, which is set to “jiggy”.

The purpose of the “MODE” parameter, set to “AGGRESSIVE” in the gus.ini file, as well as
encrypted within the executable, is unknown at the time of this writing. It could be a way to
control the tenacity of the trojan’s attacks, or to fine-tune its behavior on IRC channels. We
presume that the alternative value for this parameter is “PASSIVE”, since both are defined in
clear-text form in the executable next to each other on the stack. The program compares clear-text
versions of these values to a variable in adjacent sections of the code; this might be the process of
comparing the decrypted value of the “MODE” parameter to known values, and acting accordingly.

In an attempt to understand the algorithm used to obfuscate lines in the gus.ini file, we turned our
attention to the second parameter that was passed to the decryption routine. This string was set to
“EcbJer8\0dx.CJVJsAlmIZ, and seemed to be used as a key during the deciphering process,
but was not embedded as a plain string into the executable. We found that this key was stored as a
collection of characters located next to each other on the stack in locations 4080C8 to 40811F.
The final fragment of this data stack is shown in Figure 5-11 below, and includes the terminating
null character. The key is not stored as a single string probably to avoid easy detection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 23

Fragment of Embedded Decryption Key

 ... cut for brevity ...
.data:00408110 db 6Dh ; m
.data:00408111 db 0 ;
.data:00408112 db 0 ;
.data:00408113 db 0 ;
.data:00408114 db 49h ; I
.data:00408115 db 0 ;
.data:00408116 db 0 ;
.data:00408117 db 0 ;
.data:00408118 db 5Ah ; Z
.data:00408119 db 0 ;
.data:0040811A db 0 ;
.data:0040811B db 0 ;
.data:0040811C db 0 ;
.data:0040811D db 0 ;
.data:0040811E db 0 ;
.data:0040811F db 0 ;

Figure 5-11

Note that each actual character is followed by three null characters. Upon start-up, the trojan
assembles the key into a single string using the code presented in Figure 5-12 below. This section
of the program reads characters one-by-one and aligns them in memory as adjacent bytes.

Assembling the Decryption Key

.text:00403698 mov edx, dword_4080C8[edi*4]

.text:0040369F mov [esi+edi], dl

.text:004036A2 inc edi

.text:004036A3 cmp edi, 2Ch

.text:004036A6 jb short loc_403698

.text:004036A8 mov byte ptr [edi+esi+1], 0

Figure 5-12

We attempted to step through the trojan’s decryption routine in order to comprehend its
algorithm. While time constraints prevented us from completing this process, we were able to
understand some of the underlying principles of the procedure. As part of the decryption process,
the program splits the key mentioned above into two strings using the null character as the
delimiter. We followed the workflow of the program as it mutated a copy of the first portion of
the key, which was “EcbJer8”, by adding 7 to the ordinal value of each character. Assembly
code performing this function is presented in Figure 5-13 below. As the result of this code
fragment, the initial part of the key was transformed into “LjiQly?Ck” followed by an
unprintablable character represented by the hexadecimal value of 7F.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 24

Mutating the Decryption Subkey

.text:00405401 mov eax, edi

.text:00405403 add eax, [ebp+var_C]

.text:00405406 add byte ptr [eax], 7

.text:00405409 inc edi

.text:0040540A mov eax, [ebp+var_C]

.text:0040540D lea ecx, [eax]

.text:0040540F or eax, 0FFFFFFFFh

.text:00405412 inc eax

.text:00405413 cmp byte ptr [ecx+eax], 0

.text:00405417 jnz short loc_405412

.text:00405419 cmp edi, eax

.text:0040541B jb short loc_405401

Figure 5-13

We also noticed that the trojan processed a large number of character values embedded into the
executable starting with offset 4086CC by aligning them next to each other in memory. This was
done in routine sub_404E78 that was invoked at offset 405435 soon after mutating the key prefix.
At this point the logic became somewhat cumbersome to follow, and we lost track of the
program’s workflow. Those interested in tracing our steps may wish to set a breakpoint at the
referenced offset and step through the code. (This can be accomplished by first breaking at the
fopen call using the “bpx CRTDLL!fopen” command in SoftICE, and then creating a new
breakpoint at the desired offset using a command such as “bpx 405435”.)

After setting up the environment in a way that is still somewhat unclear to us, the decryption
process continued by looping through a subset of characters in the beginning of the encrypted line
and calling the sub_40517A routine from offset 405473. The sub_40517A routine takes a
character from the encrypted line and returns the index indicating the location of this character in
the string that is embedded into srvcp.exe at offset 409718. The count starts from 0 and the string
is “./0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ”.
After the sub_40517A routine returns, the index value is shifted to the left by varying amounts
using commands at offset 405489, and is masked into memory using the OR instruction located at
offset 40548B. The shifting process is continued with minor variations until the end of the
decryption routine sub_405366 that we discussed earlier, which returned a deciphered version of
the line from gus.ini.

6. How to Use the Trojan

According to Joe Abrams, the encryption algorithm used to encode the gus.ini file was very
similar to techniques used to encrypt commands sent to the trojan via IRC. Commands have to be
properly encrypted in order for the program to interpret them properly. Joe was able to control his
copy of the trojan in a limited fashion by replaying some of the encrypted commands that he
witnessed being used on the trojan’s IRC channel. This suggests that the algorithm used to
encrypt commands and gus.ini files does not take into account characteristics specific to an
instance of the trojan.

For a properly encrypted command to be honored by the trojan, the command needs to be
prefixed by a proper password in each communication attempt. This means that the operator

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 25

trying to control the trojan would need to send a message to the IRC channel in the form
“password command”. As we discussed earlier, at least two passwords are hard-coded into the
program. These can be overwritten using “SETCOMMAND” and “COMMAND” parameters in the
gus.ini file, and seem to provide the operator with different access levels.

As Joe describes in his paper, the password has to be properly encrypted using its own algorithm.
This algorithm protects the trojan against replay attacks by taking into account the IP address of
the host trying to control the program. Joe describes the password encryption process in his paper,
and points out that some of the characters comprising the encrypted password may not be
printable. The need to properly encrypt password and command strings suggests there exists a
trojan controlling program that operates outside, or in conjunction with, the standard IRC client.

Functionality provided by the srvcp.exe trojan to the attacker is still unclear. As we mentioned
earlier, a number of FTP-related strings are embedded into the program, which suggests that its
operator has the ability to transfer files to and from the infected system. As shown Figure 6-1, the
trojan seems to rely on the ftp.exe program built into Windows for file transfer capabilities.

Embedded FTP Messages

.data:004084B9 db 'PRIVMSG %s :successfully spawned ftp.exe',0Ah,0

.data:004084E3 db 'PRIVMSG %s :couldn',27h,'t spawn ftp.exe',0Ah,0

Figure 6-1

Several of strings embedded into srvcp.exe suggest that the trojan is able to perform denial of
service attacks. As shown in Figure 6-2 below, “sacker” and “jacker” could be references to
such attacks. Note that “sacker” takes time and port numbers as parameters, which might allow
the attacker to flood a target with network traffic for a specified period of time. The “spawn”
command might allow the attacker to launch an arbitrary program on the infected machine.

Possible Network Flood Commands

.data:00408541 db 'PRIVMSG %s :ctcp <nick> PING 848348, help, '

.data:00408541 db 'getnick <nick>, getnonick, rnick <nick>!!, '

.data:00408541 db 'sacker time low_port high_port addy, jacker'

.data:00408541 db ' time ip ip ip etc, stopsack, stopjack, spa'

.data:00408541 db 'wn filename, ftpget EVERYTHING, randnick, c'

.data:00408541 db 'lone, clonedie',0Ah,0

Figure 6-2

7. Description of Variants

We found no evidence that srvcp.exe is capable of spreading or replicating without help of an
external program. As mentioned earlier in our document, the executable assumes that it is located
in a directory that is included in the system path, such as C:\WINNT, however it does not actually
copy or move itself there upon start-up. This suggests that we were missing another program that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 26

was actually responsible for placing srvcp.exe in the proper directory. The victim probably
received an infected carrier file via and e-mail message, or downloaded the infected program
from the Internet.

According to information found on a HackFix page related to srvcp.exe and dated June 2000, the
trojan was being was being spread as a DivX_e3.exe program, which claimed to be a registered
version of a DivX video decoder.[HF] Additionally, the trojan was reportedly spreading via
serials.2000.v6.0.zip, CDRWin3.8.zip, and PSXCopy.v6.0.zip files. The trojan is continuing to
spread, as witnessed by a recent incident reported by Pete Schmitt and mentioned earlier in this
document; however, file names of current carriers are unknown to us at the time of this writing.
Once the machine is infected, the attacker is able to install other malware on the victim’s system
through the trojan’s file transfer capabilities.

It is unclear whether the carrier program also installs a copy of the gus.ini file along with
srvcp.exe. Since the trojan is able to operate without gus.ini, it is possible that the file is created
after the initial infection. The attacker has the ability to upload gus.ini to the infected machine via
IRC file transfer as well as FTP capabilities. It is also possible that the attacker is able to instruct
the trojan to create the gus.ini file with specific values by sending appropriate commands via the
IRC control channel.

Looking through public databases of anti-virus product vendors, we found a number of records
that seemed to be variants of the srvcp.exe trojan. Vendors do not seem to agree on the name for
this trojan, however. Symantec calls it “IRC.SRVCP.Trojan”, but does not supply any
information about it besides characterizing the trojan as “wild”. [SY] Trend Micro offers a brief
description of the trojan that matches our variant closely in both behavioral characteristics as well
as file size; they refer to the trojan as “TROJ_SRVCP”.[TM1] Computer Associates provides
sufficient information about the trojan to indicate that their variant closely matches the executable
described in this document; they refer to this program as “Tasmer.B” and “Win32.Tasmer.B”[CA1]

Computer Associates also describes a variant of the trojan that uses tskmngr.exe as the name of
its executable and “Task Manager” as its registry key; they refer to this program as “Tasmer.A”,
“Win32.Tasmer.A”, “Backdoor.Tasmer”, and “Troj/Narnar” and report seeing it in the wild as
early as April 2000. Trend Micro describes a tskmngr.exe variant of the trojan as well, but refers
to it as “TROJ_TASMER.B”.[TM2] The “Troj/Narnar” name for the tskmngr.exe variant is also
used by Sophos; they point out that the trojan connects to an EFnet IRC server, which is an
alternative network to EFnet used by our version of the trojan.[SP] This variant is also discussed by
Network Associates, which refers to it as “IRC/Randy”.[NA]

Clearly, there are at least two variants of this trojan – one operating on EFnet, and the other on
DALnet. According to Joe Abrams, the EFnet version of the trojan is significantly younger than
the one operating on DALnet. Judging by the number of infected users on DALnet channels
discussed in Joe’s paper, the EFnet trojan variant is not as popular as the DALnet one. Joe’s
version of the trojan joined the “#KimmiTheB” channel on DALnet, where it was controlled by
members of the group that called itself “divide”. Joe also points out that he came across a new
version of the trojan that was packed/compressed using the NeoLite utility. NeoLite encapsulates
Windows executables and their resources in an attempt to protect them from reverse engineering
using decompilers.[NL] NeoLite compresses the executable, and extracts it into memory when the
executable is launched. This kind of protection can be bypassed using SoftICE by setting a
breakpoint on the built-in NeoLite decryption routine, letting the program decompress itself, and
examining the decrypted version of the program in memory using SoftICE.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 27

8. Operation Diagrams

Throughout this document we provided screen captures and network traces to illustrate how the
srvcp.exe trojan operates on the network. In this section of the document we want to demonstrate
possible infection scenarios, as well as to provide a diagram illustrating the way in which an
attacker controls the trojan over the network.

As we mentioned earlier, we are unsure of the mechanism used to distribute the srvcp.exe trojan,
except that its executable is tied to a number of trojanized programs and file archives. As shown
in Figure 8-1 below, there are two likely scenarios in which an unsuspecting user’s machine
may get infected. In the first scenario, a corporate user downloads a program from a Web site on
the Internet; the downloaded program is “tainted” to have srvcp.exe as its hidden payload.
Alternatively, an internal user may have received the infected file in an e-mail message. In both
cases, srvcp.exe is installed when the user launches or installs the infected program. As we will
describe later in this document, the organization will have a hard time preventing the trojan from
entering the internal network in this manner, since anti-virus programs cannot effectively protect
against mutations of srvcp.exe.

Corporate User

Internet

Download
Server

Firewall

Internal Network

Dowload infected
program

Corporate User

E-mail
Buddy

Receive infected
attachment

E-mail
infected file

E-mail
infected file

Controlling the Trojan

Figure 8-1

Once inside the organization’s network, the trojan relies on connections initiated from inside out
to communicate with its operator, as shown in Figure 8-2 below. Each instance of srvcp.exe
connects to an IRC server and joins the appropriate channel. The attacker also connects to this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 28

IRC channel, and is able to control multiple instances of the trojan by issuing properly encoded
commands as messages to the channel. This results in a scenario where unless the organization’s
firewall blocks outgoing IRC traffic, the attacker can control infected workstations located on the
internal network. The origin of such an attack is difficult to discover, since the attacker is
removed from the infected workstation through the use of an intermediary network of IRC
servers.

Infected
Corporate User

Internet

IRC Server

Firewall

Internal Network

Corporate User

Attacker

Controlling the Trojan

Initiate IRC
connection

Another
Infected User

Initiate IRC
connection

Initiate IRC connection
Control trojans via IRC

Figure 8-2

9. Signature of the Attack

As illustrated in Figure 9-1 below, Norton AntiVirus was able to automatically detect our version
of the srvcp.exe trojan. Detecting the trojan manually by examining the infected machine is
relatively easy as well – one should look for the presence of the srvcp.exe executable on the file
system, examine the registry for presence of the key
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Service Profiler”,
and check for existence of the gus.ini file in the machine’s system directory. We have not seen
any of these three characteristics attributed to a program other than srvcp.exe, however there is
some chance for encountering a false positive scenario.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 29

Figure 9-1

The trojan can be easily mutated to make its detection more difficult even without having access
to its source code. For instance, the program will continue to function even if its file does not
have the name of “srvcp.exe”. The executable can also be edited with a regular file editor to use a
different a different registry key. Similarly, the executable can be edited to use a file name other
than “gus.ini” for its resources.

As a proof of concept we used a plain text editor to modify the compiled executable by locating
the definition for “gus.ini” – this required searching for the string “nhl*pwf” since the file name
is stored in the encrypted format. We then modified one of the letters in the encrypted string so
that the new string became “nhl*pwg”. The resulted data stack, as seen by disassembling the
modified executable using IDA Pro, is shown in Figure 9-2 below. Running the modified version
of the trojan resulted in the program using the name “fus.ini” for the file that it used to know as
“gus.ini”. Most disturbingly, modifying the executable in this simple manner has caused Norton
AntiVirus to stop detecting it as a trojan. Note that an arbitrary file name can be constructed for
this file by reversing the embedded string decryption algorithm that we described earlier in this
document.

Modifying Name for Initialization File

Before modification:
.data:00408034 db 'nhl*pwf',0

After modification:
.data:00408034 db 'nhl*pwg',0

Figure 9-2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 30

One of the ways of detecting the trojan is by detecting its network communications. For instance
running the “netstat -a” command on the infected system will show the trojan listening on
TCP port 113 for Ident requests if it has not yet connected to an IRC server. Scanning the
network for hosts unauthorized to run Identd is a possible way of detecting the trojan in this state
remotely. Once the trojan successfully connected to an IRC server, then “netstat -a” is likely
to show a TCP connection to an external server on either port 6667 or 6666. This kind of
communication can be detected using a network-based Intrusion Detection System (IDS) if the
organization’s workstations do not normally use IRC.

A more reliable way to detect the trojan with a network-based IDS is to scan packet contents for
strings that are associated with the trojan’s operation. Common variants of the trojan can be
detected by looking for strings such as “NICK mikey” in the network stream. Unfortunately, this
approach is unlikely to be more effective than using anti-virus software, since the signature can
be easily changed. A more reliable indicator of the trojan’s activity is presence of nickname
change requests issued by a single IRC client every three seconds or so. Unfortunately,
implementing this kind of logic is likely to be resource intensive, since it would require that the
IDS to maintain state information regarding potentially offensive traffic across multiple packets.
Alternatively, the IDS could be tuned to scan packets for encrypted command strings used to
operate the trojan, since even in the encrypted form these commands remain the same across
multiple instances of the trojan, unless the encryption algorithm is changed. Obtaining these
command strings will require a more thorough analysis of the trojan. We encourage the reader to
partake in such quests and to share his or her findings with the defense community.

10. Protecting Against It

Methods for protecting against the srvcp.exe trojan are based on signatures of its presence that
were described in the previous section of this document. Up-to-date anti-virus software on the
desktop will be able to detect common variants of the trojan; running such software on firewall or
e-mail gateways will help the organization block files infected with srvcp.exe at the perimeter of
the network. As we have shown, anti-virus software is not effective at blocking srvcp.exe variants
whose signatures differ even slightly from the original srvcp.exe executable. As the result, the
most effective way to protect against this sort of trojans is to practice “defense in depth.”

According to principles of defense in depth, the organization should not rely on a single
component of its defense infrastructure to protect against a threat such as srvcp.exe. Instead, the
security architecture should consist of multiple layers, each improving chances that an infection
or an attack will be stopped. Specifically, in addition to maintaining up-to-date anti-virus
software, the organization should configure its firewall to block outbound traffic by default,
allowing only protocols required for business purposes. This is likely to allow the organization to
block outbound IRC connections, which will prevent srvcp.exe trojans from registering
themselves with the IRC-based control channel. If IRC connections cannot be blocked, we
suggest deploying network and host-based intrusion detection systems to monitor for srvcp.exe
activity as described in the previous section of the document.

In many cases, the most important defense components in an organization are its users. The
organization’s staff should be trained not to open attachments, since they may be infected with
malicious software. Additionally, users should be encouraged to report suspicious behavior to
system administration or information security representatives, to ensure early detection of the
trojan’s activity.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 31

11. Program Code

We were unable to locate source code for the srvcp.exe trojan. As the result, our analysis was
based on decompiled assembly code that we obtained by processing the srvcp.exe executable with
IDA Pro. As much as possible, we described the trojan’s code throughout our document, focusing
on critical code segments, as well as outlining the general workflow of the trojan. You may
download the “print-out” of the disassembled executable from http://www.zeltser.com/sans/gcih-
practical/srvcp-asm.pdf. Additionally, you may download the compiled srvcp.exe that we
researched from at http://www.zeltser.com/sans/gcih-practical/srvcp-trojan.zip. The archive is
password-protected with the key “infected” and contains the srvcp.exe executable as well as the
encrypted gus.ini file.

12. Additional Information

Throughout our document we referred to external sources that we used for researching the
srvcp.exe trojan. We provide these links below for your reference, so that you may obtain tools
and information that contributed towards improving our understanding of this trojan.

[JLG] Jeremy L. Gaddis. Incidents Mailing List Archive. “unknown trojan (attached).” 8 June 2000.
URL: http://www.securityfocus.com/archive/75/64241. 21 March 2001.

[RFC1459] Jarkko Oikarinen, Darren Reed. RFC 1459. “Internet Relay Chat Protocol.” May 1993.
URL: http://www.faqs.org/rfcs/rfc1459.html. 21 March 2001.

[BK] Brandon Kittler. Incidents Mailing List Archive. “Re: unknown trojan (attached).” 10 June
2000. URL: http://www.securityfocus.com/archive/75/64380. 21 March 2001.

[RFC1413] Michael St. Johns. RFC 1413. “Identification Protocol.” February 1993. URL:
http://www.faqs.org/rfcs/rfc1413.html. 21 March 2001.

[DK] Doug Kahler. Incidents Mailing List Archive. “Re: unknown trojan (attached).” 12 June
2000. URL: http://www.securityfocus.com/archive/75/64849. 21 March 2001.

[NF] Nick FitzGerald. Incidents Mailing List Archive. “Re: unknown trojan (attached).” 13 June
2000. URL: http://www.securityfocus.com/archive/75/64847. 22 March 2001.

[PS] Pete Schmitt. Incidents Mailing List Archive. “new (?) windows irc ddos trojan.” 10 March
2001. URL: http://www.securityfocus.com/archive/75/167985. 22 March 2001.

[VM1] VMware, Inc. “VMware Workstation FAQs.” URL:
http://www.vmware.com/products/desktop/ws_faqs.html. 22 March 2001.

[VM2] VMware, Inc. “Host-Only Networking Configuration Notes for Windows 2000 Hosts.”
URL: http://www.vmware.com/support/ws2/doc/hostonly_w2k_ws_win.html. 4 April 2001.

[RFC1918] RFC 1918.URL: http://www.faqs.org/rfcs/rfc1918.html. 22 March 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 32

[SI1] Mark Russinovich, Bryce Cogswell. Filemon for Windows NT/9x. 26 December 2000. URL:
http://www.sysinternals.com/ntw2k/source/filemon.shtml. 22 March 2001.

[SI2] Mark Russinovich, Bryce Cogswell. Regmon for Windows NT/9x. 7 November 2000. URL:
http://www.sysinternals.com/ntw2k/source/regmon.shtml. 22 March 2001.

[WI] Winternals Software. TCPView Professional Edition. URL:
http://www.winternals.com/products/monitoringtools/tcpviewpro.shtml. 22 March 2001.

[SF] SFullerton.com. Winalysis Version 2.50. 30 December 2000. URL:
http://www.sfullerton.com/products.htm. 22 March 2001.

[TR] Tripwire Home Page. URL: http://www.tripwire.com. 4 April 2001.

[ES] Executive Software. Undelete 2.0. URL: http://www.execsoft.com/undelete/undelete.asp. 22
March 2001.

[SN] Martin Roesch. Snort – The Open Source Network Intrusion Detection System. URL:
http://www.snort.org. 22 March 2000.

[DR1] DataRescue. IDA Pro by Ilfak Guilfanov. URL:
http://www.datarescue.com/idabase/idaorder.htm. 22 March 2001.

[DR2] DataRescue. IDA Pro Evaluation Download. URL:
http://www.datarescue.com/idabase/ida4down.htm. 22 March 2001.

[DR3] DataRescue. IDA Pro Freeware. URL: http://www.datarescue.be/downloadfreeware.htm. 22
March 2001.

[IN] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference Manual. 13 January 1997. URL:
http://developer.intel.com/design/pentium/manuals/243191.htm. 22 March 2001.

[NM] Compuware NuMega. “Can I still buy SoftICE separately?” URL:
http://www.numega.com/drivercentral/FAQs/dsq29.shtml. 22 March 2001.

[C4N] CoRN2. “#Cracking4Newbies SoftIce Tutorial.” URL:
http://whateverhosting.com/krobar/beginner/04.htm. 22 March 2001.

[MT] “Mammon_’s Tales to His Grandson” URL:
http://newdata.box.sk/neworder/cracking/ice.html. 22 March 2001.

[FS] Foundstone. BinText v3.0. URL: http://www.foundstone.com/rdlabs/proddesc/bintext.html.
22 March 2001.

[IS] IRCD-Hybrid. URL: http://www.ircd-hybrid.net. 4 April 2001.

[JA1] Joe Abrams. “Reversing a Trojan.” 1 October 2001. URL:
http://freeshell.org/~abrams/troj.txt. 22 March 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Reverse Engineering Srvcp.exe Lenny Zeltser

May 2001 Page 33

[JA2] Hack in the Box. Joe Abrams. “Reversing a trojan.” 19 November 2001. URL:
http://www.hackinthebox.org/article.php?sid=1138. 22March 2001.

[HF] HackFix. “srvcp.exe” June 2000. URL: http://www.hackfix.org/ircfix/srvcp.shtml. 22 March
2001.

[SY] Symantec Virus Encyclopedia. “IRC.SRVCP.Trojan.” URL:
http://www.symantec.com/avcenter/cgi-bin/virauto.cgi?vid=18552. 22 March 2001.

[TM1] Trend Micro Virus Encyclopedia. “TROJ_SRVCP.” URL:
http://antivirus.com/vinfo/virusencyclo/default5.asp?VName=TROJ_SRVCP&VSect=T. 4 April
2001.

[CA1] Computer Associates Virus Encyclopedia. “Tasmer.B.” URL:
http://ca.com/virusinfo/encyclopedia/descriptions/tasmerb.htm. 22 March 2001.

[TM2] Trend Micro Virus Encyclopedia. “TROJ_TASMER.B” URL:
http://antivirus.com/vinfo/virusencyclo/default5.asp?VName=TROJ_TASMER.B&VSect=T. 22
March 2001.

[SP] Sophos Virus Info. “Troj/Narnar”. URL:
http://www.sophos.com/virusinfo/analyses/trojnarnar.html. 22 March 2001.

[NA] Network Associates. “IRC/Randy”. 12 April 2000. URL:
http://vil.nai.com/villib/dispVirus.asp?virus_k=98569&EY=y. 22 March 2001.

[NL] NeoWorks. “NeoLite: Program Encryption & Compression for Developers.” URL:
http://www.neoworx.com/products/neolite/default.asp. 4 April 2001.

