
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

!

!!
!

!

Using Windows Crash Dumps for Remote Incident
Identification

GIAC (GCIH) Gold Certification

Author: Zong Fu Chua, zfchua@gmail.com
Advisor: Rob VandenBrink

Accepted: 05 June 2015

Abstract

With the proliferation of defense mechanisms built into Windows Operating System,,
such as ASLR, DEP, and SEHOP, it is getting more difficult for malware to successfully
exploit it. The Microsoft Enhanced Mitigation Exploitation Toolkit further increases the
difficulty. A common symptom of a failed exploit is a crash. A crash dump is generated
whenever this happensa crash happens. The Windows operating system has a built--in
error reporting mechanism to troubleshoot such instabilities. It is possible for an
enterprise running Windows--based servers to leverage on this mechanism to collect the
volatile memory of client machines for offsite investigation. This would allow system
administrators to remotely determine if the crash is due to a badly programmed
application (event), or a real malware exploitation attempt (incident). This is
advantageous to an enterpriseenterprise, as an incident handling team need not be
dispatched on-site to perform incident identification. This paper will provide detailed
steps on how to configure the enterprise network to facilitate such an analysis. In
addition, a python memory analysis script is included,, which when run against the
collected memory, would indicate the percentage probability that a machine is infected
with malware.

Using Windows Crash Dumps for Remote Incident Identification! 2
!

Author!Name,!email@address! ! !

1. Introduction
An efficient incident response procedure is important for enterprises as it makes

the difference between catastrophic losses of data versus a mild disruption of business.

This is evident in the numerous prolific and impactful cyber-attacks on big enterprises

such as eBay, Target and Sony in 2014.

An important lesson learnt from such attacks is the need for defense in depth.

With adequate system hardening and monitoring, it is possible to detect and stop cyber-

attacks before real damages are done. With reference to the “cyber kill chain” (refer to

Figure 1) coined by Lockheed Martin, cyber defenders should aim to stop an attack in its

early stages so as to minimize loss.

Figure'1'Lockheed'Martin'Cyber'Kill'Chain'(Eric'Hutchins'2011)'

!
For a cyber-attack to succeed, adequate preparation needs to be done. It should be

noted that the cyber kill chain is an iterative process whereby the attacker would go back

to the drawing board with every failed exploit. This is evident in Stuxnet, whereby the

first identified version – Stuxnet 0.5 was released in November 2007 while the real attack

took place in 2010. (McDonald, Murchu et al. 2013)

Even though Stuxnet did not cause any crashes, it would have been discovered if

adequate monitoring mechanisms were put in place. For example, the additional

spawning of the “lsass.exe1” process would have been a red flag, since a legitimate

Windows should have only one such process. It is proposed that system administrators

retrieve the memory of systems exhibiting any such anomalies for further investigation.

!!
1 lsass.exe is a Windows security process which manages and enforces the security policy.

Using Windows Crash Dumps for Remote Incident Identification! 3
!

Author!Name,!email@address! ! !

Traditionally, this is prohibitive, as memory collection would require manpower to be

dispatched on site to collect the memory. Moreover, traditional memory collection using

software tools,, such as FTK Imager, Mandiant Memoryze or F-Response, on a live

system runs the risk of “smearing”,, since the system is still running and changing its

memory content. One known way of preventing memory collection smear is to extract the

virtual memory file (vmem or vmsn) from the snapshot of a virtualized client. However,

this requires an enterprise to be running on virtualized infrastructure, which may not be

possible due to cost or operational issues. An alternative method would be to use the

native Windows’s Error Reporting mechanism as a reliable remote memory collection

mechanism, which would require minimal changes to the enterprise architecture.

However, this only works for Windows based infrastructure. Onsite collection may still

be required for other network using Operating Systems (OS) such as Unix/Linux.

Apart from an administratively triggered crash to collect memory, OS crashes are

often an indication of underlying problems. Common causes are impending hardware

failure, driver incompatibilities, programming error, or malware infection. With the

increasing defense mechanisms built into the Windows operating system, it is very likely

for exploits to fail and crash the system instead. Such crashes offer valuable insights into

attacks and should be tapped as an integrated part of a defense in depth framework.

2. Windows Operating System Defenses
As shown in Figure 2, Microsoft Windows Operating System continues to retain

its leadership at 90% of worldwide desktop use (NetMarketShare 2014).

Using Windows Crash Dumps for Remote Incident Identification! 4
!

Author!Name,!email@address! ! !

Figure'2'Desktop'Operating'System'Market'Share'

!
Over the years, from Windows XP to Windows 8.1, Microsoft has continuously

improved its flagship operating system by adopting kernel level malware defenses to

better protect itself. These techniques include Data Execution Prevention (DEP), Address

Space Layout Randomization (ASLR) and Structured Exception Handling Overwrite

Protection (SEHOP), which both separately and in combination significantly reduces the

chance of successful exploitations.

DEP is a defense mechanism that has been implemented across many platforms.

The aim is to prevent an attacker from exploiting vulnerabilities in programs to execute

arbitrary code. It is also known as W^X, indicating that a software memory region is

either writable or executable but not both. However, though DEP increases the difficulty

of a successful exploit, it can be bypassed using a technique known as return-oriented

programming (ROP). ROP exploits uses libraries already present in the OS to build

malicious instruction sets through shrewd manipulation of its offset. These libraries are

often static or have predictable instruction addresses. As such, a countermeasure to thwart

ROP attacks is to randomize libraries. This is also known as Address Space Layout

Randomization (ASLR),, which is often used in tandem with DEP.

As mentioned earlier, ASLR is a technique to randomize program and libraries

addresses at startup. This introduces a certain degree of uncertainty, which significantly

decreases the chance of a successful exploit when used with DEP. When an exploit

attempt fails, there is a high likelihood that it will create instability in the system,

resulting in an application or kernel crash.

Using Windows Crash Dumps for Remote Incident Identification! 5
!

Author!Name,!email@address! ! !

Even with DEP and ASLR, malware writers have found ways to succeed. In

earlier implementation of ASLR, such as in Windows Vista, there is limited entropy in

the randomized address (Whitehouse 2007). Using this increased predictability, malware

are able to use brute-force techniques to a valid vulnerable address space. Other advanced

exploit techniques includes exploiting information leakage vulnerabilities to disclose

critical memory content, revealing vulnerable libraries and addresses. Examples of such

bypasses are documented in CVE-2013-1690, CVE-2013-0640 (Chen 2013).

SEHOP is introduced in Windows Server 2008 and Windows Vista SP1

(Microsoft Secure Windows Initiative Team 2009). It aims to mitigate stack overflows

attacks where the goal is to redirect the exception--handling pointer to execute arbitrary

code. When an exception is triggered, this code is likely to execute with administrative

privileges. SEHOP mitigates such exploits by inserting a special marker at the end of the

exception handling link list. Before any exception routine is executed, the integrity of the

link list is verified by ensuring that a the inserted special marker has not been

overwritten. This is similar to the implementation of canary, which is used to mitigate

buffer overflow attacks. Once a corruption is detected, the affected process is terminated

and a crash dump is generated.

The above kernel defense mechanisms are implemented by default in Windows 8.

As a retrospective means to cover the older versions of Windows such as Windows 7,

Vista and XP2, Microsoft launched the Enhanced Mitigation Experience Toolkit (EMET).

EMET is a free utility that helps to enforce DEP, SEHOP, ASLR and other newer

Windows OS defense mechanismss on 3rd party applications. With the latest EMET 5.2

release, additional defense mechanismss, such as Control Flow Guard, Attack Surface

Reduction, Export Address Table Filtering and Stack Pivot Checks are added (Microsoft

2015).

Although these mitigation technologies do not guarantee that vulnerabilities

cannot be exploited, it makes it significantly harder for them to succeed. The intent of

this paper is to leverage the analysis of crash dumps generated in the event of a failed

exploitation attempt as a means of detecting them. In addition, mechanisms are put in

!!
2 Windows XP has reached End-Of-Life on 8 April 2014 and will no longer be patched or updated by Microsoft Corporation.

Using Windows Crash Dumps for Remote Incident Identification! 6
!

Author!Name,!email@address! ! !

place to allow manual triggering of a a crash dump as a means to collect memory from

suspected victim machines for further analysis.

2.1. Windows Crashes
Windows Error Reporting (WER) is a crash information submission tool to send

crash information back to Microsoft for analysis (Russinovich, Solomon et al. 2012).

WER is based on Dr. Watson, a windows built-in application debugger, which has been

removed since Windows Vista and Server 2008. The key difference between Dr. Watson

and WER is that Dr. Watson does not have the capability to send a memory dump over

the network.

There are numerous eventss thatthat could cause Windows or a Windows

application to crash. These events range from application fault to kernel fault such as

page fault, memory management issues or access violations. As shown in figure 3, the

categories of crashes for Windows 7 in May 2012 are as shown (Russinovich, Solomon et

al. 2012).

Figure'3'Distribution'of'Error'Categories'for'Windows'7'and'Windows'7'SP1'in'May'2012'

Using Windows Crash Dumps for Remote Incident Identification! 7
!

Author!Name,!email@address! ! !

3. Proposed Solution
3.1. Overview

It is proposed that changes be made to a Windows domain controlled enterprise

network via the Group Policy. By editing the Group Policy Object to modify a client’s

registry settings, full memory captures could be retrieved from clients during a crash. Ad

Hoc crashes can then be triggered via the SysInternals - NotMyFault utility. During the

crash, the memory dump would be saved locally. After the crash reboot, the crash dump

would be moved to a centralized server for archival and further analysis.

It is noted that Microsoft has a paid application called the Microsoft Operations

Manager 2007,, which allows the setup of a local enterprise WER Server. This would

allow crashes to be automatically forwarded via the network to this local server instead of

to Microsoft. However, as this utility is unavailable for this Proof of Concept (POC),

WER is disabled.

Conventionally, it is recommended that Windows memory dumps are analyzed

using the Windows debugger, as shown in Figure 4 (Russinovich, Solomon et al. 2012).

The advantage of using Windows debugger is the versatility to analyze all dump formats

– from minidumps to full memory dump. However, dump analysis is often manual and

requires a high level of technical competency and knowledge of Windows internal data

structures to extract useful information from the crash dumps. In order to facilitate a

faster analysis requiring less technical resources, the use of an open-source memory

analysis project - Volatility is proposed. This solution utilizes a memory analysis script,

which would run a specific sequence of Volatility plugins, process the result and present

the outcome as a percentage probability of malware infection. Depending on the size of

the memory, this can be completed within 5 – 30 minutes.

Using Windows Crash Dumps for Remote Incident Identification! 8
!

Author!Name,!email@address! ! !

Figure'4'Debugging'a'Crash'Dump'using'Windbg'

As the analysis is conducted at the Security Operations Center (SOC), where all

the enterprise’s sensors are monitored centrally, the memory analysis outcome could

immediately be correlated with other sensor inputs to ascertain the impact of the incident.

This would allow management to make better decisions, given the more accurate and

timely information provided. The drawback of remote memory collection is the amount

of sensitive data, such as passwords, that could potentially be collected via the memory

dump (Patrick Jungles 2012). It is recommended that SOC operators and forensic

Using Windows Crash Dumps for Remote Incident Identification! 9
!

Author!Name,!email@address! ! !

analysts who are given access to such memory dumps be required to undergo more

stringent security background checks to reduce the possibility of abuse.

The proposed solution uses native Windows features, such as the Group Policy

Object, for deployment, collection and analysis. This requires minimal changes to

existing enterprise network infrastructure, which translates to lower cost of

implementation.

When Windows crashes, the Windows Error Reporting mechanism can be used to

create a Cabinet file containing information about the crash. Even though the cabinet file

contains other files that could also be analyzed, this paper is only focused on the memory

dump generated. Using Volatility, we will be able to discern if the client machine has

been infected with malware.

3.2. Assumptions
Conditions exist whereby no crash dumps are generated even though a system

crash has occurred. Examples of such cases could be due to corrupted kernel procedures,

which handle crash dumps, or hard disk failure whereby the crash dump is unable to be

written to the hard disk (Russinovich, Solomon et al. 2012). The frequency of such

occurrence differs, depending on an enterprise’s hardware and software configuration.

One method of troubleshooting such crashes would be to boot the affected system in

debugging mode. Any further kernel crashes would then trigger the Windows debugger

for further analysis. However, this method requires the specific crash symptom to be

reproducible which is not always possible. Due to the complexity and rarity of such

scenarios, the solution proposed in this paper is based on the assumption that all

anomalies and coding errors will crash should they trigger any of the Windows defense

mechanism.

3.3. Proof of Concept
A virtualized test environment was setup with a Windows 2008R2 server, a

Windows 7 client and a Windows XP client. The specifications of the virtual machines

are as follow:

Role Domain Controller and Crash Collection Server

Using Windows Crash Dumps for Remote Incident Identification! 10
!

Author!Name,!email@address! ! !

Operating System Windows Server 2008R2

Processor Intel i7-4900MQ CPU @ 2.8Ghz

Memory (RAM) 1GB

System Type 32 Bit

Role Client

Operating System Windows 7 Ultimate SP1

Processor Intel i7-4790 CPU @ 3.6Ghz

Memory (RAM) 1GB

System Type 32 Bit

Role Client

Operating System Windows XPSP2

Processor Intel i7-4790 CPU @ 3.6Ghz

Memory (RAM) 1GB

System Type 32 Bit

The Windows 2008R2 server is configured as the domain controller (DC) of the

domain “corp.zf.org”. This server is also the crash dump storage server. 2 clients are

connected to this DC, one installed with Windows XPSP2 and the other Windows 7. For

ease of demonstration, the analysis engine (Volatility) is installed on the Windows

2008R2 Server. However, for live deployment in an enterprise network, it is

recommended that the DC, crash dump storage server and analysis engine be installed on

separate OS for security and performance consideration. Key components in this POC are

as follow:

(1) Memory Dump Collection Shared Drive. A share is created on the server to

host the target host list, the crash triggering mechanism – SysInternals -

NotMyFault binary and the memory dump collection folder. The target host

list is named “collectionlist.txt.” and is a text file that lists the clients from

which the SOC would like to request a memory dump from. The computers

can be identified by their IP address, Username or Computer name. For this

POC, the Computer name is used as the unique identifier.

Using Windows Crash Dumps for Remote Incident Identification! 11
!

Author!Name,!email@address! ! !

(2) Registry Changes. Client side registry changes are required so that a full

memory dump is generated for all crashes. In addition, the Windows Error

Reporting mechanism is disabled to prevent any crashes from being sent to

Microsoft. These changes will be deployed via group policy using the

Computer Configuration startup script (available in Appendix) as shown in

Figure 5.

Figure'5':'Startup'Scripts'

(3) Polling Startup Script. A polling function is created to perform two tasks: (1)

Move any crash dumps stored on client machines to the shared drive, (2)

Check for a hostname match in the collection list and trigger a crash if it

matches. This script (available in the Appendix) is deployed to all clients via

the startup script as “startupscript.bat” as shown in Figure 5 above.

Using Windows Crash Dumps for Remote Incident Identification! 12
!

Author!Name,!email@address! ! !

(4) Memory Malware Detection Script. A user-triggered script named

“malwarescoretest.py” (provided in the Appendix) can be executed as shown

in Figure 6. The output is a percentage figure on the likelihood of malware

infection displayed on screen. 100% is a confirmed infected client while 0%

means that the client is not likely to have been infected with malware.

Figure'6':'Running'malwarescoretest.py'

!
As a POC, vulnerable applications were installed on the client’s machines. The

application chosen are popular document viewing and processing suites – Microsoft

Office 2007 and Adobe Reader 9.0. The malware were used to infect the client machines

and the memory of the machines was collected immediately after the malware was

executed. In addition, the script was also tested against zeus.vmem, provided in Malware

Analyst’s Cookbook and DVD (Michael Ligh 2010).

VULNERABILITY DESCRIPTION DOCUMENT TYPE

CVE-2011-0609 Vulnerability in Adobe Flash Player that would allow

remote attackers to execute arbitrary code via embedded

xls

Using Windows Crash Dumps for Remote Incident Identification! 13
!

Author!Name,!email@address! ! !

swf content in Excel Spreadsheet.

CVE-2011-0611 Vulnerability in AuthPlayLib.dll in Adobe Reader

before 9.4.4 that would allow remote attackers to

execute arbitrary code via crafted Flash Content.

pdf

CVE-2012-1535 Vulnerability in Adobe Flash Player that would allow

remote attackers to execute arbitrary code via embedded

swf content in a word document.

doc

3.4. Memory Analysis
Essentially, any application that needs to run in an operating system needs to be

loaded into memory in order to execute. Through the memory management module of

various operating systems, data remnants are often present after execution completes.

This is an excellent source of information that is easily accessible to forensic analysts.

This is a valuable source of forensic evidence for criminal investigators, as there is often

limited amount of time available for the prosecution to prove their case. Critical

information, such as encryption keys, network transaction information, and evidence of

injected code, hidden processes and files, can often be found in memory (Michael Hale

Ligh 2014).

With the proliferation of software packers, such as Armadillo, Themida and

PELock, which are often used to prevent software reverse engineering attempts, memory

analysis is sometimes the only option for analysts to analyze the executable in the

shortest time possible.

In addition, advanced malware, such as Lurk Trojan (LoneStar 2012), only exist

in memory and does not reside on the hard disk. This would be hard to detect without

conducting memory forensic analysis.

3.4.1. Framework for Memory Analysis
Volatility is often the first tool that comes to mind when it comes to memory

analysis. It is open Source and freely redistributable. Volatility is written in Python,

which does not have library dependencies or require prior compilation to run. The output

of Volatility is conveniently presented in text, which allows analysts to parse it easily

using any text processing tools.

Using Windows Crash Dumps for Remote Incident Identification! 14
!

Author!Name,!email@address! ! !

As part of this paper, a python script is written to call multiple Volatility plugins

and process its output. A percentage metric indicating the probability of malware

infection is presented at the end. The aim of this script is not to create a comprehensive

scanning engine but rather a triage tool for quick assessment. The script is written to

follow the 6-phase memory analysis methodology covered in depth in SANS forensic

course 526. The 6 phases are (1) Rogue Processes (2) DLLs and Handles (3) Network

Artifacts (4) Code Injection (5) Rootkits (6) Drivers. A detaileded explanation of the

script is explained in the following sections. In addition, for forensic soundness and

accountability, all commands executed by the script are logged with their date and time

executed saved in as “log.txt”. Apart from running the scripts, phases of investigation that

cannot be scripted and require manual investigation are highlighted as well.

3.4.2. Preprocessing
Though Volatility is able to process Windows memory dumps without any

conversion, it is recommended that the memory dump be converted to a raw memory

image so that other memory forensic tools can process it. This would facilitate cross

checking of results using different forensic tools,!which is generally considered a best

practice (Casey 2011). This conversion process can be initiated using the Volatility

plugin “imagecopy”. However, running “imagecopy” would require a few minutes of

processing time, depending on the size of the client’s memory. In view of the need for

speedy diagnosis, Volatility is run directly on the Windows memory dump in this POC.

In addition, the plugin “crashinfo” can also be used to obtain more useful

information about the crash, as shown in Figure 7. Useful information of note includes

the “System Time” for timeline analysis and the “SystemUpTime” to know how long the

client has been powered on and active.

Using Windows Crash Dumps for Remote Incident Identification! 15
!

Author!Name,!email@address! ! !

Figure'7:'Output'from'running'Crashinfo'plugin'

3.4.3. Phase 1 - Rogue Processes

3.4.3.1. Direct Kernel Object Manipulation
The Windows Operating System is largely written in C, C++ and C# (Waite

2009). These languages are objected oriented and modular in nature. Windows often uses

linked lists to track its processes and tasks (e.g Network connections, Processes, Systems

service table, Interrupt description Table, etc). Malware often exploits such linked lists to

hide or inject themselves into the list to exploit the system. This is also known as Direct

Kernel Object Manipulation (DKOM). Some of Volatility plugins target DKOM and scan

the memory for any such discrepancies in the link lists and objects found. These objects

within the memory pool can be identified by their pool tags or unique headers. The

method of “bruteforce” searching of objects via its pool tag is known as pool tag

scanning and can be used as an effective way to detect malware or other system

anomalies (Michael Hale Ligh 2014).

Using Windows Crash Dumps for Remote Incident Identification! 16
!

Author!Name,!email@address! ! !

Volatility plugins “pslist” and “psscan” can be used to detect DKOM of the

EPROCESS structure. When malware uses this method of hiding itself, it will not appear

when a user or process uses the task manager to list the active processes. Common

malware that uses this method includes the ADORE rootkit (Ryan Riley 2009). Instead of

manually comparing the output of “pslist” and “psscan”, another Volatitility plugin called

“psxview” can be used to verify the EPROCESS link list. The process list is checked

against other lists such as the pspcid, csrss, session, deskthrd and thrdproc.

As the chances of getting false positive through pool tag scanning is high, one

way of filtering out such cases would be to use the object’s timestamp field. For example,

an object with the pool tag (EPROCESS) has two timestamps – “CreateTime” and

“ExitTime”. The timestamp for “CreateTime” should not be zero or any arbitrarily huge

or small UTC value. These information are summarized in the table below:

Name Process

Pool Tag EPROCESS

False Positive Identifier EPROCESS.CreateTime

EPROCESS.ExitTime

Object Scanner Plugin Pslist

List Scanner Psscan

It is noted that “psxview” is likely to reveal processes from previous boot up

sessions, resulting in false positives. One means of false positive reduction is to compare

the creation time of such processes against the key startup process “smss.exe”.

“smss.exe” is the Windows Session Manager Subsystem and is always executed during

the boot up process of Windows. The creation time of “smss.exe” can be obtained from

“pslist”. If the suspicious process has a creation time earlier than smss.exe, it is likely to

be a false positive. This process of verification is automated in the script. In addition,

several other services are whitelisted as false positives. Examples of this include

services.exe, lsass.exe, lsm.exe and svchost.exe. In addition, antivirus processes should

also be whitelisted. For the remaining processes, any “false” entries will generate a

malware score of 8/10.

Using Windows Crash Dumps for Remote Incident Identification! 17
!

Author!Name,!email@address! ! !

3.4.3.2. Legitimate Parent-Child Relationship
The Volatility plugin “pstree” can be used to display the hierarchical structure of

processes. In general, the following rules apply and any deviation should be investigated:

1) “services.exe” should be the parent of all “svchost.exe”.

2) “smss.exe” should be the parent of “winlogon.exe”.

The above rules are checked by the script,, and any discrepancy will generate a

malware score of 10/10.

3.4.3.3. Pass-The-Hash Attacks
All legitimate Windows processes should be launched with a valid SID. The

Volatility plugin “getsids” will display all processes and the process owner identified via

its SID. If a process does not have an ASCII account name (displayed in brackets) as

shown in Figure 8, it is likely to be running with a domain account.

Figure'8':'Result'of'"getsids"'

!
This should be verified against the domain controller using the sysinternals tool,

“psgetsid”. Due to the need for communication with the domain controller, which is

sensitive for operations, this is not included in the script.

Using Windows Crash Dumps for Remote Incident Identification! 18
!

Author!Name,!email@address! ! !

3.4.4. Phase 2 - Dynamic Link Library and Handles

3.4.4.1. Suspicious DLL
The Volatility plugin, “verinfo”, can be used to display information embedded in

portable executable (PE) files and Dynamic Link Librarys (DLL). Unknown DLLs

should be further analyzed using the plugin, “enumfunc”. This would enumerate all

functions used by the DLL. Legitimate exported functions should follow a standard

naming convention, as shown in Figure 9.

Figure'9'Running'"enumfunc"'

Using Windows Crash Dumps for Remote Incident Identification! 19
!

Author!Name,!email@address! ! !

Similarly, imported functions are likely to be using familiar Windows libraries

such as ntoskrnl.exe or ntdll.dll. Any anomalies could be investigated further using the

plugin, “dlllist”. “dlllist” would provide the base address to extract the dll for use with

“dlldump”. The extracted library can then be hashed and verified through Virustotal or

analyzed statically. As this is a manual process, this is not included in the script.

3.4.4.1. Search Order Hijacking
DLL Search Order Hijacking is a way for malware to establish persistence on a

victim machine by saving itself in strategic locations on a file system. This is different

from other persistence mechanisms, as it does not require modification to the registry.

The vulnerability relies on the way Windows searches for a program’s library to

load. The first location it looks for is the folder where the program’s executable is. The

exception to this is when the DLL is a “known DLL” in the registry list

“HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\KnownDLLs”.

It then searches in the System directory, Windows directory, current directory and finally

the PATH in the environment variable, in the mentioned order (Microsoft 2013). As such,

to hijack and load a malicious DLL, the following detective measures are undertaken:

(1) Path Modification. The Volatility plugin, “envars”, can be used to extract all

exported environment variables. While going through the result, it is essential

to note that repeated entries are likely as child processes will inherit the

parent’s environment variables. The script would match the PATH against the

default or whitelisted value of

“C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\Syst

em32\WindowsPowerShell\\v1.0\\”. Any deviation would get a malware score of

10/10. If the enterprise has a standardized OS image with a fixed path for all

clients, the malware score is increased to 30.

(2) DLL Loaded Path. The plugin, “dlllist”, would list all the imported functions

in DLLs that are loaded. All imported functions not running from

“C:\Windows\system32” would get a malware score of 6. In addition, the

analyst should investigate all the suspicious dll using “dlldump” for a more

conclusive confirmation.

Using Windows Crash Dumps for Remote Incident Identification! 20
!

Author!Name,!email@address! ! !

(3) Registry Key Verification. The plugin “printkey” can be used to dump the

value of “HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session

Manager\KnownDLLs”. The enterprise should maintain a list of known DLLs

and compare this against the benchmarked white list.

3.4.4.2. Remotely Mapped Drives
Attackers often map network drive to move laterally or exfiltrate data. If SMB

(net use) is used to map such as a network drive, it can be easily detected through the

enumeration of all file object handles. File handles that are mapped using SMB have the

prefix of “\Device\Mup”. This is done automatically by the “handles” plugin. In addition,

the plugin “symlinkscan” could be used to obtain additional information such as the time

the shared drive is mounted. The script would search for the above SMB strings and any

non-whitelisted shared drive detected would be assigned the malware score of 7/10.

3.4.5. Phase 3 - Network Artifacts

3.4.5.1. TCP Connections
Hidden TCP connections can be detected using the “connscan” plugin. This

plugin searches for the TCPT_OBJECT pool tag within the memory and displays its

remote connection address and the responsible PID. For Windows Vista, 2008 and 7, the

equivalent plugin is “netscan”. “netscan” searches for different pooltags of “TcpE, TcpL

and UdpA” instead. As anomaly detection, the plugin “connections” is used to walk

through the tcp link list pointed to by tcpip.sys. Any discrepancies in results between

“connscan” and “connections” are assigned the malware score of 9. However, the

“connections” plugin only works for Windows XP and 2003 memory dumps. As such,

this scan is not performed for Windows 7 and above.

Using Windows Crash Dumps for Remote Incident Identification! 21
!

Author!Name,!email@address! ! !

!
Name Network Connections

Pool Tag TCPT_OBJECT | TcpE, TcpL, UdpA

False Positive Identifier Pid

Object Scanner Plugin connscan (XP, 2003)

netscan (Vista, 7, 2008)

List Scanner Connections

3.4.5.1. Sockets
The plugin “sockets” could be used to detect socket structures created for network

communication. This encompasses all communication protocols, including both TCP and

UDP. Similarly, the plugin “sockscan” can be used to traverse the socket link list pointed

to by the Windows tcpip.sys module. Similarly, the main limitation of the “socket” plugin

is that it only works for Windows XP and 2003 memory dumps. Any discrepancies in

sockets are highly suspicious and are assigned a multiplied malware score of 30.

Name Network Sockets

Pool Tag ADDRESS_OBJECT

False Positive Identifier PID, Protocol, Creation Time

Object Scanner Plugin sockets

List Scanner sockscan

3.4.5.2. Domain and URL Scanning
Apart from pool tag scanning, Volatility has a plugin called “yarascan” which

allows analyst to scan for specific patterns within the memory. The plugin is able to

search the memory dump for patterns such as URL, IP addresses or domain name. This is

a viable way to detect malware command and control channels. The script uses the yara

rule “/(www|net|com|org)/” and any detection can be compared against known malicious

domain list provided at http://www.malwaredomainlist.com/. Due to the need for manual

verification and comparison, this is not scripted.

Using Windows Crash Dumps for Remote Incident Identification! 22
!

Author!Name,!email@address! ! !

3.4.6. Phase 4 - Code Injection
Code injection can take place in multiple forms. The three main methods are (1)

Remote Library Injection whereby the entire library is loaded from the disk onto another

process to run, (2) Remote Shellcode Injection whereby shellcode instead of libraries, are

injected or (3) Reflective DLL Loading whereby the library is injected from memory

instead of being loaded from the hard disk (Michael Hale Ligh 2014).

Dynamic Link Libraries (DLL) are compiled binaries which can be loaded by

processes to run generic functions. Malware often tries to inject malicious libraries into

running processes (instead of spawning new suspicious processes) to reduce the chance

of detection. This is also known as DLL injection. This malicious injection move can be

further hidden by manipulating 3 linked lists: (1) LoadOrderList, (2) MemoryOrderList,

(3) InitOrderList. These lists are maintained within the structure

_LDR_DATA_TABLE_ENTRY. The Volatility plugin “ldrmodules” can be used to

detect this by comparing the 3 lists against the process’s memory allocation list – Virtual

Address Descriptor tree. The script would assign a malware score of 30 to the client if the

3 lists show true,, but there is no mapped path. Analysts should investigate this further by

extracting the suspected dll using “vaddump”. Further alarm bells should be raised if the

extracted dll has a PE32 – MZ header, indicating that it is an executable binary.

Instead of “ldmodules”, another plugin called “malfind” can be used to find

hidden injected code. “Malfind” will scan and flag out suspicious code in memory that is

both executable and writable. These code can then be saved into a directory for further

analysis using “dlldump” or “vaddump”. Similar to malfind, the plugin “apihooks” can be

used to detect malicious activities such as process hollowing.

3.4.7. Phase 5 - Rootkits
This phase aims to detect the persistence nature of rootkits. Key areas to look for

are : (1) Autorun keys, (2) Services, (3) Scheduled Tasks. (4) Master Boot Record. Due

to the need for semantic interpretation, the most of the tasks in this section, unless

mentioned, is not included in the script.

(4) Autorun. The plugin “printkey” is used to extract the value of the registry key

“Microsoft\Windows\CurrentVersion\Run” and

Using Windows Crash Dumps for Remote Incident Identification! 23
!

Author!Name,!email@address! ! !

“\Microsoft\Windows\CurrentVersion\Runonce” This is often the registry keys

malware modifies to establish persistency. The default value for these registry

keys should be whitelisted and any discrepancy would be assigned a malware

score of 10. The anomalous binary should also be extracted physically and

examined further by tracing the run path on the client machine.

(5) Services. A malware could establish persistence on a system by running or

masquerading as a service. This can be detected via the plugin “svcscan”. In

the script, any services that are in the “SERVICE_RUNNING” state and does

not have the path “C:\WINDOWS\System32” is assigned a malware score of

7/10. To maximize the effectiveness for this plugin, the enterprise should

benchmark legitimate running services on a machine and main this as a

whitelist.

(6) Scheduled Tasks. A separate Volatility plugin called “autoruns” is created by

author Thomas Chopitea from Paris. It will extract information from registry

hives for malware persistence information as shown in Figure 10. It will also

extract scheduled tasks for OS Windows 7 and above. Due to the richness of

information provided, it is recommended that the output be analyzed

manually.

Figure'10'Autoruns'Output'

!
(7) Master Boot Record. The plugin “mbrparser” can be used to scan for and

extract the Master Boot Record that is loaded onto memory at boot time. The

analyst can look for signs of exploitation in the assembly code (Levy 2012).

To facilitate higher accuracy and faster analysis, it is recommended that a

baseline of the “clean” MBR is kept by an enterprise in raw and MD5 format.

Memory Extraction

Using Windows Crash Dumps for Remote Incident Identification! 24
!

Author!Name,!email@address! ! !

Volatility provides numerous ways for an analyst to extract suspicious files and

objects from memory. Below is a brief description of each method. Although it is

possible to run a script to indiscriminately carve all recognizable data types from the

memory image, this process is time exhaustive. It is recommended that analysts use the

above mentioned methods to identify suspicious objects and then proceed to carve

specific objects instead. The carved object can then be hashed and uploaded to Virustotal

for a quick analysis or it can be disassembled and analyzed manually using tools such as

IDA Pro.

Extracting Process Memory. The plugin “memdump” can be used to extract all

objects in a process memory. When “memdump” creates the dumpfile, all objects are

saved in contiguous blocks. In order to separate each of them, the plugin “memmap” can

be used.

Extracting Executables. If the analyst is only interested in PE objects, the plugin

“procexedump” can be used. However, the extracted executable is unlikely to be able to

run due to incorrect Import Address Table entries. However, this executable sample can

still be disassembled and statically analyzed. In Volatility 2.4, procexedump has been

subsumed into procdump and is the default behavior.

Extracting Packed Executables. A packed program would often exhibit the

following signature: (1) Sections of zero bytes on disk but non-zero in memory (2)

Sections with Unique Header Signatures, sometimes with ASCII string e.g UPX (3)

Sections with high entropy value, typically above 7.5-9 (Robert Lyda 2009). Packed

programs often allocate more “spaces” within their code to allow for extraction of packed

code. As such, “procexedump” should NOT be used as it would read the PE header and

re-align the executable, removing all the pre-allocated “spaces”. These spaces may

contain valuable unpacked code. When there is suspicion of a packed program, the plugin

“procmemdump” should be used instead. “Procmemdump” will correctly extract the

executable with the slack space intact. This would allow the identification of the packer

header and the unpacked content. In Volatility 2.4, procmemdump is subsumed into

procdump and can be called with “procdump -- memory”

Using Windows Crash Dumps for Remote Incident Identification! 25
!

Author!Name,!email@address! ! !

Rebuilding Executable Images with Imported Function Names. All the memory

extraction methods mentioned thus far does not rebuild the Import Address Table. If the

analyst were to load the extracted executable into disassembly programs such as IDA pro,

all external function calls would be “gibberish”, instead of the actual function name.

These function names are typically extracted from the Import Address Table (IAT).

However, malware is often known to modify the PE header or relocate the IAT after

successful execution to make reverse engineering difficult. Thankfully, it is possible to

rebuild the IAT using Volatility. The plugin “impscan” can be used to scan a process to

extract the Export Address Table of all DLLs in the process (Morgan 2011). The output

is an IDC file that can be loaded into IDA pro to give context to all imported function

calls.

3.4.8. Phase 6 – Drivers

3.4.8.1. Interrupt Descriptor Table Hooking
Malware is known to hook the Interrupt Descriptor table to hijack the instruction

pointer (IPtr) when an interrupt or exception happens. The plugin “idt” can be used to

scan for any such hooking. Any IDT entries not pointing to ntoskrnl.exe is assigned a

malware score of 30/10.

3.4.8.2. Inline Interrupt Descriptor Table Hooking
Hooking the IDT to external libraries can be easily detected. Instead of redirecting

the execution to an external library, a much less obtrusive method would be to redirect

the IPtr to a jump instruction within ntoskrl.exe which then jumps to the malicious code.

This can be achieved by either modifying ntoskrnl.exe directly, or through ROP gadgets.

Inline IDT hooking can be detected by using the plugins “apihooks”. “Apihooks” would

list all hooked addresses which can then be used as the base address in “dlldump” to

extract the suspected DLL. The described process is not included in the script.

3.4.8.3. System Service Descriptor Table Hooking
The SSDT holds the pointer to kernel functions which can be called by legitimate

applications. Windows has 4 SSDTs by default but normally (Bunden 2013), only 2 are

used: ntoskrnl.exe and Win32k.sys. By exploiting the SSDT, malware would be able to

Using Windows Crash Dumps for Remote Incident Identification! 26
!

Author!Name,!email@address! ! !

get administrator privilege. The ntoskrnl.exe is responsible for process related tasks such

as process creation or destruction while Win32k.sys handles graphic rendering.

Win32k.sys is a popular privilege escalation avenue as it handles font rendering which

are often user inputs. Any successful exploitation would result in a root level

compromise. To detect any such malicious activity, the plugin “ssdt” can be used. Any

entries not pointing to ntoskrnl.exe and win32k.sys are given the malware score of 30.

Further analysis on the suspicious modules can be performed by using the plugin

“modules”. This would list down the Base address of the library/module which can then

be used to extracted using “moddump” for further analysis.

3.4.8.4. Driver Hooking
The IO Manager handles all Inputs and Outputs between the OS and drivers. The

Driver dispatch table hold the API which the driver uses to communicate with the IO

manager. The plugin “modules” can be used to list all drivers and kernel modules loaded

in memory. These drivers are typically located within system32 and any anomaly are

assigned a malware score of 10. Instead of “modules”, the plugin “modscan” can also be

used. Any discrepancy in result from “modules” is indicative of root kit behavior and

would be assigned a multiplied malware score of 30.

Name Kernel Modules

Pool Tag LDR_DATA_TABLE_ENTRY pointed to by

PSLoadedModuleList

False Positive Identifier N/A

Object Scanner Plugin modscan

List Scanner modules

Since all device drivers are definitely kernel modules, the plugins “modscan” and

“modules” can also be used to list all device drivers. If the avenue of exploitation is

suspected to come from driver modules, the plugin “driverscan” can be used to list down

only device drivers instead. This is an effective way of data reduction.

Lastly, the plugin “unloadedmodules” can be used to identify suspicious modules

that have been used and subsequently unloaded. This would be compared against the

Using Windows Crash Dumps for Remote Incident Identification! 27
!

Author!Name,!email@address! ! !

output of “modscan” and “modules” and if they are missing, it would be assigned a

malware score of 20 as kernel modules once loaded, are rarely unloaded.

3.4.8.5. I/O Request Packet Hooking
Similar to IDT, it is possible to hook a device driver’s interrupt table to hijack a

program’s execution. The plugin “driverirp” can be used to detect any such malicious

hooking. As such, any hooks not pointing back to itself or to ntoskrnl.exe are assigned a

malware score of 30.

3.4.9. Other Forensic Evidence
For investigation and attribution purpose, it is often necessary to identify the

account which was logged in during the occurrence of the incident. This can be done by

using the plugin “mutantscan” and searching for the string “Documents and Settings”.

Similarly, the plugins “hivelist” and “hivescan” can be used.

The “prinkey” plugin can also be used to extract the value of

“ControlSet001\Enum\USBSTOR” to get a history of all connected USB devices to the

machine.

In the event that a suspicious USB device has been connected to the machine, it is

possible to identify any binaries that were executed from it using the plugin “filescan”.

This plugin searches for FILE_OBJECT and displays the path of execution. Mount point

and suspicious filenames can then be extracted for further investigation.

The plugin “Shimcache” can be used to check if any malicious programs were

executed. This can be correlated against the user that was logged in. Ironically, this was

not the purpose Microsoft created the registry for. ShimCache or AppCompatCache was

originally created to track all applications that ran before the system was shutdown

(Newton 2011). This was to be used for application compatibility debugging. As such,

this registry is only updated during system shutdown. This registry value can be used to

identify malicious user activities such as installing a non-legitimate program, running it

and then uninstalling it.

Using Windows Crash Dumps for Remote Incident Identification! 28
!

Author!Name,!email@address! ! !

3.5. Results Interpretation
The scanning script uses several whitelists that should be maintained by the

system administrator in order to maximize the benefit of the script. With well-maintained

whitelists, the scan should show a 0% malware score as seen in Figure 11 for a clean

client.

Figure'11:'Result'from'an'uninfected'client'

The script aims to provide a fast way for SOC operators to quickly diagnose a

malware infection and its means. Based on the script, kernel level exploitations are

scored higher to emphasize the urgency to follow up. Similarly, socket anomalies are also

scored higher to because malware that establishes an outbound network connection

hightens the risk of data loss and reputation damage that an enterprise might incur.

Figure 12 shows the result of a zeus infected client.

Using Windows Crash Dumps for Remote Incident Identification! 29
!

Author!Name,!email@address! ! !

Figure'12:'Result'from'scanning'zeus.vmem'

3.6. Challenges
With the proliferation of 64 bit architectures and the lowering cost of memory, it

is now more likely that client machines will be deployed with more than 4GB of

ram. This is likely to cause a strain on an enterprise’s bandwidth, should memory

collection be done on a large scale. However, this can be resolved with proper

memory collection management. The collection latency of client machines should

be prioritized based on threat and risk assessment. For example, the memory from

high value targets such as C-level personnel in an enterprise should be given the

highest priority for memory transfer. Remaining users’ memory can be collected

during off-office hour where there is less bandwidth usage.

As most Volatility plugins are written for Windows based memory analysis, an

enterprise with a heterogeneous deployment may not be able to fully utilize this solution.

However, it is possible to facilitate memory collection off *nix machine with customized

kernel plugin such as Linux Memory Extractor (LiME) which is a loadable kernel

module. The extracted memory can then be analyzed manually. File system agnostic tools

Using Windows Crash Dumps for Remote Incident Identification! 30
!

Author!Name,!email@address! ! !

such as Bulk Extractor can be used to extract information such as suspicious outgoing

network connections.

4. Further Work
Additional work can be done to analyze the benefit of using Windows debugger

to analyze crash dumps. Tools to merge paged out memory content would also be highly

beneficial for a comprehensive forensic analysis.

5. Conclusion
It is highly recommended that organizations leverage the Windows crash dump

collection mechanism to provide them with a quick triage solution for speedy incident

response.

Using Windows Crash Dumps for Remote Incident Identification! 31
!

Author!Name,!email@address! ! !

References
!

!
Bunden, R. B. (2013). The Rootkit Arsenal.

Casey, E. (2011). Digital Evidence and Computer Crime: Forensic Science, Computers
and the Internet.

Chen, X. (2013). "ASLR Bypass Apocalypse in Recent Zero-Day Exploits." Retrieved 30
December, 2014, from https://www.fireeye.com/blog/threat-research/2013/10/aslr-
bypass-apocalypse-in-lately-zero-day-exploits.html.

Eric Hutchins, M. C., Dr. Rohan Amin (2011). Intelligence-Driven Computer Network
Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains.

Levy, J. (2012). "MoVP 4.3 Recovering Master Boot Records (MBRs) from Memory."
from http://Volatility-labs.blogspot.sg/2012/10/movp-43-recovering-master-boot-
records.html.

LoneStar (2012). "Trojan-Spy.Win32.Lurk." from
http://www.enigmasoftware.com/trojanspywin32lurk-removal/.

McDonald, G., et al. (2013). Stuxnet 0.5: The Missing Link: 18.

Michael Hale Ligh, A. C., Jamie Levy, Aaron Walters (2014). The Art of Memory
Forensics.

Michael Ligh, S. A., Blake Hartstein, Matthew Richard (2010). Malware Analyst's
Cookbook and DVD: Tools and Techniques for Fighting Malicious Code.

Microsoft (2013). "Search Path Used by Windows to Locate a DLL." from
https://msdn.microsoft.com/en-us/library/7d83bc18.aspx.

Microsoft (2015). "Enhanced Mitigation Experience Toolkit."

Microsoft Secure Windows Initiative Team (2009). "Preventing the Exploitation of
Structured Exception Handler (SEH) Overwrites with SEHOP." Retrieved 30 December,
2014, from http://blogs.technet.com/b/srd/archive/2009/02/02/preventing-the-
exploitation-of-seh-overwrites-with-sehop.aspx.

Morgan, M. (2011). "Rebuilding Executable Images From Memory." from
https://marksforensicblog.wordpress.com/2011/11/29/rebuilding-executable-images-
from-memory/.

Using Windows Crash Dumps for Remote Incident Identification! 32
!

Author!Name,!email@address! ! !

NetMarketShare (2014). "Desktop Operating System Market Share." Retrieved 30
December, 2014, from http://www.netmarketshare.com/operating-system-market-
share.aspx.

Newton, T. (2011). "Demystifying Shims - or - Using the App Compat Toolkit to make
your old stuff work with your new stuff." from
http://blogs.technet.com/b/askperf/archive/2011/06/17/demystifying-shims-or-using-the-
app-compat-toolkit-to-make-your-old-stuff-work-with-your-new-stuff.aspx.

Patrick Jungles, M. S., Roger Grimes (2012). "Mitigating Pass-the-Hash (PtH) Attacks
and Other Credential Theft Techniques." from
http://download.microsoft.com/download/7/7/A/77ABC5BD-8320-41AF-863C-
6ECFB10CB4B9/Mitigating%20Pass-the-
Hash%20(PtH)%20Attacks%20and%20Other%20Credential%20Theft%20Techniques_E
nglish.pdf.

Robert Lyda, J. H. (2009). "Using Entropy Analysis to Find Encrypted and Packed
Malware."

Russinovich, M., et al. (2012). Windows Internals. United States of America.

Ryan Riley, X. J., Dongyan Xu (2009). Multi-Aspect Profiling of Kernel Rootkit
Behavior.

Waite, R. (2009). "What Programming Language is Windows written in?". from
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-
148e6b3da9f1/what-programming-language-is-windows-written-in.

Whitehouse, O. (2007). An Analysis of Address Space Layout Randomization on
Windows Vista: 20.

Using Windows Crash Dumps for Remote Incident Identification! 33
!

Author!Name,!email@address! ! !

Appendix

Domain Controller Installation
Startup Script

REM Variables
SET TFOLDER=\\DC\memdumpcollection

echo %DATE% %TIME% Script Begin >>%TFOLDER%\%COMPUTERNAME%.txt

:CHECKER

FOR /f "tokens=2-4 delims=/ " %%a IN ('date /t') DO (set mydate=%%c%%b%%a)
FOR /f "tokens=1-2 delims=/:" %%a IN ("%TIME%") DO (set mytime=%%a%%b)
FOR /f "usebackq" %%i in (`hostname`) do (set hostnamestring=%%i)
set memdumpstring=%mydate%%mytime%-%hostnamestring%.dmp

echo %DATE% %TIME% Renaming in progress>>%TFOLDER%\%COMPUTERNAME%.txt
rename C:\Windows\Minidump\memdump.dmp "%memdumpstring%"

echo %DATE% %TIME% Moving file to dumpsync >>%TFOLDER%\%COMPUTERNAME%.txt
move C:\Windows\Minidump* %TFOLDER%\dumpsync

echo %DATE% %TIME% Checking collectionlist for match for %COMPUTERNAME%
>>%TFOLDER%\%COMPUTERNAME%.txt
SET CRASHCONDITION="NO"

FOR /F "tokens=*" %%a in (%TFOLDER%\collectionlist.txt) DO (

 echo %DATE% %TIME% Comparing %COMPUTERNAME% vs %%a
>>%TFOLDER%\%COMPUTERNAME%.txt

 IF %%a==%COMPUTERNAME% (
 set CRASHCONDITION="YES"
 echo %DATE% %TIME% Match found for %%a >>%TFOLDER%\%COMPUTERNAME%.txt
 @echo CRASHCONDITION SET TO YES) ELSE (

 echo %DATE% %TIME% Match NOT FOUND for %%a >>%TFOLDER%\%COMPUTERNAME%.txt

 echo %%a>> %TFOLDER%\newcollectionlist.txt)
)

echo %DATE% %TIME% Comparison Complete, replacing collectionlist >>%TFOLDER%\%COMPUTERNAME%.txt

move /Y %TFOLDER%\newcollectionlist.txt %TFOLDER%\collectionlist.txt

echo %DATE% %TIME% Check Condition for crash, Condition = %CRASHCONDITION%
>>%TFOLDER%\%COMPUTERNAME%.txt

IF %CRASHCONDITION%=="YES" (
 echo %DATE% %TIME% Crashing... ... >>%TFOLDER%\%COMPUTERNAME%.txt
 %TFOLDER%\NotMyFault\x86\NotMyfault.exe /crash)

echo %DATE% %TIME% Delaying >>%TFOLDER%\%COMPUTERNAME%.txt
ping 1.1.1.1 -n 1 -w 10000>nul
echo %DATE% %TIME% Delay for 10sec Completed, Looping... ... >>%TFOLDER%\%COMPUTERNAME%.txt

goto CHECKER

echo %DATE% %TIME% CompletedDump >>%LOGFOLDER%\%mydate%%mytime%-%hostnamestring%.txt

Using Windows Crash Dumps for Remote Incident Identification! 34
!

Author!Name,!email@address! ! !

Registry settings (memdump.registry.reg)
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CrashControl]
"AutoReboot"=dword:00000001
"LogEvent"=dword:00000001
"MinidumpsCount"=dword:00000032
"DumpFilters"=hex(7):64,00,75,00,6d,00,70,00,66,00,76,00,65,00,2e,00,73,00,79,\
 00,73,00,00,00,00,00
"CrashDumpEnabled"=dword:00000001
"Overwrite"=dword:00000000
"MinidumpDir"=hex(2):43,00,3a,00,5c,00,57,00,69,00,6e,00,64,00,6f,00,77,00,73,\
 00,5c,00,4d,00,69,00,6e,00,69,00,64,00,75,00,6d,00,70,00,00,00
"DumpFile"=hex(2):43,00,3a,00,5c,00,57,00,69,00,6e,00,64,00,6f,00,77,00,73,00,\
 5c,00,4d,00,69,00,6e,00,69,00,64,00,75,00,6d,00,70,00,5c,00,6d,00,65,00,6d,\
 00,64,00,75,00,6d,00,70,00,2e,00,64,00,6d,00,70,00,00,00
@=dword:00000000

Malware Scoring Python Script
import subprocess
import sys
import datetime
import time
import getopt

def main(argv):
inputfile = ''
outputfile = ''
try:
opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])
except getopt.GetoptError:
print 'malwarescoretest.py -i <inputfile> -o <outputfile>'
sys.exit(2)

for opt, arg in opts:
if opt == '-h':
print 'test.py -i <inputfile> -o <outputfile>'
sys.exit()
elif opt in ("-i", "--ifile"):
inputfile = arg
elif opt in ("-o", "--ofile"):
outputfile = arg
print 'Input file is "', inputfile
print 'Output file is "', outputfile

if __name__ == "__main__":
main(sys.argv[1:])

def debug(debug_flag, output):
 if debug_flag == 1:
 print output

def utc_to_epoch(timestamp):
 pattern = '%Y-%m-%d %H:%M:%S'
 epoch = int(time.mktime(time.strptime(timestamp,pattern)))
 return epoch

def malwarescoretest(opt):

 if opt == '-h':
 print 'malwarescoretest.py <memorydumpfile> --profile=<Windows Version>'
 sys.exit()

 #debugging flag, 1 is on, 0 is off

Using Windows Crash Dumps for Remote Incident Identification! 35
!

Author!Name,!email@address! ! !

 debug_flag = 1

 #Logging Preparation
 log_file = datetime.datetime.now().strftime('%Y%m%d_%H%M%S-log.txt')
 logging = open(log_file, 'w')

 #Base variables to keep track of scores
 malware_score = 0
 malware_score_modules = 0

 #Variables for 3.3.3.1
 suspicious_pid = []
 suspicious_pid_dictionary = {}
 suspicious_pid_count = 0
 whitelist_psxview = ['lsass.exe', 'services.exe', 'lsm.exe', 'svchost.exe', 'System', 'csrss.exe', 'cmd.exe',
'csrss.exe', 'smss.exe', 'HOSTNAME.EXE']

 #Variables for 3.3.3.2
 svchost_parent = []
 abnormal_parent_count = 0

 #Variables for 3.3.4.1(1)
 matched_path_count = 0
 whitelist_path =
["C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\\v
1.0\\",
 "C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem"]

 #Variables for 3.3.4.1(2)
 false_positive_dll_path = 0
 legit_dll_path = "C:\Windows\System32"
 whitelist_dll_path = ["C:\Windows\WinSxS",
 "C:\Program Files\VMware\VMware Tools",
 "C:\Windows\servicing",
 "C:\ProgramData\Microsoft\Windows Defender",
 "C:\Program Files\Common Files\VMware\Drivers",
 "C:\Windows\Explorer.EXE",
 "C:\Program Files\Common Files\microsoft shared",
 "C:\Program Files\Internet Explorer\ieproxy.dll",
 "C:\Windows\ehome",
 "C:\Windows\Microsoft.NET\Framework",
 "C:\Users\user\Documents\NotMyFault\\x86\NotMyfault.exe"]
 abnormal_dll_path_count = 0

 #Variables for 3.3.4.2
 false_positive_smb_status = 0
 abnormal_smb_mount = 0
 whitelist_smb_share = ["DC\memdumpcollection"]

 #Variables for 3.3.5.1
 sockscan_result = {}
 pid_match = 0
 mismatch_socket_sockscan = 0

 #Variables for 3.3.6
 abnormal_dll_with_no_path = 0

 #Variables for 3.3.7 (1)
 false_positive_runkey = 0
 abnormal_run = 0
 whitelist_runkey_values = ["C:\Program Files\VMware\VMware Tools",
 "%SYSTEMROOT%\SYSTEM32\WerFault.exe"]

 #Variables for 3.3.7 (2)
 false_positive_service = 0
 abnormal_service = 0
 whitelist_service_path = ["C:\Windows\system32",
 "\driver\\",
 "\\filesystem\\",
 "c:\windows\servicing\\trustedinstaller.exe",

Using Windows Crash Dumps for Remote Incident Identification! 36
!

Author!Name,!email@address! ! !

 "c:\program files\\vmware\\vmware tools"]

 #Variables for 3.3.8.1
 abnormal_idt_entry = 0
 false_positive_idt = 0
 whitelist_idt_entries = ["hal.dll"]

 #Variables for 3.3.8.3
 abnormal_ssdt_entry = 0
 false_positive_ssdt = 0
 whitelist_ssdt_entries = [""]

 #Variables for 3.3.8.4 (1)
 abnormal_driver_path = 0
 false_positive_driver_path = 0
 whitelist_driver_entries = ["C:\Program Files\VMware\VMware Tools",
 "C:\Program Files\Common Files\VMware\Drivers",
 "C:\Windows\system32\drivers\myfault.sys"]

 #Variables for 3.3.8.4 (2)
 modules_list = []
 abnormal_module = 0

 #Variables for 3.3.8.4 (3)
 abnormal_unloaded_module = 0
 whitelist_unloaded_module = ["agp440.sys"]

 #Variables for 3.3.8.5
 abnormal_driver_irp = 0
 false_positive_driverirp = 0
 whitelist_driverirp = ["HIDCLASS.SYS",
 "Unknown",
 "Wdf01000.sys",
 "HdAudio.sys",
 "ks.sys",
 "portcls.sys",
 "VIDEOPRT.SYS",
 "ndis.sys",
 "wanarp.sys",
 "dxgkrnl.sys",
 "USBPORT.SYS",
 "PCIIDEX.SYS",
 "CLASSPNP.SYS",
 "ataport.SYS",
 "storport.sys",
 "hal.dll"]

 #3.3.2 Preprocessing
 #Running imageinfo to get Windows profile automatically. Assuming last profile is the correct one.
 debug(debug_flag, "\nChecking profile... ...")
 log_command = 'python vol.py imageinfo -f ' + opt
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "Suggested Profile" in line:
 profile = line.split()[3]
 profile = profile[:-1]
 debug(debug_flag, "The profile is " + profile)

 ##3.3.3.1 Direct Kernel Object Manipulation
 debug(debug_flag, "\nCalling psxview... ...")
 log_command = 'python vol.py -f ' + opt + ' psxview --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "False" in line:
 process_name = line.split()[1]
 if not process_name in whitelist_psxview:

Using Windows Crash Dumps for Remote Incident Identification! 37
!

Author!Name,!email@address! ! !

 pid = line.split()[2]
 suspicious_pid.append(pid)

 #Running pslist to extract time stamp
 debug(debug_flag, "Calling pslist... ...")
 log_command = 'python vol.py -f ' + opt + ' pslist --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 temp_pid = line.split()[2]
 if temp_pid in suspicious_pid:
 temp_array = line.split()
 utc = temp_array[-3] + ' ' + temp_array[-2]
 suspicious_time = utc_to_epoch(utc)
 suspicious_pid_dictionary[str(temp_pid)] = suspicious_time

 if "smss.exe" in line:
 temp_array = line.split()
 utc = temp_array[-3] + ' ' + temp_array[-2]
 smss_time = utc_to_epoch(utc)

 debug(debug_flag, "Comparing pid with smss timing... ...")
 for key,var in suspicious_pid_dictionary.items():
 if var > smss_time:
 suspicious_pid_count += 1
 debug(debug_flag, "Suspicious pid found! " + key)

 if suspicious_pid_count > 0:
 malware_score += 8
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.3.2 Legitimate Parent-Child Relationship
 debug(debug_flag, "\nCalling pstree... ...")
 log_command = 'python vol.py -f ' + opt + ' pstree --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 temp_process_name = line.split()[0]
 temp_pid = line.split()[1]
 temp_ppid = line.split()[2]
 if "." == temp_process_name or ".." in temp_process_name:
 temp_process_name = line.split()[1]
 temp_pid = line.split()[2]
 temp_ppid = line.split()[3]
 if "services.exe" in temp_process_name:
 service_pid = temp_pid
 if "smss.exe" in temp_process_name:
 smss_pid = temp_pid
 if "csrss.exe" in temp_process_name:
 csrss_parent = temp_ppid
 if "winlogon.exe" in temp_process_name:
 winlogon_parent = temp_ppid
 if "svchost.exe" in temp_process_name:
 svchost_parent.append(temp_ppid)

 debug(debug_flag, "Checking winlogon and csrss parent... ...")
 if not winlogon_parent == smss_pid and not csrss_parent == winlogon_parent:
 abnormal_parent_count += 1
 debug(debug_flag, "Abnormal winlogon or csrss parent found")

 debug(debug_flag, "Checking svchost parent... ...")
 for i in svchost_parent:
 if not i == service_pid:
 abnormal_parent_count += 1
 debug(debug_flag, "Abnormal svchost parent found for pid " + i)

Using Windows Crash Dumps for Remote Incident Identification! 38
!

Author!Name,!email@address! ! !

 if abnormal_parent_count > 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.4.1 Search Order Hijacking - Path Modification
 debug(debug_flag, "\nCalling envars... ...")
 log_command = 'python vol.py -f ' + opt + ' envars --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 temp_process_name = line.split()[1]
 temp_variable=line.split()[3]
 temp_path = line.split()[4]
 if temp_process_name == "csrss.exe" and "Path" == temp_variable:
 for i in whitelist_path:
 if temp_path == i:
 matched_path_count += 1

 if matched_path_count == 0:
 malware_score += 30
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.4.1 Search Order Hijacking - DLL Loaded path
 debug(debug_flag, "\nCalling dlllist... ...")
 log_command = 'python vol.py -f ' + opt + ' dlllist --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "C:\\" in line:
 if not legit_dll_path.lower() in line.lower():
 for i in whitelist_dll_path:
 if i.lower() in line.lower():
 false_positive_dll_path += 1
 if false_positive_dll_path > 0:
 false_positive_dll_path = 0
 else:
 abnormal_dll_path_count += 1
 debug(debug_flag, "Abnormal DLL path found! " + line)

 if abnormal_dll_path_count > 0:
 malware_score += 6
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.4.2 Remotely Mapped Drives
 debug(debug_flag, "\nCalling handles... ...")
 proc = subprocess.Popen('python vol.py -f ' + opt + ' handles -t File --profile=' + profile, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "\Device\Mup\;" in line:
 for i in whitelist_smb_share:
 if i.lower() in line.lower():
 false_positive_smb_status += 1
 if false_positive_smb_status > 0:
 false_positive_smb_status = 0

Using Windows Crash Dumps for Remote Incident Identification! 39
!

Author!Name,!email@address! ! !

 else:
 abnormal_smb_mount += 1
 debug(debug_flag, "Abnormal smb_mount detected " + line)

 if abnormal_smb_mount > 0:
 malware_score += 7
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.5.1 Sockets
 if "WinXP" in profile:
 debug(debug_flag, "\nCalling sockets... ...")
 log_command = 'python vol.py -f ' + opt + ' sockets --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if not "PID" in line:
 if not "---" in line:
 temp_pid = line.split()[1]
 temp_port = line.split()[2]
 sockscan_result[temp_pid] = temp_port

 proc = subprocess.Popen('python vol.py -f ' + opt + ' sockscan --profile=' + profile, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if not "PID" in line:
 if not "---" in line:
 temp_pid = line.split()[1]
 temp_port = line.split()[2]
 for key,var in sockscan_result.items():
 if temp_pid == key and temp_port == var:
 pid_match += 1
 if pid_match > 0:
 pid_match = 0
 else:
 mismatch_socket_sockscan += 1
 debug(debug_flag, "Abnormal socket detected " + line)

 if mismatch_socket_sockscan > 0:
 malware_score += 30
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.6 Code Injection
 debug(debug_flag, "\nCalling ldrmodules... ...")
 log_command = 'python vol.py -f ' + opt + ' ldrmodules --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 inload_status = line.split()[3]
 ininit_status = line.split()[4]
 inmem_status = line.split()[5]
 mapped_path = line.split()[-1]
 if inload_status == "True" and ininit_status == "True" and inmem_status == "True":
 if mapped_path == "False":
 abnormal_dll_with_no_path += 1
 debug(debug_flag,"Abnormal dll with no path detected " + line)

 if abnormal_dll_with_no_path > 0:
 malware_score += 30
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))

Using Windows Crash Dumps for Remote Incident Identification! 40
!

Author!Name,!email@address! ! !

 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.7 Rootkits (1) Autoruns
 debug(debug_flag, "\nCalling printkey for Run... ...")
 log_command = 'python vol.py -f ' + opt + ' printkey -K "Microsoft\Windows\CurrentVersion\Run" --profile=' +
profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "REG_" in line:
 for i in whitelist_runkey_values:
 if i.lower() in line.lower():
 false_positive_runkey += 1
 if false_positive_runkey > 0:
 false_positive_runkey = 0
 else:
 abnormal_run += 1
 debug(debug_flag, "Abnormal runkey detected " + line)

 debug(debug_flag, "Calling printkey for Runonce... ...")
 log_command = 'python vol.py -f ' + opt + ' printkey -K "Microsoft\Windows\CurrentVersion\Runonce" --profile='
+ profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "REG_" in line:
 for i in whitelist_runkey_values:
 if i.lower() in line.lower():
 false_positive_runkey += 1
 if false_positive_runkey > 0:
 false_positive_runkey = 0
 else:
 abnormal_run += 1
 debug(debug_flag, "Abnormal runkey detected " + line)

 if abnormal_run> 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.7 Rootkits (2) svcscan
 debug(debug_flag, "\nCalling svcscan... ...")
 log_command = 'python vol.py -f ' + opt + ' svcscan --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "Process ID:" in line:
 temp_pid = line.split()[-1]
 if "Service State:" in line:
 temp_service_state = line.split()[-1]
 if "Binary Path" in line:
 temp_binary_path = line
 if temp_service_state == "SERVICE_RUNNING":
 for i in whitelist_service_path:
 if i.lower() in temp_binary_path.lower():
 false_positive_service += 1
 if false_positive_service > 0:
 false_positive_service = 0
 else:
 abnormal_service += 1
 debug(debug_flag, "Abnormal service found in " + temp_binary_path.lower())

Using Windows Crash Dumps for Remote Incident Identification! 41
!

Author!Name,!email@address! ! !

 if abnormal_service > 0:
 malware_score += 7
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.8.1 Interrupt Descriptor Table Hooking
 debug(debug_flag, "\nCalling idt... ...")
 log_command = 'python vol.py -f ' + opt + ' idt --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if not "Module" in line:
 if not "---" in line:
 if not "ntoskrnl.exe" in line:
 if not line.split()[-1] == "UNKNOWN":
 for i in whitelist_idt_entries:
 if i.lower() in line.lower():
 false_positive_idt += 1
 if false_positive_idt > 0:
 false_positive_idt = 0
 else:
 abnormal_idt_entry += 1
 debug(debug_flag,"Abnormal idt detected in " + line)

 if abnormal_idt_entry > 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "idt malware_score is " + str(malware_score))
 debug(debug_flag, "malware_score_module is " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score) / (malware_score_modules *10)) * 100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.8.3 ssdt
 debug(debug_flag, "\nCalling ssdt... ...")
 log_command = 'python vol.py -f ' + opt + ' ssdt --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "owned by" in line:
 temp_module = line.split()[-1]
 if not temp_module == "ntoskrnl.exe":
 if not temp_module == "win32k.sys":
 for i in whitelist_ssdt_entries:
 if i.lower() in temp_module.lower():
 false_positive_ssdt += 1
 if false_positive_ssdt > 0:
 false_positive_ssdt = 0
 else:
 abnormal_ssdt_entry += 1
 debug(debug_flag, "Abnormal ssdt entries detected in " + line)

 if abnormal_ssdt_entry > 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.8.4 Driver Hooking (1)log_command =
 debug(debug_flag, "Calling modules... ...")
 log_command = 'python vol.py -f ' + opt + ' modules --profile=' + profile

Using Windows Crash Dumps for Remote Incident Identification! 42
!

Author!Name,!email@address! ! !

 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if not "Offset" in line:
 if not "---" in line:
 temp_module = line.split()[1]
 modules_list.append(temp_module)
 if not "SystemRoot\system32".lower() in line.lower():
 for i in whitelist_driver_entries:
 if i.lower() in line.lower():
 false_positive_driver_path += 1
 if false_positive_driver_path > 0:
 false_positive_driver_path = 0
 else:
 abnormal_driver_path += 1
 debug(debug_flag, "Abnormal driver path found " + line)

 if abnormal_driver_path > 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.8.4 Driver Hooking (2)
 debug(debug_flag, "\nCalling modscan... ...")
 log_command = 'python vol.py -f ' + opt + ' modscan --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if not "Offset" in line:
 if not "---" in line:
 temp_module = line.split()[1]
 if not temp_module in modules_list:
 abnormal_module += 1

 if abnormal_module > 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.8.4 Driver Hooking (3)
 debug(debug_flag, "\nCalling unloadedmodules... ...")
 log_command = 'python vol.py -f ' + opt + ' unloadedmodules --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if not "EndAddress" in line:
 if not "---" in line:
 temp_module = line.split()[0]
 if not temp_module in modules_list:
 if not temp_module in whitelist_unloaded_module:
 abnormal_unloaded_module += 1
 debug(debug_flag, "Abnormal unloaded module detected " + line)

 if abnormal_unloaded_module > 0:
 malware_score += 20
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100

Using Windows Crash Dumps for Remote Incident Identification! 43
!

Author!Name,!email@address! ! !

 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 #3.3.8.5 I/O Request packet Hooking
 debug(debug_flag, "\nCalling driverirp... ...")
 log_command = 'python vol.py -f ' + opt + ' driverirp --profile=' + profile
 logging.write((str(datetime.datetime.now()) + " : " + log_command + '\n'))
 proc = subprocess.Popen(log_command, stdout=subprocess.PIPE)
 for line in proc.stdout:
 if "DriverName" in line:
 temp_drivername = line.split()[-1].lower()
 if "IRP_MJ" in line:
 temp_device_driver = line.split()[-1].lower()
 if not temp_drivername.lower() in temp_device_driver.lower():
 if not "ntoskrnl" in temp_device_driver:
 for i in whitelist_driverirp:
 if i.lower() in temp_device_driver.lower():
 false_positive_driverirp += 1
 if false_positive_driverirp > 0:
 false_positive_driverirp = 0
 else:
 abnormal_driver_irp += 1
 debug(debug_flag, "Abnormal driver irp detected " + line)

 if abnormal_driver_irp > 0:
 malware_score += 10
 malware_score_modules += 1

 debug(debug_flag, "malware_score is " + str(malware_score))
 debug(debug_flag, "Modules total " + str(malware_score_modules))
 malware_infection_percentage = (float(malware_score)/(malware_score_modules *10))*100
 debug(debug_flag, "malware score is " + str(malware_infection_percentage) + "%")

 malware_infection_percentage = (float(malware_score) / (malware_score_modules *10)) * 100
 print "\nThe client is " + str(malware_infection_percentage) + "%" + " likely to be infected"

 logging.close()

if __name__ == "__main__":
 malwarescoretest(sys.argv[1])

