
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Tyson Kopczynski
GCIH Practical Assignment Version 1.5c

Mutated Code

Introduction:

As part of the escalating arms race between hackers and security
engineers, a new weapon designed to evade Intrusion Detection Systems
(IDS) has recently made its way into the public arena. In March 2001
during the CanSecWest conference K2 made public his shellcode
mutation engine called ADMutate (1). ADMutate is an API that is
designed to change around the code structure of buffer overflow exploits.
This polymorphism of the code structure is done in order to mask the
signatures of the attack from IDSs by giving the hacker the ability to
create variants on the fly. When used properly, this technique can render
the signature analysis portion of any IDS useless. Handing the
developers of IDSs a setback in their current arsenal to combat network
intrusions. However, it is unclear if this is really a major setback for those
developers. The general consensus from both the hacking and security
communities is one of mixed feelings. On one side, there is the belief
that this program is the start of a new period where hackers will gain the
advantage over the security community. Others express very little
concern over the technique because it attacks a portion of IDSs that is
both out of date, and backed up by other means of detecting an intrusion
(1)(2).

Exploit Details
Name ADMutate; ADMMutate
Variants None Yet
Operating System Multi-Platform
Protocols/Services Tries to evade signature analysis programs in an IDS system.
Brief Description Polymorphic shell-code toolkit and libraries for IDS evasion.

A background to IDS:

Network security is comprised of confidentiality, availability, and integrity.
With the advent of the Internet the need for security systems has
increased dramatically. In order to ensure aspects of a secure network it
becomes essential for a network administrator to protect his or her
network from attacks. For a short period of time it was popularly thought
that firewalls would provide all the protection needed to limit the reach of
most attacks. However, a multitude of techniques soon emerged to
bypass the barriers firewalls put in place. Now lacking a definitive way to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

1 By using this CIDF model as an example of the layout of IDSs, my goal here was to try and illustrate the
basic components within IDSs. However, this actually is a standardization/interoperability effort that is very
theoretical. So the layout that is given in this paper should not be considered as the industry standard when
dealing with naming conventions and direct layout.

protect their networks and besieged under attacks, the security
community reacted by maturing IDS technology to handle the process of
discovering and analyzing attacks on their networks.

The concept of Intrusion Detectors has been around since the 60’s.
However, it wasn’t until the late 80’s and early 90’s that advances in the
technology brought together the basic elements found in all of today’s
IDSs: the analysis engine and event generator. These basic elements
have since then been expanded on, and today most IDSs now resemble
the structure found within the Common Intrusion Detection Framework
(CIDF1) model (3):

E-Boxes: Event Generators•
Termed as the sensory organ of IDSs because it provides o
information about events to the rest of the system.

A-Boxes: Analysis Engines•
Analyzes the streams of data from the event generators.o

D-Boxes: Storage Mechanisms•
Defines the means and structure by which the huge amount o
of data that is produced from the E-Boxes and A-Boxes is
stored.

C-Boxes: Countermeasures•
Can be a simple alarm system to actual countermeasures o
that allow the IDS to take action and prevent further attacks
(I.E. shutting down TCP connections, modifying router filter
lists).

To analyze the system or network data for possible attacks, IDS
developers most commonly use the following two techniques: misuse
detection and anomaly detection. Misuse detection analyzes system or
network activity looking for patterns that are defined based on attack
signatures. This reliance on signatures is why misuse detection is more
commonly called signature analysis. The other form of activity analysis is
anomaly detection. Anomaly detection is the analysis based on
determining abnormal patterns of activity in a system or network.
Anomaly detectors do this by assuming that normal activity will appear to
be different than activity associated with attacks (11).

Signature and anomaly analysis are the most common means used in
IDSs for detecting attacks. However, they are not the only means. Other
means might include (9):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

2 Honeypots and Protocol Analysis will be discussed later in this paper.

Frequency or threshold crossing•
Correlation of lesser events•
Honeypots and Protocol Analysis2•

Currently there exist two types of IDSs: the Network based (NIDS) and the
Host based (HIDS).

HIDSs deal with the security and integrity of a single host. The •
HIDSs role is to determine if the host is in the process of being
attacked or if an attack has already resulted. HIDSs usually do this
by monitoring event logs, processes, and host-based traffic in
either real or near real time and use either signature or anomaly
analysis to identify attacks. Some current HIDS products are
Tripwire, Real Secure OS Sensor, and Dragon Squire.
NIDSs deal with the security and integrity of the network. To do •
this a NIDS might passively capture all the packets that are
traversing a network using a sniffer. At this point, an NIDS might
either be using signature or anomaly detection to analyze the data
for attacks. Some current NIDS products are Snort, Real Secure
ISS, and Dragon.

Signature analysis and NIDSs:

In most IDSs signature analysis currently is the most popular method
used for detecting attacks. With NIDSs signature analysis is mostly
based on how attacks are performed on TCP/IP and the fact that attack
signatures can be developed characterizing those attacks. To detect a
possible attack the signatures are compared with the information
gathered from a sniffer. Then based on if the attack signature matches
the sniffer information, a certain event is then triggered.

Here is an example of a simple signature analysis. If a NIDS that is
protecting web servers has a string entry for “phf” as a possible cgi attack
and if the sub-string entry “phf” was discovered in a stream of data, it
would then most likely generate an event, alarm, or attack responses (3).
Sample of a Snort Signature (4):
alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"OVERFLOW-FTP-x86linux-
adm";flags:PA; content:"|31 c0 31 db 17 cd 80 31 c0 b0 17 cd 80|";)

Excerpt from ADMwuftp.c (wu-ftp 2.42 exploit):
“\x31\xc0\x31\xdb\x17\xcd\x80\x31\xc0\xb0\x17\xcd\x80”

A possible problem:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Several years ago, signature analysis was a very powerful tool. However,
it has always been subject to a very serious problem. The signature is
only a hard coded entry in a database. This database needs continuous
updating by the developers of IDSs in order to protect networks and
systems from the growing variants of attacks on them. With this in mind,
K2 uses a method called polymorphism the coder’s way of forcing code
to exist in several distinct forms at once as a means for bypassing NIDSs.
This technique in coding has been around for many years. In fact viri
developers heavily use polymorphic algorithms in their code. In most
cases they will use polymorphism in conjunction with encryption to hide
the main body of the virus using a polymorphic decryptor (5). The main
body of the virus is encrypted, while the polymorphic decryption routine is
kept in plaintext. This is a very attractive technique to viri developers
because the time needed to write a polymorphic virus is significantly
reduced because the polymorphic decryptor is small and only performs
one task (6). In most cases, these types of viruses are not generally
considered truly polymorphic, since the actual body of the code does not
vary, only the decryptor cipher is really polymorphic in nature.

With true polymorphic viruses the code is placed through an algorithm or
function that produces unique code while keeping it equivalently the
same as the old code. Because of this, the method is very popular to use
in producing a variant for code quickly. In a properly designed engine this
process of mutation should hold true until the nth time without any change
to functionality when the code is passed through it. A simple example of
this is, if a function is looking for output in the form of an integer
regardless what that integer is, then the engine would most likely just be
a random number generator that produces a new and different integer at
runtime (2)(4).

The algorithm or function that generates the polymorphic code is called a
mutation engine. These engines can be used while compiling the code
or integrated within the code body itself. There are several different
effects or uses that can be derived from the use of mutation engines.
One course is to vary the code by any of the following (5):

Dispersing the code with “noise” functions (a.k.a NOPs “No 1.
Operation Programs, programs designed to load a unused
registers with an arbitrary value).

Example one byte NOP instructions (4):

clc – clear carry flag•

cld – clear direction flag•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

stc – set carry flag•

std – set dirction flag•

Interchanging independent functions.2.

Varying the function sequences (Subtract A from A, with 3.
Move 0 to A).

Another example is when the engine comes in the form of an
object module. In this form, calls are added to the assembler
source code that links the engine and random-number generator
modules together (5). This is the approach that ADMutate
resembles the most. ADMutate is in fact an API that can be called
by your exploit (some shellcode) at runtime to mutate its behavior.
The effect is that every time the exploit is run its operating
signature will be different each time. So any NIDS that only looks
for the signatures of attacks would easily be bypassed (2)(4).

How the exploit works:

How is all this done? As K2 points out in his ReadMe for
ADMutate (1), most polymorphism techniques can easily be
translated into an exploit coder. This is because, in general, most
buffer overflows have a large number of NOPs that can be easily
mutated to perform other tasks without changing any of their main
functionality. For ADMutate he gives the following example in the
form [NNNN][SSSS][RRRR] with 700 bytes for NOPs “N”, 80 bytes
for shellcode “S”, and 200 bytes return address “R” (1KB buffer
size).

The shellcode is encoded with an (xor) function that not only 1.
makes it unique from the original code but also acts like a
cipher to encrypt the code. This is done using the
apply_key function, which is using a (2x16bit) keyspace that
can generate over 100,000 possible keys.

Using the apply_jnops function all of the NOPs are 2.
substituted with instructions that are completely different,
however, equivalent in length.

Now that the second step is complete the decoder gets 3.
randomly generated with the apply_engine function. This
function mutates the decoder so its operational signature is
different every time it is generated.

Techniques used for this:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Randomly Generated Instructions•

Loading a register with some data the possible a.
instructions can be used.

PUSH DATAi.

POP REGISTERii.

MOVE DATA, REGISTERiii.

CLEAR REGISTERiv.

ADD DATA, REGISTERv.

Now randomly replace each instruction of the b.
decoder.

NOP Padded Instructions•

During decoder generation spare CPU registers a.
are left open.

In the open registers other NOPs are plugged in.b.

Out-of-Order Decoder Generation•

Order of the instructions are offset (4),a.

\x31\xc0 xorl %eax,%eax
\x88\x46\x07 movb %eax,0x7,(%esi)
\x89\x46\x0c movl %eax,0xc(%esi)
\xb0\x0b” movb $0xb,%al

becomes

\x31\xc0 xorl %eax,%eax
\xb0\x0b” movb $0xb,%al
\x88\x46\x07 movb %eax,0x7,(%esi)
\x89\x46\x0c movl %eax,0xc(%esi)

Multiple Code Paths•

The shellcode at runtime will now have a different 4.
operational signature each time it is run.

The last thing that K2 contends with is any shellcode 5.
restrictions based on the OS that the code is running on
when dealing with the tolower(), and toupper() functions.
Shellcode restrictions can be found in the mut.banned in the
struct morphctl mut control structure.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

***The following information is taken directly from K2’s ADMutate readme with
some minor changes to try and make if more readable for everyone.***

Files Description
ADMmutapi.h API glue
ADMmuteng.[ch] ADMutation API
m7 Demo of the API
vulnerable Local vulnerable program
vulnerable-remote Remote vulnerable program (run from inetd)
exp Exploit that should exploit "vulnerables"
expx Demo’s the API in a typical exploit
qp.c Demo remote qpop linux exploit
zdec.* Skeleton’s for the decoders

Functions
API Functions init_mutate, apply_key, apply_jnops, apply_engine
Optional Function apply_offset_mod

Control Structure struct morphctl mut
mut.arch Set to one of (DISABLE, IA32, SPARC, HPPA, MIPS)
mut.lower Enables tolower() resilient code
mut.upper Enables toupper() resilient code
mut.omodulate Modulate the offset
mut.cipher Cipher that is used
mut.cipher2 Second cipher that is used
mut.banned Char string excluded from final shellcode

Function Format
init_mutate(struct morphctl
*)

Initializes pointers to OS specific structures, functions, and limits
all specified in mut.arch.

apply_key(buff,E,N,srtuct
morphctl *)

Takes input buff, substitutes E bytes of it at location buff+N with
encoded bytes. Also finds a key that works with processing
options. Call it after init_mutate.

apply_jnops(buff,N,struct
morphctl)

Takes buff and substitutes the first N bytes with some “junk nops.”

apply_engine(buff,E,N,struct
morphctl)

Takes buff and generates a decode engine then places it at
buff+N-strlen of the engine.

apply_offset_mod Takes buff, mods it N amount at location buff+X while adhering to
options set in morphctl. Return will then be unique on execution.

Sample code you would add into exploit (IA32 Version)

#include “ADMmutapi.h”
struct morphctl *mctlp;
struct morphclt mut;
mut.upper = 0; mut.lower = 0; mut.banned = 0; mctlp = &mut; mut.arch = IA32

init_mutate(mctlp);
apply_key(buff, strlen(shellcode), nop-1, mctlp);
apply_jnops(buff, nop-1, mut);
apply_engine(buff, strlen(shellcode), nops-1, mut);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

How to protect against it:
Update, Update, Update! It cannot be stressed enough about
keeping all of your systems up to date with current patches.
ADMutate is for use with exploit coders. This usually means that
the exploits that are mutated by this API will most likely be for well-
known exploits. So if systems are kept on the most current
security patches then it might be possible to protect your systems
even if tools like ADMutate bypass your NIDSs.

In general when deploying a security solution, it should be
complemented with well-rounded security policies and practices.
Here is a small checklist of some things that should be considered
when dealing with NIDSs.

Network Considerations:

Harden and secure all intrusion detectors. Software based 1.
NIDSs sit on top of server OS’s, and are subject to the same
attacks as all your other servers.

Have a policy in place to update your signatures on a 2.
regular basis.

Review these policies on a regular basis.3.

Deploy your NIDSs either on each network segment or on 4.
segment boundaries.

Deploy HIDSs on either all your systems or at least on 5.
mission critical systems. HIDSs will be able to alert you to
possible attacks on the system if your NIDSs happen to be
by-passed.

Install other Network Security Devices on your network. I.E. 6.
Firewalls, and Proxies.

Develop an understanding of network traffic that is 7.
considered trusted. As part of that list determine the origin
and destination of the traffic.

Now apply ACLs through out your network based on this 8.
understanding of traffic traveling in and out of your network.
The goal here is to only allow required traffic in and out of
your network. I.E. Do I really need to be passing icmp
throughout my network?

Review your network traffic needs on a regular basis and 9.
update the ACLs on a regular basis. I.E. After removing all
the webservers from the network we don’t need to be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

passing http inbound anymore.

Routinely run vulnerability analysis tools on your network to 10.
determine possible vulnerabilities your network.

Correct the problems found by the vulnerability analysis 11.
tools.

NIDS Purchasing Considerations:

Simple. Employ the use of an NIDS that does not simply 1.
rely on signature analysis. Remembering that when you
deploy your NIDS you will have to complement it with other
network security tools, devices, and a sound security
policies and practices.

In recent years the security community has made significant
progress in expanding or refining the techniques that NIDSs use to
detect attacks. Some of the more exciting advances are:

Honeypots
Honeypots are systems that are designed to resemble something
that an intruder can attack. A honeypot might consist of a dummy
machine that only serves a function to log all the attacks performed
on it or specialized software that resembles a full network for
intruders to attack while logging all their activities. Honeypots can
serve as an early-alarm or hostile-intent assessment system (10).
Examples of Honeypots: NAI CyberCop String, Specter, Netcat.

Padded Cells
Although somewhat different then a honeypot, a padded cell works
in parallel with an IDS acting as a special holding cell for attackers.
When the NIDS detects an attacker it transfers the attacker to the
padded cell host where the attacker is contained within a
simulated environment. Like honeypots the simulated environment
might be filled with things like systems that the intruder can attack,
all the while being monitored by the NIDS (11).

Protocol Analysis
Protocol analysis is Often confused with signature analysis
because half of the intrusions detected using protocol analysis are
pattern based, while the other half are not. However, protocol
analysis is not just a database of signatures. What protocol
analysis does is break the packet payload into different fields and
then check each field one-by-one looking for any anomalies.
Anomalies are based on the definitions of how a particular
application protocol (ICQ, ARP, NetMeeting, ICMP, etc.) are
supposed to function (12).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Example: large input
Expected length: 100 bytes
Discovered length: 1000 bytes
Diagnosis: buffer-overflow

Advances in AI for NIDSs
Currently most NIDSs have some form of AI built into to
handle such things as statistical anomaly detection. The
most exciting possibility is that AI, in theory, could be used
to detect light variations in attacks signatures. This provides
a possible solution to attacks spawned by ADMutate.

Source code:

The source code be found on K2’s website http://www.ktwo.ca/ under his
security section. If you are planning on playing around with this tool (API)
I strongly suggest reading his readme before continuing.

Description of variants:
Currently there are no “known” variants of ADMutate since it was
just released to the public a couple of months ago. However,
considering most of the techniques that K2 uses in ADMutate
where pioneered by viri developers and have been around for
years, variants will probably sprout up in the underground pretty
quickly. A good thing is that in its current form ADMutate is not
very user friendly and requires some level of knowledge in
programming to even attempt to use it. Leaving the click and
hack, script-kiddies at loss for using this.

Wrap Up:

Just how much of a threat is ADMutate to current NIDSs. Currently there
are very mixed feelings on how much of a threat this tool brings to the
table. On one spectrum you have NIDS developers claiming that this is
not a showstopper at all. The other end is comprised of individuals
thinking that ADMutate and future tools like it could pose a high threat to
the IDS concept. As in his README K2 explains, “Simple signature
analysis unfortunately, cannot provide very high levels of assurances (2).”
Clearly he is correct when dealing with NIDSs that determine attack intent
from a signature compared to database entry. Polymorphic shellcode is
something that these systems simply cannot handle. Making the matter
more serious is that K2 has found the very popular IDS ISS RealSecure 5
to be vulnerable to ADMutate. He is quick to point out that RealSecure
can handle some polymorphic shellcode attacks because it can detect
suspicious packets via protocol analysis, however, it can only do this with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

protocols that it can understand (FTP/POP/IMAP) vs. (HTTP/RPC/DNS).
Further making matters more complicated, ISS has been so bold as to
claim that they are immune to all attacks launched by polymorphic
shellcode, contradicting claims made by K2 (8).

… ISS RealSecure uses different algorithms and methods of detection to
determine when a buffer overflow attack happens. These algorithms are not
affected by ADMmutate. ISS RealSecure has been confirmed as not vulnerable
to the ADMmutate tool.
ISS X-Force is researching adding additional algorithms to identify both
specific ADMmutate attacks and generic polymorphic attacks to be provided in
conjunction with the buffer overflow alert. Providing this additional information
can help identify the sophistication level of an attacker.

Conclusion:
ISS RealSecure has been confirmed as not vulnerable to the ADMmutate

evasive technique… (7)

ADMutate regardless whether it is a high threat or not, is a new way of
thinking that very boldly points, once again, more weaknesses in NIDSs.
For any NIDS vendor/developer to simply brush this off without looking at
the implications of this tool and the techniques that it employs can be
very dangerous position. Yes, currently most NIDSs that employ other
methods on top of signature analysis to determine hostile intent might
have no problem dealing with polymorphic shellcode. However, many of
these “other” methods can be just as subject to the same flaw that was
exploited by ADMutate. These methods still require, to some extent, that
the NIDS vendor come up with some pattern, signature, DAT, software
update, etc. to correctly identify and handle new potential attacks. Even
such things as protocol analysis fall into this realm because the engine
still needs to be updated every time there are changes/additions to the
application protocol subset that the NIDS needs to handle. Even the
concept of a Honeypot falls short if the logging mechanics can’t detect
the attacks it’s trying to attract.

Maybe with future enhancements underdevelopment for IDSs current
evasion techniques will become irrelevant and useless in the near future.
However, at this point in time, ADMutate, other tools, and techniques are
continually pointing out more and more flaws in IDSs. Eroding the once
widely held view that IDSs could be the silver bullet in network security.
A position that should have never been taken by security professional to
begin with, because, it was the same mistake that was made with
firewalls. Simply put the appearance of ADMutate should make clear to
the masses that to have a secure network is to be dynamic in the
undertaking of securing and protecting that network. There can be no
single solution, and the solutions that are employed must constantly be
reviewed and upgraded.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References:

Lemos, Robert. “New cloaked-code threat to security.” 04/02/2001. URL: 1.
http://www.zdnet.com/zdnn/stories/news/0,4586,5080532,00.html?chkpt=zdnn_rt_
latest (07/18/2001).
K2. “ADM ReadMe.” URL: http://www.ktwo.ca/c/ADMmutate-0.8.1/README2.
(07/18/2001).
Ptacek, Thomas and Newsham, Timothy. “Insertion, Evasion and Denial of 3.
Service: Eluding Network Intrusion Detection.” 01/2001. URL:
http://www.snort.org/IDSpaper.pdf (07/18/2001).
jeru. “Advanced Evasion of IDS buffer overflow detection.” URL: 4.
http://pr0n.newhackcity.net/~jeru/idsevade.ppt (07/20/2001).
Indiana University Knowledge Base. “What are stealth, polymorphic, and armored 5.
viruses.” 07/07/2000. URL: http://kb.indiana.edu/data/aehs.html (07/21/2001).
Yetiser, Tarkan. “Polymorphic Viruses Implementation, Detection, and 6.
Protection.” 01/23/1993. URL: http://www.bocklabs.wisc.edu/~janda/polymorf.html
(07/21/2001).
Neohapsis Archives. URL: http://archives.neohapsis.com/archives/sf/ids/2001-7.
q2/0091.html (07/21/2001).
Neohapsis Archives. URL: http://archives.neohapsis.com/archives/iss/2001-8.
q2/0018.html (07/21/2001).
IIS. “Network- vs. Host-based Intrusion Detection: A Guide to Intrusion Detection 9.
Technology.” 10/02/1998. URL: http://secinf.net/info/ids/nvh_ids/ (08/06/2001).
Graham, Robert. “FAQ: Network Intrusion Detection Systems V 0.8.3.”10.
03/21/2000. URL: http://www.ticm.com/kb/faq/idsfaq.html#11 (08/06/2001).
Bace and Mell, “NIST Special Publication on Intrusion Detection Systems.” URL: 11.
http://www.securityfocus.com/data/library/idsdraft.pdf (08/06/2001).
Graham, Robert. “Side Step: IDS evasion vs. protocol-analysis.” 03/30/2001 URL: 12.
http://www.robertgraham.com/slides/0103cansec/0103cansec.ppt (08/11/2001).

