
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


Applying Data Analytics on Vulnerability Data 

GIAC GCIH Gold Certification 

Author: Yogesh Dhinwa, yogeshdhinwa@gmail.com 
Advisor: Robert Vandenbrink 
Accepted: December 21, 2015 

Abstract 

Organizations, by law, should exercise due care and due diligence in securing data at rest, 

in transit, and in use.  Regardless of the whereabouts of data, an organization needs to 

thwart adversaries and secure its data properly.  One of the key methods of thwarting 

external attackers is to lock down public-facing networks.  To secure public-facing 

networks, a prudent organization often conducts vulnerability assessments.  It may take a 

month or more for tens of thousands of IP addresses because of the time and effort 

required in collating and analyzing overwhelming vulnerability data.  A common 

penetration testing proverb “Nine hours of fun and ninety hours of writing” accurately 

states the ratio of time between performing vulnerability scans and analyzing 

vulnerability data, which may be further extrapolated to estimate the number of hours 

required to analyze the vulnerability data of tens of thousands of hosts.  To increase the 

fun aspect in assessment, we can utilize data analysis techniques and tools, which would 

eventually help save the time taken to analyze vulnerability data, and hence, produce 

effective reports quickly.  Data analytics techniques using Splunk and Pandas can be 

leveraged to quickly and efficiently analyze network vulnerability reports from a scanner, 

for example Nessus.  Data analytics tools and techniques help in reducing the time 

required to analyze vulnerability data as a part of vulnerability assessment. 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!2 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

1.  Introduction 
 An organization with services spread across the globe depends on information 

technology and information systems.  Adoption and compliance of information security 

standards have become mandatory for many organizations, especially those working 

under government regulations.  “It is crucial to monitor for compliance in a manner as 

close to real time as possible to ensure that the organization does not drift out of 

compliance over time” (Gula, 2014).  Organizations are legally obligated to secure their 

sensitive information by implementing various security controls and vulnerability 

management programs.   

 A vulnerability assessment can be conducted to identify, quantify and prioritize 

vulnerabilities in a system.  Moreover, large organizations use automated vulnerability 

scanning tools to identify and report vulnerabilities in order to secure their public 

network.  For the budget-conscious, Nessus is an appropriate vulnerability scanning tool 

because of its notable detection capabilities powered by the extensive plugin family.  

Nessus is capable of generating multi-format scan reports for the hosts being scanned, 

including a CSV file.  The Nessus scan report captures a plethora of information about 

the target system, which include Common Vulnerability Exposure (CVE) identifiers, 

Common Vulnerability Scoring System (CVSS), Risk, and Vulnerability Name among 

other useful information in the report.  The CVSS is a risk measurement system used for 

calculating and assessing the severity of system’s vulnerabilities (Ou, Singhal, 2011).     

 Although analyzing a single host’s vulnerability scan report is straightforward and 

doesn’t require much time, it is difficult to analyze vulnerability scan reports of tens of 

thousands of hosts.  We still don’t have cost-effective and efficient techniques to analyze 

the overwhelming amount of vulnerability data generated by scanners.  Fiscus (2014) 

mentioned that “The problem, thus, is one of data overload from any vulnerability 

scanner.  Particularly when performing internal, credentialed scans against network 

resources, the amount of data generated can be overwhelming."   

 The Nessus vulnerability scan report is human-readable and can also be 

considered to contain machine-generated data; hence, an interesting approach would be to 

use Splunk for analyzing and visualizing vulnerability data.  Splunk performs data 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!3 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

indexing, in which the collected data is broken down into events for easy search and 

analysis using the Splunk processing language (Zadrozny & Kodali, 2013).  It also 

provides strong data correlation that enriches the data and fosters decision making.  

 The vulnerability scan data thus obtained can be mixed with other sets of data in 

order to add more value.  To enrich the vulnerability scan data, we can use the 

vulnerability correlation DB (vFeed) to add more contextual information to vulnerability 

scan reports generated by Nessus.  “vFeed.db is a detective and preventive security 

information repository used for gathering vulnerability and mitigation data from scattered 

internet sources into a unified database” (Ouchn, 2015).  Since the Nessus vulnerability 

scan report contains limited information about the target, mixing it with vFeed data 

would provide further insight and different views of the vulnerability data.   

 Python is increasingly becoming popular for data analysis and can be used for 

vulnerability data analysis as well.  A powerful data analytic library available in Python 

is Pandas.  “The Python's Pandas is an open source, BSD-licensed library providing high-

performance, easy-to-use data structures, and data analysis tools for the Python 

programming language” (Python Data Analysis, 2015).  Pandas introduced two new 

advanced data structures known as Series and DataFrame to Python.  These advanced 

data structures are very helpful in data analysis and provide a wide range of methods that 

can be performed on a data set.  As per McKinney (2013), “The Pandas provides rich 

data structures and functions designed to make working with structured data fast, easy, 

and expressive.”   

 The Nessus’ network vulnerability scan report can be uploaded to Splunk or read 

into the Pandas DataFrame.  With Splunk or Pandas, we can quickly explore, summarize 

and visualize the data.  Data visualization provides a big picture of the available data.  An 

analyst can examine the big picture view and look for areas of particular interests and 

patterns (Conti, 2007). 

 The vulnerability data analysis covered in this paper is for didactic purposes and 

would consist of two stages.  During the first stage, we will analyze Nessus vulnerability 

scan reports alone and in the second stage, we will analyze vulnerability scan data in 

correlation with vFeed data.  During both stages, we would explore how Pandas and 

Splunk are helpful and what we can achieve in a quick-and-efficient manner.   



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!4 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

2.  Understanding Vulnerability Data in the Nessus’ CSV 
 Nessus supports the export or download of vulnerability reports in the CSV file 

format.  A vulnerability scan report in CSV format has valuable information about the 

vulnerabilities detected in the target system.  A Nessus vulnerability report in CSV 

format that has the following header fields as shown in Figure 1. 

!
Figure 1. Nessus’s CSV File Header in the Vulnerability Report 

 
 A Nessus vulnerability report presents structured data in a CSV file and contains 

data about the vulnerabilities detected during the scan.  The most interesting field with 

respect to correlating the Nessus output to vFeed data is the CVE column in a scan report.  

Interestingly, some plugins like OS detection, traceroute, etc., which do not have a real 

port associated with them would return NULL (0) in the Port field.  Since the port 

number is a numeric value, numeric 0 is used as a placeholder.  One should not get 

confused when the port value is set to 0 in the Port field.  In the Nessus vulnerability scan 

report, not all rows necessarily contain a CVE number or vulnerability, and it may also 

contain data with “None” as the risk rating.   

3.  Prepare Vulnerability Data for Analysis  
 In order to begin the data analysis, the vulnerability data has to be prepared by 

merging the Nessus scan reports and preparing the vFeed files to be used during analysis. 

3.1. Merge Vulnerability Scan Data  
 There may be different vulnerabilities mentioned across several scan reports.  All 

these scan reports should be merged into a CSV file, thus creating a bigger scan file.  In 

Windows, the COPY command can be used to merge two or more CSV files into one 

CSV file, but it would add the header from each CSV file as row data into the final file.  

To refine the output file generated by the COPY command, remove the file headers 

inserted as rows from the final output file.   

 It is easy to avoid the occurrences of multiple file header fields that are added as 

rows, while combining the files in UNIX.  The following UNIX shell commands merge 

all the available CSV files available into a directory and save the data in a new CSV file. 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!5 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

~/merging_vulnerability_data> head -1 vul_report1.csv > vul_data_10.csv 

~/merging_vulnerability_data> tail –n +2 *.csv >> vul_data_10.csv 

 

 The above shell commands prevent the CSV header or the first record from each 

file from being repetitively added as rows in the resulting file.  They simply merge all the 

CSV files in the directory into a single file named vul_data10.csv.   

 Many organizations maintain different types of repositories, e.g. Asset Register, 

IP Allocation Register (IPs to office locations or datacenters), Application Register, etc.  

For our analysis, we will use a repository that captures the IP address and the associated 

department in a CSV file called the Host-to-Department file.  The Host-to-Department 

file contains information about IP addresses and the department that they belong.  

Besides, the Host-to-Department mapping file (i.e. Host-to-Dept.csv) can also be used to 

derive security indicators specific to departments like the most and the least secure 

department.  A few lines of the content of Host-to-Dept.csv is available in Appendix A.  

3.2. Prepare vFeed Data 
 The vFeed license allows the non-commercial use of the vFeed database and it is 

downloadable as an SQLite DB file.  At the time of writing this paper, there were 39 

tables that store additional useful information about CVEs – CVEs to various exploits 

and testing scripts like Metasploit (MSF), NMAP (i.e. a port scanner), exploit-db (the 

exploit database repository), and others; CVEs to vendor patches like SUSE (an 

enterprise Linux flavor) and Microsoft (MS); CVEs to Common Weakness Enumeration 

(CWE) numbers mapping, etc.  It amasses a lot of extra information about CVEs in one 

place.  The information in the vulnerability report is useful, but not complete from many 

perspectives.  An analyst or consultant, while analyzing the vulnerability report would 

have to frequently check whether a given CVE is exploitable or not, what vendor patches 

are available, a reference to other vulnerability databases, etc.  The analyst would have to 

manually figure out other relevant information about the vulnerabilities as the Nessus 

report has limited information about them.  Using vFeed would shed more light on the 

vulnerabilities identified during a vulnerability scan.   



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!6 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

3.2.1. Convert vfeed Tables into CSV Files  
 The vFeed DB can be used as such or can be converted into various CSV files 

before use.  These converted CSV files can be used as a lookup table or a reference table 

in Splunk or Pandas.  A Python script named vfeed2csv.py has been written to convert all 

the tables in the vFeed DB to the corresponding CSV files.  Information regarding the 

vFeed DB download and conversion of vFeed tables into their respective CSV files is 

available in Appendix B.  The Python script vfeed2csv.py is also available in Appendix 

B.  

3.2.2. Categorize and Group vFeed CSV Files 
 During aggregation, the resulting CSVs can be combined into one CSV based on 

their type and purpose.  Thirty-nine CSV files have been converted from vFeed tables 

and these CSV files can be grouped together based on their usability and application in 

data correlation.  For example, there are files that map CVEs to various vendors’ patches, 

which can be placed into one directory.  Based on the requirement, all the CSVs have 

been grouped into eight categories.  Details about these eight categories are available in 

Appendix C.  

3.2.3. Merge vFeed Files within Categories 
 As seen earlier, each category contains certain files that have additional useful 

information about CVEs.  All the files have CVEID as a common column name; hence, 

files in that directory or category can be merged with CVEID values.  The Pandas’ Outer 

Join can merge two files based on a common key “CVEID” without losing information, 

which is similar to Full Outer Join in SQL; however, it is a CPU resource-intensive job.  

For such big datasets, an outer join is expensive in terms of computing resources and 

power, so among other alternatives, the Pandas’ Append operation is a merging method 

that is often better suited.  All files can be appended into a single file, which can work as 

a lookup table during the vulnerability data analysis.  CVEID can thus be used to 

correlate records from the vFeed combined files and scan reports. 

 For example, files in the vendor_security_patch directory map CVEs to their 

respective security patches from affected vendors.  All these files can be combined into a 

single file, containing all the CVEs and security patch information from all affected 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!7 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

vendors in one place.  It would reduce the time taken to locate information about a CVE 

in multiple files.  As shown below, Pandas reads CSV files, appends them one after 

another, and then saves the output in the final CSV.  All files in the directory and all 

column names in the output CSV named combined_vendor_security_patch.csv are shown 

below. 
>>> import os 
>>> import pandas as pd 
>>> lst_dir = [ file for file in os.listdir('.') if 
os.path.isfile(file) ] 
>>> lst_dir 
['map_cve_mandriva.csv', 'map_cve_suse.csv', 'map_cve_redhat.csv', 
'map_cve_debian.csv', 'map_cve_mskb.csv', 'map_cve_ubuntu.csv', 
'map_cve_vmware.csv', 'map_redhat_bugzilla.csv', 'map_cve_gentoo.csv', 
'map_cve_cisco.csv', 'map_cve_fedora.csv', 'map_cve_ms.csv', 
'map_cve_aixapar.csv', 'map_cve_hp.csv'] 
>>> vendor_patch_data = pd.read_csv(lst_dir[0]) 
>>> for file in lst_dir[1:]: 
...     df = pd.read_csv(file) 
...     vendor_patch_data = 
vendor_patch_data.append(df,ignore_index=True) 
... 
>>> list(vendor_patch_data.columns.values) 
['advisory_dateissue', 'aixaparid', 'bugzillaid', 'bugzillatitle', 
'ciscoid', 'cveid', 'debianid', 'fedoraid', 'gentooid', 'hpid', 
'hplink', 'mandrivaid', 'msid', 'mskbid', 'mskbtitle', 'mstitle', 
'redhatid', 'redhatovalid', 'redhatupdatedesc', 'suseid', 'ubuntuid', 
'vmwareid'] 
>>> 
>>> vendor_patch_data.to_csv('combined_vendor_security_patch.csv', 
index=False) 
 
 
 The above Python code needs to be run in all the eight directories, which would 

then combine all the files in each directory into a single file.  Pandas has a built-in 

function to read and write a CSV file; and also keep and drop indexes. 

4.  Vulnerability Data Analysis with Python Pandas 
 Python can be used to analyze vulnerability data using its powerful data analytics 

library named Pandas.  Python Pandas can ingest and index various file types into the 

memory and provide a powerful way to search, filter, group, and apply methods on the 

data.  



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!8 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

4.1. Pandas for Vulnerability Data Analysis 
 A large volume of vulnerability data, which is a result of combining different 

Nessus scan reports, would be loaded into the Pandas DataFrame.  For didactic purposes, 

we will try to obtain the answers to the most common questions asked during the 

vulnerability data analysis by using Pandas.  The Python’s interactive shell is used to 

execute the Python code and show results. 

4.1.1. The Number of Scanned IP Addresses in the Scan Report 
 Pandas and NumPy packages are imported into the Python’s shell and the 

read_csv method is used to load the vulnerability file into Pandas’ DataFrame named df.  

The Pandas' info() method is applied to the df and the results are shown below. 
>>> import pandas as pd 
>>> import numpy as np 
>>> df = pd.read_csv('vul_data_10.csv') 
>>> df.info() 
<class 'pandas.core.frame.DataFrame'> 
Int64Index: 121610 entries, 0 to 121609 
Data columns (total 13 columns): 
Plugin ID        121610 non-null object 
CVE              17774 non-null object 
CVSS             19948 non-null float64 
Risk             121609 non-null object 
Host             121528 non-null object 
Protocol         121609 non-null object 
Port             121609 non-null float64 
Name             121609 non-null object 
Synopsis         121609 non-null object 
Description      121609 non-null object 
Solution         121242 non-null object 
See Also         24662 non-null object 
Plugin Output    115633 non-null object 
dtypes: float64(2), object(11) 
!
 All the columns in the DataFrame df will not be used during the vulnerability data 

analysis, hence only the required columns are copied into another DataFrame named df1.  

The new DataFrame named df1, which contains only selected columns and the data slice, 

is shown below. 
>>> df1 = df[['Plugin ID', 
'CVE','CVSS','Risk','Host','Protocol','Port','Name']] 
>>> df1[99:100] 
   Plugin ID  CVE  CVSS  Risk          Host Protocol  Port  \ 
99     70544  NaN   NaN  None  10.92.22.112      tcp   443 
 
                                                 Name 
99  SSL Cipher Block Chaining Cipher Suites Supported 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!9 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

!
 With Pandas, it is very easy to obtain the total number of IP addresses using the 

Pandas’ describe command.  The unique field in the output shows the number of IP 

addresses scanned in the vulnerability scan report. 
>>> df1['Host'].describe() 
count           121528 
unique           11243 
top       10.92.22.139 
freq              3084 
dtype: object] 
 

4.1.2. The Number of Live IP Addresses 
 In most cases, a remote host is considered to be live if that host listens to at least 

one TCP/UDP port or replies to any ICMP query.  To minimize the chances of missing 

live hosts, DataFrame df1 can be filtered for both open ports, where the port number is 

not zero, as well as for the hosts that send replies for ICMP requests.  In the results 

below, the unique field shows the count of unique live IP addresses as per the scanning 

results. 
>>> print df1[(df1.Port != 0) | ( df1.Protocol == 
'icmp')]['Host'].describe() 
count            85900 
unique            1454 
top       10.92.22.139 
freq              3075 
dtype: object 
              !

4.1.3. The Top 10 CVEs by Occurrence 
 Pandas provides a powerful method of grouping fields together in order to obtain 

certain interesting statistics.  The Pandas GroupBy method is similar to SQL’s GroupBy 

operation.  The Pandas command given below shows the most occurring top 10 CVE 

values in the vulnerability scan report. 
>>> df1.groupby('CVE').size().order(ascending = False)[:10] 

!

4.1.4. The Top 10 CVEs by the Highest Mean CVSS Score 
! The previous analysis of the top 10 CVEs by occurrence doesn’t rely on the 

CVSS score of the vulnerabilities, but depends only on the frequency of their occurrence.  

To create another view of vulnerability data, analyze the CVEs based on their CVSS 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!10 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

scores to find out the top 10 High Risk CVEs affecting the organization.  The query 

below shows the usage of the NumPy package to calculate the size and average CVSS 

score for CVEs in the report.  The vulnerability data is first grouped by CVE values, after 

which the NumPy’s size and mean methods are applied on the grouped data.  Since there 

are many CVEs that have a CVSS score of 10, it would be a good idea to select CVEs 

that have the most occurrence in the report as well as the highest CVSS score.  In this 

case, after CVEs with more than 60 events or occurrences have been selected, the results 

are sorted based on the mean CVSS score to find the top 10 CVEs based on their CVSS 

scores.  The top first three rows are shown in the results. 
>>> CVEs = df1.groupby('CVE').agg({'CVSS': [ np.size, np.mean ]}) 
>>> CVEs_size_gt_60 = CVEs['CVSS'].size >= 60 
>>> CVEs[CVEs_size_gt_60].sort([('CVSS','mean')], ascending = 
False)[:10] 
               CVSS 
               size  mean 
CVE 
CVE-2011-1471    75    10 
CVE-2012-0135    75    10 
CVE-2010-2791    75    10 
!

4.1.5. Top 10 Most Vulnerable IP Addresses  
! Similarly, Python’s Pandas can be used to find the top 10 most vulnerable hosts.  

There are many ways to search for the most vulnerable hosts based on one’s requirement; 

for example, the top 10 hosts based on the average CVSS score.  The Pandas' GroupBy 

method is applied on the Host column with the minimum number of events (size) set to 8. 

The results are then sorted by the average CVSS score to obtain the top 10 most 

vulnerable hosts.  The Pandas operations and the first three rows are shown below. 
>>> Hosts = df1.groupby('Host').agg({'CVSS': [ np.size, np.mean]}) 
>>> Hosts_size_gt_8 =  Hosts['CVSS'].size > 8 
>>> Hosts[Hosts_size_gt_8].sort([('CVSS','mean')], ascending = 
False)[:10] 
                CVSS 
                size       mean 
Host 
10.92.22.211      32  10.000000 
10.92.22.70       17  10.000000 
10.15.126.7      236   9.680769 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!11 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

4.1.6. The Number of Affected Hosts and Vulnerabilities per Department 
 It is easy to obtain the number of Critical or High Risk vulnerabilities or hosts 

affected by those vulnerabilities.  To make the analysis a bit interesting, we will use the 

Host-to-Department mapping file for data correlation in order to obtain the number of 

hosts affected in each department.  In the Nessus report, some of the fields will have null 

values, e.g. the CVE and CVSS fields.  Pandas provides the fillna method to handle the 

null value, which fills the null value with a value of choice such as nocve. 
>>> df1['CVE'].fillna('nocve', inplace = True) 
>>> df2 = df1[( df1.Risk == 'Critical') | ( df1.Risk == 'High') | ( 
df1.Risk == 'Medium')]         
>>> ip_dept = pd.read_csv('Network_Address_Book.csv') 
>>> ip_dept.columns = ['Host','Dept'] 
!
 To initiate a mapping between the affected hosts and their departments, first load 

the IP-to-Dept file into the Pandas DataFrame and rename the column for consistency 

purposes.  As seen before, Network_Address_Book.csv contains the mapping of IP 

addresses to departments and this file can be used to correlate the affected hosts to the 

departments in the organization.   

 The Pandas Left Join can be used to merge the df2 and ip_dept DataFrame.  The 

ip_dept DataFrame would be used as a lookup table for the DataFrame df2.  The Host 

field is used as a key to perform the left join operation.  The resultant DataFrame from 

the join operation is saved in a new DataFrame named df3.  The GroupBy operation is 

then performed on the Dept field along with other operations to obtain the number of 

affected hosts from each department.  As per the results shown below, the nunique 

column shows the number of affected hosts for each department. 
>>> df3 = pd.merge(df2, ip_dept, on='Host', how='left') 
>>> df4 = df3.groupby('Dept').agg({'Host': ( np.size, 
pd.Series.nunique)}) 
>>> df4.sort([('Host', 'nunique')], ascending = False) 
         Host 
         size  nunique 
Dept 
m-site  10684      569 
t-site   3785      300 
y-site   1525       73 
e-site    942       19 
b-site   1578       16 
  



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!12 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

 The number of Critical, High and Medium Risk vulnerabilities affecting each 

department can also be derived as shown below.  We can make a copy of df3 into the 

DataFrame dfx.  There may be a few rows having duplicate values for fields like Plugin 

ID, Host, CVE, Port, etc.  Such rows can be deleted using the Pandas’ drop_duplicates 

method to retain only unique rows – a data reduction combination, which is similar to the 

dedup command in Splunk.  The resultant DataFrame can be grouped by Dept and Host, 

saved in the DataFrame dfplt, and then the Risk items in each department are counted. 
>>> dfx = df3.copy() 
>>> dfx.drop_duplicates(['Plugin ID', 'Host','CVE','Port'], take_last = 
True, inplace = True) 
>>> dfplt = dfx.groupby(['Dept','Risk']).Risk.value_counts().unstack(0) 
>>> dfplt 
Dept               b-site  e-site  m-site  t-site  y-site 
Risk 
Critical Critical     690     500    1430     597     653 
High     High         510     353    2612    1156     498 
Medium   Medium       204      89    5713    1865     261 
!

4.1.7. The Most Vulnerable Department Based on the Mean CVSS Score  
 With Pandas, the average CVSS score for a department can be calculated and 

based on that score, the most and least vulnerable department can also be deduced – the 

query is shown below.  A high mean value reflects the existence of more High Risk 

vulnerabilities.     
>>> df5 = df3.groupby('Dept').agg({'CVSS': ( np.sum, np.mean) }) 
>>> df5.sort([('CVSS', 'sum')], ascending = False) 
           CVSS 
            sum      mean 
Dept 
m-site  70332.3  6.582956 
t-site  26450.8  6.988322 
b-site  14075.6  8.919899 
y-site  13174.1  8.638754 
e-site   8808.7  9.351062 
!

4.2. Analyze Vulnerabilities in Correlation with vFeed 
 As seen in the vFeed section, we have created files based on common 

characteristics that can be used to correlate the data present in the scan reports.  Pandas 

provides a way to join tables, which would come handy during such scenarios.  



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!13 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

4.2.1. Map Vulnerabilities to Exploits or Testing Scripts 
 The Pandas merge operation and the vFeed file as a lookup table can help 

generate required information.  Pandas can also save the results in a CSV file.  To map 

CVEs to exploits, DataFrame df3 can again be used as it contains the details for Critical, 

High and Medium Risk vulnerabilities.  As shown in the query below, first load the 

combined scripts and tools file to the DataFrame df_vtools.  In the DataFrame df_vtools, 

the column name cveid is renamed to CVE, so that the left join on both the DataFrames 

can be performed using CVE as a key.  The resultant DataFrame from the left join is 

named dfy.  It can be further trimmed to only Metasploit Modules and saved in the 

DataFrame dfm.  The DataFrame dfy also contains data for other exploit providers.  It is 

also possible that all the vulnerabilities in the DataFrame dfm might not have an exploit 

in the Metasploit; the rows with empty fields can be dropped as a part of the DataFrame 

size reduction.  The DataFrame dfm can be grouped on Dept and Risk columns using the 

Pandas GroupBy method.  On the GroupBy object, we can apply the value_counts 

method that would yield the number of risk items in the scan report, which can be 

exploited or tested using Metasploit modules.  There can be more than one Metasploit 

module to exploit or test a CVE that eventually would increase the count of exploitable 

vulnerabilities in the results. 
>>> df_vtools = pd.read_csv('combined_cve_va_scripts_tools.csv')  
>>> df_vtools.rename(columns={'cveid':'CVE'}, inplace = True) 
>>> dfy = pd.merge( df3, df_vtools, on='CVE', how='left') 
>>> dfm = 
dfy[['Host','CVE','Risk','Port','Dept','msf_script_name','msfid']]  
>>> dfm.dropna(inplace = True) 
>>> dfm.to_csv('vuls_having_metasploit_modules') 
>>> dfm.groupby(['Dept','Risk']).Risk.value_counts().unstack(0)  
!

4.3. Pandas to Visualize Vulnerability Data 
 The data in the Pandas’ DataFrame can also be visualized using the matplotlib 

package, e.g. visualizing the number of vulnerable hosts in each department.  The 

DataFrame df3 can be used to obtain the number of unique vulnerable hosts.  The 

methods are shown below and the chart is drawn in Figure 2. 
>>> import matplotlib.pyplot as plt 
>>> df4 = df3.groupby('Dept').agg({'Host': ( pd.Series.nunique)}) 
>>> df4.plot(kind="pie", subplots= True) 
<matplotlib.axes.AxesSubplot object at 0x10aeb5650> 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!14 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

>>> plt.show()  
!

!
Figure!2.!The!Number!of!Unique!Vulnerable!Hosts!in!Each!Department!

!
 As seen before, the DataFrame dfplt contains information about the number of 

Critical, High, and Medium Risk vulnerabilities affecting each department, which can be 

drawn in a bar chart as shown in Figure 3. 
>>> dfplt.plot(kind="bar") 
<matplotlib.axes.AxesSubplot object at 0x117475690> 
>>> plt.show() 
!

!
Figure!3.!The!Number!of!Vulnerabilities!in!Each!Department!

5.  Vulnerability Data Analysis with Splunk 
 The Splunk Enterprise can be installed from the Splunk website as either a free or 

paid version.  The free version is quite suitable for vulnerability data analysis.  Moreover, 

Splunk converts its free license into a perpetual free license when the initial free version 

expires, which allows the continued usage of Splunk’s powerful indexing and searching 

feature forever for analyzing the data.   



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!15 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

5.1.  Uploading Data to Splunk 
 The combined CSV file can be uploaded to Splunk for analysis.  Although 

multiple files can also be uploaded, it is a good idea to combine and upload one single 

file in order to save time.  Also, the Splunk Enterprise provides a nice GUI to upload, 

index, search, analyze, and visualize data.  Adding data to the Splunk is straightforward – 

click Add Data icon at the Home screen, click Upload, select the file to be uploaded, e.g. 

combined vulnerability scan report, set the source type to CSV, set options for input 

settings, review the options and start searching.  All steps to upload a file to the Splunk 

are shown in Figure 4.  In our analysis, the timestamp is set to the current time and 

indexing relies on the default Splunk index.  The guidance and instructions regarding the 

Splunk installation, data upload, etc. can be found on its site.   

!
Figure 4. Steps to Add Data in Splunk 

!

5.2. Vulnerability Data Analysis  
 Splunk provides multiple views of data, e.g. tables, raw data, graphs, and charts.   

As an introduction to vulnerability data analysis using Splunk, a few interesting analyses 

would be performed on the vulnerability data present in the combined scan report.  

5.2.1. The Number of Unique IP Addresses in the Scan Report 
 The Splunk query shown below can be used to obtain the unique count of IP 

addresses in the vulnerability report.  Splunk indexed Host field data as extracted_Host; 

hence, the extracted_Host field would be used to extract IP addresses in the Splunk 

query. 
source="vul_data_10.csv" host="vul_data" sourcetype="csv" | stats 
dc(extracted_Host) as "Total Host" 
!

5.2.2. The Number of Scanned IP Addresses for Each Department 
 The IP address to Department mapping file, i.e. Network_Address_Book.csv can 

be used to obtain the number of IP addresses scanned for each department in the scan 

report.  Firstly, create a lookup table using the IP address to Department file, which can 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!16 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

later find the number of IP addresses from each department in the scan report.  Splunk’s 

outputlookup command can be used to create a lookup table as shown below.  This 

lookup table has two columns, namely extracted_Host and Dept.  The IP_Address field is 

renamed to the extracted_Host field in order to maintain consistency with the Nessus 

scan data. 
source="Network_Address_Book.csv" host="ip_to_dept" sourcetype="csv" | 
table IP_Address Dept | rename IP_Address as extracted_Host | 
outputlookup ip2dept.csv 
!
 The Splunk query given below finds the number of unique IP addresses in the 

vulnerability scan report, i.e. vul_data_10.csv, from each department.  This query also 

uses the lookup table – ip2dept.csv, which would map IP addresses from the scan report 

to the respective department. 
source="vul_data_10.csv" host="vul_data" sourcetype="csv" | lookup 
ip2dept.csv extracted_Host | stats dc(extracted_Host) as Hosts by Dept 
!
 The results of the above Splunk query are shown in Figure 5.  It shows the 

number of unique IP addresses from each department in the scan report.   

!
Figure 5. The Number of Scanned IP Addresses for Each Department 

!
 The IP address distribution can also be visualized using the Splunk visualization 

feature.  The results obtained in Figure 5 can be quickly fit into a pie chart, as shown in 

Figure 6, to see the allocations of the IP addresses per department, which would quickly 

show the biggest and smallest department based on the IP address allocation. !!



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!17 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

!
Figure 6. IP Address Allocation to the Departments in the Pie Chart 

!

5.2.3. The Average Vulnerability CVSS Score   
 The Splunk query below can be used to calculate the average CVSS score for the 

vulnerabilities identified during the scans. 
source="vul_data_10.csv" host="vul_data" sourcetype="csv" | stats 
mean(CVSS) as mean_cvss | eval mean_cvss = round(mean_cvss,2) 
!
 The average CVSS score result is shown in Figure 7 as a radial gauge where the 

color ranges have been adjusted between 0 and 10 for scaling purposes.  A few manual 

selections need to be performed in Splunk before creating the visualization. !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
Figure 7. The Average CVSS Score 
 

5.2.4. The Most and Least Vulnerable Departments 
 The sum of CVSS scores for all the vulnerabilities in the scan report can be used 

to see the most and least vulnerable department as per the combined scan results.  The 

Splunk stats operation can sum CVSS scores for all the vulnerabilities across the 

departments in the organization.  The results can then be sorted to find the most and least 

vulnerable department. The Splunk query for it is shown below. 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!18 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

source="vul_data_10.csv" host="vul_data" sourcetype="csv" | lookup 
ip2dept.csv extracted_Host | stats sum(CVSS) as SUM_CVSS by Dept | sort 
- SUM_CVSS | head 1 
  

 The above query would return a single value, thus enabling, Splunk's visualization 

feature for a single value to display results in nicely formatted font.  Similarly, instead of 

the head command, the tail command can be used to display the least vulnerable 

department in the organization. 

5.2.5. The Number of Live IP Addresses for Each Department  
 With Splunk, the number of live IP addresses for each department as per scan 

results across the organization can be found and analyzed.  Vulnerability data uploaded 

onto Splunk can be enquired to show IP addresses having at least one TCP or UDP port.  

It is also possible that there can be hosts that do not have a TCP or UDP port, but only 

reply to ICMP requests.  In order to obtain maximum live hosts, first make a list of all the 

IP addresses running at least one TCP/UDP port, and then search for hosts that reply to 

certain types of ICMP requests, but have no open ports.  The following Splunk query 

searches for IP addresses having at least one open port and saves the results in a lookup 

table. 
source="vul_data_10.csv" host="vul_data" sourcetype="csv" Risk="*" 
Port!="0" | dedup extracted_Host | lookup ip2dept.csv extracted_Host | 
table extracted_Host Dept | outputlookup hosts_with_open_ports.csv 
 
 Now, search for IP addresses that respond only to the ICMP queries and are not in 

the hosts_with_open_ports.csv lookup table.  Splunk’s dedup can delete duplicate 

extracted_Host values.  The result of the following query is stored in another lookup 

table. 
source="vul_data_10.csv" host="vul_data" sourcetype="csv" Risk="*" 
Protocol="icmp" NOT [| inputlookup hosts_with_open_ports.csv | fields + 
extracted_Host ] | dedup extracted_Host | lookup ip2dept.csv 
extracted_Host | table extracted_Host  Dept | outputlookup 
hosts_ICMP.csv 
!
 The above two lookup tables can be used on their own to detect IP addresses with 

at least an open!port or with only the ICMP.  These two files can also be combined into 

one single file to obtain the total number of live IP addresses from each department in the 

scan report.  



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!19 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

 The query below joins two lookup tables and generates a new lookup table. 
| inputlookup hosts_with_open_ports.csv | append [| inputlookup 
hosts_ICMP.csv] | outputlookup live_ip.csv 

!
 The live_ip lookup can map the number of live IP addresses from the departments 

as depicted below.                                                      
source="vul_data_10.csv" host="vul_data" sourcetype="csv" Risk="*" | 
dedup extracted_Host | lookup live_ip.csv extracted_Host | chart 
count(extracted_Host) by Dept 
!

5.2.6. The Number of Affected Hosts per Department 
 Now, let’s see how many IP addresses in each department are affected with 

Critical, High, and Medium Risk vulnerabilities. This can be achieved by using the 

Splunk query given below. 
source="vul_data_10.csv" host="vul_data" extracted_Host="*" 
sourcetype="csv" Risk="Critical" OR Risk="High" OR Risk="Medium" 
Port!="0"  | fillnull value=nocve CVE | dedup extracted_Host CVE Port | 
lookup ip2dept.csv extracted_Host | chart count over Dept by Risk 
!
 In the above query, Low and Informational Risk-rated vulnerabilities have been 

excluded and rows having the same IP address, CVE, and Port number have also been 

deleted using the dedup command in order to keep only unique records.  There can be 

different field name combinations in the data reduction query using the dedup command, 

e.g. delete rows with the same PluginID, CVE, and Port or CVE, Name, and Port.  Each 

data reduction query with different combinations would produce different results.  As 

such, it should be used based on requirement.  In the sub-search, the IP addresses are 

looked up for their respective departments and then using the chart command, the number 

of affected hosts are counted for each department.  Moreover, there are vulnerabilities 

that don’t have a CVE number associated with them and instead have a null value in the 

report.  The fillnull command fills vulnerabilities that have no CVE number with a user-

supplied value like nocve in this case.  The result of the above query is shown in a bar 

chart, which is drawn using Splunk’s visualization tool, as shown in Figure 8 below.  



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!20 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

!
Figure 8. Count of Affected Hosts for Each Department 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! In a Splunk search, vulnerabilities with no CVE number would be difficult to 

search, and at times, different vulnerabilities with no CVE value would be deleted by the 

dedup.  Null CVE values for two different vulnerabilities would be considered to be 

duplicate on the same Host and Port in the dedup combination as seen in the query above. 

5.2.7. The Top 10 Vulnerabilities and Hosts  
 There are certain vulnerabilities that affect the organization the most and knowing 

them can expedite the vulnerability management process.  Therefore, focusing on the top 

10 vulnerabilities would drastically reduce the risk of the organization.  In a Nessus scan 

report, the Name field contains the name of a vulnerability that may be the same for 

many CVEs.  It would thus be a good idea to find the top 10 vulnerabilities by Name.  

The following query shows the top 10 vulnerabilities by Name. The results are shown in 

Figure 9. 

 
source="vul_data_10.csv" host="vul_data" extracted_Host="*" 
sourcetype="csv" Risk="Critical" OR Risk="High" OR Risk="Medium" 
Port!="0"  | dedup extracted_Host CVE | chart count over Name by Risk | 
addtotals fieldname=total Critical,High,Medium | sort - total limit=10 
| fields - total Risk None Low 

!



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!21 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

 
Figure 9. The Top 10 Vulnerabilities Detected During the Scan 

!
 The Splunk query below finds out the top 10 most vulnerable hosts by risk across 

the organization.  The output of this query would comprise the hosts with the most 

number of vulnerabilities associated with them. 
source="vul_data_10.csv" host="vul_data" extracted_Host="*" 
sourcetype="csv" Risk="*" Port!="0"  | fillnull value=nocve CVE | dedup 
extracted_Host CVE Port | chart count over extracted_Host by Risk | 
addtotals fieldname=total Critical,High,Medium | sort - total limit=10 
| fields - total Risk None Low 
 

5.3. Analyze Vulnerabilities in Correlation with vFeed 
 We can leverage Splunk to correlate data using vFeed files.  Using Splunk, vfeed 

data would be mixed with Nessus vulnerability data to perform a few interesting 

analyses.  

5.3.1. The Most Vulnerable Application and Operating System Vendors 
 This information cannot be directly obtained from the Nessus vulnerability data. 

We will have to correlate information from the vulnerability data with the vFeed files.  

For this analysis, the CVE to CPE mapping file comes handy.  Before we can use the 

CVE to CPE mapping file, we should perform certain operations on it to make it fit for 

analysis.  vFeed’s CVE-to-CPE mapping file will be uploaded onto Splunk and then the 

CPEID will be split at the delimiter “:” into new fields, namely type, vendor, and product.  

These new fields, which are derived by splitting the CPEID field, can be saved in a 

lookup table for future use, as shown below: 

 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!22 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

source="cve_cpe.csv" host="cve_to_cpe" sourcetype="csv" | eval temp = 
split(cpeid,":") | eval type = mvindex(temp,1)  | eval vendor =  
mvindex(temp,2) | eval product = mvindex(temp,3) | table cveid type 
vendor product  | rename cveid as CVE | dedup CVE vendor type product | 
outputlookup cve2cpe.csv 
  

 Query the vulnerability data and correlate it with the cve2cpe lookup table for the 

most affected vulnerable applications and operating systems.  Based on the scanned 

report, it wouldn’t have been easy to obtain this information.  However, with data 

correlation, it is easily obtainable, e.g. the top 5 most vulnerable application vendors in 

the organization are shown in Figure 10.  As a side note, the certainty and reliability of 

results depend upon the quality of the scan report and the logical mapping of CVEID to 

CPEID.  There are CVEs that affect many different platforms, wherein eventually one 

CVE may be mapped to many CPEIDs; hence, the results should be cross-checked with 

other analyses.  It might happen that CVEs in the scan report may refer to CPEIDs that do 

not exist in our environments, in which case, a lookup table with contextual data may 

resolve the problem.  The Splunk query shown below would produce the top five most 

vulnerable application vendors in the organization. 
source="vul_data_10.csv" host="vul_data" extracted_Host="*" 
sourcetype="csv" Risk="Critical" OR Risk="High" OR Risk="Medium" | 
dedup extracted_Host CVE Port | where isnotnull(CVE) | lookup 
cve2cpe.csv CVE | where type = "/a" OR type !="/o" OR type !="/h" | 
chart count over vendor by Risk | addtotals fieldname=total 
Critical,High,Medium | sort - total limit=5 | fields - total Risk None 
Low 

!

!
Figure 10. The Top Five Most Vulnerable Application Vendors 

 
 Similarly, another Splunk query can obtain results for the top five most vulnerable 

operating system vendors in the organization.  The only change in this query would be to 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!23 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

replace the type field from Application to Operating System (OS).  The type field “/a” 

denotes Application whereas “/o” denotes OS in a CPEID.!

5.3.2. Map Vulnerabilities to Exploits or Testing Scripts 
 Nessus is a pretty reliable vulnerability scanner and it can detect vulnerabilities 

affecting a target system.  Sometimes, there are requirements to confirm or exploit the 

discovered vulnerabilities with other tools and methods.  It is a cumbersome job to find 

out which NMAP script, Metasploit module or exploit-db code, etc. can be used to test a 

vulnerability again, especially when there are thousands of unique vulnerabilities.  In 

such scenarios, vFeed can help as there are several useful files in vFeed that map a CVE 

to an NMAP-script, Metasploit module or many other exploit kits.  In the Data 

Preparation phase, such files have been merged into a single file and kept in the 

vulnerability_assessment_tools directory. 

 As in the previous analysis, a lookup table with all the required fields can be 

created to correlate data in the scan report.  This lookup table can be used to analyze data 

from the scan report.  The Splunk query, as shown below, uses the lookup table to list the 

available exploits for CVEs in the scan report.  The results of the query are shown in 

Figure 11. 
source="vul_data_10.csv" host="vul_data" extracted_Host="*" Risk="*"  | 
dedup extracted_Host CVE Port | lookup cve2exploit.csv CVE | table 
extracted_Host CVE Port Name nmap_script_id exploitdbscript 
msf_script_file d2_script_name saintexploitid | where 
isnotnull(nmap_script_id) OR isnotnull(exploitdbscript) OR 
isnotnull(msf_script_file) OR isnotnull(d2_script_name) OR 
isnotnull(saintexploitid) 
 

!
Figure!11.!Reported!CVEs!to!Various!Exploits!and!Testing!Scripts!



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!24 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

!
 Similarly, other useful results can be obtained by first creating lookup tables for 

CVEs to vendor security patches, IDS signatures, etc. and then using these lookup tables 

to map the respective fields.   

6.  Conclusion 
 The methodology of vulnerability data analysis is as important as vulnerability 

scanning.  Using data analytical techniques, one can solve the vulnerability data overload 

problem faced by big organizations.  Panda and Splunk are powerful and useful tools for 

performing data analytics and can be utilized in vulnerability data analysis.  Using Pandas 

or Splunk, we can look for interesting results and insights in the piles of vulnerability 

data.  A manual analysis of the vulnerability data of tens of thousands of hosts is a 

laborious and cumbersome job.  Nevertheless, using Splunk or Pandas, we can quickly 

explore data and generate desired results without any risk of missing important results or 

trends present in the vulnerability data.  Additionally, we can slice and dice data, perform 

conditional searches, GroupBy and Join operations, besides the other useful operations on 

the data in order to summarize, visualize, and derive results.  The output obtained by 

vulnerability data analysis can also be fed into other tools to test the existence of 

vulnerabilities and store the test results for correlation, thus creating more scope for 

automation. 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!25 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

7.  References 
Conti, G. (2007). Security data visualization: Graphical techniques for network analysis. 

San Francisco: No Starch Press. 

Fiscus. (2014, April 29). SANS Penetration Testing | Data, Data, Everywhere What to do 

with Volumes of Nessus Output | SANS Institute. Retrieved from https://pen-

testing.sans.org/blog/pen-testing/2014/04/29/data-data-everywhere-what-to-do-

with-volumes-of-nessus-output 

Gula. (2014). Real-Time Compliance Monitoring. Retrieved from tenable Nessus 

website: 

http://www.tenable.com/sites/drupal.dmz.tenablesecurity.com/files/uploads/docu

ments/whitepapers/tenable_compliance.pdf 

McKinney, W. (2013). Python for data analysis. Sebastopol, CA: O'Reilly.  

Ou, X., & Singhal, A. (2011). Quantitative Security Risk Assessment of Enterprise 

Networks. New York, NY: The Author(s).  

Ouchn. (2015, August 11). ToolsWatch.org – The Hackers Arsenal Tools Portal » vFeed 

Correlated Vulnerability Database API major update 0.6 released. Retrieved from 

http://www.toolswatch.org/2015/08/vfeed-correlated-vulnerability-database-api-

major-update-0-6-released/  

Python Data Analysis Library — pandas: Python Data Analysis Library. (2015). 

Retrieved from http://pandas.pydata.org/  

Zadrozny P. & Kodali R. R. (2013). Big data analytics using Splunk.  

!



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!26 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

Appendix A - Sample Network_Address_Book.csv or 
Host-to-Dept.csv file 

 The IP_Address field contains an IP address for a host and the Dept field contains 

the department name to which a corresponding IP address has been allocated. 

!

IP_Address Dept
10.15.6.198 t)site
10.15.42.222 e)site
10.15.16.101 y)site
10.15.42.185 m)site
10.15.126.103 t)site
10.15.16.72 m)site
10.15.16.46 m)site !
!

Appendix B - Downloading and Converting vFeed Tables 
 The vFeed DB can be downloaded with wget, decompressed using untar, and 

then, the vFeed tables are, converted into CSVs using the Python script written for this 

purpose, as shown below. 
~/vul_data_analysis> wget http://www.toolswatch.org/vfeed/vfeed.db.tgz 
~/vul_data_analysis> tar –xvzf vfeed.db.tgz 
~/vul_data_analysis> ./vfeed2csv.py 

!
!
 The output of the vfeed2csv.py Python script: 

 
 
  

 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!27 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

 

 The Python script vfeed2csv.py code is illustrated below. 
#!/usr/bin/python 
import sqlite3 
import csv 
con = sqlite3.connect('vfeed.db') 
con.text_factory = str 
table_list = [] 
query = "select name from sqlite_master where type = 'table'" 
tlist = con.execute(query) 
for table in tlist: 
        table_list.append(table) 
table_list = [ x[0] for x in table_list ] 
 
for table_name in table_list: 
        t_query = "select * from " + str(table_name) 
        cursor = con.execute(t_query) 
        col_names = [ description[0] for description in 
cursor.description ] 
        filename = table_name + ".csv" 
        with open(filename,'wb') as fn: 
                writer = csv.writer(fn) 
                writer.writerow(col_names) 
                writer.writerows(cursor) 
!
! In!the!above!python!code,!the!text_factory!option!instructs!SQLite3!to!return!

byte!strings!in!order!to!avoid!Unicode!encoding!related!errors.!!The!variable!named!

table_list!contains!all!the!table!names!in!vFeed,!which!are!later!used!to!assign!names!

to!the!resulting!files.!

!

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!28 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

 
 
Appendix C - vFeed Categories and Details  
 Eight vfeed categories are shown below: 

!

 Prefix “D” indicates a directory name and prefix “f” indicates a filename.  All 

these categorized files have been placed inside a directory.  

 As shown in the figure above, all these files contain additional information about 

the CVEs and have been put into eight different directories based on their common 

characteristics.  A short description of the above displayed categories are as follows: 

1. common_weakness_category_capec:  There are four files in this directory. 

Three files, as the names suggest, map the CVE to its CWE number, the CWE to 

its CAPEC, and the CWE to its Category.  The last file in the directory, i.e. 

CWE_DB, contains more details about a particular CWE.  A CVE number can 



Applying!Data!Analytics!on!Vulnerability!Data!!!!!!!!!!!29 
!

Yogesh!Dhinwa,!yogeshdhinwa@gmail.com! !

first be mapped to a CWE and then, for more information on a particular CWE, 

other CWE-related files should be referred, for example, CWE_DB. 

2. cve_additional:  There are four files in this directory.  The two files map the 

CVEs to bid and oval id, respectively, and the remaining two files contain more 

details about the CVEs.  

3. Ids: This directory contains files having data related to the IDS signature for a 

CVE.   As the name suggests, one file contains information for Snort and the 

other for Suricata. 

4. Misc: This directory contains vFeed-specific data. 

5. Platform:  This is the only file in this directory that maps the CVE to its 

Common Platform Enumeration (CPE). 

6. vendor_security_patch: Files in this directory contain security-related patch 

information for various vendors that map CVEs to various vendor patches. 

7. vul_db: This directory contains four files and these files map CVEs to CERT 

vulnerability data, IAVM DoD vulnerability data, OSVDB, and SCIP. 

8. vulnerability<assessment: The files in this directory are used to map CVEs to 

vulnerability assessment and penetration testing tools and scripts.  These files 

contain identifiers for testing scripts or exploits for CVEs, which are helpful 

during quick searches for tools or scripts to be used for testing or exploiting a 

vulnerability discovered during a scan. 

 
!


