
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 1 of 34

Dealing with an SSH Compromise
An Idealized Incident Handling Scenario
Prepared for SANS GIAC Incident Handling Certification Practical Study, version 2.0
By Thomas Stocking, GCIA

2/2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 2 of 34

Dealing with an SSH Compromise .. 1
Introduction ... 3
Part 1 - The Exploit.. 3

Name... 3
CVE-2001-0144 ... 3

Operating Systems .. 4
Unix and it’s Variants ... 4
What is vulnerable.. 4

Description... 4
Variants ... 4

Part 2 – The Attack.. 6
Network Description/Network Diagram.. 6
Protocol Description: SSH ... 7

How SSH works ... 7
How the Exploit Works... 8
Attack Diagram .. 9

Scanning .. 9
The Attack.. 10
Covering the tracks .. 12

Attack Signature/Attack Detection ... 13
Log files.. 13

Preventative Measures .. 14
Sshd updates ... 14
Sshd trust modifications ... 15
Obfuscation.. 15

Part 3 – Incident Handling Process ... 15
Preparations .. 15

Initial system hardening ... 16
Encrypted protocol – SSH only, no telnet... 16
ACL Setup.. 16
Remote logging.. 16
Log file monitoring.. 17
Preparations: Policies and Procedures .. 17

Identification... 17
Containment and Eradication .. 19
Recovery ... 23

Root Cause: ... 24
Proximate Cause:... 24
Lessons Learned:... 24

Follow-up and Corrective Actions .. 24
Conclusion ... 27
Sources List ... 28
Attachment A: Diff Listing and discussion .. 29

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 3 of 34

Introduction
In this paper I will dramatize a fictitious incident. I will apply several concepts

discussed in the SANS Incident Handling and Hacker training that to me seem
especially significant; the combination of tools and methods involved in a successful
intrusion, the points of decision and risk management in the response, the phenomenon
of the false sense of security, and the truly essential nature of incident prevention. No
incident I have yet handled has had all of these aspects. I also wish to explore the
seriousness of the threat posed by the exploit I choose to research, and so I am
choosing what seems to me to still be a serious threat: SSH crc32 vulnerabilities.

This threat has many aspects. At this writing, scanning for SSH is at a fever pitch
on the Internet, port 22 is number 4 out of the top 10 ports scanned1, and according to
one source2, almost 20% of all SSH daemons are still vulnerable to this exploit. In a
documented exploit, even scanning for a single vulnerable version yielded a 5%
vulnerability rate.3 In addition, a set of tools has been discovered in the last few months
that make this vulnerability very easy to exploit. The conditions are ripe for the same
methods to be used in the propagation of worm code, and there is some evidence that
this is already occurring4. This is all happening despite the fact that the vulnerability and
associated patches have been know for nearly a year – a disturbing sign of neglect by
many system administrators.

Many high-quality analyses of this vulnerability and it’s associated exploit code
already exist. I will summarize those findings here, and focus on the processes used by
the attackers and defenders, and illustrate the decisions taken, and reasons for them.
My hope is that by presenting this vulnerability, the exploit, and appropriate
countermeasures and incident handling procedures, I will contribute to my own
education as well as the learning of my colleagues in the Information Security
profession.

In addition, I will tie in aspects of the security incident handling process with the
more general Incident Management process as described in the ITIL5, and link the best
practices approach to quality with that of security.

Part 1 - The Exploit

Name

CVE-2001-0144
The Common Vulnerabilities and Exposures (CVE)6 dictionary defines this

vulnerability as “CORE SDI SSH1 CRC-32 compensation attack detector allows remote

1 See http://www.dshield.org/topports.html for current list
2 See http://www.citi.umich.edu/ssh/
3 See http://staff.washington.edu/dittrich/misc/ssh-analysis.txt, in which 25,386 unique
hosts were scanned for OpenSSH 2.1.1, and 1244 vulnerable hosts were found
(approximately 5%).
4 See http://www.vnunet.com/News/1127965
5 See the Information Technology Infrastructure Library: http://www.itil-itsm-world.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 4 of 34

attackers to execute arbitrary commands on an SSH server or client via an integer
overflow.”
In simpler terms, this means that some versions of Secure Shell version 1 (SSH1) are
vulnerable to exploitation of a buffer overflow. When “arbitrary code” is executed, that is
a bad thing.
The actual exploit of this vulnerability that I will characterize is known as x2. It is a
coded program that is used to attack systems with this vulnerability.

Operating Systems

Unix and it’s Variants
Since the vulnerability is in the ssh1 code itself, and is not specific to one OS,

multiple Operating systems are potentially vulnerable. The vulnerability thus can exist in
any OS version capable of running the vulnerable code, including, but not limited to:
Linux (Red Hat, Debian, SuSe, etc)
BSD
Open BSD
SCO, etc.
Solaris

What is vulnerable
Secure Shell version 1 (SSH1). There are several versions utilizing the vulnerable

source code. This list is from the original vulnerability statement7:
• SSH 1.2.24 - 1.2.31 (ssh.com) -- all versions to
• F-SECURE SSH 1.3.5 - 1.3.10
• OpenSSH prior to 2.3.0 (unless SSH protocol 1 support is disabled)
• OSSH 1.5.7 (by Bjoern Groenvall) and other ssh1/OpenSSH derived daemons

Note that sshd (the daemon) is what is vulnerable. The client software is not, in

itself, subject to this compromise, and is therefore not included in this list.

Description
The vulnerability this exploit uses was exposed by Michal Zalewski on the

bindview website on February 8th, 2001. The exploit takes advantage of a programming
error in an attack detection routine. A 16 bit integer was used where a 32 bit integer
would have been appropriate. The result is a stack overflow error.

Variants
As many opensource (and even some commercial versions) of sshd leverage the

vulnerable code, there are several possible variants of the same basic vulnerability. In
addition, there are several possible ways to exploit the overflow, depending upon the
code pushed onto the stack.

6 See http://www.cve.mitre.org
7 See http://razor.bindview.com/publish/advisories/adv_ssh1crc.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 5 of 34

While this is technically a challenge to perform in practice, the vulnerability has
been made very easy to exploit through the use of automated tools, notably the x2 tool.
This tool allows an intruder to simply specify the host to attack, the version of SSH (from
a list specifiable as an input file), and a simple password. The attack proceeds and, if
successful, presents the attacker with a root shell.

There are several variants of the tool in use in the wild. Some of these appear to
be derivatives of a leaked version of a “research” coding project by the TESO Security
group, judging by certain markers left in the code. It is likely that, as TESO’s work is
available to a group of coders, these individuals will apply the concepts and methods in
the fabrication of new tools.

There is some evidence that semi-automated attacks are being launched, i.e.,
rootkits and associated tools are being used for target selection, and may be being
modified to rapidly compromise multiple hosts.

One note: while I could find sample exploits of the noted vulnerability8, I was
unable to track down a version of x2 for download. It seems that the cracker community
is hoarding the code, which is part of a new trend growing out of recent debate. There is
also some evidence that it may be being sold or traded. It may be that the extreme ease
with which the code may be used to exploit vulnerable systems is inhibiting the general
release of the code to the “script kiddie” community, but it may also be part of a growing
trend in obfuscation and secrecy among crackers. The x2 code itself is highly
obfuscated and resistant to analysis9.

8 See http://packetstorm.widexs.nl/0102-exploits/ssh1.crc32.txt
9 See http://www.incidents.org/papers/ssh_exploit.pdf for an excellent, if preliminary,
discussion of x2, complete with packet traces and a hacking session in the lab, by Rob
Lee. I have used his analysis in preparing this section.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 6 of 34

Part 2 – The Attack

Network Description/Network Diagram

Figure 1. The Network
Figure one shows the company’s network. It is set up for high-availability, with
redundant network links, and external and internal router and firewall pairs. Functionally,
each set of routers and firewalls can be considered a single device.
The routers are Cisco 7200 series, IOS 12.0. They are running HSRP between them,
and BGP on the external interfaces, which is necessary to allow failover in the case of
failure of a provider’s infrastructure.
The four firewalls pictured are Cisco PIX, model 525. The software is version 5.2. They
are running in failover mode (one is primary, secondary takes over when primary fails).
The servers are configured as follows:
 External DNS, SMTP Relay:
 VA Linux Full-On 2u, running debian Linux, Potato, kernel 2.1 series
 Log Server, Internal Mail Server
 Sun Ultra 80, Solaris 2.7
 Internal DNS
 Generic 1u Intel Celeron, running debian Linux, Potato, kernel 2.1 series

The ACLs on the external routers and firewalls allow SSH inbound (TCP port 22).
No restrictions on source IP address are in place. The only destination hosts allowed
are the external DNS and SMTP relays, however. This is put in place to allow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 7 of 34

management of the network components (routers and firewalls), which are accessible
via telnet (port 23) on the internal interfaces only, or via direct serial connections to the
DNS and SMTP relay hosts. Some network administrators need to work from home,
and made ssh remote access a requirement.

Relevant External ACL (Cisco):
access-list 101 permit any 255.100.100.5 0.0.0.0 eq 22
access-list 101 permit any 255.100.100.6 0.0.0.0 eq 22

Relevant External Firewall Rules (Cisco PIX):
static (dmz,external) 255.100.100.5 10.10.10.5 netmask 255.255.255.255
static (dmz,external) 255.100.100.6 10.10.10.6 netmask 255.255.255.255
conduit permit tcp host 255.100.100.5 eq 22 any
conduit permit tcp host 255.100.100.6 eq 22 any

The internal firewall allows SSH to the servers in the DMZ from the internal network as
well. In fact, SSH is allowed in both directions, with no restrictions across the internal
firewalls.

Relevant Internal Firewall Rule (Cisco Pix):
conduit permit tcp any eq 22 any

The syslog service is running on a host located on the internal network (the Log Server
in figure 1). This host is at IP address 10.10.100.6. The internal firewalls allow traffic to
this server to be initiated from any host in the DMZ, thus allowing syslog information to
be captured from the External DNS, SMTP Relay, and external and internal firewalls.
Note that this is not set up on the external firewalls, so syslog on the boundary routers is
not enabled. The necessity of opening this hole in the external firewall was deemed too
great a risk.

Relevant Internal Firewall Rule (Cisco PIX):
conduit permit udp host 10.10.100.6 eq syslog 10.10.10.0 255.255.255.0

Protocol Description: SSH

How SSH works
Using TCP/IP, a transport layer called SSH-TRANS is used to make the initial

connection from a client system to a host server running an sshd daemon. SSH then
makes subsequent user authentication (SSH-USERAUTH) and finally connection (SSH-
CONNECT) requests, with each request dependent upon the success of the previous
request.

The communication is encrypted at all layers using asymmetric public-private key
encryption. The server and client exchange session keys in the SSH-TRANS layer at
connection time, and again every so often to support the encryption. The server’s public
key is used to support initial connection, and if it is available to the client a priori it need

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 8 of 34

not be transferred at connect time. Best practices and the relevant IETF draft10 spec
states that clients must know the server’s public key before connecting, and have it
associated with the server name, or have this pairing managed by a certificate authority.
In practice, however, this is difficult to manage, and most servers utilize an option to
disable the association checking the first time a user connects. This allows users to
simply connect to a server with no knowledge of its key information, which is very
convenient. This practice, however, defeats at least some of the purpose of using the
key-pair method in the first place. Using ssh in this way contributes to a false sense of
security – encryption alone is not more secure.

How the Exploit Works

The exploit makes use of a very specific vulnerability exhibited by specific
versions of the sshd daemon. The vulnerability stems from what the bindview advisory
calls “insufficient range control calculations” in a function called detect_attack(),
ironically, a function designed to prevent cryptographic attacks on the daemon in the
connection layer. The function uses a 16-bit integer variable in a calculation with a 32-
bit variable. The result is a memory allocation error that allows an attacker to push code
onto memory and eventually execute it.

As the results of the buffer overflow are dependent upon initial encryption
settings, it takes several iterative passes to “hit” this vulnerability with very carefully
crafted data. The attacker needs to make these passes, and record the results at each
crash, using the information gained to alter the attack. Eventually, the attacker may
break in, essentially disrupting the SSH-TRANS layer during the key exchange process.

All user authentication SSH-AUTH and connection layer SSH-CONNECT
safeguards are bypassed. The attacker is given a root shell.
So, programmatically, we have:

• Attacker sends crafted code to target system.
• Vulnerable service crashes on target system, resets connection.
• Attacking system records result, changes settings to attempt exploit again at

another address in memory, and repeats until success is detected.

There is an automated code package called x2 that carries out this process. Using it
requires only the code and the password (“thisisnotyourexploit”). It is extremely easy to
use. When it detects success, it sends a message (“You are in”) to the attacker’s
console.

Note that at this writing there are no postings of the x2 code showing up in common
search engines or exploit archives.

This exploit is very difficult to run manually, given the analysis required at each step,
and the need to make multiple trial attempts before success is achieved. Without a
programmed exploit, performing more than a trivial buffer overflow (i.e. doing more than
crashing sshd) would probably not be practical.

Note that key exchange must be permitted for the attack to work. SSH can be
configured to allow only known, trusted hosts to progress to this point in the SSH-

10 See http://www.ssh.com/tech/archive/secsh/architecture.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 9 of 34

TRANS layer, so restricting trust in the configuration of sshd is an effective
countermeasure.

Attack Diagram

Scanning

Figure 2: Scanning

The attacker scans the company’s public IP address range11, and discovers port
22 is open on the DNS server and SMTP relay. So far the attacker has done nothing
illegal or harmful, and cannot really be distinguished from a legitimate user.
The attacker sends packets that simply open a connection on port 22 and read the
header returned:
3-way handshake:
22:18:34.628175 attacker.32771 > victim.22: S 2493461027:2493461027(0) win 5840
<mss 1460,sackOK,timestamp 125605[|tcp]> (DF) (ttl 64, id 55430)
22:18:34.629615 victim.22 > attacker.32771: S 2504205473:2504205473(0) ack
2493461028 win 5792 <mss 1460,sackOK,timestamp 203961[|tcp]> (DF) (ttl 64, id 0)
22:18:34.629925 attacker.32771 > victim.22: . ack 2504205474 win 5840
<nop,nop,timestamp 125605 203961> (DF) (ttl 64, id 55431)
Header Info Returned:

11 The attacker may use a number of programs, such as nmap, but in this case let us
assume they are using scanssh, available at http://www.monkey.org/~provos/scanssh/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 10 of 34

22:18:34.635442 victim.22 > attacker.32771: P 2504205474:2504205499(25) ack
2493461028 win 5792 <nop,nop,timestamp 203962 125605> (DF) (ttl 64, id 14363)
22:18:34.635809 attacker.32771 > victim.22: . ack 2504205499 win 5840
<nop,nop,timestamp 125605 203962> (DF) (ttl 64, id 55432)
22:18:34.635960 attacker.32771 > victim.22: P 2493461028:2493461056(28) ack
2504205499 win 5840 <nop,nop,timestamp 125605 203962> (DF) (ttl 64, id 55433)
22:18:34.635997 victim.22 > attacker.32771: . ack 2493461056 win 5792
<nop,nop,timestamp 203962 125605> (DF) (ttl 64, id 14364)
Tear Down connection:
22:18:34.636030 attacker.32771 > victim.22: F 2493461056:2493461056(0) ack
2504205499 win 5840 <nop,nop,timestamp 125605 203962> (DF) (ttl 64, id 55434)
22:18:34.639171 victim.22 > attacker.32771: F 2504205499:2504205499(0) ack
2493461057 win 5792 <nop,nop,timestamp 203962 125605> (DF) (ttl 64, id 14365)
22:18:34.639488 attacker.32771 > victim.22: . ack 2504205500 win 5840
<nop,nop,timestamp 125606 203962> (DF) (ttl 64, id 55435)
22:18:34.640501 victim.22 > attacker.32771: R 2504205500:2504205500(0) ack
2493461057 win 5792 <nop,nop,timestamp 203962 125606> (DF) (ttl 64, id 14366)

The attacker sees simply:
[root@attacker /root]# scanssh victim
victim SSH-1.99-OpenSSH_2.2.0p1
 There is nothing here that would trigger an IDS or look suspicious in a log file.
Some versions of sshd will not even log such an incomplete connection by default.

The attacker can determine from the sshd header12 that the sshd is a vulnerable
version, and select the victim for attack based on this. The attacker can now prepare
code to use later, such as a replacement version of sshd. This procedure allows
attackers to take the time to prepare very carefully if they need to, including
downloading source code and modifying it to suit their purposes.

The Attack
All the attacker needs to do is run x2 against the DNS server. In a matter of

minutes, the attacker has a root shell on this server. The attacking machine makes a
large number of connections to the victim, eventually zeroing in on the appropriate
offset to use, which contribute to it’s being identifed (see signature section).

Running the exploit is simple. One must simply type:

sshd-exploit –t7 <victim IP address>

12 Unmodified sshd daemons respond to connect requests with a version header (e.g.
SSH-1.99-OpenSSH_2.2.0p1 as above). This header actually contains two interesting
pieces of information: the first set of numbers (1.99 in this case) indicates that the ssh1
protocol will be supported (1.xx). If the number begins with a 2, then only ssh2 is
supported. The second set is the version number, and is previous to Openssh 2.3.0,
and as such vulnerable.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 11 of 34

password: thisisnotyourexploit

Eventually, you are presented with a root shell.

Figure 3: Compromise

The first thing the attacker does is to attempt to determine the version of UNIX or
Linux installed. This is fairly obvious, as each OS has certain characteristics, but the
presence of the file /etc/debian_version leaves the attacker in no doubt that the system
is indeed running debian linux. This file is present on all debian systems, and it’s
content is the version and revision numbers.

The attacker must assume that the intrusion will be detected, or at least
suspected, and that the vulnerability will eventually be removed. In order to keep
access, therefore, the attacker must be able to log in again in a more normal and less
detectable fashion. The external firewalls and routers are still blocking most useful ports
except 22, however, and while it may be possible to change this, it is difficult to do so
undetectably and quickly, especially without administrative passwords to the firewalls.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 12 of 34

The attacker instead installs code, which changes sshd to allow undetected access13.
This ensures that s/he will be able to log in later without appearing suspicious.

Note: The attacker must themselves be well prepared. It is no easy feat to modify
and recompile someone else’s source code so that it actually works as you intend. The
advent of rootkits has made the process easier, but the attacker still must have a
selection of these rootkits and other software to choose from, and be intimately familiar
with it’s features in order to modify it for use during an attack. The software must be
made available for download to the victim system, something that must be prepared
ahead of time.

Covering the tracks
The attacker determines that the server is logging activity locally and on another

host with syslog14. As the exploit does log signature lines to syslog, the attacker must
expunge these entries.

To accomplish this, the attacker transfers a “cleaner” program15, complied ahead
of time to save time during the initial attack16. Running this deletes the telltale syslog
entries locally.

This leaves the problem of the log server, with information still on it that the
attacker wants to remove. A second intrusion is therefore necessary to complete the
removal of telltale signs.

The attacker determines, through simple scanning17, that the remote syslog
server is accepting ssh, but is running a more recent version, and the x2 exploit will not
work. The attacker attempts to gain a valid userID and password, hoping that the user
names and passwords will be the same on both the compromised and new target
systems.

13 One such method is to use ssh replacement code, which may be found at:
http://packetstorm.mirror.widexs.nl/UNIX/penetration/rootkits/ssh-1.2.27rk.diff. We will
assume the attacker simply replaces the sshd code with a modified version, compiled
for Linux. Note that the new sshd will still function normally, but will allow the attacker to
enter a special “magic” password, gaining a root shell with no logging of the connection,
or logging that obfuscates the fact that a connection was made (e.g. “connection closed”
when connection is opened).
14 The attacker can determine this by checking the /etc/syslog.conf file for a loghost
entry (one starting with @).
15 See Logcleaner zap3.c at: http://packetstorm.mirror.widexs.nl/UNIX/penetration/log-
wipers/logcleaner-0.3.c
16 The attacker can also get around the requirement to pre-compile software for specific
versions of the target UNIX/Linux OS if the compiler (gcc in this case) is installed on the
target system. This is a good reason to remove the compiler, though it will likely only
frustrate a minority of attackers, forcing them to prepare more binaries in advance.
Compiling programs often depends on library code being present, so removal of unused
libraries is also prudent if gcc is removed.
17 Telnet to port 22 to see the sshd version header.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 13 of 34

The attacker transfers the /etc/shadow file from the compromised host with ftp18,
and begins running a decryption algorithm19 on their own system in an attempt to
decipher the passwords.

I will assume that this is as far as the attacker gets before the response begins. If
they had had more time, the attacker might have taken several additional steps, such
as:

• Installing a sniffer on the server – useful for determining usernames and
password if telnet is used

• Attempting to compromise another server such as the SMTP relay
• Scanning the DMZ from the compromised server
• Attempting to compromise the external or internal firewalls

Attack Signature/Attack Detection

Fortunately for the defense, the attacker’s methods are detectable in several
ways. I will summarize these here.

Log files
Syslog:
The buffer overflow in vulnerable versions of sshd can generate several syslog
messages, notably:
Nov 1 18:46:47 victim sshd[9518]: fatal: Local: Corrupted check bytes on input.
Nov 1 18:48:08 victim sshd[9586]: fatal: Local: crc32 compensation attack: network
attack detected20

In addition, if sshd is set to log connection attempts, numerous attempts will be
recorded in the context of the attack, which may (if the system is not very busy) be
possible to detect as unusual, or at least to recognize as such forensically.

SNORT:
The SNORT intrusion detection system lists several rules in the exploit rules database21
for ssh crc32 buffer overflow detection. If the defenders had been running SNORT with
a current rule set, the rules listed here would have generated alerts:

18 ftp being installed and working, and the attacker having prepared and ftp server for
use during the attack. This leaves no telltale executable file on the compromised server,
for example netcat.
19 For Unix/Linux, the attacker can user crack, or John the Ripper, for example. See
http://www.deter.com/unix/#unix for a version of crack.
20 Copied from http://staff.washington.edu/dittrich/misc/ssh-analysis.txt as an example.
21 Available for download at: http://www.snort.org/downloads-other.html#5 See SNORT
documentation on this site for implementation details.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 14 of 34

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT ssh CRC32
overflow /bin/sh"; flags:A+; content:"/bin/sh"; reference:bugtraq,2347;
reference:cve,CVE-2001-0144; classtype:shellcode-detect; sid:1324; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT ssh CRC32
overflow NOOP"; flags:A+; content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90|"; reference:bugtraq,2347; reference:cve,CVE-2001-0144; classtype:shellcode-
detect; sid:1326; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT ssh CRC32
overflow"; flags:A+; content:"|00 01 57 00 00 00 18|"; offset:0; depth:7; content:"|FF FF
FF FF 00 00|"; offset:8; depth:14; reference:bugtraq,2347; reference:cve,CVE-2001-
0144; classtype:shellcode-detect; sid:1327; rev:1;)

Tripwire:
An integrity checker such as Tripwire22, properly configured to include the sshd daemon
code, would detect not the initial compromise, but would detect the modification to the
sshd daemon itself. This software works by creating a database of hash codes from
selected files on the system. Running a check of the database reveals all changed files.
Thus the timely detection of unauthorized change is dependent upon frequent checks of
the systems.

Preventative Measures

Sshd updates
Generally, systems and security administrators need to keep up on the security issues
with the software they are using, and update it accordingly to keep ahead of issues of
this kind. In this case the vendor response was prompt, and a new version was quickly
produced and packaged. All that remained was for the administrators to upgrade and
test the new package on their systems.
The debian linux distribution supports a simple to use update facility, apt-get. Once this
facility is configured to use the appropriate code repositories, one need merely type
“apt-get install sshd” from a root shell to install/upgrade ssh to the latest version.

Protocol version 2 only support
Setting sshd to support version 2 only, and not fall back to version 1, would remove
vulnerability to this exploit even without upgrading the code. Note that many MS
Windows ssh clients do not correctly support ssh223, however, so the step of allowing
only ssh2 should be taken only after testing access from all client software versions.

22 Commercial version, see: http://www.tripwire.com/, opensource version, see:
http://www.tripwire.org/. Both are well-maintained, very useful software.
23 One notable (and free) exception is the Putty client. See
http://www.chiark.greenend.org.uk/~sgtatham/putty/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 15 of 34

Sshd trust modifications
While it may be somewhat painstaking, it is possible to restrict the hosts allowed to
open a ssh (port 22) connection to a given instance of sshd. This is done with the
/etc/hosts.allow listing of permitted hosts24.
The main disadvantage of this approach is that the remote access to the restricted host
is then only possible from hosts specifically allowed (which is kind of the point: it’s a
two-edged sword). Administrators attempting to log on from Internet cafes in Prague
may well be frustrated, unless they are able to get their temporary IP address added to
the allowed list. This is fairly easy to work-around, however, mostly by arranging
appropriate coverage by support personnel, and requesting static IP addresses for the
home office Internet connections of support personnel. Of course, there will be
additional ongoing maintenance of the hosts.allow file.
Note: allowing only clients with appropriate certificates (turning on Public Key
Authentication, turning off Password Authentication) would additionally guard against
password guessing (brute force attacks). This is only an ssh2 option, though, so it does
not apply to the exploit in question.

Obfuscation
One could simply set sshd to listen on a port other than 22, or forward a port other than
22 from the external firewall to port 22 on the target host running sshd. Note that the
attacker in this case scans with a tool that looks only for port 22/TCP – a targeted scan.
Simply moving the port elsewhere would have avoided detection, and hence the attack.
Recall that the purpose of having the service running on an external interface in the first
place is to allow a select group of administrators remote access. It should not be difficult
to inform them of the new port to use, and adjust their client configurations
appropriately. The disadvantages of modifications such as this is in maintenance and
documentation, but this should be kept up in any case. Another point is that this will only
stop the attacker who selects the target system somewhat at random via scanning, and
will not necessarily do much to foil someone who is determined to get into a particular
network. That person may scan all ports, for example.

Part 3 – Incident Handling Process

Preparations
This team did not do a complete job of preparation for handling of incidents such

as this. This is a fact which came back to haunt them as they went through the incident
handling process, and affected their ability to respond. They were somewhat off their
guard, as so many of us seem to be, but as this is a fictitious situation, I will give them
credit for taking some prudent steps, to make the learning opportunities more interesting
as they discover what they did not do.

Note that in this section I will be drawing from some lab work, my own
experience, and that of my colleagues. I will not relate any exact experiences in the

24 See the manual entry for sshd (man sshd) for requirements, also tcpwrappers
documentation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 16 of 34

interests of maintaining anonymity of sources, but the reader should know that most of
this stuff did, in fact, happen, albeit to several different people in several different
situations.

Initial system hardening
Some basic system hardening steps such as removing unused software

packages and closing unused service ports were done. Appropriate patch levels of all
software at the time of install were used. However, there was no process in place to
update the software except by functional necessity (i.e. only if a needed feature was not
supported was the system upgraded). Backups of all initial configurations were made
and archived on spare disks to facilitate quick recovery from disk failure.

Encrypted protocol – SSH only, no telnet
Allowing remote access was specified as a requirement, so accommodation to

security was made at design time by planning for ssh access, and disabling telnet to all
systems.
Remote access to the servers in the DMZ was set up with ssh, which was assumed to
be secure enough in itself to allow remote network administration. The alternative of
allowing telnet to the routers and systems from outside the firewall was rejected as too
insecure. The assumption was made that ssh was secure, and very little was done to
ensure this beyond installation of the package.

ACL Setup
The following basic guidelines were agreed upon in setting up the router ACLs and

Firewall rule sets:
• No system should be generally accessible from outside it’s own IP subnet
• If access is allowed to a system from outside it’s subnet, then the access shall

be:
o Filtered at the port/service level
o Restricted to and from known hosts

Note that the fact that this was not strictly followed contributed to the success of
the attack. Had only trusted hosts been allowed to connect, the attacker would not have
been able to use this particular exploit.

Remote logging
Following the rule of “prevention is ideal, but detection is a must”, the defenders

set up a syslog server to allow remote capture of syslog information, and had set all
systems to write logs there, where possible. One notable exception to the list of systems
sending data to the syslog server were the boundary routers. It was decided that the
opening of the external firewall to allow syslog25 was too dangerous, since it could allow
attackers to perform denial of service attacks on the syslog server itself.

25 This would be simply allowing UDP port 514 through the outer firewalls. This is not a
significant risk IF the firewalls also restrict the source address to be that of the external

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 17 of 34

Log file monitoring
In addition, a simple utility called swatch26 was used to parse through the syslog files
continuously, and to send email to system administrators when certain expressions
were matched. This was done in lieu of creating a complete intrusion detection system
using dedicated software such as SNORT. The swatch utility was set to match only very
simple strings, (like “fatal”) however. Only one administrator knew how to configure it,
and they did not document or disseminate this knowledge. This led to a lack of
understanding of what the resulting messages and alerts meant, and a corresponding
lack of maintenance of the utility’ s configuration.

Preparations: Policies and Procedures
Some basic policies were put in place, but best practices in this area had been largely
ignored.
The following steps were taken before the incident occurred:

• Warning banners
o Each system displays a banner stating that the machine in question is only

for the use of company employees and contractors, and that privacy is
limited on this machine. It also reminds employees that they are bound by
the terms of the security policy.

• A security policy was in place
o A corporate policy dictating the limits of the expectation of privacy, the

terms of appropriate use, and legal liability of the users was written, and
acknowledged by all employees.

• Security Procedures were in place
o Certain procedures were enforced, such as the maintenance of separate

passwords for internal and external systems, password complexity and
length requirements.

o Deployment of new systems always included a security check as part of
release management.

Identification
The incident was identified via it’s syslog signature. A system administrator came

in early in the morning after the attacker got in, and read the email sent by the swatch
utility, indicating a problem with the External DNS server. The administrator immediately
checked the syslog file for the External DNS server and discovered that there were
multiple lines of the form:
Nov 1 18:46:47 victim sshd[9518]: fatal: Local: Corrupted check bytes on input.
followed by two lines of the form:

router itself. NAT can also be a problem in this case if it is used to mask addresses in
such a way that the syslog data coming from multiple devices all appears to have the
same source IP address.
26 See http://www.cert.org/security-improvement/implementations/i042.01.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 18 of 34

Nov 1 18:48:08 victim sshd[9586]: fatal: Local: crc32 compensation attack:
network attack detected27
The administrator then logged in to the External DNS Server. No problems were
obvious, and access via ssh was certainly the same as always. The administrator
checked the local syslog file, and found that the lines that had been flagged by the
swatch utility were NOT present. This was the first indicator that something was
seriously wrong, and that an incident may have taken place: the initial alarm was
correlated with this anomaly. The administrator decided to check the size of the binaries
in /usr/bin and /usr/sbin against those of the Internal DNS server, which was a mirror
image of the External DNS, albeit with different DNS database entries and a different IP
address. The output looked like this:

Internal DNS server:
indns:/usr/sbin# ls -la
total 2872
drwxr-xr-x 2 root root 4096 Jan 21 15:21 .
drwxr-xr-x 13 root root 4096 Dec 29 16:15 ..
-rwxr-xr-x 1 root root 5027 Jul 10 2001 MAKEFLOPPIES
-rwxr-xr-x 1 root root 11048 Sep 18 18:20 accessdb
lrwxrwxrwx 1 root root 7 Oct 3 15:38 addgroup -> adduser
-rwxr-xr-x 1 root root 25538 Sep 17 06:23 adduser
-rwxr-xr-x 1 root root 16459 Sep 6 17:08 apt-setup
.
. (lots of files)
.
-rwxr-xr-x 1 root root 877 Aug 22 09:33 shadowconfig
-rwxr-xr-x 1 root root 209724 Jul 2 2001 sshd
-rwxr-xr-x 1 root root 3984 Apr 25 2001 syslog-facility

External DNS Server
exdns:/usr/sbin# ls -la
total 2872
drwxr-xr-x 2 root root 4096 Jan 21 15:21 .
drwxr-xr-x 13 root root 4096 Dec 29 16:15 ..
-rwxr-xr-x 1 root root 5027 Jul 10 2001 MAKEFLOPPIES
-rwxr-xr-x 1 root root 11048 Sep 18 18:20 accessdb
lrwxrwxrwx 1 root root 7 Oct 3 15:38 addgroup -> adduser
-rwxr-xr-x 1 root root 25538 Sep 17 06:23 adduser
-rwxr-xr-x 1 root root 16459 Sep 6 17:08 apt-setup
.
. (lots of files)

27 These example lines copied from Analysis of SSH crc32 compensation attack
detector exploit, by David Dittrich (http://staff.washington.edu/dittrich/misc/ssh-
analysis.txt)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 19 of 34

.
-rwxr-xr-x 1 root root 877 Aug 22 09:33 shadowconfig
-rwxr-xr-x 1 root root 212324 Nov 1 20:41:12 sshd
-rwxr-xr-x 1 root root 3984 Apr 25 2001 syslog-facility

A quick comparison revealed a difference in the size of sshd. The administrator
did not immediately raise the alarm, or call for help, but proceeded to poke around on
the External DNS server for a while, checking settings for sshd, looking at /etc/sshd.conf
with the visual editor, vi, and running programs to see if they were working properly.
Finally they returned to the sshd difference and checked the version number on the
external and internal DNS servers to compare them. They each reported the same
version. This confirmed the incident: both a missing set of suspicious syslog lines, and
an altered sshd. At this point, the administrator started making calls to management and
the rest of the systems administrators.

Containment and Eradication
The administrators and responsible managers convened a meeting to discuss

the incident. There were several people called in from around the company, and some
schedules were interrupted, as this meeting was made a high priority. One of the
administrators was adamant that the system affected be shut down and replaced, since
in his opinion a rootkit had been installed, while others were concerned about downtime
(no external DNS would mean some Internet users and email might have difficulty
reaching the site), and management wanted information to help make a decision about
whether to attempt information gathering, and possibly apprehend the culprits and hand
them over to law enforcement. In the end, the decision was made to replace the system,
since the adamant administrator carried the day. Getting to this point took and hour and
a half of wrangling, however.

This approach meant that the team would be tipping their hand, and exposing the
fact that the compromise had been detected. This heightened the importance of
preserving the existing evidence as carefully as possible, to keep open the possibility of
apprehending the attacker, as no more evidence might be gathered.
The action items from the first meeting were:

• Rebuild and replace the DNS Server
• Analyze the compromised server offline for evidence of vulnerability and

determine countermeasures
• Look for evidence of other systems having been compromised
• Come up with a timeline for the incident to assist in decision making

The administrators split up into three teams:

1) One team shut down the DNS server and began building a temporary
replacement. This was a straightforward task, and not really pertinent to this
review.

2) A second team began researching the possible methods that the attacker could
have used, and analyzing the compromised server itself for clues, going with the
working assumption that a rootkit had been installed on the server. The analysis
was of some interest, and was done as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 20 of 34

a. A complete backup of the system was made using Linux: the server’s hard
disk was removed and placed in a temporary system with a blank hard
drive of like capacity. This system was then booted from a set of Linux
Boot floppies. The old source disk was installed as hda, and a blank as
hdb. Then it was simply a matter of making a duplicate:

cat /dev/hda > /dev/hdb

The original disk was then stored for potential use as evidence.

b. A “clean” install disk containing the same Linux version as the

compromised system was restored from a stock disk image that had been
saved when the server was initially installed. A backup of a known good
image could also have been used, provided a reasonable check that a
backup had not already been compromised was made28. This disk was
then installed as hdb, and the copy of the compromised disk was installed
as hda. The root partitions on each of these were then mounted (read-only
for safety) as local volumes. These were then compared at the file level.
The procedure was as follows:

Mount the systems root directories (on partition5) as read only

mkdir /compromised
mkdir /clean
mount –o ro /dev/hda5 /compromised
mount –o ro /dev/hdb5 /clean

 Now generate the (long) listings

ls –lR /compromised > compromised.listing
ls –lR /clean > clean.listing
diff compromised.listing clean.listing

Note: The floppy boot environment is a little short on disk space. A large

root (/) file system on the disks being checked might tend to fill the disk. To get
around this, use a RAM disk:

dd if=/dev/zero of=/dev/ram1 bs=1k count=10000
(write 10000 bytes of zeros to a ramdisk device – zero it out for use)

mke2fs –N 20000 /dev/ram1
(create a file system on the RAM disk with a lot of inodes)

28 This can be done by comparing the critical binary file sizes and modification dates to
those of know good media, such as distribution CDs or digitally signed binary archives.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 21 of 34

mount –t ext2 /dev/ram1 /mnt
(mount the disk so you can use it)

Then run the same commands as above, but send the listings to the /mnt

directory instead:

ls –lR /compromised > /mnt/compromised.listing
ls –lR /clean > /mnt/clean.listing

This yields listings of the files in compromised.listing that differ from those in
clean.listing, and their counterparts in clean.listing. This output can be piped to the grep
command to look for lines containing specific strings, should there be a large number of
differences.

Practical Note: If you mount the disk partition with the root (/) filesystem on it, you
will probably get the most interesting files. For completeness, however, you should
check the /etc/fstab file to see what partitions the other parts of the filesystem are
mounted on, notably /boot, and /opt, which may be of interest, since they are often on
other partitions, and contain the kernel (in the case of /boot) and installed software (in
/opt). In a multi-disk system, this will be a tedious process of going through each disk.

RAID systems other than RAID 1 (mirroring) are likely to be difficult to evaluate
with this method, since one would need to reconstruct the raid array, and a suitable
comparative disk or array, and get it to boot up from a floppy (or perhaps a CD-ROM).
On a mirrored system, however, it should be simple enough to simply mount one of the
mirror pair drives for this purpose.

Should the attacker have used a kernel rootkit, this approach would still find all
the modified files without relying on the kernel itself (we are using a different, very small
kernel). The disadvantage of this method is, obviously, that the system must be taken
offline, and boot floppies prepared.

This approach turned up a few significant file differences, indicating that sshd
had been replaced29, and some of the other related activity. It also showed evidence of
the initial investigation by the discovering administrator.

The general research turned up a number of rootkits that might possibly have
had the sshd component of them installed, but none that matched the replacement sshd
exactly. There were no other files found to have been actually replaced, and there were
no kernel differences, so the team concluded that the original assumption that a rootkit
was used was incorrect, and that the compromise was perhaps not as serious as first
thought.

Focusing on the syslog entries and searching security-related sites, the team
discovered that the entries they were seeing were characteristic of a crc32 attack. They
also determined that the sshd version they had been using was vulnerable to this type
of compromise.

3) The third team looked for evidence of further compromise, and began putting
together a timeline for the incident.

a. Looking for further compromise included the following

29 For an example of what this looks like, see attachment A.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 22 of 34

• Checking the external firewall logs for evidence of inbound connections
to other hosts from outside, and cross-checking with local syslog
entries. Aside from the original compromise and some scanning
activity, nothing was found. The attacker’s IP address was found, and
was determined to be a dial-up connection from an ISP in another city.

• Looking through the Internal firewall logs for similar evidence.
Connection attempts from the External DNS server to the Internal
syslog server on port 22 were seen, but all were terminated before
login, according to the log. In itself this was not evidence of a
compromise.

• Matching all inbound connections found with legitimate access by
privileged users. This was not too hard, as there were few connections
during the time investigated, and all were made by the technical team,
but a lack of notes meant that most of this was done from memory.

• Coordinating with the second team to determine likely signatures of the
method used. This turned up that the attacker had used a crc32 attack
on sshd, and had then replaced sshd, but these symptoms were not
found on any other systems.

 The timeline was simply a listing of all the incident related events, and the
associated times and dates. It was the high-level summation of all notes and actions,
and the listing of the four W’s of Incident Handling: Who, What, Where, and When. It
looked like this:

Date: Time: Analyst

System(s)
Affected

Event

11/1/2001 18:46 Jim External
dns

First evidence of unauthorized access in syslog
on syslog server.

11/1/2001 18:48 Jim External
dns

Evidence of successful crc32 attack on
external DNS server

11/1/2001 20:41 Jim External
dns

Evidence that sshd was modified at this time
(file modified date)

11/1/2001 20:45 Phil Syslog Evidence that Syslog server was scanned
(Internal Firewall Log)

11/2/2001 06:55 Jim External
dns

Administrator first alerted to possible
compromise by reading email

11/2/2001 07:15 Jim External
dns

Administrator logged in to External DNS
server, begins investigating

11/2/2001 8:05 Jim External
dns

Administrator completes investigation, calls
managers

11/2/2001 11:15 Team External
dns,
External
SMTP,
Firewalls,
Syslog

Eradication teams start work

Etc...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 23 of 34

 Having this timeline is useful in decision-making, and in ensuring all persons on a
team are working from the same assumptions. It can become a reference in determining
the root cause of an incident and in gaining insight about the attacker and their
methods. It is also useful as a general practice in non-security related incidents or
outages. It is not of particular use in proving guilt, since this depends on specific
evidence, but it helps greatly in managing a multi-person effort.

After about two hours the server replacement was done, and the group met again
to decide what should be done next. The research team had found the signature from
syslog listed in a description of a crc32 vulnerability, and surmised that this was what
was used to compromise the system. The third team had found no evidence that other
systems were compromised in the same way as the External DNS server had been,
and, working with the second team, put the time of initial compromise to be the previous
evening. The remaining containment and eradication action items were:

• Identify any remaining systems with vulnerable versions of sshd
• Shutdown and upgrade sshd if it is a vulnerable version and accessible from the

Internet
• Have everyone change their ssh passwords

The technical teams divided up the work, taking most of the afternoon to
complete it. Other longstanding unresolved technical issues complicated matters, and
some users complained about the fact that computer support seemed distracted, and
unable to service requests.

At this point the company gossip chain was alive with the rumor: We’ve been
hacked! The management spent valuable time quelling this, and coming up with a
sanitized version of events for office consumption. The CEO demanded a briefing early
on, and was given incorrect information, which had to be corrected later, embarrassing
the technical team manager. More meetings were scheduled, and management grilled
all members of the technical team about the security of the network. Trust was
damaged internally, and the rumor got around that the network was insecure, and that
hackers had gotten in and stolen company secrets.

Recovery
The next day, a new pair of external DNS servers were implemented, replacing

the temporary server put in place the day before. The extra server was added as a
secondary to the Internic record. This completed the repair of the outage caused by the
taking down of the compromised DNS server, and improved the reliability of the external
DNS.

In order to provide some assurance that the attacker was not re-penetrating the
systems, syslog entries on all external systems were checked every 2 hours for 24
hours by administrators, and the swatch utility was checked for function and accuracy.

All action items from the previous day’s meeting were confirmed as completed.
An incident report was created to allow the organization to learn from the experience.
The incident report consisted of the timeline, the corrective actions taken and to be
taken, and the root cause analysis. This is a simple summary of what caused the
incident, and is useful for security-related and non security-related incidents. In some

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 24 of 34

cases incidents that are thought to be security-related initially turn out to be due to some
other cause, or vice versa, so it is useful to have a general review procedure. The
analysis in this case was as follows:

Root Cause:
 There was not procedure in place to update operating systems or
communications software. This led to the exposure of a critical system to a well-known
vulnerability, which was exploited by an unknown attacker. Recovery was adequate,
and several weaknesses in the security of the network were dealt with, but no report to
the security community was made, nor was any attempt made to trap or even
specifically track the attackers.

Proximate Cause:
The lack of a proper trust model (trusted hosts) and the similar lack of any

obfuscation or true IDS contributed to the vulnerability becoming exploitable, and not
sufficiently recorded for a legal case to be built against the attacker.

Lessons Learned:
 The establishment of proactive security procedures for maintenance is
necessary, as is the establishment of routine incident handling procedures. Without this
basic discipline, even simple incidents can become expensive and easily get out of
control.

Follow-up and Corrective Actions
The fictitious team had actually a fairly good experience considering their lack of

preparation. I assumed a fairly heavy team, (at least 6 people), with involved managers
and fairly high skill levels. The incident shows, however, that several commonly
neglected items combined to amplify a relatively small mistake into a huge problem. The
IT department had to scramble to save the situation, and management ended up losing
confidence in it’s technical team and IT management.
 The team failed to capture and preserve enough evidence to successfully
prosecute the attacker. In part this was due to mistakes made in the incident handling
process, but also it was due to a conscious decision on their part not to gather more
information, but to simply recover from the compromise and get back to work. In fact,
the attacker had not gotten very far, and while their actions were meant to penetrate the
security of the network, it would be difficult to prove that they did any significant harm.
The risk management decision to rebuild the compromised server (or more accurately
to down the existing server while the replacement was being built) was the single most
important factor in destroying the chance of catching the attacker.

The following points summarize the problem areas and optimal corrective actions:

• Establishment of a procedure for incident handling
The initial investigation of the alarm was too casual, as the administrator was not
expecting an intrusion problem, and had never actually dealt with anything more
serious than an email virus. Thus the lack of a documented procedure, and the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 25 of 34

associated discipline needed to recognize when to pull out the procedure and
follow the steps were critically lacking.
The lack of a procedure led to the following mistakes:
1) The investigating administrator made no attestation. This compromises the

credibility of the information they uncover – it is less likely to be admissible as
evidence.

2) No notes were taken as to what was done. The administrator simply poked
around for a while, and was not careful enough not to disturb the system.
Note that this activity showed up in forensic analysis. The investigative
techniques were potentially destructive – use of the vi editor, for example,
was avoidable, and had the potential for altering files and file access
information such as date modified. It was also probably unwise to connect to
the system remotely, as this involved execution of the compromised sshd
code, which turned out not to be harmful, but might just as easily have been.

3) The administrator did not immediately call for assistance. This further
degraded the evidentiary chain, as the testimony of two witnesses is much
more compelling as evidence. It was also a tactical error, as a team is likely to
make far fewer bad choices than an individual.

To supplement the procedure, the team could also have prepared:

o Updates to the disaster recovery plan to include incident handling. Not
needed in this case, but only because the attacker was stymied early in
the attack.

o Checklists and documentation for incident handling and evidence
gathering. This would have given the teams a clear path, and cut down on
the need for meetings and discussion – the worst time to write a policy is
when you need it.

o Jump kits, containing the software, backup devices and media for
evidence preservation.30 Better forensic tools could have made the
detection job easier, and while the team did a good job with what they
had, it was something of a scramble to put it together.

o Related procedures for information sharing with the security community.
As these were not in place, there was no report made, and no one else
outside the company learned anything from the experience of the team.

• Training of employees in incident handling
The best procedure in the industry is useless if it sits in a file cabinet and is never

used. Training is essential for all employees in reporting an incident, and for those
individuals likely to discover one in the course of their jobs, incident handling training
should be mandatory. In the same way that employees are trained in specialized skills

30 In this case the disaster recovery equipment had to be used for incident recovery.
Such dual-use is good practice, actually. The jump kit should contain at a minimum the
boot floppies, documentation on their use, and CDs with known good binaries for
comparison or even for boot. Forensic utilities for disk inspection to improve the
improvised procedures used could optionally be added.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 26 of 34

and company policy, everyone needs to know how to at least recognize and report an
incident. Training for managers is important as well, as I illustrate in the next bullet.

• Management must enforce the use of process and adherence to policy.
All managers of technical departments should be aware of information security, and

be committed to processes that improve security over time. Quality enhancement
processes and models such as ITIL or ISO 900131 are ideal frameworks for organizing
good security discipline, and for enforcing it. These models have historically been
ignored in smaller technical organizations, but as technical professionals focus on
security, process models such as these are gaining more acceptance.

The ITIL in particular is germane in that it categorizes IT management into Service
Delivery and Service Support. Greatly simplified, the Service Delivery portion focuses
on the planning and management (proactive) tasks involved in running the business of
IT, such as Service Level Management, Financial Management, etc. Service Support is
generally composed of reactive and situational tasks, including the establishment of a
Service Desk, and specifically Incident Management. While ITIL does not (yet)
specifically detail security Incident Management to the degree SANS does, it’s general
structure affords this, and will likely be extended in later drafts. In reality, quality
processes such as ITIL are intended to allow for all problems to be tracked and
evaluated, as a way to improve quality, by building in the review of lessons learned.
When properly applied, this process significantly enhances security. Perhaps even more
important, it assigns security related infrastructure, expenditures, policies, and
procedures the proper significance in the IT organization, ensuring they are not ignored.

Note: not least among the recommendations of standards organizations and security
management professionals is the recommendation that management implement
measurable performance metrics for IT and security staff, with rewards for good
performance and consequences for poor performance. This point is often ignored, and
leads to higher turnover than necessary in most technical shops, and resultant
significant security issues. Also, a common set of rules cuts down on the destructive
rivalry, political maneuvering, and grandstanding so common in corporate
environments.

• Assignment of an Incident handling team.
System administrators were asked to do this work in addition to their normal tasks,

and there was no leader or go-to person for this situation. This resulted in disruptive and
contentious meetings that delayed work on the incident, allowed rumors to start, and
unnecessarily raised the stress level of everyone involved. In addition, management
was forced to make decisions in the moment that could have been left up to the team,
had the team been prepared.

• Establishment of a liaison in local law enforcement

31 See the International Organization for Standardization:
http://www.iso.ch/iso/en/ISOOnline.frontpage. The “ISO Process” is a framework for
quality improvement in an organization. While not specific to security processes, it is
adaptable to them.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 27 of 34

While in this case evidence was not preserved adequately to enable prosecution,
had it been, the company would have had to start it’s relationship with law enforcement
with an active case, not knowing who the appropriate local contact was, what
procedures they would require, etc. The chance of a successful prosecution is therefore
reduced.

• Establishment of a maintenance and audit schedule, and procedures to keep

software up to date.
This is basic system administration, but requires a discipline rarely seen outside

military organizations. It’s effect on security is obvious, and in this case it would have
eliminated the threat before it became a practical reality: the x2 code was not written
until some months after the vulnerability it exploits was published.

• Establishment of a trust model for remote access
In this situation, all hosts were trusted to make an ssh connection from the Internet

on a known port. While password security was in place, this practice violated the
principle of defense in depth. Not all hosts needed to be trusted, therefore, not all hosts
should have been. Also, ssh was used with no requirement for the client to have
knowledge of the server’s public key prior to connecting, thus negating a significant part
of the security mechanism of the protocol.

• Establishment of a robust Intrusion Detection System
The gathering of evidence in this case was painful and slow. Correlating evidence

was compromised, and only one set of logs really showed that the attack took place at
all. Having an IDS, particularly an IDS that is configured to capture and log packet data,
is essential for correlation of the time and nature of the attack.

Conclusion
 This incident, though fictitious, serves to illustrate some of the common failings
seen in the industry. Despite a robust architecture, excellent equipment and reliable
systems and backups, the team was not prepared to really handle an actual intrusion. In
the end, they did have some evidence in the backup of the compromised system and
the associated log files, but because they were unaware of the proper procedures for
handling the incident, this evidence was tainted, and the management was not confident
enough to pursue the attacker.
 The IT team was happily going about it’s normal business, confident that they
had paid attention to security. They had implemented encryption. They had a secure
logging server, and monitored the logs. The simple omission of a process to update
software on the exposed systems allowed an otherwise well-run and highly functional
network to become compromised. This false sense of security is something I have
observed many times, in many organizations, and usually for similar reasons.
 While security is often, in the moment of compromise, a matter of technical detail,
in general good security only comes with a fairly mundane focus on process, quality,
and discipline. For this reason I hope to raise the awareness of my colleagues in the
information security field about organizations like ITIL and ISO and encourage them to
contribute to the standardization of the procedural portions of the field.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 28 of 34

 The crc32 vulnerability was interesting to study for another reason. In the course
of writing this paper, several people I mentioned it to were dismissive of the threat,
saying things like “That’s been known for a year! Anyone who didn’t update their
software must be living on Mars”. As the current statistics show, however, the issue is
still very far from solved. I think the false sense of security issue is very real, not least
because of the attitudes we take about “old” threats. Old threats are real, and the
exploits based on them are widespread and various. We must look for and fix the
vulnerable systems in our midst. It only takes one to ruin your whole day.

Sources List
Web sources:
www.dshield.org
http://www.citi.umich.edu/ssh/
http://staff.washington.edu/dittrich/misc/ssh-analysis.txt
http://www.vnunet.com/News/1127965
http://www.itil-itsm-world.com/
http://www.cve.mitre.org
http://razor.bindview.com/publish/advisories/adv_ssh1crc.html
http://packetstorm.widexs.nl/0102-exploits/ssh1.crc32.txt
http://www.incidents.org/papers/ssh_exploit.pdf
http://www.ssh.com/tech/archive/secsh/architecture.txt
http://www.tripwire.com/, http://www.tripwire.org/
http://www.cert.org/security-improvement/implementations/i042.01.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.iso.ch/iso/en/ISOOnline.frontpage
Print Sources:
Thomas A. Wadlow: The Process of Network Security, Addison Wesley, 2000. – For
general reference.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 29 of 34

Attachment A: Diff Listing and discussion
The process of generating detailed listings of potentially compromised
disks and their supposedly clean images is discussed here in somewhat
more detail than in the general text. I generated a couple of listings in a
lab setting and saved the diff output.

root@debian:~# diff disk1.list1 disk1.list2
6,7c6,7
< drwxr-xr-x 5 root root 20480 Feb 5 05:35 dev
< drwxr-xr-x 47 root root 4096 Feb 5 05:35 etc

> drwxr-xr-x 5 root root 20480 Feb 3 02:57 dev
> drwxr-xr-x 47 root root 4096 Feb 3 02:57 etc

So, these directories were touched. This could be innocent, but is
interesting.

407c407
< prw------- 1 root root 0 Feb 5 05:34 initctl

> prw------- 1 root root 0 Feb 3 02:57 initctl
976c976
< crw------- 1 root tty 4, 1 Feb 5 05:23 tty1

> crw------- 1 root tty 4, 1 Feb 3 02:32 tty1
987c987
< crw------- 1 root tty 4, 2 Feb 5 05:24 tty2

> crw------- 1 root tty 4, 2 Feb 3 02:42 tty2
998c998
< crw------- 1 root root 4, 3 Feb 5 05:20 tty3

> crw------- 1 root root 4, 3 Feb 3 02:32 tty3
1009c1009
< crw------- 1 root root 4, 4 Feb 5 05:20 tty4

> crw------- 1 root root 4, 4 Feb 3 02:32 tty4
1020c1020
< crw------- 1 root root 4, 5 Feb 5 05:20 tty5

> crw------- 1 root root 4, 5 Feb 3 02:32 tty5
1031c1031
< crw------- 1 root root 4, 6 Feb 5 05:20 tty6

> crw------- 1 root root 4, 6 Feb 3 02:32 tty6
1299c1299
< cr--r--r-- 1 root root 1, 9 Feb 5 05:20 urandom

> cr--r--r-- 1 root root 1, 9 Feb 3 02:32 urandom
1431c1431

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 30 of 34

< prw-r----- 1 root adm 0 Feb 5 05:20
xconsole

> prw-r----- 1 root adm 0 Feb 3 02:32
xconsole
4278c4278
< -rw-r--r-- 1 root root 45 Feb 5 05:35 adjtime

> -rw-r--r-- 1 root root 45 Feb 3 02:57 adjtime

All fairly innocent stuff – you expect these files to change...

4324c4324
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 init.d

> drwxr-xr-x 2 root root 4096 Feb 3 00:29 init.d
4327c4327
< -rw------- 1 root root 60 Feb 5 05:20
ioctl.save

> -rw------- 1 root root 60 Feb 3 02:32
ioctl.save
4350,4351c4350,4351
< -rw-r--r-- 1 root root 365 Feb 5 05:20 motd
< -rw-r--r-- 1 root root 65 Feb 5 05:35 mtab

> -rw-r--r-- 1 root root 365 Feb 3 02:32 motd
> -rw-r--r-- 1 root root 65 Feb 3 02:57 mtab
4357c4357
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 pam.d

> drwxr-xr-x 2 root root 4096 Feb 3 00:29 pam.d
4376c4376
< -rw-r--r-- 1 root root 55 Feb 5 05:20
resolv.conf

> -rw-r--r-- 1 root root 55 Feb 3 02:31
resolv.conf
4390c4390
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 ssh

> drwxr-xr-x 2 root root 4096 Feb 3 00:28 ssh

SSH directory is modifed? Hmmm...

4945c4945
< -rw-r--r-- 1 root root 0 Feb 5 05:35 ifstate

> -rw-r--r-- 1 root root 0 Feb 3 02:57 ifstate
5241c5241
< -rw------- 1 root root 526 Feb 5 05:30
ssh_host_key

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 31 of 34

> -rw------- 1 root root 526 Feb 3 00:28
ssh_host_key
5397c5397
< drwxr-sr-x 2 root staff 4096 Feb 5 05:27 tomas

> drwxr-sr-x 3 root staff 4096 Feb 3 02:53 tomas
5400c5400,5405
> -rw-r--r-- 1 root staff 16514 Jan 26 22:32
net1.txt
> drwxr-sr-x 2 root staff 4096 Jan 29 06:24 sshd
> -rw-r--r-- 1 root staff 6888 Jan 29 07:15 take2
>
> /home/tomas/sshd:
5719,5726c5724,5731
< -rw-r--r-- 1 root root 3817 Feb 5 05:20
modules.dep
< -rw-r--r-- 1 root root 31 Feb 5 05:20
modules.generic_string
< -rw-r--r-- 1 root root 73 Feb 5 05:20
modules.ieee1394map
< -rw-r--r-- 1 root root 81 Feb 5 05:20
modules.isapnpmap
< -rw-r--r-- 1 root root 29 Feb 5 05:20
modules.parportmap
< -rw-r--r-- 1 root root 15975 Feb 5 05:20
modules.pcimap
< -rw-r--r-- 1 root root 24 Feb 5 05:20
modules.pnpbiosmap
< -rw-r--r-- 1 root root 189 Feb 5 05:20
modules.usbmap

> -rw-r--r-- 1 root root 3817 Feb 3 02:31
modules.dep
> -rw-r--r-- 1 root root 31 Feb 3 02:31
modules.generic_string
> -rw-r--r-- 1 root root 73 Feb 3 02:31
modules.ieee1394map
> -rw-r--r-- 1 root root 81 Feb 3 02:31
modules.isapnpmap
> -rw-r--r-- 1 root root 29 Feb 3 02:31
modules.parportmap
> -rw-r--r-- 1 root root 15975 Feb 3 02:31
modules.pcimap
> -rw-r--r-- 1 root root 24 Feb 3 02:31
modules.pnpbiosmap
> -rw-r--r-- 1 root root 189 Feb 3 02:31
modules.usbmap
5974,5975c5979,5980
< drwxr-xr-x 2 root root 12288 Feb 5 05:30 bin
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 doc

> drwxr-xr-x 2 root root 12288 Feb 3 00:52 bin
> drwxr-xr-x 2 root root 4096 Feb 3 00:52 doc
5979c5984
< drwxr-xr-x 24 root root 8192 Feb 5 05:30 lib

> drwxr-xr-x 24 root root 8192 Feb 3 02:31 lib

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 32 of 34

5981c5986
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 sbin

> drwxr-xr-x 2 root root 4096 Feb 3 02:57 sbin
6911c6916
< lrwxrwxrwx 1 root root 3 Feb 5 05:30 slogin
-> ssh

> lrwxrwxrwx 1 root root 3 Feb 3 00:22 slogin
-> ssh
7204c7209
< lrwxrwxrwx 1 root root 16 Feb 5 05:30 ssh ->
../share/doc/ssh

> lrwxrwxrwx 1 root root 16 Feb 3 00:28 ssh ->
../share/doc/ssh
11614c11619
< -rwxr-xr-x 1 root root 241340 Jan 26 00:36 sshd

> -rwxr-xr-x 1 root root 655916 Feb 3 02:30 sshd

Uh, oh. SSHD has been replaced...

11661c11666
< drwxr-xr-x 200 root root 4096 Feb 5 05:30 doc

> drwxr-xr-x 200 root root 4096 Feb 3 00:50 doc
12312c12317
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 ssh

> drwxr-xr-x 2 root root 4096 Feb 3 00:22 ssh
16654c16659
< drwxr-xr-x 2 root root 16384 Feb 5 05:30 man1

> drwxr-xr-x 2 root root 16384 Feb 3 00:52 man1
16661c16666
< drwxr-xr-x 2 root root 8192 Feb 5 05:30 man8

> drwxr-xr-x 2 root root 8192 Feb 3 00:50 man8
17324c17329
< lrwxrwxrwx 1 root root 8 Feb 5 05:30
slogin.1.gz -> ssh.1.gz

> lrwxrwxrwx 1 root root 8 Feb 3 00:22
slogin.1.gz -> ssh.1.gz
32506c32511
< -rw-r--r-- 1 root src 16384 Aug 6 2001
mpparse.c

> -rw-r--r-- 1 root src 16384 Aug 6 17:29
mpparse.c
35007,35008c35012,35013
< -rw-r--r-- 1 root src 247961 Aug 6 2001
DAC960.c
< -rw-r--r-- 1 root src 143612 Aug 6 2001
DAC960.h

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 33 of 34

> -rw-r--r-- 1 root src 247961 Aug 6 17:34
DAC960.c
> -rw-r--r-- 1 root src 143612 Aug 6 17:34
DAC960.h
35200c35205
< -rw-r--r-- 1 root src 63208 Aug 6 2001 mxser.c

> -rw-r--r-- 1 root src 63208 Aug 6 17:33 mxser.c

A couple of grep searches:

root@debian:~# diff disk1.list1 disk1.list2 | grep sshd
> drwxr-sr-x 2 root staff 4096 Jan 29 06:24 sshd
> /target/home/tomas/sshd:
< -rwxr-xr-x 1 root root 241340 Jan 26 00:36 sshd
> -rwxr-xr-x 1 root root 655916 Feb 3 02:30 sshd
root@debian:~# diff disk1.list1 disk1.list2 | grep ssh
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 ssh
> drwxr-xr-x 2 root root 4096 Feb 3 00:28 ssh
< -rw------- 1 root root 526 Feb 5 05:30
ssh_host_key
> -rw------- 1 root root 526 Feb 3 00:28
ssh_host_key
> -rw-r--r-- 1 root staff 2538 Jan 29 06:28 falcon-
ssh-diffs.tar.gz
> drwxr-sr-x 2 root staff 4096 Jan 29 06:24 sshd
> /target/home/tomas/sshd:
< lrwxrwxrwx 1 root root 3 Feb 5 05:30 slogin
-> ssh
> lrwxrwxrwx 1 root root 3 Feb 3 00:22 slogin
-> ssh
< lrwxrwxrwx 1 root root 16 Feb 5 05:30 ssh ->
../share/doc/ssh
> lrwxrwxrwx 1 root root 16 Feb 3 00:28 ssh ->
../share/doc/ssh
< -rwxr-xr-x 1 root root 241340 Jan 26 00:36 sshd
> -rwxr-xr-x 1 root root 655916 Feb 3 02:30 sshd
< drwxr-xr-x 2 root root 4096 Feb 5 05:30 ssh
> drwxr-xr-x 2 root root 4096 Feb 3 00:22 ssh
< lrwxrwxrwx 1 root root 8 Feb 5 05:30
slogin.1.gz -> ssh.1.gz
> lrwxrwxrwx 1 root root 8 Feb 3 00:22
slogin.1.gz -> ssh.1.gz

Actually, I got this listing by replacing sshd with an older version, generating a listing,
and then updating to the latest version, then generating another listing. I also modified
some associated files. The results are similar to what you would see if someone were
attempting to sabotage sshd.

Note that the first grep search turns up the biggest nugget: sshd of two different sizes.
This information is a little out of context, due to grep grabbing single lines from a larger
list, and that list a diff output, but it is useful nonetheless. From this simple search we
can see that sshd has been altered, and can narrow our focus to this file and it’s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Page 34 of 34

associated configuration files. We can always go back to the listing files or even the
backup of the disk for more details.

