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1.  Introduction 

1.1  How We Got Here 
In the span of a few short years the Internet has grown from an interesting 
concept to become an expansive information resource, communication medium, 
marketplace, and recreational destination. 
 
Like all complex constructions, the smooth and deceptively straightforward 
operation of the Internet relies on many technologies working behind the scenes 
and in tandem.  From the highest abstraction of a web browser, through layers of 
network protocols, and even down to the design and construction of network 
hardware, a tremendous amount of operations need to occur in order to 
accomplish the seemingly atomic tasks of retrieving a web page or submitting a 
form.  Many of the protocols that form the foundation and life blood of this 
network were designed and implemented decades ago.  That these technologies 
have scaled up to handle the current scope of the Internet is evidence of the 
robustness of their design and operation.  Although many critiques can be made 
regarding the elegance or ease-of-use of particular protocols and applications, 
the fact remains that they do work very well.   
 
Ironically, some of the same characteristics that have contributed to this success 
are also fundamental deficiencies.  Section 2 will elaborate on these 
technologies, their vulnerabilities, and touch upon what can be done to address 
them.  Section 3 describes one particular exploit in detail.  The purpose is not 
only to educate about this exploit, but to demonstrate that the flaws upon which it 
relies are more widespread and serious than a single mistake in one program’s 
code.  

1.2  Setting the Stage for Vulnerability 
Several years ago the concept of a computer virus or worm causing widespread 
damage was nothing more than a slightly unsettling theory; the idea of breaking 
into computer systems was downplayed and shrugged off as the annoying but 
harmless activity of a few uncommonly intelligent pranksters.  The Internet has 
swiftly and completely redefined these notions.  Now that computers are globally 
and easily accessible over a network, malicious programs have a medium over 
which to propagate, and the reach of attackers has become limitless.  The 
computers that keep track of business transactions and other sensitive 
information are suddenly available, not just through a handful of hardwired 
terminals, but to anyone who is clever enough to know where to look.   
 
With respect to security, most users and organizations are now in reactionary 
mode.  It has been proven that cyber attacks are real threats which are not 
sufficiently mitigated by built-in security measures.  In order to protect their 
systems, administrators are faced with a difficult challenge:  they must make 
network protocols perform a task opposite that for which they were designed.  
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The Internet was created to easily exchange information.  In such an 
environment, restricting the flow of that information is the challenge.  
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2.  Targeted Ports: The Usual Suspects 
By far, the most attacked port on the Internet today is 80/TCP.  Included here is a 
graph from http://isc.incidents.org/top10.html (taken on August 5, 2002) that 
illustrates the relative frequency of scans over the top 10 most attacked ports 
(Figure 1). 

 
Figure 1: Top 10 Scanned Ports 

In addition to the staggering numbers for port 80, notice also the 10th most 
scanned port, 53.  Port 53/UDP plays an indirect but critical role in many Internet 
vulnerabilities, including the specific exploit described in section 3. 

2.1  Port 80/TCP 

2.1.1  Services 
There’s quite a bit more to port 80 than meets the eye.  At a casual glance, it is 
simply the connection point for web servers.  Software such as Microsoft®1 
Internet Information Server and the Apache2 web server bind to this port in order 
                                                   
1 Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. 
2 The Apache Software Foundation: http://www.apache.org 
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to provide World Wide Web content to clients.  Web access is far and away the 
most utilized service of the Internet today.  Even other popular services such as 
e-mail are now just as readily available via the web as on their native ports and 
protocols. 
 
Most applications that make requests to port 80 are classified as “web browsers” 
because their primary purpose is to process World Wide Web content.  All 
browsers are able to interpret the web’s file format: Hypertext Markup Language 
(HTML).  HTML is the basis of web navigation, providing content and links to 
other resources.  HTML is only one of the types of data that can be served and 
consumed over port 80.   
 
Some programs that make requests on 80/TCP are too simplistic or specialized 
to be considered browsers.  Many applications connect themselves to remote 
servers in order to perform data transfers or other procedures.  These operations 
may even be done in the background, without the user having to understand the 
nature of the transfer.  Examples of this kind of client include virus-definition 
update software, the Windows Update system, software that allows online-
registration, and programs that check for updates over the Internet. 

2.1.2  Protocol 
The protocol spoken on 80/TCP is Hypertext Transfer Protocol (HTTP).  HTTP 
provides a simple method to exchange content between the server and client.  
The client connects, makes a request, and then receives a reply containing the 
requested file or information.  Information about the type of the returned data is 
encoded in this reply.  At this point the connection is closed unless the server 
and client agree to maintain the channel for future requests.  A client’s request 
can also contain data that will be sent to the server.  This ability is used to let 
clients send files and information up to the web server to be stored or processed.  
Examined at this level, HTTP is really nothing more than a file transfer protocol.   
 
The notion of a “file”, however, need no longer be limited to a static document.  
Most web servers allow scripts and other programs to alter or even completely 
generate the data that will be sent to the client.  This one feature is what makes 
all web applications possible.  A web server can perform any desired type of 
processing and then return the resulting “page” to the client.  So now, instead of 
using the web merely as a file transfer system, web-page-based applications can 
be developed that function on a client-server model. 
 
Web applications of this kind are becoming the primary method of delivering 
functionality remotely over the Internet.  This trend is partly due to the 
widespread availability of web access as well as the richness, flexibility, and 
standardization of HTML in describing content and user interfaces.  The other 
reason for the tremendous amount of web-enabled applications has to do with 
the success of the web, and the fundamental way HTTP transfers are performed. 
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Using the web is a requirement for most Internet users at home and work alike. 
Almost all HTTP traffic is carried out over port 80, and for this reason, network 
security mechanisms are generally configured to allow connections over this port.  
To seal off access to 80/TCP would mean blocking all web traffic, which is 
usually not a viable option.  This is the other reason why Internet applications are 
built to use HTTP and HTML: it works everywhere and is seldom hindered by 
security policies.  Stacking applications up on port 80 provides ease of 
deployment and ubiquitous user access, but it can introduce additional 
vulnerabilities. 

2.1.3  Security Issues/Vulnerabilities 
A quick search on Internet security sites lists an astoundingly high number of 
HTTP-related vulnerabilities as compared to the next most commonly scanned 
port, currently Microsoft® SQL Server.  Common Vulnerabilities and Exposures 
(http://cve.mitre.org) lists 305 current entries and candidates for HTTP, and only 
86 for MS-SQL.  The CERT® Coordination Center (http://www.cert.org) shows 
1483 results for HTTP and only 113 for MS-SQL.  Many people assume that the 
high number of HTTP vulnerabilities indicates that web server vendors are 
somehow less security conscious than other developers.  However, in this case, 
the number of vulnerabilities simply follows a direct ratio to the amount of 
functionality offered over HTTP.  
 
In the upcoming sections, many types of vulnerabilities that use port 80/TCP are 
discussed.  Although a discussion of Secure Sockets Layer (SSL) is beyond the 
scope of this paper, for completeness it should be noted that port 443/TCP is 
susceptible in identical ways to most of these port 80 vulnerabilities.  Port 443 
carries the same type of traffic as 80, except that it is encrypted using SSL.  This 
allows the client to verify the identity of the server, and it prevents malicious third 
parties from eavesdropping on the conversation.  But those two things are the 
only safety which SSL provides.  Some people believe that the encryption 
somehow makes 443/TCP less vulnerable to exploits, when in fact it just 
encrypts the traffic, making any attacks to that port harder to detect. 
 
The vast number of vulnerabilities that involve HTTP makes covering each one 
prohibitive.  Alternately, discussing only one or two examples would not 
adequately describe the scope of issues.  Instead, a classification will be 
presented describing the different types of vulnerabilities, their impacts, and how 
to avoid or counteract them. 
 
2.1.3.1  Server Vulnerabilities 
Almost all web server exploits involve a client sending a malformed, unusual, or 
otherwise unexpected request to the web server.  The code which processes the 
request is deficient in some manner that allows the data to have a malicious 
effect.  The input might be too long, contain unusual characters, or trick the 
server into performing a restricted action.  In almost every case, the vulnerability 
could be avoided by making the server code that processes the request more 
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robust.  Common effects of server vulnerabilities are crashing the web service, 
accessing or altering files which should be restricted, running commands on the 
server, and in some cases gaining administrative access to the server. 
 

• Web Service Attacks 
Vulnerabilities in the core web server software can be the most 
devastating.  On many systems, the web service runs with unrestricted 
privileges, which means a successful exploit might be able to gain access 
to sensitive data on the server, or perhaps even run commands that will 
take control of the machine.  Usually the only way to address 
vulnerabilities of this nature is to install an updated version of the web 
service software from the vendor.  On open source systems, it may be 
possible to simply alter the deficient processing code and recompile. 
 

• Web Server Extensions 
An extension refers to any program module that works with the core web 
service to provide additional functionality.  Some extensions allow for 
script language processing, some provide database access, etc.  Attacks 
against server extensions are constructed so that the processing code 
inside the extension will fail to handle the request properly.  Since 
extensions are sometimes configured to run with the same privileges as 
the web service itself, extension vulnerabilities can be every bit as 
dangerous as core web service attacks.  Additionally, many web services 
ship with a number of extensions installed and configured this way by 
default.  Vulnerabilities in these default extensions are especially 
dangerous because administrators who leave such features active when 
they are not needed are also likely not to keep their servers current with 
vendor security updates.  Over time, this creates a large population of 
machines that are vulnerable to well-known exploits.  Indeed, it is for this 
very reason that recent Internet worm epidemics such as Code Red and 
Nimda were able to infect such a large number of servers throughout the 
world. 
 
The solution to extension vulnerabilities is twofold.  Staying up to date with 
vendor updates is critical, as in any situation where services are being 
provided over the Internet.  Also, a responsible administrator should 
disable every feature and extension of a web service that is not 
specifically required by the organization.  This simple precaution has 
prevented compromises even on systems that were left unpatched for 
extended periods. 
  

• Web Application Vulnerabilities 
The third target for server attacks is the software that the web service 
launches in order to interpret script pages and run web applications.  
Some such programs are supplied by vendors and some are custom-
made by particular organizations.  Web services often install with example 
code fragments and scripts that have little or no security.  Some vendors 
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of web applications accidentally or purposefully leave special diagnostic or 
debug settings enabled that can compromise security.   
 
Custom-made web applications are by far the biggest variable.  They may 
have been created by developers who were unaware of or uninterested in 
taking proper security precautions.  Web applications often link different 
services and systems together to provide tremendous functionality.  
Unless care is taken, they then also provide further opportunities for 
exploiting the connected services.  Examples of this interconnection 
vulnerability include applications that run shell commands on the server 
and programs that interface with a SQL database.  Improperly or 
insufficiently validated input can be devastating in these cases.  Many 
such web applications provide validation through client-side scripting and 
then trust that the input is benign when it reaches the server.  The 
developers in this case just don’t realize how easily any malicious user 
could circumvent that logic and still send invalid data to the server. 
 
Addressing the problem of web application vulnerabilities will depend on 
the source of the programs.  If the software is distributed by a vendor, it is 
extremely important to apply all relevant security updates.  If possible, look 
into the product’s history to see if there have been known vulnerabilities in 
the past.  Restrict access to all web applications to the minimum 
necessary personnel and IP addresses.  For custom-made applications, 
especially those that deal with sensitive information, perform a security 
audit of the code, or hire a consulting firm that specializes in this task.   

 
2.1.3.2  Client Software Vulnerabilities 
An entirely different and more recent class of HTTP-based exploits targets the 
opposite end of the connection: the client software.  In this scenario, there is a 
remote web server that is serving malicious responses to clients that connect to 
it.  Web browsers are extremely powerful applications that have the ability to 
execute programs on the user’s behalf, as well as running sophisticated scripts.  
All browsers have built-in safeguards against performing potentially insecure 
actions without the user’s express permission.  However, browsers are complex 
programs, and sometimes their rules and checks don’t account for all possible 
situations.   
 
In client HTTP exploits, the malicious responses generally contain HTML and/or 
script code that tricks the browser into violating one of its built-in safeguards.  For 
example, by manipulating <object> tags and the “innerHTML” property in 
Microsoft® Internet Explorer, it was possible to execute an application remotely 
on a victim machine until a patch was released.3  In addition to transmittal over 
HTTP, this class of exploits can sometimes be used in conjunction with e-mail 
viruses.  Some e-mail reader programs use web browser components to support 

                                                   
3 For more information on this and other clever client HTTP exploits, see http://sec.greymagic.com/adv/.   
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HTML content within the messages, giving client HTML/script exploits the ability 
to propagate via e-mail. 
 
2.1.3.3  Covert Port 80 Use 
Some vulnerabilities arise due to the way network security systems treat port 80.  
In order to protect their networks, most organizations configure a firewall or 
packet filter at the perimeter between their network and the Internet.  A firewall is 
a machine or a program that intercepts all network traffic passing by it.  
Depending upon a set of configurable rules, each item is either blocked or 
allowed to go on its way.  As noted in section 2.1.2, almost all firewalls allow 
connections over 80/TCP.  Other ports are often blocked in order to limit the 
number of connection points between the inside network and the global Internet, 
thereby lowering risk of attack.  By restricting the ability to use other TCP ports, 
users and network software inside the security perimeter can be better controlled 
and protected.   
 
Unfortunately, this strategy turns out not to be as robust a protection as most 
administrators believe.  While web serving is the “correct” and most widely used 
purpose for port 80/TCP, any other TCP service can potentially be bound to this 
port instead.  Although the same is true for most ports in general, putting non-
HTTP traffic on port 80 carries a special significance.  Say a user wishes to 
access an unauthorized TCP service such as IRC, which uses 6667/TCP.  All 
that they must do is configure an IRC server outside the firewall to serve IRC on 
80/TCP instead of its native port of 6667.  Then they set their IRC client inside to 
use port 80, and proceed to chat on IRC all day without the firewall ever noticing.  
Using the same approach, attackers who have compromised a host on the 
network can easily create a covert communication channel through the security 
perimeter.  All they must do is use port 80/TCP for the communication, and the 
firewall will happily allow the traffic to pass. 
  
As a countermeasure to this tactic, some firewalls, such as Microsoft® ISA 
Server 2000, are able to examine the contents of data transfers on 80/TCP.  This 
technology is called Application Filtering, and is used to ensure that the actual 
data within the network packets meets security requirements.4  For example, 
traffic that passes over the HTTP port should, in fact, follow the HTTP protocol.  
Any non-HTTP connections can be forcibly terminated, thereby restoring the 
desired control over the internal network. 
 
Unfortunately once again, this restriction can be easily defeated by an attacker or 
a clever user intent on finding a way to use IRC or check their personal e-mail 
from work.  In section 2.1.2 it was noted that web browsers and servers can 
function on a client-server model, using HTTP and HTML as the communication 
method.  Consider the now common term “web mail”.  Services such as MSN® 

                                                   
4 http://www.microsoft.com/isaserver/evaluation/features/security/multilayerfirewall.asp 
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Hotmail®5 (http://hotmail.com) are simply applications that use web pages as a 
client-side interface to an e-mail program on the server.  Instead of using a local 
mail program and connecting with the Simple Mail Transfer Protocol (SMTP) on 
port 25/TCP, the user can just open their web browser and go to the 
“hotmail.com” web server.  This activity won’t be restricted by any firewall policy 
because it is just an HTTP transfer over port 80.  The same solution can work for 
any other kind of restricted application.  This is the reason why web applications 
can pose a security threat even when the services are external to the 
organization.   
 
There is also another more insidious way to get restricted protocols and 
communications past the firewall using port 80.  As shown in section 2.1.2, HTTP 
is nothing more than a protocol to transfer data between two machines.  The 
HTTP protocol itself does not place many restrictions on the structure or content 
of the data payload.  So what is to prevent someone from taking IRC traffic, 
normally on port 6667, and encapsulating those packets as data payloads inside 
of HTTP packets for transfer over port 80?  The answer is nothing at all!  This 
HTTP encapsulation approach is known as “tunneling” because all data between 
the native IRC client and server is passed “inside” a tunnel made of HTTP 
messages.  One excellent and free software package that implements such a 
tunneling scheme is HTTPort (http://www.htthost.com/).  
 
Of course IRC is only one example.  Tunnels can send any TCP traffic through 
port 80, and all this is once again passing right through the perimeter without 
restriction.  The transfer is made up of authentic HTTP messages.  The contents 
of the data are not known to the firewall.  Even if the firewall could examine the 
packets’ contents, the tunnel software can easily encrypt the data payload to 
prevent detection.  For users, the only drawbacks to using tunnels are that they 
are non-trivial to set up, and that the encapsulation can add noticeable latency to 
connections. 
 
Preventing the use of unauthorized web applications and TCP-over-HTTP 
tunneling is extremely difficult.  Many organizations block the IP addresses of 
remote servers that are known to support these services.  While this may deter 
the casual user, there is nothing to stop someone from setting up a tunnel server 
on their computer at home and then using it to punch through the organization’s 
firewall.  The only way an IP block list can truly succeed is to block all addresses 
by default, and then only allow sites that are specifically needed and known to be 
safe.  Needless to say, this policy is impractical for most real world situations.  

                                                   
5 MSN and Hotmail are registered trademarks of Microsoft Corporation in the United States and/or other 
countries. 
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2.2  Port 53/UDP 

2.2.1  Services 
Normally, not too much thought is given to what goes on behind the scenes when 
two computers connect over the Internet.  But before the connection even 
occurs, the initiating computer has to find the IP address of the machine it’s trying 
to contact.  This task is accomplished over port 53/UDP.  Learning the details of 
how computers resolve names into IP addresses is important in order to 
understand some vulnerabilities.  The exploit dissected in section 3 will rely on 
some IP-resolving sleight-of-hand in order to carry out its attack over an HTTP 
connection. 
 
By the early 1980’s, the Internet had become too large to manage name 
resolution with a static file.  For this reason, Domain Name Services (DNS) was 
implemented.  DNS is a hierarchical database of names that is stored and 
managed in a distributed fashion.6  DNS servers listen for connections on port 
53/UDP.  For special purposes, 53/TCP is also used, but this aspect does not 
come into play for normal name resolution. 
 
Applications that connect to 53/UDP are known as DNS resolvers.  When a 
system needs to know the IP address for “example.com”, it sends a UDP packet 
to the appropriate DNS server and asks the question.  This also occurs if a 
machine already has the IP address and wishes to look up the corresponding 
name.   

2.2.2  Protocol 
DNS uses its own dedicated protocol for queries and replies.  DNS packets are 
designed to be as small as possible so they won’t bog down the network.  UDP is 
used because of its lower overhead compared with TCP (i.e. smaller size and 
faster operation).  These and many other design choices have allowed DNS to 
operate efficiently and quietly in the background of Internet life, serving billions of 
requests a day from the distributed network of name servers.7 

2.2.3  Security Issues/Vulnerabilities 
Port 53/UDP is susceptible to three classes of vulnerabilities.  The first type is 
attacks against the DNS server, usually for the purpose of gaining control over 
the machine itself.  The second type targets the Domain Name Service of the 
machine, for the purpose of altering or supplying fraudulent name resolution to 
clients of the server.  The final type of vulnerability involves taking advantage of 
how the Internet expects DNS traffic to flow, in order to use port 53/UDP for 
some covert purpose. 
 
2.2.3.1  Server Attacks 

                                                   
6 http://www.sun.com/hardware/serverappliances/pdfs/support/dns.history.pdf 
7 http://www.howstuffworks.com/internet-infrastructure4.htm 
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Some 53/UDP exploits take advantage of vulnerabilities found in popular DNS 
server software, such as ISC BIND.  “The BIND DNS Server is used on the vast 
majority of name serving machines on the Internet, providing a robust and stable 
architecture on top of which an organization's naming architecture can be built.”8  
It’s true that BIND holds the Internet together, but this common code base means 
that when a vulnerability is found, an enormous number of DNS servers can be 
susceptible.  Furthermore, BIND runs as user “root” (the super user) by default, 
which means a successful exploit could allow complete control over the victim 
server.   
 
To prevent DNS server attacks, the immediate strategy should be to keep the 
DNS and operating system software current with security updates.  As added 
protection, the service should be configured to run as an unprivileged user 
instead of “root” or “Administrator”.  When possible, it is advisable to migrate to 
software that has been designed from the ground up with security in mind. 
 
2.2.3.2  DNS Attacks 
Almost every connection on the Internet needs a DNS query to occur before it 
can take place.  For most ordinary connections, the client implicitly trusts that the 
IP address it resolves via DNS is the correct one.  In other words, when a client 
queries for “example.com” and receives the answer 192.0.34.72, the client 
performs no further verification step.  As far as the client is concerned, 
192.0.34.72 must be “example.com”.   
 
But what if, through some act of accident or malice, the DNS entry for 
“example.com” was changed?  Consider the similar case of convincing some 
DNS server to store an incorrect IP address for “example.com” in its cache.  This 
class of exploit is known as “cache poisoning” because all clients that 
subsequently ask the affected DNS server for “example.com” will be issued the 
(incorrect) cached result.   
 
At face value, this kind of misdirection would seem to be nothing more than a 
nuisance.  Indeed, the designers of DNS considered cache poisoning only as an 
accidental effect that was to be understood and avoided.  But fooling clients into 
connecting to the wrong server can be a serious security hazard.  Users or 
automated software could be tricked into divulging information to a malicious 
server in this manner.  Conversely, a client could connect to a malicious server 
and receive a fraudulent or damaging response for which it is not prepared.  It is 
this last condition that will be used in the specific exploit covered in section 3. 
 
Protecting against DNS protocol attacks may require some research.  These 
vulnerabilities are generally caused by how particular DNS software handles 
strange response packets, so understanding this behavior is the only way to 
predict whether a server will withstand a poisoning attempt.  Fortunately, most 
popular DNS server software has been updated to make currently known 
                                                   
8 http://www.isc.org/products/BIND/ 
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methods of cache-poisoning difficult to execute.  Unfortunately, many networks 
do not upgrade their DNS servers in a timely fashion, leaving them susceptible to 
well-known attacks. 
 
2.2.3.3  Covert Port 53 Use 
A third class of exploit on port 53 does not target the DNS servers, clients, or 
protocol.  However, it is made possible because of every network’s need to 
support DNS.  Every time a computer inside a secured network makes a DNS 
request through the perimeter, a response must be allowed to come back.  By 
their design, some routers and firewalls are not able to prevent fraudulent DNS 
responses from entering the network.  This fact can make it possible for an 
external attacker to set up a covert channel through the firewall without being 
detected.9   
 
The fundamental condition that makes covert use of 53/UDP possible is the 
deployment of packet-filtering routers and firewalls at a network’s perimeter.  
These devices examine each bit of Internet traffic separately to see if it should be 
allowed to pass.  They are unable to analyze the packets on a broader level to 
determine whether they are part of a legitimate conversation.  The decision to 
pass or block is made separately for each packet.  Stateful firewalls, by contrast, 
keep track of what session each packet belongs to.  If stray packets attempt to 
pass, they can be blocked.  This difference is extremely important, because 
stateful firewalls can place tighter restrictions on what traffic is allowed to pass. 
 
A network with a packet filtering device as its only perimeter security may be 
susceptible to attack under many scenarios, but in the case of port 53/UDP the 
vulnerability is virtually guaranteed.  Some, if not all hosts inside the network will 
need to make DNS queries.  For this reason, whenever any packet arrives on the 
outside that appears to be a DNS response, the filter must allow it to pass inside.  
The filter simply has no way to know whether that packet is part of a legitimate 
DNS request/response pair.  Thus, any attacker who wishes to sneak UDP 
packets into the network without detection need only set their source port to 53 
and pretend that they are DNS replies.  It should also be noted that some stateful 
firewalls are still configured to allow this behavior even though by design they 
have the capacity to prevent it.10

                                                   
9 McClure, p.494 
10 McClure, p.494 
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3.  Specific Exploit: Proving the Concept 
Clearly, there is a lot to be said about port 80, HTTP, port 53, and DNS.  The 
previous sections summarized how these protocols are used, and how they can 
be misused.  In order to make the discussion more concrete, a specific exploit 
will now be described, documented, and detailed.  It was chosen because it has 
not been previously analyzed, and represents a class of malicious code that is 
becoming increasingly common: client-side HTTP-delivered exploits. 

3.1  Exploit in a Nutshell 
This will be a discussion of the "Nullsoft Winamp Automatic Update Check Buffer 
Overflow Vulnerability"11 as described at http://online.securityfocus.com/bid/5170.  
This exploit has neither a CVE nor CERT® entry.  Bugtraq identifies the 
vulnerability as number 5170.   
 
The Winamp Update exploit code was written by an individual who wishes to be 
known as “2c79cbe14ac7d0b8472d3f129fa1df55”.  It generates an HTTP 
response that will be accepted by Winamp, but will overwrite the stack Exception 
frame.  An exception condition is caused by the input, leading to the execution of 
malicious included code that will open a command shell to the attacker’s system. 

3.1.1  Variants 
There are no publicly available variants to this proof-of-concept Winamp exploit.  
A variation was coded expressly for this research paper because the published 
exploit failed to operate correctly on the test server.  The author of the original 
exploit did not test it on multiple targets, so it is likely that the code is simply not 
robust over all configurations.  The variant and its differences from the original 
code are discussed in section 3.7. 

3.1.2  Affected Systems 
According to the exploit author, all Winamp versions from 2.50 through 2.80a 
share this vulnerability.  Furthermore, it should be possible to exploit the 
vulnerability on all Winamp-supporting Windows platforms (95, 98, ME, NT4, 
2000, XP).  There are indications that the exploit code as written will not function 
correctly for all Windows versions.  Although the vulnerability is part of the 
Winamp code base, it requires an external Windows DLL to be in place in order 
to operate properly.  These issues may limit the effectiveness of the published 
exploit code, but they do not preclude the creation of a more robust exploit, or the 
development of separate code bases for each platform.   

3.1.3  Protocols Used 
This exploit is delivered over HTTP from a malicious server on port 80/TCP to the 
target Winamp program.  Winamp automatically checks for an update by initiating 

                                                   
11 Nullsoft and Winamp are trademarks of Nullsoft, Inc. 
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a connection to a known (and assumed benign) web server, so the delivery of the 
exploit depends on fooling Winamp into connecting to a different server.  The 
most likely way to accomplish this is by manipulating the DNS protocol over 
53/UDP somewhere upstream of the client.  Thus when the client queries a DNS 
server for the location of its trusted web server, the response will be fraudulent, 
and point at the attacker’s HTTP server. 

3.2  HTTP Protocol 
In order to understand the output generated by the exploit, it is useful to examine 
the protocol it uses in more detail.  An excellent resource for this is James 
Marshall’s tutorial available at http://www.jmarshall.com/easy/http.  Much of the 
following information about the HTTP protocol is adapted from that reference. 
 
Information is transferred between an HTTP client and server by using an HTTP 
Transaction.  A transaction consists of one message from the client and then 
(usually) one message the server.  The client’s message is called a request, and 
the server’s message is a response.  The request and response both occur on 
the same client-initiated connection.  In fact, the server never opens a separate 
communication channel to the client (by contrast with protocols like FTP).  This is 
one of the reasons HTTP is so firewall-friendly.   
 
The client requests one resource at a time by sending a message with the 
desired URI (Uniform Resource Identifier) of the item.  The server then decides 
whether or not it can fulfill the request.  If it understands the URI and is able to 
return data for the request, then it sends a response message indicating success 
and containing the requested data.  If the server does not understand the request 
or is unable to fulfill it, an appropriate error response is returned.   
 
Each HTTP message follows a simple and consistent format (see Figures 2 and 
3).   
 

 
Figure 2: HTTP Request Example 
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Figure 3: HTTP Response Example (Data portion omitted) 

The first line indicates the purpose and meaning of the message as well as the 
HTTP protocol revision being used.  Several optional lines follow called 
“headers”.  They are “name: value” pairs that indicate meta-information about the 
request or reply.  Information conveyed in headers includes: 

• The host name of the web server with which the client wishes to 
communicate 

• The type of data in the message body 
• The data’s length 
• Information about the client browser (brand, version) 
• A date/time stamp for the message 
• Additional directives or conditions to alter the meaning of the message 

In revision 1.1 of HTTP, the “Host” header is required for request messages.  All 
other headers are optional.  Almost all servers return the “Content-type” header 
in their response messages so that the client knows how to interpret the stream 
of data in the message body. 
 
Request messages begin with a word indicating the type of request: 

• GET is a simple request to return data.   
• POST indicates that the client has sent data for the server to process 

(usually by a script located at the requested URI).   
• HEAD is used to request only header information about the URI without its 

actual data.   
After the request type is the URI the client wishes to retrieve.  Lastly, the HTTP 
revision the client is using is indicated.  On following lines, the client may include 
headers such as information about itself or the host name of the requested 
server.  A blank line signifies the end of the headers.  After the headers section is 
the body of the message.  The body is ordinarily empty in request messages, 
with the exception of POSTs.  In a POST request, data from the client is sent to 
the server via the message body.   
 
Response messages begin with the HTTP revision the server is speaking, 
followed by a status code and description.  The status code is a number that 
indicates how the server has reacted to the request.  There are five categories of 
responses (nn indicates any two digits): 
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• Informational, no actual data returned (1nn). 
• Successful request: response contains the requested data (2nn). 
• Redirection: Requested URI can be found at a different URI (3nn). 
• Error: there was an error in the request (4nn). 
• Error: the request looks good, but the server was unable to comply (5nn). 

The description is simply text that provides information about what the status 
code means.  After the first line is the headers section.  Most servers return a 
“Content-type” header that describes the data.  Servers that understand revision 
1.1 of HTTP will return a “Date” header that serves as a timestamp.  A variety of 
other headers may be returned, including information about the server, or 
instructions for how long to cache the data in the response.  Following the 
headers section (and a blank line) is the actual response data, if any.  For error 
responses, the server may still return a data section containing a message for 
the user that describes the error (usually in the form of an HTML file).   
 
In an HTTP 1.0 transaction, the HTTP connection is closed after a 
request/response pair has been transmitted.  Since opening and closing a TCP 
connection for each file is expensive in terms of time and resources, revision 1.1 
of the protocol allows the use of the same connection many times.  Many 
requests can be made in a row, and responses are returned in that order.  Either 
the server or client can choose to terminate the connection, indicating this desire 
with a “Connection: close” header.  The server may choose not to respond to all 
the requests in a connection, in which case the client will have to back off and 
repeat the unfulfilled requests over a new connection. 
 
There are some additional details about how HTTP 1.1 works, including the 
recently infamous “chunked encoding” and the vulnerabilities caused by improper 
handling of this feature.  For additional information about HTTP details, see RFC 
1945 (HTTP 1.0)12 and RFC 2616 (HTTP 1.1)13. 

3.3  DNS Protocol 
The Winamp Update exploit can only work if a Winamp client connects to a 
malicious HTTP server.  However, the server’s domain name is hard-coded into 
Winamp.  Since it is unlikely that the real server can be easily compromised, 
another approach is needed to deliver the exploit.  The DNS protocol can be 
attacked, thereby supplying incorrect IP address information to the resolver on 
the target computer.  This will do the trick, but first it is necessary to get some 
understanding of how DNS functions. 
 
The global DNS database is stored in a hierarchical tree-like fashion across a 
large number of servers, with the “root” of the tree being common to all domain 
names on the Internet.  Connected to the root are the first branches of the tree, 
representing all first-level domains (such as “com”, “org”, “net”, “us” and so on).  

                                                   
12 http://rfc.sunsite.dk/rfc/rfc1945.html 
13 http://rfc.sunsite.dk/rfc/rfc2616.html 
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Additional branches are attached to each of these; one for each second-level 
domain (such as “example.com”, “example.net”, etc.)  Specific DNS servers are 
placed in charge of each part of this tree.  Each DNS server at the n’th-level 
knows the names and IP addresses of the servers it connects to at the (n+1)’th-
level.  Each server also knows the names and IP addresses of the root (0’th-
level) servers. 
 
The “appropriate” DNS server to handle the query “What is the IP address of 
example.com?” is determined by several factors.  All requests start with the 
name resolver of the client machine.  If the resolver doesn’t know the answer 
already, it checks its configuration to find the IP address of its local DNS server.  
The resolver then asks the DNS server to find the answer. 
 
If this local DNS server doesn’t know the answer either, and does not have 
instructions to forward the request somewhere else, then it will perform what is 
known as an iterative query.  Since the local DNS server knows where the root 
DNS servers are located, it will begin there.  The root server informs the local 
server how to contact the “.com” DNS servers.  One of these first-level servers 
can then reply with the name server list of “example.com”.  Then, finally having 
reached the appropriate DNS server, the local server can learn the IP address of 
“example.com” and supply that answer to the resolver.   
 
This iterative lookup is reliable and effective, but somewhat slow and bandwidth 
intensive.  For this reason, once a DNS server learns a bit of information, it will 
keep it cached for later use.  This way, identical requests in the future can be 
served out of the cache, eliminating the need to repeat the entire iterative query 
process. 
 
A DNS query packet is really quite simple when viewed from a high level.  There 
are tricky implementation details involved, such as string compression, but they 
need not be discussed in order to gain an understanding of how the protocol 
works.  As shown in Figure 4, a query originates at a random UDP port (1303 in 
this case) and is sent to port 53 of the DNS server (The IP header containing the 
source and destination IP addresses of this packet is omitted from the figure).  
The payload of the UDP packet is the DNS query.  It has a transaction ID, which 
can be any 16 bit number.  The ID is specified by the machine that’s making the 
request.  There are various flags that indicate this is a query, and finally the 
question itself: “What is the IP of example.com?” 
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Figure 4: DNS Query 

The server’s response packet as shown in Figure 5 is formatted similarly.  This 
time the source port is 53/UDP, and the destination is the same random port that 
was used by the client just a moment ago.  The flags specify that this DNS 
packet is a response.  In point of fact, several answers have been returned in 
addition to the IP address of “example.com”.  In normal circumstances, DNS 
servers will return related information that the requestor might be interested to 
know, such as the names and IP addresses of all DNS servers directly 
responsible for “example.com”. 
 

 
Figure 5: DNS Response 

In Figure 6 some additional details of a DNS answer are shown.  Of particular 
interest is the Time to live field (TTL).  This value specifies how long a DNS 
server should remember this answer before deleting it.  During the TTL, future 
requests for this information will be served out of the local DNS server’s cache.  
This eliminates the need to repeat traffic across the Internet for answers that 
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were recently discovered.  This is equivalent to the server saying “I just found 
example.com a little while ago, so chances are it’s still at 192.0.34.72.”  Without 
this caching, the root and first-level name servers (and many popular second-
level ones) would be swamped with requests to the point of failure.  Caching is 
one of DNS’ strongest features, but also one of its biggest liabilities.  As shown 
later, malicious information combined with abuse of caching can force a server to 
return incorrect replies to future DNS queries. 
 

 
Figure 6: DNS Response Detail 

3.4  Anatomy of the Exploit 
So far the discussions have been about the technology that sets the stage for the 
Winamp Update exploit.  It is now time to analyze the exploit itself, how it 
leverages the protocols and concepts mentioned so far, and the actual Winamp 
vulnerability that is the ultimate target of these efforts.  

3.4.1  Normal Operation 
The simplest way to begin the analysis is to watch what happens during the 
normal course of a Winamp update check.  When a user opens the Winamp 
program for the first time in a day, it immediately starts a separate thread in to 
check for a newer version of itself (provided the user has not disabled this 
feature).  The thread acts as an HTTP client and opens a connection to port 
80/TCP of the server “www.winamp.com”14.  If the connection succeeds, Winamp 
requests the URI “/update/latest-version.jhtml” using the HTTP GET method.  
The server returns data in its response that indicates the latest version of the 
product, and description text that is to be displayed to the user.  Figure 7 shows a 
normal HTTP response from the “latest-version.jhtml” page.  If a newer version is 
available, a dialog is shown to the user, giving them the opportunity to initiate an 
update procedure.  Since this entire sequence of events happens within a 
separate thread, the user is not aware of the process unless the dialog appears.  
Winamp performs its normal functions even while the check is proceeding silently 
in the background. 
 

                                                   
14 winamp.com is a trademark of Nullsoft, Inc. 
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Figure 7: Normal Winamp Update Check HTTP Response 

Without going any further, there are already some important flaws to note.  First, 
the client connects to “www.winamp.com” instead of a particular IP address.  
This was likely a design decision; it allows for flexibility in the event that the web 
server moves to a different IP.  However, it leaves the target of the connection 
open to interpretation of the DNS resolver process.  If any link in the DNS chain 
is broken or corrupted, an incorrect HTTP server could be queried.  Second, no 
attempt is made by Winamp to challenge the identity of the server.  If SSL was 
used, or if there was at least some difficult cryptographic content in the 
transaction, the problem could be mitigated.  This issue could easily have been 
overlooked if the designers did not anticipate malicious activity surrounding the 
update check process.  Lastly, it can be considered poor style for software to 
make connections to the Internet without notifying the user that a transfer is in 
progress.  In this case, the program ships with this behavior enabled by default, 
so most casual users won’t even be aware that the check is occurring. 
 
So now it’s known that Winamp will silently check for updates, and implicitly trust 
the identity of server to which it connects.  Internally, the client then reads the 
HTTP response and parses the version number returned.  If the revision is 
determined to be newer, the update dialog is shown.  Unfortunately, the Winamp 
client is not robust enough to handle unexpected data from the server.  To quote 
the author of the exploit, “if it were to receive a huge response via some 
nameserver corruption the thread parsing the response is thrown into an infinite 
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loop and eventually the exception dispatcher is called.. and THEN…[an] overflow 
occurs.”15   

3.4.2  Poisoning DNS 
Before delving into the details of what happens to Winamp during the exploit, it is 
necessary to prove that such a condition can become possible in the first place.  
Namely, a “huge response” cannot be returned unless Winamp connects to a 
server that is under an attacker’s control.  The only feasible way to cause this to 
happen is for the attacker to fool the DNS resolving process when the client 
attempts to find the IP address of “www.winamp.com”.16  The act of causing the 
resolver process to return fraudulent answers is called “cache poisoning”, and 
there are several methods to achieve this end.  Some attacks depend on 
characteristics of the DNS and resolver software in use by the target site, while 
others attack the DNS protocol itself.  A few approaches will be detailed here.  
The first is somewhat trivial, but useful as a proof-of-concept, while the second is 
of practical use against many DNS servers, especially older versions. 
 
The simplest way to force the target computer to use the wrong address for 
“www.winamp.com” is to hard-code an incorrect value into the resolver’s “hosts” 
file.  On Windows 2000 that file is located in the “system32\drivers\etc” directory.  
Adding the line: 

10.1.1.1 www.winamp.com 
will cause “www.winamp.com” to resolve to 10.1.1.1 on the target machine.  
Unless the attacker has write permission to the target’s system32 directory, this 
approach is not especially practical.  However, for setting up the exploit in a test 
environment, the shortcut is extremely useful. 
 
For a more serious approach to cache poisoning, the DNS protocol can be 
exploited.  As mentioned in section 2.2.2, the request/response pairs are UDP 
packets.  When a local DNS server does not have the answer to a query in its 
cache already, it locates and then asks the authoritative name server for that 
domain.  This request from the local server to the authoritative server is a UDP 
packet that carries DNS information, including a transaction ID.  The response 
packet from the authoritative server carries the same transaction ID, so that the 
local server can properly associate that packet with its query.  The only two 
identifying marks of the response packet, then, are the source IP address (which 
is the IP of the authoritative name server) and the transaction ID (which was 
supplied in the request packet).17 
  
If an attacker is able to see request packets or guess the next likely transaction 
ID, then they can poison the cache in the following manner: 

                                                   
15 http://online.securityfocus.com/archive/1/280786 
16 Actually, if the attacker is on the same LAN as the target machine, ARP spoofing could be used to 
redirect all traffic through the attacker’s machine, constituting a Man-In-the-Middle attack.  Discussion of 
this tactic is outside the scope of this paper. 
17 Details on cache poisoning adapted from: http://packetstormsecurity.nl/papers/protocols/dnsinfo.htm 
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1. Send a DNS query to the local server, asking the address of 
“www.winamp.com” 

2. Before the local server gets a response from the authoritative DNS server, 
forge a UDP packet that appears to be a genuine response.  It should 
contain: 

o The source IP address of the authoritative server 
o The correct transaction ID from the query packet 
o A long Time-to-live value so the server will not re-query for this 

address soon. 
Assuming the local server sees the forged response packet prior to the real 
response, it will cache the forged value, and serve it to all future queries for 
“www.winamp.com”.  The authentic response packet will arrive at some later 
time, and be discarded by the local server as superfluous.  This approach must 
be conducted at a time when the server does not have a valid cached IP address 
from the real Winamp name server.  Otherwise, step 1 will not result in a query, 
but merely a response from the local server’s cache. 
 
The method used to determine the correct transaction ID value to use in this 
attack depends upon circumstances.  Many DNS servers use an extremely 
predictable incrementing sequence.  In this case, all the attacker needs to do is 
get the local name server to send a query to an attacker-controlled DNS server.  
The attacker can record the transaction ID and then use (that value +1) as the ID 
in the poisoning attack.  In practice, several closely-numbered packets will be 
sent, in the hopes that one of them will be correct.  If the attacker has the ability 
to sniff network traffic from the local DNS server, they can read the correct 
transaction ID value from the query packet itself. 
 
There are many other ways to conduct a cache poisoning attack, and they rely to 
differing extents on the particular server software, and its interpretation of the 
DNS protocol.  Some servers will accept fraudulent information from a DNS reply 
even when it is not in any way related to the request.  A malicious server could 
therefore send information about the “winamp.com” domain even though it was 
not authoritative for that domain, and the local DNS server could be fooled into 
caching the fraudulent data. 

3.4.3 Overflowing the Buffer 
Now that the target machine is resolving a malicious IP address for 
“www.winamp.com”, the attack is clear to proceed.  The amount of detailed 
analysis available regarding this exploit is limited.  On a high level, the buffer that 
receives the update information from the server is susceptible to overflow.  This 
means that the program will carelessly input a larger amount of data than it has 
room to hold.  Once the available space is used up, the program goes blindly on 
writing to memory, thereby corrupting space that is intended for other purposes.  
After enough space is overwritten (in this case about 35 kilobytes) the overflow 
reaches some significant areas of memory. 
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In order to understand the exploit, a brief analysis of buffer overflows will be 
useful.  Whenever a function begins, the system records important information 
about its current state into an area of memory called the “stack”.  The memory 
allocated for a function (called a “stack frame”) is kept on the stack until the 
function exits, at which point that memory is reclaimed.  The stack on the x86 
architecture allocates memory starting from high addresses and proceeding to 
lower ones.  When a local variable buffer is written to, the system starts from the 
variable’s lowest memory address and proceeds higher.  This means that the 
system state information will reside at higher memory addresses on the stack 
than the function’s own variables, as shown in Figure 7.18   
 

 
Figure 7: The x86 Stack Frame 

As seen in the diagram above, a buffer fills from low memory to high.  By sending 
a sufficiently large amount of data, the attacker passes beyond the area defined 
for local variables, and reaches the system-constructed area of the function’s 
stack frame.  Under normal circumstances, this portion of memory is never 
altered by the function’s code.  
  
Buffer overflows in their simplest manifestation can usually crash the host 
software or cause it to enter an infinite loop, because overwriting other variables’ 
values in mid-execution can wreak havoc with program logic.  By carefully 
constructing the overflow data, however, an attacker can overwrite an area of the 
stack that will send CPU control to a location of the attacker’s choice.  The 
“Function Return Address” and “Exception Handler Frame” noted above are both 
areas of the stack that can provide useful functionality to an attacker. 
 
                                                   
18 Stack Figures constructed from information in Bray, Brandon: “Compiler Security Checks In Depth” 
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The return address is always called when a function terminates, so if an overflow 
does not harm the function’s processing, then overwriting the return address will 
cause the CPU to “return” to a different address after the function exits.  The 
attacker sets the return address to a location that is INSIDE the buffer they just 
overflowed, as shown in Figure 8.  The buffer will have been filled with some 
malicious machine code of the attacker’s choice.  Now the code executes as 
though it was part of the original benign program.  The attacker-supplied machine 
code runs with whatever permissions the rest of the program has.  This is the 
most straightforward type of buffer overflow attack. 
 

 
Figure 8: Altering the Return Address 

A variation on this attack is useful in code where the overflow causes 
pathological behavior in the current function.  If an exception is thrown because 
of some unexpected condition, control is passed to the Exception Handler 
Frame.  This part of the stack is also susceptible to overflow, however.  In fact, 
the Exception frame is closer to the buffer than the return address.  Once the 
Exception Handler is called, control passes to the attacker’s code in the same 
manner as above.  It is this particular approach to which the Winamp Update 
check is vulnerable. 
 

3.4.4  Havoc in Winamp 
Now that the buffer overflow mechanism has been explained, the discussion of 
the Update check vulnerability can continue.  Through manipulation of the 
Exception frame, the CPU is instructed to pass control into the beginning of the 
overflowed buffer, where malicious machine code resides.  This code can 
perform any operation as if it was the user who launched Winamp.   

Lower Memory 
Addresses 

Higher Memory 
Addresses 

Previous Stack Frames 
��� 

��� 
Unused Memory 

Function Parameters 

Altered Return Address 

Frame Pointer 

Exception Handler Frame 

��� 
��� 

Overwritten data 

Overflowed buffer 

NShellcode 

Local Variable 

Overflowed buffer 
clobbers Stack 

Program flow 
changed 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Gregory Bell  27 

 
Since the Update check is running in a separate thread from the rest of 
Winamp’s functions, the attack, crashing, and re-routing of control in this thread 
are never detected by the user.  The malicious code executes hidden in the 
background while the user listens to their audio selections, blissfully unaware of 
any foul play.  This is the ultimate goal of the attacker, who now has as much 
control over the machine as the real user!  As a side note, when Winamp closes, 
the hijacked thread is terminated as well, so the attacker must finish any 
malicious activity before the user finishes their music. 

3.5  Exploit Diagram 

 
Figure 9: Chronological Progression of the Exploit (from the top downward)  

Figure 9 summarizes the operation of the Winamp Update check exploit.  Events 
are shown in chronological order from the top downward.   

• The DNS poisoning occurs first, with DNS-Local getting the Attacker IP as 
the answer for “www.winamp.com”.   

• When Winamp is opened on Target, it looks for the address of 
“www.winamp.com”.  The resolver queries DNS-Local and gets the 
poisoned response: 10.1.1.1 (the IP of Attacker).   

• Winamp connects to Attacker, thinking it is “www.winamp.com”, and 
issues an HTTP GET.   

• Attacker replies with a response that contains the overflow and shellcode.   
• Winamp’s thread overflows, causing Target to execute malicious code.   
• Target now secretly connects to Attacker, enabling unauthorized activity to 

commence. 
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3.6  Understanding and Using the Exploit 
On a high level, the design of the proof of concept exploit code, called 
“WampExp.c”, is straightforward.19  It is a C program that should compile in a 
reasonably straightforward fashion on Unix-like systems.  In the course of 
researching this topic, several minor modifications were made to the code so that 
it would compile on a Windows 2000 machine.  The changes consisted of 
altering “#include” statements and other tweaks to match the Win32 network 
library definitions.  Although the code does not utilize any real network 
functionality, these libraries are required for the proper processing and insertion 
of command line arguments into the machine code.   
 
WampExp.c takes command line arguments to set the IP address and TCP port 
at which the attacker wishes to receive a connection from the compromised 
target.  It immediately outputs a large but precise amount of data that contains 
enough characters to overflow Winamp to the appropriate point of the function’s 
Exception frame.  The data also contains machine code designed to perform a 
malicious action on the target computer.  This set of commands is commonly 
referred to as an “egg”, or “shellcode” (for its ability to execute commands on the 
victim machine).   
 
The shellcode used in the Update check exploit is an adaptation of the “jill.c” 
program developed by “dark spyrit” for an older Microsoft® Internet Information 
Server vulnerability.20  This compact code creates a TCP connection to a hard-
coded IP address and port number.  It then starts a command interpreter 
(cmd.exe) and interfaces it with the connection.  Input from the attacker’s end of 
the pipe is sent to the command shell, and output from the shell is sent to the 
attacker’s machine.  In this manner, the attacker is given a remote interactive 
interface to the target machine, over which they can execute any commands as if 
they were the interactive user logged in. 
 
The author of WampExp.c tailored the jill.c shellcode to execute invisibly and 
without terminating the Winamp client program.  When run, WampExp.c takes 
the IP and port numbers that were specified on the command line and inserts 
them into the shellcode.  The attacker must have a server listening at that 
address in order for the connection to succeed.   
 
The exploit program is written to supply the HTTP response shown in Figure 10. 
 

                                                   
19 Source code available at http://downloads.securityfocus.com/vulnerabilities/exploits/wampexp.c 
20 Source code available at http://online.securityfocus.com/data/vulnerabilities/exploits/jill.c 
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Figure 10: Exploit HTTP Response (truncated) 

Compare the exploit’s response to Figure 7, which is an example of the normal 
response Winamp expects.  Note the first word, “OK”, which (tersely) indicates a 
successful response.  This message does not even contain a return code, which 
is an item that’s required for HTTP responses.  However, HTTP clients are 
designed to be tolerant of input that deviates from specification, in the interest of 
compatibility.  Winamp accepts this response as valid. 
 
The data section of the HTTP message contains a fake version number for 
Winamp to parse (9.99), immediately followed by a tremendous amount of data 
that will overflow the target’s buffer.  The first information transmitted within this 
data is the shellcode (partially shown).   
 
Following the shellcode are many kilobytes of the NOP instruction (0x90), to fill 
the appropriate amount of space.  Then come a few bytes of strategically placed 
machine code, and lastly, the address that will overwrite the Exception frame’s 
instruction pointer (see Figure 11). 
 

 
Figure 11: Exploit HTTP Response (end) 

 
On its own, WampExp.c just streams its hard-coded HTTP response to the 
console, and then exits.  The author chose to keep the code base simple by 
making the exploit reliant upon existing external utilities to complete its 
functionality.  In order to carry out the exploit, the attacker must have an HTTP 
server listening on port 80 and another program listening on the TCP port which 
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is specified as WampExp.c’s PORT parameter.  To provide this network 
connectivity, the free and powerful utility netcat (nc.exe) is used.21   
 
Netcat is set up to stream the output of the exploit program to any client that 
connects to port 80 of the attacker’s machine, as shown in Figure 12. 
 

 
Figure 12: Setting up the HTTP Server 

Another netcat session is now started using port 5555 (the one supplied to the 
WampExp program in Figure 12).  See Figure 13 for the syntax used. 
 

 
Figure 13: Setting up the callback listener 

If all goes well with the cache poisoning attack, the target machine will resolve 
“www.winamp.com” to the attacker’s IP.  At some point in the future, the blissfully 
ignorant user on the target machine starts up Winamp, and starts to listen to their 
favorite song, shown in Figure 14. 
 

 
Figure 14: User opens Winamp and grooves  

As it opens, Winamp will connect to the attacker’s netcat listener on port 80 
(thinking it is “www.winamp.com”).  The buffer will overflow, and execution of the 
update checking thread will be redirected to the adapted jill.c shellcode.  A 
connection will be opened from the target machine to the attacker’s second 
netcat listener on port 5555, and the attacker will be greeted with the response in 
Figure 15. 

                                                   
21 Netcat is available from @stake Research Labs: http://www.atstake.com/research/tools/ 
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Figure 15: Receiving callback shell from hacked Winamp 

The attacker has been presented with an interactive shell on the target machine! 
If the Winamp user has administrative privileges on the machine, then the 
attacker does as well.  If not, the attacker can still cavort around the file system 
and steal sensitive information, or attempt to gain additional privileges.  All this 
occurs unbeknownst to the Winamp user, who is still enjoying their music 
selection. 
  
As coded, the WampExp.c exploit is a somewhat manual process.  There exist 
several intriguing possibilities for the extension and automation of this attack.   

• The mini-HTTP server that is formed by running the exploit under netcat 
could be altered so that it can accept many HTTP connections instead of 
exiting after the first one.   

• A more sophisticated program could be used that supplies a different call-
back port each time it serves the shellcode (instead of hard coding 5555), 
and starts a new netcat listener on that port to catch the victim’s shell.    
This technique would allow for a number of targets to more easily be 
compromised from a single attacking host. 

• Trivially, a script of commands could be passed to the target shell instead 
of presenting a prompt for manual entry.  This would automate the 
process of running malicious commands on the victim machine(s). 

• To preserve the appearance of normality, the fake HTTP server could be 
expanded to a real server that copies or proxies all content from the real 
www.winamp.com except for the Update check URL (which will be served 
the exploit code, of course). 

3.7  The Exploit Code 
The functioning of the WampExp C code is quite straightforward.  It pokes the 
command line arguments into the correct locations of the machine code, then 
prints an HTTP response containing the shellcode to its standard output device.  
To understand the execution of the exploit once it reaches the target, some 
analysis of the machine code must now be performed. 
 
When the overflow writes onto the Exception frame’s instruction pointer (EIP) it 
must send the execution of the CPU into its own shellcode.  The author 
accomplishes this by a 3-hop process.  First, the instruction pointer is set to the 
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well-known location of a JUMP instruction in a Windows DLL (ws2help.dll).  This 
instruction makes the first jump into the buffer, where four bytes of code can be 
manipulated by the attacker.  The first two bytes are used to partially change the 
value of the EBX register, and the next two bytes make the second JUMP to the 
location of EBX.  Now the execution arrives at a slightly larger patch of writable 
memory.  Here, the appropriate offset number of bytes is subtracted from EBX so 
that it will point to the start of the modified jill.c shellcode.  Finally, one last JUMP 
EBX is performed to set the shellcode running. 
 
The machine code level operation of this exploit is somewhat indirect in terms of 
passing execution to the shellcode.  The author’s motivation for choosing this set 
of instructions is not known, but attempts to simplify the exploit by jumping 
directly to the shellcode have failed.  In point of fact, the second and third JUMP 
commands did not appear to be effective as written, at least on the configuration 
used for this research (Windows 2000 Advanced Server, Winamp 2.80).  The 
values loaded into EBX were not correct to complete the chain of JUMPs and 
land at the shellcode.   
 
For this project, a variant of WampExp.c was created to address this issue.  The 
machine code was tweaked to load EBX with appropriate values, and then the 
exploit was able to work as designed.  It is not clear whether the original code is 
erroneous, or simply is not robust across different systems.  In either case, it 
would likely be a simple matter for an attacker skilled in Assembly programming 
to create a robust and viable exploit using WampExp.c as a springboard. 

3.8  Attack Signature 
To the Winamp user, a successful Update check exploit will be absolutely 
undetectable (until the attacker starts meddling with the computer in some 
noticeable fashion).  If the exploit code does not correctly function, the user 
would notice one of three conditions depending on the situation: 

• Winamp might crash and display an error dialog.  This would be the case 
if some improper memory access caused Windows to terminate the 
process. 

• Winamp might close silently without any explanation.  This can occur 
when the execution pointer does not get set correctly. 

• The CPU might race until the user closes Winamp.  This happens when 
the EBX register is not being loaded with correct values, and the program 
execution loops forever on the second JUMP command. 

 
To an Intrusion Detection System, this attack can be more visible.  While the 
Update check request is just a normal HTTP request to a (usually) benign web 
server, the response contains the shellcode.  This code, captured by a network 
sniffer, is partially shown in Figures 10 and 11 in section 3.6.  The shellcode is 
mostly static; only a few bytes change per attack.  Therefore, this HTTP 
response can provide a simple fingerprint for a Network IDS to detect the attack 
on the network.   
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Additionally, it may be possible to detect the traffic of the actual shell call-back 
connection by triggering on the banner text that Windows issues when cmd.exe 
starts (see Figure 15 above).  When this text is transmitted over a TCP 
connection there is a strong possibility that someone is sending a shell out 
through the firewall.  There are issues to note with this approach, such as the 
variance of banner text over different Windows systems.  Also, the shell 
connection can take place over any TCP port because this value is configurable 
by the attacker.  This may make the connection harder to detect depending on 
the IDS used. 

3.9  Preventing the Attack 
For users of Winamp, there are several options to ensure this attack will not be 
carried out on their systems.  The simplest approach is to disable Winamp’s 
ability to check for updated versions, as shown in Figure 16. 
 

 
Figure 16: Preventing Winamp’s Auto Update Check (uncheck the box shown) 

This prevents the entire sequence of events leading to the compromise.  
Alternately, the Winamp.exe executable can be patched to use the hard-coded IP 
address of the real “www.winamp.com” server, instead of relying on a DNS 
lookup.  Such a patch exists and is available for download at 
http://online.securityfocus.com/archive/attachment/280786/2/wapatch.zip.  This 
approach entails some amount of risk, because the patch was developed by the 
exploit author as opposed to Nullsoft.  Also, there is still the possibility that the IP 
address of the Winamp server will legitimately change at some time in the future. 
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In order to correct the root cause of the problem, Nullsoft must release an update 
for their 2.80a version which checks the length of the HTTP response and 
disallows the buffer overflow.  To further secure the process, Nullsoft could 
rewrite their Update check to use SSL certificates to verify the identity of the 
server.  As of this writing, Winamp version 3.0 is available in beta, but no fix for 
the 2.x line has been released.  It is not known whether a similar exploit affects 
3.0, as no official vendor response to this issue has been noted. 
 
Stopping name server corruption, or cache poisoning, from taking place would 
make the Update check exploit impossible to carry out.  Note, however, that the 
corruption of a DNS server outside of the organization can still poison 
downstream servers.  For example, consider the case where an organization’s 
DNS servers are configured to forward requests to their Internet Service 
Provider’s DNS servers.  Poisoning the ISP’s servers will cause the local servers 
to receive fraudulent replies, even if they are not vulnerable themselves. 
 
In spite of this risk, it is still important to protect every DNS server within the 
control of the organization.  To accomplish this, administrators should keep their 
operating systems and service software current with security updates.  In 
addition, it is important to check that the DNS software is configured as securely 
as possible.  For example, the Windows® 2000 DNS server has an option called 
“Secure cache against pollution” which is not enabled by default! 
 
The risk of compromise via the Winamp Automatic Update Check exploit is 
somewhat mitigated by the complexity of the attack setup.  Particularly, spoofing 
the DNS entry for “www.winamp.com” is something that could be accomplished 
in local cases, but probably not on a large scale.  That fact limits the likelihood of 
seeing the Update check exploit used on the Internet at large.  Nevertheless, 
targeted malicious attacks are still a threat, and understanding the mechanics of 
this attack is important.  Note that very little of the exploit process relies directly 
upon the Winamp vulnerability.  Any similar overflow in an HTTP client could be 
exploited using this delivery technique.  
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4.  Where to Go From Here 
Vendor security awareness is finally beginning to catch up with the rapid growth 
of network software.  However, attackers are as intent as ever to find 
weaknesses, and the discovery of client-side exploits is becoming more 
commonplace.  Determining the feasibility of one particular exploit becoming 
widespread is far less important than understanding and learning to mitigate the 
fundamental weaknesses that allow many such exploits to occur.  Hopefully, this 
analysis and discussion have helped to further that understanding. 

4.1  Additional Information 
Please see the following references for more data on the Nullsoft Winamp 
Automatic Update Check Buffer Overflow Vulnerability and surrounding issues: 

• A summary of the vulnerability and potential systems affected can be 
found at http://online.securityfocus.com/bid/5170. 

• The exploit author’s original BugTraq message is available from 
http://online.securityfocus.com/archive/1/280786. 

• The original source code of the exploit WampExp.c is available at 
http://downloads.securityfocus.com/vulnerabilities/exploits/wampexp.c. 

• The original jill.c source code (from which the WampExp.c shellcode is 
derived) can be found at 
http://downloads.securityfocus.com/vulnerabilities/exploits/jill.c. 

• A paper detailing the DNS cache poisoning attacks that create the 
foundation for this exploit can be found at 
http://packetstormsecurity.nl/papers/protocols/dnsinfo.htm. 
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